Skip to content

Instantly share code, notes, and snippets.

@smhr
Last active March 11, 2019 16:05
Show Gist options
  • Save smhr/0553f14d2b54aefcb04cb2df1076999c to your computer and use it in GitHub Desktop.
Save smhr/0553f14d2b54aefcb04cb2df1076999c to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Filament parameters for Phantom"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import math\n",
"from astropy import constants as const\n",
"from astropy import units as u\n",
"#from astropy.constants import si"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"densUnit = u.solMass/(u.pc)**3."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\mathrm{\\frac{M_{\\odot}}{pc^{3}}}$"
],
"text/plain": [
"Unit(\"solMass / pc3\")"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"densUnit"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$3.5906036 \\times 10^{-19} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 3.59060364e-19 g / cm3>"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filamentM = 250*u.solMass #filament mass\n",
"filamentL = 1.5*u.pc #filament length\n",
"filamentR = 0.1*u.pc #filament radius\n",
"filamentV = math.pi*filamentR**2.*filamentL\n",
"filamentDens = filamentM/filamentV\n",
"filamentDens.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.1968679 \\times 10^{-20} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 1.19686788e-20 g / cm3>"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filamentDens.decompose(u.cgs.bases)/30."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$7.1812073 \\times 10^{-20} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 7.18120729e-20 g / cm3>"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filamentM = 50*u.solMass #filament mass\n",
"\n",
"filamentDens = filamentM/filamentV\n",
"filamentDens.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$2.8724829 \\times 10^{-20} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 2.87248291e-20 g / cm3>"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filamentM = 20*u.solMass #filament mass\n",
"\n",
"filamentDens = filamentM/filamentV\n",
"filamentDens.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$9.574943 \\times 10^{-22} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 9.57494305e-22 g / cm3>"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filamentDens.decompose(u.cgs.bases)/30."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Calcualtion of sound speed:**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Input $\\mu$ and temperature:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"mu = 2.381; T = 15*u.Kelvin"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.3806485 \\times 10^{-23} \\; \\mathrm{\\frac{J}{K}}$"
],
"text/plain": [
"<<class 'astropy.constants.codata2014.CODATA2014'> name='Boltzmann constant' value=1.38064852e-23 uncertainty=7.9e-30 unit='J / K' reference='CODATA 2014'>"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"const.k_B"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.6726219 \\times 10^{-27} \\; \\mathrm{kg}$"
],
"text/plain": [
"<<class 'astropy.constants.codata2014.CODATA2014'> name='Proton mass' value=1.672621898e-27 uncertainty=2.1e-35 unit='kg' reference='CODATA 2014'>"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"const.m_p"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"cs = (const.k_B*T/mu/const.m_p)**(0.5)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$228.03873 \\; \\mathrm{\\frac{J^{1/2}}{kg^{1/2}}}$"
],
"text/plain": [
"<Quantity 228.03872731 J(1/2) / kg(1/2)>"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cs"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$22803.873 \\; \\mathrm{\\frac{cm}{s}}$"
],
"text/plain": [
"<Quantity 22803.87273107 cm / s>"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"soundSpeed = cs.decompose(u.cgs.bases); soundSpeed"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But we need to know the sound speed in the code unit when we input initial parameters for the Phantom code."
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$6.67408 \\times 10^{-11} \\; \\mathrm{\\frac{m^{3}}{kg\\,s^{2}}}$"
],
"text/plain": [
"<<class 'astropy.constants.codata2014.CODATA2014'> name='Gravitational constant' value=6.67408e-11 uncertainty=3.1e-15 unit='m3 / (kg s2)' reference='CODATA 2014'>"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"const.G"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\mathrm{\\frac{m^{3}}{kg\\,s^{2}}}$"
],
"text/plain": [
"Unit(\"m3 / (kg s2)\")"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"const.G.unit"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\mathrm{s}$"
],
"text/plain": [
"Unit(\"s\")"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"timeUnitSi = (u.m**3/const.G.unit/u.kg)**(0.5); timeUnitSi"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"timeUnit = (const.pc**3/(const.G)/const.M_sun)**(0.5)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$4.7051124 \\times 10^{14} \\; \\mathrm{s}$"
],
"text/plain": [
"<Quantity 4.70511238e+14 s>"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"timeUnit"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$2.1253477 \\times 10^{-15} \\; \\mathrm{\\frac{pc}{s}}$"
],
"text/plain": [
"<Quantity 2.12534775e-15 pc / s>"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"velocityUnit = u.pc/timeUnit; velocityUnit"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.0729478 \\times 10^{19} \\; \\mathrm{\\frac{cm}{pc}}$"
],
"text/plain": [
"<Quantity 1.07294784e+19 cm / pc>"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"soundSpeedDimless = soundSpeed/velocityUnit; soundSpeedDimless"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$3.4771871 \\; \\mathrm{}$"
],
"text/plain": [
"<Quantity 3.47718713>"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"soundSpeedDimless.decompose(u.cgs.bases)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculation of maximum density that can be resolved:"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$8.3144598 \\; \\mathrm{\\frac{J}{K\\,g}}$"
],
"text/plain": [
"<Quantity 8.3144598 J / (g K)>"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Rg = const.R*u.mol/u.gram; Rg"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculation of Jeans length:"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$7.1812073 \\times 10^{-20} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 7.18120729e-20 g / cm3>"
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filamentM = 50*u.solMass #filament mass\n",
"\n",
"filamentDens = filamentM/filamentV\n",
"filamentDens.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.5188798 \\times 10^{8} \\; \\mathrm{\\frac{pc^{3/2}\\,cm\\,kg^{1/2}}{M_{\\odot}^{1/2}\\,m^{3/2}}}$"
],
"text/plain": [
"<Quantity 1.51887979e+08 cm kg(1/2) pc(3/2) / (m(3/2) solMass(1/2))>"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"JeansL = (math.pi*soundSpeed**2/const.G/filamentDens)**(1/2.); JeansL"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$5.8383363 \\times 10^{17} \\; \\mathrm{cm}$"
],
"text/plain": [
"<Quantity 5.83833632e+17 cm>"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"JeansL.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$0.18920759 \\; \\mathrm{pc}$"
],
"text/plain": [
"<Quantity 0.18920759 pc>"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"JeansL.decompose(u.cgs.bases).to(u.parsec)"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"# function to calculate rho_crit (Bate & Burkert 1997)\n",
"def calcRhoCrit (T, mu, Ntot, Mtot):\n",
" Nnei = 50\n",
" rhoCrit = (3./4/math.pi) * (5*Rg*T/2/const.G/mu)**3 * (Ntot/(2*Nnei)/Mtot)**2\n",
" return rhoCrit.decompose(u.cgs.bases)\n",
"\n",
"# function to calculate rho_crit (Hubber et al. 2006)\n",
"def calcRhoCritHubber (T, mu, Ntot, Mtot):\n",
" ss2 = (const.k_B*T/mu/const.m_p) # sound speed ^ 2\n",
" Nnei = 50\n",
" rhoCritHubber = (math.pi*ss2/const.G)**3 * (math.pi/(6*Nnei*(Mtot/Ntot)))**2\n",
" return rhoCritHubber.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.0794132 \\times 10^{-14} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 1.07941322e-14 g / cm3>"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 1000000, Mtot = 65*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.6270609 \\times 10^{-13} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 1.62706094e-13 g / cm3>"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCritHubber (T = 15*u.Kelvin, mu = 2.381, Ntot = 1000000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.6417875 \\times 10^{-15} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 1.6417875e-15 g / cm3>"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 300000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$4.1044688 \\times 10^{-18} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 4.10446876e-18 g / cm3>"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 30000, Mtot = 100*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$3.1582554 \\times 10^{-14} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 3.15825543e-14 g / cm3>"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 1000000, Mtot = 38*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$2.8424299 \\times 10^{-15} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 2.84242989e-15 g / cm3>"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 300000, Mtot = 38*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.4643548 \\times 10^{-14} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 1.46435485e-14 g / cm3>"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCritHubber (T = 15*u.Kelvin, mu = 2.381, Ntot = 300000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.6417875 \\times 10^{-17} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 1.6417875e-17 g / cm3>"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 30000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$2.026205 \\times 10^{-13} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 2.02620503e-13 g / cm3>"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 15*u.Kelvin, mu = 2.46, Ntot = 3500000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Jeans length at critical density:"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.6417875041937452e-15 g / cm3\n",
"258.10947998676363 AU\n"
]
}
],
"source": [
"rhoCrit = calcRhoCrit (T = 15*u.Kelvin, mu = 2.381, Ntot = 300000, Mtot = 50*const.M_sun); print(rhoCrit)\n",
"JeansLengthCrit = (math.pi*soundSpeed**2/const.G/rhoCrit)**(1/2.)\n",
"print(JeansLengthCrit.decompose(u.cgs.bases).to(u.AU))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Jeans length at critical density for sink creation:"
]
},
{
"cell_type": "code",
"execution_count": 125,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10458.33210557503 AU\n",
"0.050703424864096 pc\n"
]
}
],
"source": [
"rhoSink = 1e-18*u.gram/u.cm**3 \n",
"JeansLengthSink = (math.pi*soundSpeed**2/const.G/rhoSink)**(1/2.)\n",
"print(JeansLengthSink.decompose(u.cgs.bases).to(u.AU))\n",
"print(JeansLengthSink.decompose(u.cgs.bases).to(u.pc))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mass per unit length for an isothermal Ostriker filament:"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.558317 \\times 10^{19} \\; \\mathrm{\\frac{cm^{2}\\,kg}{m^{3}}}$"
],
"text/plain": [
"<Quantity 1.55831699e+19 cm2 kg / m3>"
]
},
"execution_count": 101,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ml = 2*soundSpeed**2/const.G; ml"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$1.558317 \\times 10^{16} \\; \\mathrm{\\frac{g}{cm}}$"
],
"text/plain": [
"<Quantity 1.55831699e+16 g / cm>"
]
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ml.decompose(u.cgs.bases)"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\mathrm{\\frac{M_{\\odot}}{pc}}$"
],
"text/plain": [
"Unit(\"solMass / pc\")"
]
},
"execution_count": 108,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solarmassperparsec = u.solMass/u.parsec; solarmassperparsec"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$24.181661 \\; \\mathrm{\\frac{M_{\\odot}}{pc}}$"
],
"text/plain": [
"<Quantity 24.18166074 solMass / pc>"
]
},
"execution_count": 111,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ml.decompose(u.cgs.bases).to(solarmassperparsec)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So the mass of the Ostriker filament with 1.5 pc length is:"
]
},
{
"cell_type": "code",
"execution_count": 112,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"36.27249111393573 solMass / pc\n"
]
}
],
"source": [
"print(ml.decompose(u.cgs.bases).to(solarmassperparsec)*1.5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Critical density for Bate (2009, MNRAS, 397, 232–248) initial condition:"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$6.0035705 \\times 10^{-14} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 6.00357047e-14 g / cm3>"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCrit (T = 10*u.Kelvin, mu = 2.46, Ntot = 3500000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$5.3547475 \\times 10^{-13} \\; \\mathrm{\\frac{g}{cm^{3}}}$"
],
"text/plain": [
"<Quantity 5.3547475e-13 g / cm3>"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"calcRhoCritHubber (T = 10*u.Kelvin, mu = 2.46, Ntot = 3500000, Mtot = 50*const.M_sun)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment