Skip to content

Instantly share code, notes, and snippets.

@smsharma
Created June 12, 2019 20:23
Show Gist options
  • Save smsharma/761944108ec52ee697a13dd3c1a848d0 to your computer and use it in GitHub Desktop.
Save smsharma/761944108ec52ee697a13dd3c1a848d0 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The autoreload extension is already loaded. To reload it, use:\n",
" %reload_ext autoreload\n"
]
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from NPTFit import create_mask as cm\n",
"from p3FGL import plot_3FGL\n",
"\n",
"%matplotlib inline\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/smsharma/p3FGL.py:50: FutureWarning: convert_objects is deprecated. To re-infer data dtypes for object columns, use DataFrame.infer_objects()\n",
"For all other conversions use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.\n",
" convert_numeric=True)\n"
]
}
],
"source": [
"p = plot_3FGL()\n",
"\n",
"mask_IG = cm.make_mask_total(band_mask = True, band_mask_range = 2,\n",
" mask_ring = True, inner = 0, outer = 30,\n",
" )\n",
"\n",
"x_counts, y_counts, error_L, error_H, x_errors_L, x_errors_H = \\\n",
" p.return_counts(flux_min = 5e-11,\n",
" flux_max = 1e-7,\n",
" flux_bins = 12,\n",
" mask=mask_IG)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, '$F$ [counts cm$^{-2}$ s$^{-1}$]')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEtCAYAAAClLw9cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xu0HGWZ7/HvjyTkBmTkos4FEkLUwKhAsl0ENBAuDgwaRx0v6NZBbts16AEV9ehcZJw5mZkzyMiIx8uOMGvUCIzLEQVhSYaQKNGAO3J1LT2OmMQRPNxiEBOSEJ7zR1WzO82+dHe93dWX32etWt39VtVbT5Oin/1WvfW+igjMzMzKtE/ZAZiZmTkZmZlZ6ZyMzMysdE5GZmZWOicjMzMrnZORmZmVzsnIzMxK52RkZmalm9rIxpIOBmYWPOaOiHi0YB1mZtZD1MgIDJK+CbwWaGbYBuX73RgRf9LE/mZm1qMaahkBa4D3FjiegDcV2N/MzHpQo8nonojYUuSAku4psr+ZmfWehi7TmZmZtUJdvekkvVnSFZLOkTS1Zt23WhOamZn1i0mTkaSLgSuB/YGPAOslHVi1ydIWxWZmZn2inpbRhcDpEXEecBSwEVhTlZDUquDMzKw/THrPSNITEXFATdnlwGnAKcDPa9ebmZk1op6W0SOSDq8uiIhLgNvypdEeeWZmZnupJxndCryrtjAi3gesBWakDcnMzPpNPZfp9gWmRsT2cdYfVvTZIzMz629+zsjMzErX8KjdkvaRdGIrgjEzs/7UcMtI0mzgiYiY0pqQzMys3zQ7n5GfLTIzs2Sa7ZbdNTeaJC0hS57zI2JV2fGYmdlzdfRMr5IWVb0/W9Ipkj48yT6H5OPoPS8vOiUivg/MkbR/K+M1M7PmdGQykjRN0muBa/LPZwC7I2IN8JSkk8bbNyIeAbYy+t1ekL/uBA5tXdRmZtasjhw9ISJ2AzdKuiQvOhm4OX+/iWxw1nWSXg2cULXr9oi4rKa6XfnrbODB2mNJGgKGAGbPnr144cKFSb6DmVm/2Lhx46MRcUiROppNRu3uwHAQsCN/vx04ECAiVgOrqzfMB3CdBywGbgGul/RK4DcR8evaiiNiGBgGGBgYiJGRkRZ9BTOz3iRpc9E6mklGu4F2dwQIoNKVfAoTX17cCpxLnjAjYn1evn7cPczMrFQNJ6OI2AW8swWxTOQxsstsAPsBj4+3YYw+ONU1Pf7MzPpd4Q4Mkv5G0ismWP9GScsLHuY2YH7+fj6wrmB9e5G0XNLwtm3bUlZrZmZ1StGbbidw/1gr8g4IHwROazQhSToLOCLvYDACTJN0JvBkRCRNRhFxQ0QMzZkzJ2W1ZmZWpxS96Z4C/meebK6t6c12DnBORPxA0t8BNzRQ79eA68juEe2JiE8niNXMzDpQipbRHLLpyG8G/kjSnwBImgIcCVR6WexppNKI2B2Zp8NDi5uZ9bQULaNnIuItAJIEfAT4BjAzX1/pTv1wgmO1RN6qW75gwYKyQzEz60spWkZPVt7kLZhKK2ZqXlZ56LRjWze+Z2RmVq4ULaOXSPpL4FGykRK+nZe/Adgj6dCI+AWjw/KYmZntJUUy+ivgy2QjHqwEtkn6W+BpsntG/yJpC/C9BMcyM7MeVDgZ5QOTnl5T/B+VN5I+BhwZEV8teqxW8T0jM7NyJRm1W9L+kt5ReZZI0lGSXggQEfd3ciIC3zMyMytbihEY/hB4ALgM+JO8+MfAGyQdX7R+MzPrfSlaRh8E/igifhf4DkBEPBMRnwWcjMzMbFIpktHdEXFX/r62+/aU2o3NzMxqpUhG1SMrPDvPkaR9gCMS1G9mZj0uRTLaV9LfSToamC5phqSlwPXAHQnqbzmP2m1mVq4UyeiTZA+03gV8DvgtsAb4UUT8a4L6W8696czMypXiOaMAhiR9mqzDwh7g9oj4cdG6zcysP6QYgQGAiLgXuLe6TNLrI+L6VMcwM7Pe1FAyknQIMKPOzQ8GPkp278jMzGxcjbaMrgJe08D2T06+iZmZ9btGk9HjwDvIBj2tPFP0SuAQ4NaqsmnAO4ENCWJsOY9NZ2ZWrkaT0deAmyLi2WeLJJ0eEZ8aY9t7JF1UKLo2iYgbgBsGBgYuKDsWM7N+1FAyyn+0a03UPXxnY+GYmVk/SvGc0Yvy6cbHMj9B/WZm1uNSJKM1wLcknSlpgaQjJJ0m6T+o6eptZmY2lhQPvd4k6VDg34GZefFTwMciYlXR+s3MrPcleeg1Ij4v6VrgFWStrZGIeDxF3WZm1vtSjsCwDfjPVPWZmVn/SDLteLfzqN1mZuUqlIwkTZO0JlUwZfGo3WZm5SraMtoHOClFIGZm1r8mvWc0ScvHl/nMzKywejowHA/8M/DwGOumAUuTRmRmZn2nnmR0L/CDseYlkjQD+KfkUZmZWV+p5zLbv02wbjfw8USxmJlZn5q0ZRQRn5lg3R6cjMzMrKCGOyBI2kfSia0IxszM+lMzveFmArelDsTMzPpXs12zx5syoit5BAYzs3I1m4xi8k26h0dgMDMrlx9aNTOz0jkZmZlZ6ZyMzMysdO7AYGZmpWsmGe0GPJ24daRly5axbNmyssMwswY1nIwiYldEvLMVwZgVsWrVKjZs2MC6deuYN28eq1b5byazbpH8npGkhZIuknRq6rrNxrNq1SqGhobYuXMnAJs3b2ZoaMgJyaxLKKLYI0OSVgM7gCuBJ4E1wGeBJ4CHIuLzRYNsl4GBgRgZGSk7jL6Q+lLahg0bnk1E1aZPn86SJUuSHWft2rXJ6jLrFZI2RsRAkTrqmUJiMtdGxFV5QDcB34iID+SfL05Qv9mkxkpEE5WbWWdJkYy2A0iaSjbR3gVV6/xLYGNK3cKYN28emzdvfk753Llz3Zox6wIp7hntm7++CpgNrK9aNy1B/WaTWrFiBbNmzdqrbNasWaxYsaKkiMysESmS0VRJVwNfAL4YEb+QdJyka4ADEtRvNqnBwUGGh4eZPn06kLWIhoeHGRwcLDkyM6tH4Q4MAJKOA34HWE3WGnprvmpXRFxb+AAtJmk5sHzBggUX/PSnPy07HCug0jHCl+bM2idFB4YkyahXuDedmVnjUiQjj01nZmalqysZSXqzpCsknZP3mqte963WhGZmncxDL1lKkyaj/FmhK4H9gY8A6yUdWLXJ0hbFZmZmfaKeltGFwOkRcR5wFLARWFOVkDyCt5mZFVJPMvrdiLgHICL2RMSFwK3AbZIOosemIDcz60S9flm0nmT0iKTDqwsi4hLgtnxJMYqDmVlb9PqPereqJxndCryrtjAi3gesBWakDcnMzPpNPa2a9463XURcJOkTaUMy6z9+WNf63aQto3wyve2Vz5L2kXRi1fotrQrOzMz6QzMPvc4ku1dkZn3Ks+paas2OwODu3GZ9yrPqWis02xPO3bnNukjK3mNjzaq7fft2zjvvPFauXJnsOL5/1l88Np2Nyd1f26fbLnl5Vl1rBT8jZM9R+XHcuXMn8+bNY8WKFZ4XqEXGu+QFJP1vnrKV4Vl1rRWcjGwv7fpx7FapW4vdeMlrxYoVDA0NsX37s51sPauuFdZsMnIHhg7i+wHdqxsveVX+KDnvvPPYuXMnc+fOdevZCmsmGe0GOvuitjWtG38c2yl1Eu3WS16Dg4PP/nHSyXFa92g4GUXELuCdLYjFmuT7Ad3Ll7zMMu5NZ3tZsWIFs2bN2qvMP46tMzg4yPDwMNOnTweypD88POxLXtZ3WtqBQdLbI+IrrTyGpeX7Ae3nS15miZJRPq/RPLKhgiqdG0Q2MZ+TUZcZHBx08rGe5McWOlfhy3SS/hz4JfAD4DvAunxZCxxfsO5FVe/PlnSKpA9Pss8hkq6Q9LyxPptZf/IwRp0tRctoADga+GlEPFMplDQNuKaZCvN9TwcuB14i6Qxgd0SskfRSSSdFxLqx9o2IRyRtJU+0tZ/NrDv4ma7+kiIZfS8iflJbGBG7m53rKCJ2AzdKuiQvOhm4OX+/CVgKrJP0auCEql23R8RljRxL0hAwBHDYYYc1E65ZX+q2H10/ttDZUiSjmZL2qW4VVTkC2JDgGAcBO/L324EDASJiNbC6ekNJB5Ldv1oM3FL7ubbiiBgGhgEGBgY8AKyVott+2NvBz3T1lxTJ6AvAhyQ9DDwAVJLSvmQdGFJckA1gSv5+ChNfctsKnMtoR4raz2bWh/xMV2dLkYzOB/4Xo8miWqqWxmPA7Pz9fsDj420YEZVjxlifxyJpObB8wYIFxSM1s47kxxY6W4pk9IfAS0nYgWEMtwHz8/fzyXrrJRMRNwA3DAwMXJCyXjPrLH6mq3Ol6GH2w4j4Se09o7wTQlMdGAAknQUckXcwGAGmSToTeHK8nnRmZtadUrSMZrSoA8PXgOvILv/tiYhPNxugmZl1thQto/8E/lLSOZJOkrQ0X04l68DQlIjYHZmnq+77tISk5ZKGt23b1srDmJk1pdtmA25GipbRHWSdCsbSFV2lfc/IzDpVv0x4mSIZ3Qe8LiIeqy5M3IHBzKwreOSI5qS4TPfR2kQExTswmJlZ/4wcUbhlFBHfkTQPeDgitgNIehGwMyJSjL5gZtY1PHJEc1KM2j1Idt+oeky4nwGnSTqxaP3t4A4MZtap+mXCyxSX6Y4gG2H7HysFEfFMRFwNHJug/paLiBsiYmjOnDllh2Jmtpd+mQ04RQeGHRFx9zjrxhoiyMzMGtAPI0ekaBkdLuk5SUfSVLJhgszMzCaUIhmtBdZLeoukoyUdI+ltZDO/PmfKBjMzs1opetP9u6TfA64GZubFO4G/johri9bfDh6128ysXEmm4o6IK4BDgTOAM4FDI+LyFHW3gzswmJmVK0UHBgAiYis1s66amZnVI1kyMjPrBr3aG63bJblMZ2ZmVoSTkZmZlc7JyMzMSudkhMemMzMrW/JkJGmhpIvymV67grt2m5mVK8Wo3aslfVPSqyUdD9wFzAOWSnp30frNzKz3pejafW1EXAUg6SbgGxHxgfzzxQnqNzOzHpfiMl1lQr2pwFLg+qp1vTUVoZmZtUSKZLRv/voqYDawvmrdtAT1m5lZj0uRjKZKuhr4AvDFiPiFpOMkXQMckKB+MzPrcSlG7b5K0v3AdcBqSdOBlwA3A7uK1m9mZr0vydh0EXFH1cedwBdT1NsunkLCzKxcKbp2v6vm86skXSrpLySdXrT+dvBzRmZm5UrRMnpZ9YeIuB24HUDSh4BvJziGmZn1sKaSkaRDqz4eIOkPAFWVTQHmA8uAy5qOzszM+kKzLaPXkz1T9AayS33n1qwX8AhwTvOhmZlZv2gqGUXElcCVkt4DHAv8bc0muyPioaLBmZlZfyh6z+iLwBMRsSVFMGZm1p8K9aaLiN9ExJfGWy/p7UXqNzOz/pDkOSNJB5GN1D2T0Y4MAi4EvpLiGGZm1rsKJyNJfw58ktEx6qpF0frNzKz3pRibbgA4GpgaEftUFmA68PUE9becZ3o1MytXimS0ISJ+EhHPVBdGxG7gEwnqbzmPwGBmVq4UyWiGpPHqOSJB/WZm1uNSdGD4T+AvJf038ABQaSHtS9aBYVWCY5iZWQ9LkYzuAPYbZ507MJiZ2aRSJKP7gNdFxGPVhZKmAdckqN/MrO+tXbu27BBaKsU9o4/WJiLorg4MZmZWrsLJKCK+M1a5pH3JBlTte8uWLWPZsmVlh2Fm1rEKXaaTdADZM0ZjWQy8DfhIkWOYmVnvK3rPaD6wbpx1O4AnC9ZvZmZ9oOhluseBbwKzakZf+APgdcDxRQM0M7PeVzQZ/Qr4+4h4qrowIh6MiFvJLtWZmZlNqOgUErsi4s4JNnlekfp7wapVq9iwYQPr1q1j3rx5rFrlZ4DNzGq1qgODgLnACcBwkWN0s1WrVjE0NMTOnTsB2Lx5M0NDQwAMDg6WGZqZWUdRRPODJEg6BvjhGKt2A/cD50bEPU0foE0kLQeWz5gx44LjjjsuWb0bNmx4NhFVmz59OkuWLEl2nF5/GM7MOpukjRExUKSOFB0YrgGeX92BISKmR8TibkhEMDpq99SpSeYafNZYiWiicjOzflW0ZbQv8PKIGEkXUnkGBgZiZCTdV5k3bx6bN29+TvncuXPZtGlTsuOYmZWp9JZR3oFhJA9mvqSzJQ1JOqpIvb1ixYoVzJo1a6+yWbNmsWLFipIiMjPrTCnGpkPSpcCPgX8FPgfcK6nvx6UbHBxkeHiY6dOnA1mLaHh42J0XzMxqFL5JImkQOBB4KfDzvPhI4BJJ50fEF4oeo5sNDg6ycuVKwB0NzMzGk6JldFhEXBwR/zcidufLvRFxNvCHCeo3M7MelyIZPTLBuocS1G9mZj0uRTI6cIJ1z09Qv5mZ9bgUD9Y8KOly4NPAZrLRFxYClwDfT1B/1/O9IjOziaWYXO/LZFNF/IRs5IVdwD3AryNiZdH6zcys9yUZciAiLpX0JeBEYBqwPiLuT1G3mZn1viTJSNI84MGIuDr//CJJh0XElhT1m5lZbyt8mS5/zugO4LKq4p8Bp0k6sWj9ZmbW+1L0pjsCOB34x0pBRDyTt5KOTVC/mZn1uBSX6XZExN3jrJuSoH4zM+txKVpGh0t6TtKRNJVsiCAzM7MJpUhGa4H1kt4i6WhJx0h6G/AD4JYE9ZuZWY8rfJkuIv5d0u8BVwMz8+KdwF9HxLVF6zczs96X6jmjKyT9GzBA1toaiYjHUtRtZma9r6HLdJKWjbcuIrZGxOqI+PZEiUjSqY0c08zMel+jLaOjJf2s4DGPBm4tWEfdJB0JzAaO6fe5lczMOlWjHRhOJRsMdVMTS2W/k+o9mKRFVe/PlnSKpA9Pss8hkq6Q9Ly8aBFwN/CivIefmZl1mEZ/nM9jtJNCs3ZMtoGkaWQP0l4OvETSGcDuiFgj6aWSToqIdWPtGxGPSNpKnmgjYlWehH4bEU8XjN3MzFqgoWQUERNNpJdMROwGbpR0SV50MnBz/n4TsBRYJ+nVwAlVu26PiOphiSpeC3xK0pSI2FO9QtIQMARw2GGHpfsSZmZWt265bHUQoy2q7eQT+kXEamB19YaSDgTmAYuBWyS9lSx5nQ5cWFtxRAwDwwADAwPRmvDNzGwi3ZKMgtGhhaYw8b2urcC5ZJP8ERHXAde1NDozMyukW5LRY2Q94gD2Ax4fb8OIqLRu3MoxM+sSKYYDaofbgPn5+/nAmJ0XmiVpuaThbdu2pazWzMzq1LHJSNJZwBF5B4MRYJqkM4Enx+tJ16yIuCEihubMmZOyWjMzq1NDl+ny3m3XRsQvWxRPta+R3euZAuyJiE+34ZhmZlaCRltG/0QDD60WERG7I/N01X0gMzPrQY0mI+31QTpQ0o8kvSxhTG3ne0ZmZuUqes9IwJHAIQliKY3vGZmZlatjOzCYmVn/cDIyM7PSNfPQ6xmSHiabVtzMzKywZlpG7wC+TTYqwp1kIx2cKelVkg5IGVy7uAODmVm51EivaUn7k80PtIhsINJFwIvJklqloi3AvZUlIr6aMuBWGhgYiJGRkbLDMDPrKpI2RsRAkToanULiN2RD8Tw7AoKk2cAxjCanxcCZwHKyBNU1ycjMzMpRdzKSdAFwF3BfROyslEfEb4H1+VLZdgZwbL6YmZlNqJGW0efJWjp7JP2EbCrvu/Ll7ojYWtkwIp4Cvp8vZmZmE2okGR0PvDxfjiabPfXtlZWSfsFogrobuCsitqQLtXUkLQeWL1iwoOxQzMz6UkMdGPbaMbtXdBPwUrJedVPJ7hk9j9HODFsj4uAEcbaFOzCYmTWu7R0YalxONtHd4RHxRB7QVOAc4GPANOC7RYIzM7P+UGQEhrcAV1USEUA+wvZKYEledEuR4MzMrD8USUb7ADPHWpHPd/Q54N0F6jczsz5RJBmtBc6XNH2c9Q8CCwvUb2ZmfaJIMroUmAvcKmnxGOvfBDwxRnnH8XBAZmblajoZRcQ9ZKMsLATulLRO0mWSPiHpbuBU4OuJ4mwpz2dkZlauIr3piIhbJR0FfISsQ8PSfNXTwNXAB4uFZ2Zm/aBQMgKIiIeBDwAfkPQCYDawJSKeLlq3mZn1h8LJqFpE/L+U9ZmZWX9o6J6RpF9IulLSqZKmtCooMzPrL412YPgm8HpgNfCIpC9JeoOkWelDMzOzftFQMoqI90TEoWQjLHweGAC+Bjwq6RuS3iXpoBbEaWZmPayprt0RcWdEfDQijgSOAv4OeCFwFfArSbdJukjS3ISxtoyfMzIzK1eRh14BiIgfR8Q/RMRxwGHA+4E9wCeAByT9UNIZRY/TSn7OyMysXIWTUbWI+GVEfDoiTgOeTzaC9yayaSbMzMzG1FDXbkmbgI3AD/NlY/6c0XNExK+BL+aLmZnZuBp9zmgXWW+6N5BPoCfpIUYT1EbghxHxYMogzcystzWUjCLixZL2I5vRdRGwOF9eQzZOXSVBPcxoy+ljSSM2M7Oe0/AIDBHxJPCdfAEgf85oEXsnqTPyxcnIzMwmlGQ4oIjYDtwu6QngIOAVgMhbSmZmZhMpnIwkvQL403yZnxffAXyI7IFYMzOzCTWVjCS9iiz5vBH4A+AZ4LvAFcDX3YHBzMwa0WjX7s+Q9aR7PtmcRbeSjb5wfUQ8mj689pC0HFi+YMGCskMxM+tLiqj/to6kZ8iS0Crg4xGxqUVxlWJgYCBGRkbKDsPMrKtI2hgRA0XqaOYy3VTgz4A/k7SZ0Qdgf0j2jNGYD8GamZmNp9FkNIe9u28vInsI9o3s/RBsdXL6ZrJozcysJzX60OtvgHX5AoCk2cAxjCanxcAfA68lS1CehM/MzCZUdzKSdAFwF3BfROyslEfEb4H1+VLZdgZwbL6YmZlNqJGW0efJWjp7JP0EuJssOd0F3B0RWysbRsRTwPfzxczMbEKNJKPjgZfny9Fkl+HeXlkp6ReMJqi7gbsiYku6UM3MrFfVnYwi4g6ykRWAZ+8V3UQ2V9GdeV1Lgdcx2plha0QcnDJgMzPrPUWGA7oc2A84PCKeAJA0lWxCvY8B08hGZTAzM5tQkZle3wJcVUlEABHxdESsBJbkRbcUCc7MzPpDkWS0DzBzrBUR8Uvgc8C7C9RvZmZ9okgyWgucL2n6OOsfBBYWqN/MzPpEkWR0KTAXuFXS4jHWvwl4YoxyMzOzvTTdgSEi7slHu74OuFPS7WS96gScBryM7FJdx6uM2g08JelHZceTwBxgW48ct2idzezfyD71blvPdhNtczDQtSPj1yjj/OyVc7PR/VKdn5Otf0md8YwvIgotZNNJ/DPw32TzGj0D7AJWAjOL1t/OBRgpO4ZE32O4V45btM5m9m9kn3q3rWe7ibbplXMzxb9ppxyzjHOz0f1SnZ91rC98fhae6TWyUbo/AHxA0guA2cCWiHi6aN3WtBt66LhF62xm/0b2qXfberYr69+t3cr4nr1ybja6X6rzs+X/Zg3NZ9TrJI1EwTk5zFrB56Z1shTnZ5EODL1ouOwAzMbhc9M6WeHzs66WkaQ3A68E7gG+VH0JTtK3IuI1RQMxM7P+NWnLSNLFwJXA/sBHgPWSDqzaZGmLYjMzsz5Rz2W6C4HTI+I84ChgI7CmKiGpVcGZmVl/mPQynaQnIuKAmrLLyZ4lOgX4ee16MzOzRtTTMnpE0uHVBRFxCXBbvhTuHm5mZv2tnmR0K/Cu2sKIeB/Z+HQz0obUuSQtkXS8pMGyYzEDkHSypFdK+tOyYzGrJulwSS+RdGI929eTjN4L/O+xVkTERcC8+sMrj6RFVe/PlnSKpA9Pss8hkq6Q9Ly86JSI+D4wR9L+rYzX+k8z5yjw+ohYD7xU0rTWRmj9qslz83jgQOpssEyajCJiV0Rsz4O4RNLv16zv6KnFJU2T9FrgmvzzGcDuiFhDNhbdSePtGxGPAFsZ/e/0gvx1J3Bo66K2flLkHAU25a8vIPsf3yyZgufmBuBisqQ0qUbv9/wT8BDwlQb3K01E7AZulHRJXnQycHP+fhNZ1/R1kl4NnFC16/aIuKymul3562yyKTLMCityjgJX5X+1bgUebk/E1i8Knps/j4izJF0oaWZE7JjoWI0mo726cefdu78LnBUR9zVYV1kOAir/UbaT/zUZEauB1dUb5t9vHrCYbNba6yW9EvhNRPy6XQFb32nkHD0ZeBK4KTy2l7VeI+fmCfkfSvdPloigeE84AUcChxSsp50CmJK/n8LElyq3AueSJ+H82jzA+nH3MCuu7nM0Im5rS0RmmUbOze81UnE/dst+jOwyG8B+wOPjbVj1l6b/4rR2qvscNWuzlp2b/ThQ6m3A/Pz9fGBdibGYjcXnqHWqlp2bzSSjMySdJmlOqiBaTdJZwBGShoARYJqkM4EnI8L/o1vpfI5ap2rXudnQfEaSnsnfRr5sJrvB/0ngeuDeiHgiVXCp5M9fPE12jXOPb/Rap/E5ap2qXedmo8lof2BRvizOX19M1sKqVLQFuLeyRMRXUwZsZma9p/BMr5JmA8cwmpwWAwvJsmhExJQJdjczM2vNtOOSZgDHAsdGxGeSH8DMzHpKS5KRmZlZI/qxa7eZmXUYJyMzMyudk5GZmZXOycjMmiJpuqSVkh6Q9KSkn0p6X5tjeI+kOyU9JWltO49tafXj2HRmlsZU4FfAHwEPAC8Hvi3poYi4rk0xPAT8I/AK6pw3xzqTe9OZWTKSriYbJuaiNh/3fWSz3i5r53EtHV+ms7aRdICkZyTFOMuHmqjz+ZJukPR+Sae0Im6rj6SpwKvIRl8pXT419vvz8+P5ZcdjE/NlOmunRWRzQ32F0dkiqzUz6OJM4LXAeyNic4HYLCdpOjBtgk12RMSeMco/BWwDvljS8fcSEWsk/Qz4Z7LzxDqYk5G106L89d8i4pZSIymBpIuAb3RB0rwKGJxg/cnA2uoCSZeTtYpOiYhd7T6+dT9fprN2Wkw2oO4Pyg6kJEvLDqAeEfGOiNAEy9rq7SVdQdaJ4dSIeLTdx7fe4GRk7bSIbNqRKZIOrloOKjuwanmX5bmSjq3M2zVWWQP1HSDpPcAbWxJwiSR9CjiNrEX0SAnHn5qPhTkV2EfSDEn7tjsOK86X6awtJO3H6HQjtT9aPwaOTHy8twLLgE3ADOBnEfHlqvUpTVQZAAADpUlEQVTvBH6fbNrkg4EtVetfDrwfeFtexzqyken/AnhdpUzSScA/AC8DjiP7UX4KWAKMVA0S/HqyRLwP8DFJTwD3RcTVeSznA3uAXWT3Ns6KiNOa/Y4TxLUI+BHwBeB8YAdwQk2sdZM0F/gfwE7g55Iqq74bEX88yb5Nfecx/BVwadXnHWT/XsuaqMvKFBFevLR8IbufEGQTMZ5WsxxdoN65eb1zq8reB9wJTMs/Hws8DMzPP38c+GRNPZ8C/qbq8yF5vSdVlc0co+zgvOxSYGpetpDsB/qQieLMy5cA/1pTdmMd33uy7zheXE8DH50o1jacC01951Tnh5fOXNwysnZZnL9+PSK+06qDSDoQWAGcHxG78+LHgK8BD0taQNbCqW2J/R/gfklfjoj/iohHqv7SByAidoxR9mhe9t8R8XRe/FNgX7JZkCe7dPU7wImSTgZuz2O+ssh3nCSuKcDDTcaaSsPf2Xqf7xlZu1R60rX6GZQBYBbZpT8AImJLRPx5RDwJnER2eXpTzX4/z8ub7WTwQNXxKt2O6+lOvBq4HVgDbJV0M/CbSfaZ7DtOFlezsabSzHe2HudkZO2ymOy+zK9bfJzKOa1x1k+bZP308SpWbbNob8+MtcsEdVWS3rSIOJusZTJE9qN8m6SjJjjWZN9xsrgairUFmvnO1uOcjKzlJM0kuzfRjifzR8jugex1GU7SFEkvBtaT3UNYWLPfwrz89qqy3ez9I/17BeKqXE6bkr+emr++VdKSiNgcEV+JiLcAnyXrKj2eyb5jp2vmO1uPczKydjiG7Ee45ckosudc/gr4cE0X33cBuyLiPrLOCpfUtHQ+CPxLRNxfVfYjshvgFUeS9dZanI8SgKRKS+vZY1WVPVt/RDwIPArMz4sq92wg67lXbVt+7Ka+Yx1xTRhrmzT0na33uQODtUO77hcBEBGfkPQgMCzpfrIuxHdFxKZ8k/eTXR66XNLDwAvJWkQra6o6F3h/3rLbStYi+W2+/wslfZ0siQH8raQXAv9VVfb3kj4To13GzyFLgouBjXnZLrKOExeTtZ72BX4VEaub/Y6Sjp8krnpibaWmvrP1No/abV0tf9ZlEzAvOn+YHWsznx/dw5fpzMysdE5GZmZWOicjMzMrnZORdbsdwI3AmyW9uuxgrHPk58Obyc6PHSWHY5NwBwYzMyudW0ZmZlY6JyMzMyudk5GZmZXOycjMzErnZGRmZqVzMjIzs9I5GZmZWen+P5CdeutEBB6hAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Plot F^2*dN/dF:\n",
"\n",
"plt.errorbar(x_counts,x_counts**2*y_counts,xerr=[x_errors_L,x_errors_H],\n",
" yerr=x_counts**2*np.array([error_L,error_H]), fmt='o', \n",
" color='black', label='3FGL PS')\n",
"\n",
"plt.xscale(\"log\")\n",
"plt.yscale(\"log\")\n",
"\n",
"plt.xlim([1e-10,1e-8])\n",
"plt.ylim([2e-13,1e-10])\n",
"\n",
"plt.ylabel('$F^2 dN/dF$ [counts cm$^{-2}$s$^{-1}$deg$^{-2}$]', fontsize=18)\n",
"plt.xlabel('$F$ [counts cm$^{-2}$ s$^{-1}$]', fontsize=18)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment