Skip to content

Instantly share code, notes, and snippets.

@smsharma
Created February 7, 2023 22:14
Show Gist options
  • Save smsharma/f088b6e99e4376e34b0d066dccb87140 to your computer and use it in GitHub Desktop.
Save smsharma/f088b6e99e4376e34b0d066dccb87140 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "405cc9da-a883-41ff-98c2-6f1a1ad8b7a6",
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.distributions as dist"
]
},
{
"cell_type": "markdown",
"id": "bd46eeb4-d861-485e-ab31-fe7c935afb65",
"metadata": {},
"source": [
"## Full covariance loss"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "716367b0-f6ee-44a2-bcee-83ae94cea759",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([64, 9])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n_batch = 64 # Batch dimension\n",
"n_params = 3 # Number of parameters\n",
"\n",
"n_tril = int(n_params * (n_params + 1) / 2) # Number of parameters in lower triangular matrix, for symmetric matrix\n",
"\n",
"out = torch.randn((n_batch, n_params + n_tril)) # Dummy output of neural network\n",
"\n",
"out.shape"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d2be1e07-243e-4802-92f9-9ed9606be366",
"metadata": {},
"outputs": [],
"source": [
"mu, tril = out[:, :n_params], out[:, n_params:] # Separate out mean and lower-triangular elements"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "20389386-5b25-4d0e-a197-b7703e8c9b91",
"metadata": {},
"outputs": [],
"source": [
"def vector_to_Cov(vec):\n",
" \"\"\" Convert unconstrained vector into a positive-diagonal, symmetric covariance matrix\n",
" by converting to cholesky matrix, then doing Cov = L @ L^T \n",
" (https://en.wikipedia.org/wiki/Cholesky_decomposition)\n",
" \"\"\"\n",
" \n",
" D = int((-1.0 + math.sqrt(1.0 + 8.0 * vec.shape[-1])) / 2.0) # Infer dimensionality; D * (D + 1) / 2 = n_tril\n",
" B = vec.shape[0] # Batch dim\n",
" \n",
" # Get indices of lower-triangular matrix to fill\n",
" tril_indices = torch.tril_indices(row=D, col=D, offset=0)\n",
" \n",
" # Fill lower-triangular Cholesky matrix\n",
" L = torch.zeros((B, D, D))\n",
" L[:, tril_indices[0], tril_indices[1]] = vec\n",
" \n",
" # Enforce positive diagonals\n",
" positive_diags = nn.Softplus()(torch.diagonal(L, dim1=-1, dim2=-2))\n",
" L[:, range(L.shape[-1]), range(L.shape[-2])] = positive_diags\n",
" \n",
" # Cov = L @ L^T \n",
" Cov = torch.einsum(\"bij, bkj ->bik\", L, L)\n",
"\n",
" return Cov\n",
"\n",
"Cov = vector_to_Cov(tril)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "45c9a7fe-0335-4717-ac06-9715862fe8af",
"metadata": {},
"outputs": [],
"source": [
"mu_truth = torch.randn((n_batch, n_params)) # Batch of true parameter values\n",
"loss = -dist.MultivariateNormal(loc=mu_truth, covariance_matrix=Cov).log_prob(mu) # Full batch-wise loss"
]
},
{
"cell_type": "markdown",
"id": "20300f3f-9283-4ef6-aea0-25acf7c31901",
"metadata": {},
"source": [
"## Plotting ellipses"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0b7abede-daa9-4d74-a799-8aba0dffbff2",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB3gAAASLCAYAAAB3Fmz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhcZYE+7Ke6O6SzdQhhDSFsYQcJuyDIJiCCzAiIsikIKp8iEVEZkR/GcUEZZYARZUA0KAgDgiiCGwGUCChrIOwQEkJCAtk3EtLp/v4oq5NA9nT36eq+7+uq67ypOnXOU5Wk8fLJ+76l5ubm5gAAAAAAAADQ4dUUHQAAAAAAAACAVaPgBQAAAAAAAKgSCl4AAAAAAACAKqHgBQAAAAAAAKgSCl4AAAAAAACAKqHgBQAAAAAAAKgSCl4AAAAAAACAKqHgBQAAAAAAAKgSCl4AAAAAAACAKqHgBQAAAAAAAKgSCl4KNWzYsJRKpXc96uvrM3DgwBxzzDG5+eab09zcXHTUTmGfffZp+Y6vueaaouMAAAAAAACwmhS8dBgbbbRRy6NUKmXChAm544478rGPfSxHHXVUFixYUHTEqjZ69Oj885//bPn1z372swLTAAAAAAAAsCYUvHQYkyZNannMnTs3o0ePzmGHHZYk+cMf/pALL7yw4ITV7dprr02SnHbaaenTp08eeuihPPPMMwWnAgAAAAAAYHUoeOmQampqstNOO+V3v/tdBg8enCT53//93zQ2NhacrDq9/fbbuf7665MkZ511Vo477rgki0tfAAAAAAAAqoOClw6tvr4+H/3oR5Mks2fPznPPPZckmT59eq699tqccMIJ2WWXXbLeeuulvr4+m2++eU466aQ89NBDy71mZd/fgw46KEly66235vDDD8+GG26YmpqaDBs2rOXc0aNHZ9iwYTnkkEOy9dZbp0ePHmloaMhuu+2WCy+8MFOmTFnufbbYYouUSqUMHz488+bNy7Bhw7LDDjukZ8+eGTBgQE499dS88sorLedPmTIl559/frbddtv06NEjG2+8cc4888xMnjx5Lb7Bst/+9reZMmVKtttuu+yzzz755Cc/mSS5/vrrs3DhwrW+PgAAAAAAAO2jrugAsDIDBw5sGc+aNStJcvnll+eb3/xmkqS2tjYNDQ1JkldffTWvvvpqbrrpplx22WU555xzVnjt8847L5deemlKpVLWXXfd1NQs/W8ejj766IwbNy5JuWzu2bNnpk+fnieeeCJPPPFEhg8fnhEjRmS77bZb7j1mzpyZ9773vXnqqadSX1+fUqmU119/Pddff31GjBiRBx54IE1NTfnABz6QV155JT179kxTU1MmT56ca6+9Nn/729/yyCOPtHzGNVGZqfuJT3wiSXLggQdm8803z7hx43LHHXfk2GOPXeNrAwAAAAAA0H7M4KXDGzt2bMt4vfXWS5IMGDAg3/jGN/LII49k3rx5mTZtWt56662MGTMmQ4cOTZJ86UtfyuOPP77c6z766KO59NJLc/7552fy5MmZNm1a5s6dm9NPP73lnAMPPDDDhw/PuHHj8tZbb2Xq1KmZP39+7r777uy9996ZMGFCTjrppBXmHzZsWGbPnp0///nPmTt3bst4gw02yOuvv57zzz8/J554Yvr27ZsHH3wwc+fOzZw5c/J///d/6dmzZ1588cVccskla/z9jR8/Pn/5y19SKpVyyimnJElKpVJL2WuZZgAAAAAAgOpRam5ubi46BF3XsGHDWmbiLuuP4qxZs7LDDjtk4sSJWW+99fLmm2++a5btspx99tm58sorc8YZZ+SnP/3pcu/5pS99KT/84Q/XKPucOXMyePDgTJ48Offff3/233//pV7fYostMm7cuPTo0SNPPvlky17CFT/72c9yxhlnJEk22mijPP300+nfv/9S51x00UX51re+la233jovvfTSGuX8z//8z3zjG9/IIYcckhEjRrQ8/9JLL2WbbbZJbW1tXn311QwYMGCNrg8AAAAAAED7MYOXDmnGjBkZMWJEDjnkkEycODFJMnTo0FUqd5PkqKOOSpKMHDlyuefU1NTk/PPPX+OMvXv3zoEHHrjS+xx33HHvKneT5IgjjmgZf+Yzn3lXubvkOS+//HLmzp272hmbm5vz85//PMni5ZkrBg8enP322y+LFi3K8OHDV/vaAAAAAAAAtD978NJhlEql5b52yimn5Otf//pSz40ZMyY//vGPc++99+bll1/O7Nmz09TUtNQ5r7322nKvOXjw4Gy44YYrzfX73/8+v/zlL/Pwww9n8uTJmTdv3rvOWdF99t5772U+v9FGG7WM99prr5WeM2PGjPTq1WuleZd0zz33ZOzYsenVq1eOO+64d73+yU9+Mg888EB+/vOf54ILLlitawMAAAAAAND+FLx0GEuWmd27d8/666+f3XbbLSeffHIOPvjgpc79zW9+kxNPPDELFixoea6hoSH19fUplUp5++23M3369BXOel1ZudvU1JRTTjklN954Y8tzdXV16devX9ZZZ50kycyZMzN//vwV3qdPnz7LfL6urm61zlm4cOEK8y5LZX/dj3zkI+ndu/e7Xj/hhBMydOjQvPTSS/nrX//aMiMZAAAAAACAjskSzXQYkyZNanmMGzcujz76aH7605++q9ydOnVqTjvttCxYsCCHHHJI7rvvvsybNy8zZ87M5MmTM2nSpNxyyy0rvV9tbe0KX7/22mtz4403pra2NhdddFFefPHFLFiwINOmTWvJefzxxydZ9v7BRZs+fXp+85vfJEmuv/76lEqldz369euX+fPnJ1lcBgMAAAAAANBxKXipOnfddVdmzZqVfv365Y477siBBx6YHj16LHXOpEmT1vo+N910U5LkzDPPzDe/+c0MHjz4XXsAt8Z92soNN9zQUt6uil//+teZNWtWGyYCAAAAAABgbSl4qTrjx49Pkmy33Xbp2bPnMs+5++67W+0+u+222zJfnzNnTv7xj3+s9X3aSmVG7tChQzN79uzlPmbOnJkNNtggb7311lLLUQMAAAAAANDxKHipOn379k2SvPDCC8ucofrEE0/kV7/6VavdZ9SoUct8/Vvf+lZmz5691vdpC4899lieeOKJJMmJJ56Y3r17L/fR0NCQY489NollmgEAAAAAADo6BS9V5/DDD09NTU2mTZuWk08+ORMmTEiSvP3227n55ptz+OGHp0+fPmt9nw9+8INJkmuuuSZXX3113n777STlZZnPPffcXHLJJenfv/9a36ctVIrazTffPPvss89Kzz/hhBOSJA8//HBGjx7dptkAAAAAAABYcwpeqs4222yTr3zlK0mS2267LQMHDsy6666b3r1752Mf+1h69+6dK664Yq3vc95552X77bdPY2NjPvvZz6ZHjx7p169fBgwYkMsuuyyf/exnc/TRR6/1fVrb/PnzW2YwH3/88av0ngMPPDAbbrhhErN4AQAAAAAAOjIFL1Xpe9/7Xn7xi19k7733To8ePbJw4cIMHjw4F1xwQR5//PEMGDBgre+x7rrr5oEHHsgXv/jFbLHFFqmtrU1dXV0OOuig3Hjjjbnqqqta4ZO0vltvvTUzZsxIsnhm7srU1ta2LNN8/fXXt8xWBgAAAAAAoGMpNTc3NxcdAgAAAAAAAICVM4MXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeAEAAAAAAACqhIIXAAAAAAAAoEooeGE1NTY25p577sk555yTIUOGpE+fPllnnXWy8cYb56ijjsqvf/3rNDc3Fx0TAAAAAACATqjUrImC1XL55Zfni1/84grP+fjHP54bbrghNTX+DQUAAAAAAACtR/sEq6lHjx459dRTc+ONN+bhhx/OhAkT8vrrr+fBBx/M5z//+dTV1eWmm27K5ZdfXnRUAAAAAAAAOhkzeKGV/fSnP82nP/3pbLrpphk/fnxKpVLRkQAAAAAAAOgkFLzQyubNm5devXolSZ599tlsv/32BScCAAAAAACgs7BEM6yBGTNm5JJLLsn73//+bLDBBunWrVtKpVJKpVJLuZskL7zwQoEpAQAAAAAA6Gzqig4A1Wb06NE54ogjMnHixJWeO2vWrHZIBAAAAAAAQFeh4IXV0NjYmOOOOy4TJ05MQ0NDvvzlL+ewww7L5ptvnl69eqWmpibNzc1paGhoOR8AAAAAAABai4IXVsN9993Xsuzyrbfemg984APvOmfGjBntnAoAAAAAAICuwh68sBqefPLJJEm/fv2WWe4mydNPP92ekQAAAAAAAOhCFLywGhYsWJAkWbRo0XLPuemmm9orDgAAAAAAAF2MghdWwxZbbJEkmTVrVu6///53vf7www/n6quvbudUAAAAAAAAdBUKXlgNH/zgB9O7d+8kyYknnpibb745EydOzLhx43LFFVfksMMOy9Zbb11wSgAAAAAAADqruqIDQDXp169frrjiipxxxhmZMGFCPvaxjy31+kYbbZSbb745u+yyS0EJAQAAAAAA6MzM4IXVdPrpp+dPf/pTDj300PTp0yf19fUZPHhwhg4dmscffzw777xz0REBAAAAAADopErNzc3NRYcAAAAAAAAAYOXM4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEnVFB2grTU1NmThxYvr06ZNSqVR0HIC11tzcnNmzZ2fAgAGpqfHvcwAAAAAAoCvqtAXvxIkTs9lmmxUdA6DVjR8/PgMHDiw6BgAAAAAAUIBOW/D26dMnSbkIaWhoKDgNtL7Gxsb87ne/S5Icc8wxqavrtH+d+ZdZs2Zls802a/n5BgAAAAAAdD2dthGqLMvc0NCg4KVTamxsTM+ePZOU/5wreLsOy84DAAAAAEDXZRNHAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCqh4AUAAAAAAACoEgpeAAAAAAAAgCpRV3QAqFpz5iSXXJKMHbv4uYMOSk4/PSmVikoFAAAAAABAJ6bghTXR1JScempy++1LP//LXybz5yef+1whsQAAAAAAAOjcFLywJoYNK5e766yT/L//l/TokTz/fHLNNck55yTbb58cckjRKQEAAAAAAOhkFLywum6+OfnWt8rjq69OPvnJ8ri5OZk3L7nhhuSjH00efjjZaqvicgIAAAAAANDp1BQdAKrKqFHJaaeVx+edt7jcTcr77l5zTbLXXsm0acm//Vsyd24hMQEAAAAAAOicFLywOi68MHnrreSDH0y+//13v96jR/Kb3ySbbJKMHp387GftnxEAAAAAAIBOS8ELq2rMmOTOO8vjK65IamuXfd6mm5aL4CT50Y+Spqb2yQcAAAAAAECnp+CFVfWTn5T32T3iiGSbbVZ87qmnJn36JC+8kIwY0T75AAAAAAAA6PQUvLAq5s1Lrr22PD777JWf36fP4v15r7yy7XIBAAAAAADQpSh4YVXcdFMyfXqyxRbJkUeu2ns+97ny8Y47knHj2iwaAAAAAAAAXYeCF1amubm8l25SLm2Xt/fuO+2wQ3LooeU9eK+6qu3yAQAAAAAA0GUoeGFlHnooefzxpL4++dSnVu+9n/98+XjNNcn8+a2fDQAAAAAAgC5FwQsr8+Mfl48nnpj077967/3wh5PNNkumTk1uvrn1swEAAAAAANClKHhhRRYsSG6/vTz+zGdW//11dcmZZ5bHv/51q8UCAAAAAACga1LwwoqMHJnMmZNstFGy995rdo1jjikfR4ywTDMAAAAAAABrRcELK3LnneXjkUcmNWv412XXXZMBA5J585K//rX1sgEAAAAAANDlKHhhRe66q3w86qg1v0aplHzoQ+VxpTAGAAAAAACANaDgheV5+eXk+efL++gedtjaXatSEN95Z9LcvPbZAAAAAAAA6JIUvLA8ldm7+++f9O27dtc69NCkW7dkzJjkhRfWPhsAAAAAAABdkoIXlqeynPLaLM9c0adPcuCBS18XAAAAAAAAVpOCF5Zl7tzkvvvK48r+uWurcp3KzGAAAAAAAABYTQpeWJZ77kkWLEi22CLZYYfWuWZlJvDf/pbMnt061wQAAAAAAKBLUfDCsiy5PHOp1DrX3HbbZPDgZOHC5C9/aZ1rAgAAAAAA0KUoeOGdmpsXL6PcWsszV1imGQAAAAAAgLWg4IV3evHFZPz4pHv35OCDW/falYL37rtb97oAAAAAAAB0CQpeeKe//7183GuvpEeP1r32fvslNTXJuHHJhAmte20AAAAAAAA6PQUvvFOl4H3f+1r/2n36JO95z9L3AQAAAAAAgFWk4IV3asuCd8nrKngBAAAAAABYTQpeWNLUqclzz5XH++3XNvdQ8AIAAAAAALCGFLywpAceKB+33z7p379t7lEpeJ94Ipkzp23uAQAAAAAAQKek4IUltfXyzEkyaFCy2WbJokXJP//ZdvcBAAAAAACg01HwwpJGjiwf27LgXfL6lmkGAAAAAABgNSh4oWLBguSRR8pjBS8AAAAAAAAdkIIXKh59tFzybrBBss02bXuvSsH74IPlpZoBAAAAAABgFSh4oaIym3a//ZJSqW3vtcsuSe/eyaxZydNPt+29AAAAAAAA6DQUvFBRKXj337/t71VXl7z3vUvfFwAAAAAAAFZCwQtJ0tycPPBAedzW++9WVIpkBS8AAAAAAACrSMELSfLii8mbbybduye7794+96wUySNHts/9AAAAAAAAqHoKXkiSBx8sH/fcs1zytod99klqapJx45JJk9rnngAAAAAAAFQ1BS8kyWOPlY977dV+9+zTJ9l++/L40Ufb774AAAAAAABULQUvJIsL1vZanrmicr9KwQwAAAAAAAAroOCFRYuSxx8vj/fYo33vXbmfGbwAAAAAAACsAgUvPP98Mm9e0qtXst127XtvBS8AAAAAAACrQcELlXJ1yJCktrZ9773bbkmplLz2WvLGG+17bwAAAAAAAKqOghcq+9+29/LMSdK79+JZw2bxAgAAAAAAsBIKXqgUq7vvXsz9K/dV8AIAAAAAALASCl66tqam5PHHy+MiZvAued/KTGIAAAAAAABYDgUvXdsLLyRz5iQ9eiTbb19MhkrBawYvAAAAAAAAK6HgpWurzJodMiSpqysmw267lY+vvppMmVJMBgAAAAAAAKqCgpeurTJrtqjlmZOkoSHZdtul8wAAAAAAAMAyKHjp2jpCwZsku+9ePip4AQAAAAAAWAEFL11XU9PiJZorBWtR7MMLAAAAAADAKlDw0nW9/HIye3ZSX5/suGOxWSoFb6VwBgAAAAAAgGVQ8NJ1VWbL7rprUldXbJbKDOKxY5OpUwuNAgAAAAAAQMel4KXrqsyWLXr/3STp2zcZPLg8NosXAAAAAACA5VDw0nU9+WT5OGRIoTFaVHJUcgEAAAAAAMA7KHjpukaPLh933rnYHBW77lo+jhpVbA4AAAAAAAA6LAUvXdP06cmECeXxTjsVm6XiPe8pH83gBQAAAAAAYDkUvHRNldm7gwYlDQ3FZqmoFLzPPJMsXFhsFgAAAAAAADokBS9dU6Xg3WWXYnMsafPNkz59yuXu888XnQYAAAAAAIAOSMFL19TR9t9NklLJMs0AAAAAAACskIKXrqkjFrzJ4oJ31KhicwAAAAAAANAhKXjpepqbk6eeKo870hLNiRm8AAAAAAAArJCCl67n9deT6dOT2tpku+2KTrO0XXctHxW8AAAAAAAALIOCl66nsjzzNtsk9fXFZnmnypLREycmU6YUmwUAAAAAAIAOR8FL11NZnrmj7b+bJH36JFttVR6bxQsAAAAAAMA7KHjpeiozeDva/rsV9uEFAAAAAABgORS8dD2VgrcjzuBNFLwAAAAAAAAsl4KXrmXRouTpp8tjBS8AAAAAAABVRsFL1/LKK8lbbyX19cnWWxedZtl23bV8fPrppLGx2CwAAAAAAAB0KApeupbK8sw77pjU1habZXm22irp2TOZPz958cWi0wAAAAAAANCBKHjpWjr6/rtJUlOT7LJLeWyZZgAAAAAAAJag4KVreeqp8rFSoHZU9uEFAAAAAABgGRS8dC3VMIM3WVxAV/ICAAAAAABAFLx0JQsWJC+8UB539IK3kq8y4xgAAAAAAACi4KUref75pLEx6ds32XTTotOsWKXgfeWVZM6cYrMAAAAAAADQYSh46Toqyx3vsktSKhWbZWU22CDZaKPy+Jlnis0CAAAAAABAh6Hgpeuolv13KyzTDAAAAAAAwDsoeOk6KkVptRW8lWIaAAAAAACALk/BS9ex5BLN1aCSU8ELAAAAAADAvyh46Rpmz07Gji2Pd9qp0CirzAxeAAAAAAAA3kHBS9fwzDPl4yabJP37F5tlVe24Y/k4aVIyZUqxWQAAAAAAAOgQFLx0DZX9d6tleeYk6dMn2XLL8tgsXgAAAAAAAKLgpauoFKSVZY+rhWWaAQAAAAAAWIKCl65BwQsAAAAAAEAnoOCla6gs0VytBW8lPwAAAAAAAF2agpfO7403yo9SKdlxx6LTrJ7KnsGjRyfNzcVmAQAAAAAAoHAKXjq/p58uH7faKunVq9gsq2u77ZK6umTWrOS114pOAwAAAAAAQMEUvHR+1br/bpKss06y7bblsX14AQAAAAAAujwFL51fZf/aynLH1cY+vAAAAAAAAPyLgpfOr5pn8CZL78MLAAAAAABAl6bgpXNrbq7+greSW8ELAAAAAADQ5Sl46dxefTWZPTvp1m3xXrbVplLwPvNMsmhRsVkAAAAAAAAolIKXzq0y63X77cslbzXacsukR49kwYLkpZeKTgMAAAAAAECBFLx0btW+PHOS1NYmO+1UHlumGWhnw4YNS6lUetejvr4+AwcOzDHHHJObb745zc3NRUetOvfdd98yv9tSqZTu3btn4MCBOfroo3PTTTf5fgEAAACAFgpeOrenniofq7ngTezDC3QIG220UcujVCplwoQJueOOO/Kxj30sRx11VBYsWFB0xKrVr1+/pb7fJJkwYULuvPPOnHjiiTnyyCN9vwAAAABAEgUvnV2lEN1ll2JzrC0FL9ABTJo0qeUxd+7cjB49OocddliS5A9/+EMuvPDCghNWr9tuu22p73f+/Pl58cUXc9JJJyVJ/vSnP+XSSy8tOCUAAAAA0BEoeOm8GhuTZ58tjzvLDN7KjGSAgtXU1GSnnXbK7373uwwePDhJ8r//+79pbGwsOFnnUCqVMnjw4PziF7/ItttumyS5/fbbiw0FAAAAAHQICl46r5deSt5+O+nVK9l886LTrJ3KDOQXX0zmzy82C8AS6uvr89GPfjRJMnv27Dz33HNJkunTp+faa6/NCSeckF122SXrrbde6uvrs/nmm+ekk07KQw89tNxrVvb9Peigg5Ikt956aw4//PBsuOGGqampybBhw1rOHT16dIYNG5ZDDjkkW2+9dXr06JGGhobstttuufDCCzNlypTl3meLLbZIqVTK8OHDM2/evAwbNiw77LBDevbsmQEDBuTUU0/NK6+80nL+lClTcv7552fbbbdNjx49svHGG+fMM8/M5MmT1+IbXLHa2trs8q//BsyZM6fN7gMAAAAAVI+6ogNAm1ly/92aKv+3DJtskvTrl0yfnjz3XDJkSNGJAFoMHDiwZTxr1qwkyeWXX55vfvObScolZUNDQ5Lk1Vdfzauvvpqbbropl112Wc4555wVXvu8887LpZdemlKplHXXXTc17/h5fvTRR2fcuHFJymVzz549M3369DzxxBN54oknMnz48IwYMSLbbbfdcu8xc+bMvPe9781TTz2V+vr6lEqlvP7667n++uszYsSIPPDAA2lqasoHPvCBvPLKK+nZs2eampoyefLkXHvttfnb3/6WRx55pOUztqampqaM/tfy/Cv6DAAAAABA11HlrResQGW/2mpfnjlJSiX78AId1tixY1vG6623XpJkwIAB+cY3vpFHHnkk8+bNy7Rp0/LWW29lzJgxGTp0aJLkS1/6Uh5//PHlXvfRRx/NpZdemvPPPz+TJ0/OtGnTMnfu3Jx++ukt5xx44IEZPnx4xo0bl7feeitTp07N/Pnzc/fdd2fvvffOhAkTWvaxXZ5hw4Zl9uzZ+fOf/5y5c+e2jDfYYIO8/vrrOf/883PiiSemb9++efDBBzN37tzMmTMn//d//5eePXvmxRdfzCWXXLIW3+CyjRkzJqeddlqef/751NbW5txzz231ewAAAAAA1ccMXjqvzlTwJuVlmu+/3z68QIcya9as3HDDDUnK5W5lv9jPfOYz7zq3VCplyy23zGWXXZbGxsZceeWVufLKK/PTn/50mdeeM2dOvvSlL+V73/tey3Pdu3fP5kssu3/ddde9633rrLNODj300IwYMSKDBw/OY489lpEjR2b//fdf5n0WLFiQv/zlLy17CSfJYYcdlu9973s544wzcvPNN2ejjTbK008/nf79+ydJunXrlhNOOCGjR4/Ot771rdx000359re/vbKva7mOPfbYrLPOOi2/njFjRhYsWJDa2tocfvjh+drXvpYDDjhgja8PAAAAAHQeZvDSeS25RHNnYAYv0IHMmDEjI0aMyCGHHJKJEycmSYYOHfquJZSX56ijjkqSjBw5crnn1NTU5Pzzz1/jjL17986BBx640vscd9xxS5W7FUcccUTL+DOf+UxLubusc15++eXMnTt3jbNOnz49kydPbnksWLAgSbJo0aJMmzYtEyZMWONrAwAAAACdixm8dE5vvZW89FJ5vMsuxWZpLQpeoGClUmm5r51yyin5+te/vtRzY8aMyY9//OPce++9efnllzN79uw0NTUtdc5rr7223GsOHjw4G2644Upz/f73v88vf/nLPPzww5k8eXLmzZv3rnNWdJ+99957mc9vtNFGLeO99tprpefMmDEjvXr1WmneZbn33ntz0EEHtfy6sbEx48ePz80335xhw4bllFNOyVNPPbXUbGYAAAAAoGtS8NI5Pfts0tycrL9+sgrlQFWoFLyvvprMmpX07FlsHqDLWbLM7N69e9Zff/3stttuOfnkk3PwwQcvde5vfvObnHjiiS0zUZOkoaEh9fX1KZVKefvttzN9+vQVznpdWbnb1NSUU045JTfeeGPLc3V1denXr1/LcsczZ87M/PnzV3ifPn36LPP5urq61Tpn4cKFK8y7Ourq6rLlllvm/PPPT8+ePXPOOefk+9//fo488siWWckAAAAAQNdkiWY6pyWXZ17BjLOq0q9fsumm5bFZvEABJk2a1PIYN25cHn300fz0pz99V7k7derUnHbaaVmwYEEOOeSQ3HfffZk3b15mzpyZyZMnZ9KkSbnllltWer/a2toVvn7ttdfmxhtvTG1tbS666KK8+OKLWbBgQaZNm9aS8/jjj0+SNDc3r/kHL9gZZ5zRMnt6yTIbAAAAAOiazOClc6oUoJ1leeaKnXdOJkwof77lLCkKULS77rors2bNSr9+/XLHHXek5zJWHJg0adJa3+emm25Kkpx55pn55je/ucxzWuM+RevZs2fWX3/9vPnmm3nllVeKjgMAAAAAFMwMXjqnSsFbWda4s7APL1AFxo8fnyTZbrvtllnuJsndd9/davfZbbfdlvn6nDlz8o9//GOt71O0+fPnZ+rUqUmyxnv8AgAAAACdh4KXzknBC1CYvn37JkleeOGFzJ8//12vP/HEE/nVr37VavcZNWrUMl//1re+ldmzZ6/1fYp20003pampKUmy5557FpwGAAAAACiagpfOZ/r05LXXyuOddio2S2urLDn91FNJFe8nCXRuhx9+eGpqajJt2rScfPLJmTBhQpLk7bffzs0335zDDz88ffr0Wev7fPCDH0ySXHPNNbn66qvz9ttvJykvy3zuuefmkksuSf/+/df6PkWZO3durrvuugwdOjRJ0tDQkDPOOKPgVAAAAABA0RS8dD5PP10+DhqU/Gt2V6exww5JqZRMmZK8+WbRaQCWaZtttslXvvKVJMltt92WgQMHZt11103v3r3zsY99LL17984VV1yx1vc577zzsv3226exsTGf/exn06NHj/Tr1y8DBgzIZZddls9+9rM5+uij1/o+7eHYY4/Nxhtv3PJYf/3109DQkNNOOy2zZs3Keuutl9/+9rfZaKONio4KAAAAABRMwUvn01mXZ06Snj2Trbcuj595ptgsACvwve99L7/4xS+y9957p0ePHlm4cGEGDx6cCy64II8//ngGDBiw1vdYd91188ADD+SLX/xitthii9TW1qauri4HHXRQbrzxxlx11VWt8Enax/Tp0zN58uSWx4wZM9K3b9/su++++c///M8899xzOeigg4qOCQAAAAB0AKXm5s65zuusWbPSt2/fzJw5Mw0NDUXHoT19/vPJj3+cfPWryfe/X3Sa1veRjyS3357Gyy/PbRtvnKQ886uurq7gYLQ1P9cAAAAAAAAzeOl8KjN4K/vVdjaVz1VZihoAAAAAAIAuQ8FL59Lc3LmXaE4Wfy4FLwAAAAAAQJej4KVzef31ZNq0pLY22X77otO0jUrB++yzxeYAAAAAAACg3Sl46Vwqs3e32Sapry82S1vZZpukW7dk7tyikwAAAAAAANDO6ooOAK2qsy/PnJTL3R12SJ5/vugkAAAAAACwlKampjQ2NqapqanoKNDh1dTUpFu3bimVSqv1PgUvnUtXKHiT8udT8AIAAAAA0EHMnDkzs2bNyrx585S7sBq6deuWPn36ZP31109tbe0qvUfBS+fy1FPlY1coeG+9tegUAAAAAAB0cc3NzZk8eXKmT5+enj17Zv311099fX1qampWe1YidCXNzc1ZtGhR5syZkxkzZuStt97KZptttkolr4KXzqOpKXn66fJ4l12KzdLWOnuBDQAAAABAVZg+fXqmT5+ejTfeOP369Ss6DlSd3r17p2/fvnn11VczZcqUbLTRRit9T0075IL28coryVtvJd27J1tvXXSattXZC2wAAAAAADq85ubmzJgxI3369FHuwlro0aNHGhoaMnv27DQ3N6/0fAUvnUdleeYdd0xWcY3yqjVoUNKrV9EpAAAAAADowhobG7NgwYL07du36ChQ9fr06ZOFCxdm4cKFKz1XwUvnMXp0+dgVZrfW1CQ77FB0CgAAAAAAurBFixYlSerq7AgKa6uy925TU9NKz1Xw0nlUCt6usj/tTjsVnQAAAAAAAFIqlYqOAFVvdf4eKXjpPCpLNCt4AQAAAAAA6KQUvHQOCxYkL7xQHneVgnfHHYtOAAAAAAAAQDtT8NI5vPBC0tiY9O2bDBxYdJr2sWTBO29ecTkAAAAAAABoNwpeOocl99/tKmv9b7jh4vFzzxWXAwAAAAAAgHaj4KVz6Gr7777TM88UnQAAAAAAAGhFw4cPT6lUetejtrY26623Xvbee+9ccMEFmTBhQtFRO6yxY8e2fG/33Xdf0XFajYKXzqFS8O6yS7E5iqLgBQAAAACALqGpqSnTp0/Pww8/nIsvvjg77rhj7rzzzqJj5bTTTkupVMpBBx1UdJROT8FL5/Dkk+Xje95TbI6iKHgBAAAAAKDTuuuuuzJ79uzMnj07M2fOzOjRo/PVr341NTU1mTVrVk444YS8/PLLRceknSh4qX4zZiSvvloed9UZvE8/XXQCAAAAAACgjfTo0SO9e/dO796909DQkJ122inf//73c9FFFyVJ5s2bl0svvbTglB3PFltskebm5jQ3N3eqmcUKXqpfZXnmQYOSddctNEphXn89mTat6BQAAAAAAEA7Ov/881NfX58kGTFiRMFpaC8KXqpfZXnmXXctNkfRzOIFAAAAAIAupb6+PltvvXWSZPz48Uu9Nnbs2JxzzjnZfvvt06tXr/Tq1Ss77LBDhg4dmnHjxq3wuqNHj85nPvOZlvfW19dn4MCB2XPPPTN06NClyuThw4enVCrluuuuS5L89a9/TalUWupx2mmnLfM+I0aMyEknnZTNN9889fX16du3b/baa69873vfy9y5c5f5nrFjx7Zc97777stbb72V733ve9ljjz2y7rrrplQq5fbbb1/mucvz1FNP5cwzz8zWW2+dHj16pKGhIUOGDMnXv/71TJkyZbnve+e+ww8++GBOPPHEbLbZZunWrVuGDBmy3Peujbo2uSq0p66+/27F6NHJAQcUnQIAAAAAAGhHtbW1SZLm5uaW52666aacdtppWbBgwVLnPvfcc3nuuedy9dVX5xe/+EU++tGPvut6N910U0499dQ0NjYu9fyECRMyYcKEPProoxkxYkRGjx69xpnnz5+fT33qU7nxxhuXen7BggV55JFH8sgjj+Saa67JH//4x2yzzTbLvc7UqVOz9957r1WWH/zgBzn//PPT1NS0VL5Ro0Zl1KhR+clPfpLbb78973//+1d4nZ/85Cf5whe+kEWLFq1xllWl4KX6KXjLKktVAwAAAABAR/HpT5cnKHV2O++cXHNNu9924cKFeemll5IkAwYMSJKMHDkyJ598cpqamjJo0KBcfPHFOfjgg5Mk99xzT/7jP/4jr732Wk488cQMHDgw++67b8v1ZsyYkU9/+tNpbGzM7rvvngsvvDBDhgxJv379Mnv27Dz//PO555578thjj7W855RTTsnxxx+fs846KzfccEP233///OEPf1gqZ7du3Zb69amnnppf//rXWWeddXLOOefk4x//eLbccsvMmzcv99xzTy688MKMGTMmH/7wh/Poo4+mV69ey/z8Q4cOzbRp0/Ltb387xx9/fNZff/288MIL2WCDDVbp+/vVr36Vr3zlK0mSnXfeOd/97nezzz77ZP78+fn973+fCy+8MNOnT89RRx2VUaNGZauttlrmdZ577rmcc845ee9735uLLrooQ4YMyfz589eqeF4RBS/VralpcbHZ1QvervAfSAAAAAAAqsvo0clDDxWdotO67LLLMm/evCRpKXHPPvvsNDU1ZYMNNsjf//73DBw4sOX8k08+OQcccED22GOPTJkyJWeffXYeffTRltfvv//+zJkzJ7W1tfnzn/+c/v37t7y27rrrZrPNNssHPvCBpTLU1dWld+/eqasr1461tbXp3bv3cjPfdttt+fWvf51SqZRbbrklxxxzTMtr6623Xj7xiU/kkEMOye67757nn38+P/nJT/LlL395mdeaMGFC7rzzznzoQx9qeW7JwnpFFixYkHPPPTdJsv322+fvf/97GhoaWl7/3Oc+l3333Tf77rtv5syZky9/+cu57bbblnmtyZMnZ//998+IESOyzjrrtDw/aNCgVcqyuuzBS3V75ZVk7tykvj4ZPLjoNMUaPTpZYvkFAAAAAACg82lqasr48ePzne98J1//+teTlGfInnvuuXnkkUcyatSoJMmFF164VLlbMWjQoFxwwQVJkscee2yp2biVZZl79uyZfv36tUn+yy+/PElywgknLFXuLmngwIE5++yzkyQ33HDDcq/1wQ9+cKlyd3XccccdeeONN5Ik3//+95cqdyt22223fPazn02S/O53v8ubb7653Ov94Ac/WKrcbUsKXqpbZXnmnXZK6rrwhPTa2mT69OT114tOAgAAAAAAtLKDDz44pVIppVIptbW1GTRoUC688MIsXLgw3bt3z/Dhw7Pjjjtm5MiRLe9Z1v66y3rt/vvvbxnvuuuuKZVKmT17ds4444y89tprrfo55s2blwcffLDlM82ZM2e5j5133jlJ8uSTT+btt99e5vWOOuqoNc5S+a569uy5wpK48l0tWrQoDzzwwDLP6d+/f/bZZ581zrK6FLxUN/vvlm29dfloH14AAAAAAOj06urqst122+Vzn/tcRo0alZNOOilJMm7cuCTl5ZQ32WST5b5/4MCB6du371LvSZKtttoqQ4cOTZIMHz48gwYNypAhQ/KFL3whN998c6ZNm7ZWuceMGZOFCxcmSc4666z06dNnuY/jjjsuSXnG8vLuu7w9cVdF5XNvu+22LctLL8tOO+30rve0Zo410YWnPNIp/GuZgS5f8O64Y7ncHT06OeKIotMAAAAAAEDZv2Zhdnpt/DnvuuuuHHDAAUmSmpqa9OzZc5nnzZ49O0lWuAduRe/evTNz5syW91Rceuml2XnnnXP55ZfnqaeeyqhRozJq1Kj86Ec/Srdu3XLCCSfkv/7rv1ZYIC/PzJkzV/s9STJ//vxlPr+872FVrOp31adPn3e9pzVzrAkFL9XNDN6yHXcsH0ePLjYHAAAAAAAs6Zprik7QKfTo0WOVSttKGTlnzpyVnls5Z8kCM0lKpVLOOOOMliWaH3jggdx///35/e9/n7Fjx+aGG27IyJEjM2rUqJZZwKtqyc9w11135cgjj1yt97emVf2ulnz9nd9VUSzRTPWaMyd5+eXyeJddis1StMryAApeAAAAAADosrbYYoskyYwZM/L6668v97wJEya0zKatvGdZBg4cmBNOOCH/8z//kzFjxuS//uu/kpSXKv75z3++Rvlqasr15MuVjqcglc/9wgsvpLGxcbnnPf300+96T9EUvFSvSpm5ySbJBhsUm6VolRm8Tz+dLFpUbBYAAAAAAKAQ+++/f8v41ltvXe55v/71r5f5nhUplUr58pe/3DJr99lnn13q9W7duiVJFq2gp+jbt2/23nvvJMn//d//rdJ920rlc8+bNy9//OMfl3te5buqra3Nvvvu2y7ZVkbBS/WyPPNiW22VdO+evPVW8sorRacBAAAAAAAKsMcee2TXXXdNknz729/OxIkT33XOa6+9lu985ztJkt133z277757y2uvvPJK3n777eVef/LkyS370Pbv33+p1yq/XtY9l3TeeeclSUaOHJlLL710hecuWrQoL7300grPWVNHH310NtxwwyTJ+eefv8z9dUeNGpWf/OQnSZJ/+7d/ywYdZMKhgpfqpeBdrLbWPrwAAAAAAEB+9KMfpaamJpMnT8773ve+3HTTTZk0aVJef/31/OpXv8r73ve+vPnmm6mtrc2PfvSjpd573XXXZdCgQRk6dGjuvPPOjB07NjNmzMjYsWNzyy235NBDD01TU1NqampywgknLPXePfbYI0kyZsyYXHnllXnjjTfS2NiYxsbGNDU1tZx3/PHH5+Mf/3iSctn7kY98JHfddVcmTpyYGTNmZNy4cfnjH/+Y888/P1tttVUuu+yyNvmeunfvnv/+7/9OkjzzzDPZf//98/vf/z5vvvlmxo8fn6uuuiqHHnpoFixYkN69e+eSSy5pkxxroq7oALDGFLxL22WX5PHHk6eeSv7934tOAwAAAAAAFGD//ffP9ddfn9NPPz1jx47NiSee+K5z6uvr84tf/GKZSw5Pnjw5V1xxRa644oplXr+2tjZXXHFFhgwZstTzRx99dLbaaquMGTMmZ599ds4+++yW1z75yU9m+PDhLb++7rrr0rdv3/zv//5vbr/99tx+++3L/TzrrLPOij/wWjjppJMyceLEnH/++XnyySfz4Q9/+F3n9OvXL7fffnu23nrrNsuxuszgpTo1NSWjRpXHCt6yXXYpHyvfCwAAAAAA0CWdeOKJefbZZ/OFL3wh2223XXr27JmePXtmu+22yznnnJPnnnsuH/3oR9/1vi9+8Yu55ZZbctZZZ2XPPffMgAED0q1bt/Tq1Ss77bRTPv/5z+fJJ5/M5z73uXe9t0ePHrn//vtz1llnZfDgwamvr19uvnXWWSdXXXVVHn300Xz2s5/NDjvskD59+qSuri7rrbde9tprr3zhC1/In/70p/zgBz9o1e/mnb785S/n8ccfz6c+9alsueWWqa+vT+/evfOe97wnF1xwQV544YW8//3vb9MMq6vU3NzcXHSItjBr1qz07ds3M2fOTENDQ9FxaG0vv5wMHlzed3b27ORfG3d3JY2NjbntttuSJMcee2zq/vrX5AMfKO/H+/LLBaejLfi5BgAAAAB0JPPnz88rr7zSUooBa251/j6ZwUt1euyx8nGXXbpkubtMu+1WPo4Zk8yYUWgUAAAAAAAA2oaCl+r0+OPl4+67F5ujI1lvvWTzzcvjJ54oNAoAAAAAAABtQ8FLdarM4K3MWqWs8n1UCnAAAAAAAAA6FQUv1ae5eXHBawbv0irfR+X7AQAAAAAAoFNR8FJ9Jk5M3nwzqa0t78HLYmbwAgAAAAAAdGoKXqpPpbzcfvukR49is3Q0lRm8zz6bzJtXbBYAAAAAAABanYKX6mN55uXbZJNkww2TpqbkqaeKTgMAAAAAAEArU/BSfSozeCvLEbNYqWSZZgAAAAAAgE5MwUv1MYN3xSrfS+V7AgAAAAAAoNNQ8FJdpk5NXn21PB4ypNAoHZYZvAAAAAAAAJ2Wgpfq8sQT5ePWWyd9+xYapcOqzOB98slk4cJiswAAAAAAANCqFLxUl8qyw/bfXb4tt0waGpK3306efbboNAAAAAAAALQiBS/VpbLssIJ3+WpqFi9fbZlmAAAAAACATkXBS3WpzOCtLEPMslW+n8r3BQAAAAAAQKeg4KV6zJmTvPBCeWwG74pVvh8FLwAAAAAAQKei4KV6PPZY0tycbLppstFGRafp2PbYo3x87LGksbHYLAAAAAAAALQaBS/V4x//KB/32afYHNVg++2TPn2SefOSZ54pOg0AAAAAAACtRMFL9fjnP8vHvfcuNkc1qK1N9tyzPK58bwAAAAAAAFQ9BS/VQ8G7eirfk4IXAAAAAACqxtixY1MqldbqMXbs2KI/Rovhw4e35KJ1KHipDpMmJa++mpRKi2emsmKVpawrS1sDAAAAAAC0ktNOOy2lUikHHXRQ0VG6nLqiA8AqqcxC3XHH8t6yrFxlBu/o0cncuUmvXsXmAQAAAAAAVmrzzTfP7Nmzl/na/fffnw996ENJkquuuionn3zyMs/rpRPo1BS8VAfLM6++TTctPyZMSB57LDnggKITAQAAAAAAK1EqldK7d+9lvtajR4+Wcffu3Zd7Hp2bJZqpDpVlhivLDrNqKoW4ZZoBAAAAAAA6BQUvHV9TU/Lww+WxGbyrp/J9VWZAAwAAAAAAndLw4cNTKpVSKpWSJOPHj8/QoUOz7bbbpmfPnimVSpkxY0aSVd8/d4sttkipVMqwYcPedZ/rrrsuSfLXv/615b6Vx2mnnbbca06ZMiVf+cpXss0226S+vj79+/fPkUcemXvvvXdtPn6XYolmOr4XX0xmzkzq65Oddy46TXWpzHhW8AIAAAAAQJfx0EMP5UMf+lCmT59edJSlPPPMMzn88MMzYcKElucWLFiQP/7xj/nTn/6U4cOH5xOf+ESBCauDgpeOr7K88B57JN26FZul2uyxR1IqJePGJZMnJxttVHQiAAAAAAC6kIcffjizZs0qOkaba2hoyF577VV0jBbHH398evfuncsuuyyHHHJIunXrlocffjj19fVrfe1TTjklxx9/fM4666zccMMN2X///fOHP/xhqXO6LafP+fCHP5xu3brlF7/4RQ4++ODU19dn5MiROeecczJ+/Ph8/vOfz1FHHZX+/fuvdc7OTMFLx1eZfWp55tXX0JDsuGPy9NPl7/HDHy46EQAAAAAAXcisWbMyderUomN0OfPnz88TTzyRgQMHtjx39NFHt8q16+rq0rt379TVlWvG2tra9O7de5Xeu2DBgjz22GPZcMMNW57793//9wwaNCh77LFH5syZk1tuuSVnnXVWq2TtrOzBS8dXmcGr4F0zle+t8j0CAAAAAACd2le+8pWlyt2O4qKLLlqq3K3Yfffd8573vCdJedY3K6bgpWObPz8ZNao8ruwny+qpFLz24QUAAAAAgC7hqKOOKjrCMh155JHLfW277bZLkkyaNKm94lQtBS8d26hRycKFyfrrJ1tsUXSa6lQpxh9+OGlqKjYLAAAAAADQ5rbaaquiIyzTgAEDlvtaz549kyTz5s1rrzhVyx68dGwPPFA+7r13UioVm6Va7bxz0qNHMmNG8txz5T15AQAAAACgHTQ0NBQdoV10tM9ZKUs7mtra2pWe09zc3A5JqpuCl47t/vvLxwMOKDZHNevWLXnve5N77y1/nwpeAAAAAADayV577VV0BJahtIqT6hobG9s4CWvCEs10XM3NyciR5bGCd+1Uvr9KYQ4AAAAAAHRZ9fX1SZK33npruecsXLgwU6ZMaa9IrAYFLx3X888nb76ZdO+e7Lln0Wmqm4IXAAAAAAD4l0022SRJ8uKLL6apqWmZ59x7771ZsGDBcq/RrVu3JMmiRYtaPyArpOCl46qUkfvsUy55WXPvfW9SW5u8+mr5AQAAAAAAdFn77LNPkmT69Om544473vX63Llz89WvfnWF1+jfv3+SZOLEia0fkBVS8NJxVQre97+/2BydQe/eyR57lMdm8QIAAAAAQJd26KGHZtCgQUmS008/Pddff33eeOONTJ48Obfffnv222+/vPbaa1l33XWXe409/tU7jBkzJldeeWXeeOONNDY2prGxcbmzgmkdCl46rr/9rXy0/27rqHyPle8VAAAAAADokurq6jJ8+PDU19dn+vTpOfXUU7PRRhtl4403zkc+8pGMGzcut956a/r27bvcaxx99NHZaqutkiRnn312Ntpoo3Tr1i3dunXLpz71qfb6KF2SgpeOafz4ZNy4pKYm2XffotN0DvbhBQAAAAAA/uXggw/OQw89lOOPPz4bbrhh1llnnQwaNCif+cxn8sQTT+TAAw9c4ft79OiR+++/P2eddVYGDx6c+vr6dkpOqbm5ubnoEG1h1qxZ6du3b2bOnJmGhoai47C6fvWr5OSTy8sKP/JI0Wk6pMbGxtx2221JkmOPPTZ1dXUrfsPUqcn665fHb765eEzV8HMNAAAAAOhI5s+fn1deeSVbbrmlcg/W0ur8fTKDl46pMsvU8sytp3//ZMcdy+ORI4vNAgAAAAAAwBpR8NIxKXjbhmWaAQAAAAAAqpqCl45n6tTk6afLYwVv63r/+8tHBS8AAAAAAEBVUvDS8fz97+Xj9tsnG2xQbJbOplKYP/ZYMmdOsVkAAAAAAABYbQpeOp6//a18NHu39W22WbL55smiRcmDDxadBgAAAAAAgNWk4KXjufvu8vGggwqN0WkdfHD5WPmeAQAAAAAAqBoKXjqWSZOSUaPK48MOKzZLZ3X44eXjn/9cbA4AAAAAAABWm4KXjuUvfykfd9/d/rtt5QMfKB+feCKZPLnQKAAAAAAAAKweBS8dS2VWaWWWKa1vgw3KBXqyuFAHAAAAAACgKih46TiamhYXjkccUWyWzq7y/f7pT8XmAAAAAAAAYLUoeOk4nnyyvGRwr17JvvsWnaZzq8yQ/stfysU6AAAAAACsoebm5qIjQNVbnb9HCl46jsryzAcdlHTvXmiUTm+//cpF+uTJ5WIdAAAAAABWU21tbZKksbGx4CRQ/RYtWpQkqalZeX2r4KXjqBS8lmdue+uskxx8cHlc+d4BAAAAAGA11NXVpXv37pk5c2bRUaDqzZ49O926dUu3bt1Weq6Cl45h7tzk/vvL48rywbStyves4AUAAAAAYA2USqWsu+66mT17dqZPn150HKhab731VmbNmpU+ffqkVCqt9Py6dsgEK/e3vyVvv50MGpRsu23RabqGSsF7//3lgr1Xr2LzAAAAAABQdfr165e33347kyZNyqxZs9K7d+/U19enpqZmlYoq6Kqam5uzaNGizJ49O7NmzUr37t2z/vrrr9J7Fbx0DEsuz+wHfvvYdttk882TcePKBfuRRxadCAAAAACAKlMqlbLxxhunR48emTVrVqZMmZKmpqaiY0HV6NatW9Zdd92sv/76Lftar4yCl47hj38sHy3P3H5KpfL3fc01yR/+oOAFAAAAAGCN9e3bN3379k1TU1MaGxuVvLAKampq0q1bt9We7a7gpXjPPps891zSrVty2GFFp+lajj66XPDefnty+eVmTwMAAAAAsFZqamqyzjrrFB0DOrWaogNAbrutfPzAB5K+fYvN0tUcdlh5793x45NHHik6DQAAAAAAACuh4KV4t95aPh53XLE5uqIePZKjjiqPK78PAAAAAAAAdFgKXoo1Zkzy+ONJTU3yb/9WdJquqVKs33pr0txcbBYAAAAAAABWSMFLsX7zm/LxwAOT9dcvNktXdeSRSffuyUsvJaNHF50GAAAAAACAFVDwUizLMxevT5/kiCPKY8s0AwAAAAAAdGgKXoozcWLy4IPl8b//e6FRurxjjy0fb7ut2BwAAAAAAACskIKX4lSWZ95332TTTYvN0tUdc0xSV5c89VTy4otFpwEAAAAAAGA5FLwUx/LMHUe/fskhh5THlmkGAAAAAADosBS8FOONN5K//rU8riwPTLEqvw+33FJsDgAAAAAAAJZLwUsxfvnLpKkp2WuvZMsti05DUi546+qSxx4rL9UMAAAAAABAh6Pgpf01NyfXXlsen3lmsVlYbIMNynvxJot/fwAAAAAAAOhQFLy0v4ceSp59NunZM/n4x4tOw5LOOKN8/OUvkwULis0CAAAAAADAuyh4aX+V2aEf/WjS0FBsFpZ2xBHJppsm06Ylv/1t0WkAAAAAAAB4BwUv7Wv27OSmm8rjymxROo7a2uS008rjn/600CgAAAAAAAC8m4KX9nXzzcncucm22yb77190GpblU58qH+++Oxk3rtgsAAAAAAAALEXBS/uqLM/8qU8lpVKxWVi2rbZKDj44aW5Ofv7zotMAAAAAAACwBAUv7efZZ5MHHywvA/zJTxadhhWpLJ/9858nixYVmwUAAAAAAIAWCl7az3//d/l49NHJxhsXm4UVO/bYpF+/5NVXk9/8pug0AAAAAAAA/IuCl/YxcWJy3XXl8Ze/XGwWVq5Hj+Tss8vjiy8uL9cMdFqnnXZaSqVSDjrooKKjAAAAAACwEgpe2sellyZvv53sv3/5Qcd3zjlJz57JY48lf/lL0WkAAAAAAACIgpf2MG1actVV5fHXvlZsFlbd+usnn/50eXzxxcVmAQAAAAAAIImCl/bwox8lc+cmu+6aHHlk0WlYHeedl3Trltx3X/LQQ0WnAQAAAAAA6PIUvLStOXOSyy8vj7/2taRUKjYPq2ezzZJTTimPzeIFAAAAAAAonIKXtnX11eUlmgcPTo4/vug0rInzzy8X87/7XfLkk0WnAdrBPffckw996EPZcMMN06NHj+y88865+OKLs2DBgqKjAQAAAAB0eQpe2s6bbybf+lZ5/B//kdTWFpuHNbPddslHP1oef+lLSXNzsXmANnXllVfmAx/4QP7whz/kzTffzPz58/P000/nggsuyAEHHJBZs2YVHREAAAAAoEtT8NJ2vv71ZMaMZMiQ5LTTCg7DWrn44qR792TEiOS224pOA7SRF198Meeee27e97735b777suUKVPy9NNP5wtf+EKS5OGHH86ZZ55ZcEoAAAAAgK5NwUvbeOSR5Kc/LY//53/M3q12W22VfPWr5fGXvpTMm1dsHqBNTJw4MUOGDMndd9+dAw88MP3798+OO+6YK664Il/72teSJLfcckv+8Y9/FJwUAAAAAKDrUvDS+pqaknPOKS/le/LJyf77F52I1vAf/5EMGpS8+mry/e8XnQZoI9/97nfTvXv3dz1/0UUXpV+/fkmS6667rr1jAQAAAADwLwpeWt/11ycPPpj07p1ccknRaWgtPXsmP/xhefz97yevvFJsHqDV9e7dO4cccsgyX6uvr88RRxyRJHnggQfaMxYAAAAAAEtQ8NK6JkxIzjuvPP5//y8ZMKDYPLSu445LDjkkWbAgOfPMZNGiohMBrWibbbZJTc3y/6fB9ttvnyQZN25ce0UCAAAAAOAdFLy0nsbG5MQTkylTkiFDkqFDi05EayuVkh//OOnVK7nnnuQ73yk6EdCKevXqtUqvz5kzpz3iAAAAAACwDApeWs83vpHcf3/Sp09y883JMvZwpBPYbrvkqqvK42HDykUv0CnMnTt3lV7v3bt3e8QBAAAAAGAZFLy0jj/9Kfnud8vja65Jttmm2Dy0rVNOSc44I2luTk46KZk0qehEQCt48cUX09TUtNzXn3vuuSTJ5ptv3l6RAAAAAAB4BwUva++FF8qFX5L8f/9f8rGPFZuH9nHFFcnOOyeTJycnnJDMm1d0ImAtzZkzJ/fee+8yX5s/f37+9Kc/JUn222+/9owFAAAAAMASFLysnTFjkkMOKe+7u/vuyaWXFp2I9tKzZ3kp7j59yktzf+Qjyfz5RacC1tLXvva1LFiw4F3P/+d//memT5+eJPnkJz/Z3rEAAAAAAPgXBS9r7tVXy+XuhAnJjjsmf/xjUl9fdCra0w47JHfdVS57//zn8kzet98uOhWwhgYMGJAnnngihx12WP72t79l6tSpefbZZzN06NBcfPHFSZKPfvSj2WeffQpOCgAAAADQddUVHYAq9coryWGHJePGlffbvfvuZIMNik5FEfbfP7njjuSoo8rHE09Mrr8+6dGj6GTAatpmm23yta99Leecc04OPPDAd72+11575ac//WkByQAAAAAAqDCDl9X3xz8me+yRvPxysuWWyT33JJtsUnQqinTIIclvfpOss05y223J+95X/kcAQNU5++yz86c//SlHHHFE+vfvn/r6+uy444757ne/m/vvvz8NDQ1FRwQAAAAA6NJKzc3NzUWHaAuzZs1K3759M3PmTP9ndGtpakq+853kG99ImpuTvfdObr01GTiw6GRdUmNjY2677bYkybHHHpu6ug4wIf/ee8vLNE+ZkvTrl9xwQ3LkkUWn6jT8XAMAAAAAAMzgZdU8/njy/vcnF11ULnc/+9nkb39T7rK0gw9OHnusXP5Pn15etvnMM5M33ig6GQAAAAAAQKeg4GXF3nijXObusUfy978nPXsmP/tZctVVSffuRaejI9pss3L5///9f+V/DHDttcm22yb//d/J228XnQ4AAAAAAKCqKXhZtieeSM44I9l88+Tqq8tF3YknJs8/n5x+etHp6Oi6d09+/ONk5Mhk992TmTOTL32p/Ofpm99MJk0qOiEAAAAAAEBVUvCy2AsvJD/4QbLffsluu5Vn6s6fn+y1V3lG5q9+ZUlmVs/73pf885/lfySwySblYnfYsGTQoOTYY5Prrivv1wsAAAAAAMAqqSs6AAV5++3k2WeTf/yj/Bg5slzwVtTVJccfn3zhC8m++yalUnFZqW61tcmnP5188pPJbbcl//M/yQMPJL/5TflRU1Pes3fffZN99imPN9+8/DwAAAAAAABLUfB2Jk1NyZw55eVwZ80qH2fOLO+jO2FCMnFi8sor5WWWX3mlfP6SunVLDj44OeaY5CMfSQYMKOZz0Dmts07y8Y+XH6NGlcvd3/62vBz4Qw+VHxU9eiTbbFPeu3fAgGTDDd/9WG+98p7Q66zjHyAAAAAAAABdRucveP/938uzUZPyPrJLeuevW+uctrxuY2N59u2SjwULykspz5697OsuT0NDefnlffYpPw48MOnbd9XfD2tq113Lj2HDkldfLS8BXil5n3wyeeut8vHJJ1d+rZqaciHcs2f52KNH+e98be3iR03NyserUxKv6rmtfc2FC1f9egAAAAAAQKfU+Qvee+8tOkH7q6srF7V9+5ZL3A03LM+C3HTTZLPNku22K8+M3GQTMx8p3qBBySmnlB9J+R8xjB1bnmn+4ovJ5MnlWeiVx5tvlo9z55bPb2oqjyu/BgAAAAAA6MQ6f8F79dXlmX0V7yw0l1VwtsY5bXXdurrykrTdu5ePlUf37uUyt2/fpL5ecUv1qqtLBg8uP1bk7bfLM33feiuZN2/xcd68ZNGixY+mppWPFy1aea6VzY5fldnza3uNefOSL31p5fcBAAAAAAA6rc5f8H7sY+XiE+hcKv+4oSstKz5rloIXAAAAAAC6uJqiAwAAAAAAAACwajrtDN5F/1py9bXXXkuDGbx0Qo2NjZk6dWqS8p/zurpO+9eZf5kxY0aSZNq0acUGAWglzc3NmT17dgYMGJCaGv/uEAAAAABWRam5eVU2jqw+Dz/8cPbee++iYwAAsBLjx4/PwIEDi44BAAAAAFWh0075Gzx4cJLy/2FoBi+dUWNjY373u98lSY455hgzeLuA1157LTvttJOfa0Cbas//vsyaNSubbbZZ+vTp02b3AAAAAIDOptM2QrW1tUmShoYGRQidUmNjY3r27Jmk/Odcwdv5VX6W+bkGtKUi/vtSKpXa/B4AAAAA0FnY7AwAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKqEghcAAAAAAACgSih4AQAAAAAAAKpEXdEB2lpjY2MaGxuLjgGtbsk/1/6Mdw1+nwEAAAAAgA5X8DY3N6dUKrXa9X73u9+lZ8+erXY96Ih+97vfFR2BdjB16tSiIwAAAAAAAAXrEAXv3Llz09TUlObm5jQ0NBQdBwAAAAAAAKBDKrzgfeaZZ3LuuefmzTffzOTJk3PJJZfk5JNPXu2ZvAsWLMiCBQtafj1r1qwkyTHHHKM0plNqbGxsmbl7zDHHpK6u8L/OtLHXXnut6AgAAAAAAEDBCm2Ennnmmbz//e/PJz7xiey555559NFHc/rpp2ennXbKkCFDVutaF198cb75zW++6/m6ujrFF52eP+ddg99jAAAAAACgpqgbT5s2Leeee25OPvnkXHrppTnppJPywx/+MO973/vys5/9LEl5P95V9bWvfS0zZ85seYwfP76togMAAAAAAAAUorDpYAsXLsyMGTNy/PHHJ0mamppSU1OTLbfcMtOmTUuS1VqiuXv37unevXubZAUAAAAAAADoCAqbwbvRRhvl+uuvzwEHHJAkWbRoUZJk0003TU3N0rHmzJnT7vkAAAAAAAAAOprCCt4k2WabbZKUZ+9269YtSXlZ5jfeeKPlnIsvvjhXX311GhsbC8kIAAAAAAAA0FEUtkTzkmpqatLc3NyyJHNlBu9FF12Ub3/723n88cdTV9chogIAAAAAAAAUptAZvEtqbm5OktTV1WWzzTbLD37wg1xyySV55JFHsuuuuxacDgAAAAAAAKB4HWZabGXWbrdu3XLNNdekoaEhI0eOzO67715wMgAAAAAAAICOocPM4K044ogjkiQPPPBA9txzz4LTAAAAAAAAAHQcHWYGb8Wee+6Z2bNnp1evXkVHAQAAAAAAAOhQOtwM3iTKXQAAAAAAAIBl6JAFLwAAAAAAAADvpuAFAAAAAAAAqBIKXgAAAAAAAIAqoeAFAAAAAAAAqBIKXgAAAAAAAIAqoeAFAAAAAAAAqBIKXgAAAAAAAIAqoeAFAAAAAAAAqBIKXgAAAAAAAIAqoeAFAAAAAAAAqBJ1RQcAADqIOXOSSy5Jxo5d/NxBByWnn56USkWlAgAAAABgCQpeACBpakpOPTW5/faln//lL5P585PPfa6QWAAAAAAALE3BCwAkw4aVy9111kn+3/9LevRInn8+ueaa5Jxzku23Tw45pOiUAAAAAABdnoIXALq6m29OvvWt8vjqq5NPfrI8bm5O5s1Lbrgh+ehHk4cfTrbaqricAAAAAACkpugAAECBRo1KTjutPD7vvMXlblLed/eaa5K99kqmTUv+7d+SuXMLiQkAAAAAQJmCFwC6sgsvTN56K/ngB5Pvf//dr/fokfzmN8kmmySjRyc/+1n7ZwQAAAAAoIWCFwC6qjFjkjvvLI+vuCKprV32eZtuWi6Ck+RHP0qamtonHwAAAAAA76LgBYCu6ic/Ke+ze8QRyTbbrPjcU09N+vRJXnghGTGiffIBAAAAAPAuCl4A6IrmzUuuvbY8PvvslZ/fp8/i/XmvvLLtcgEAAAAAsEIKXgDoim66KZk+Pdlii+TII1ftPZ/7XPl4xx3JuHFtFg0AAAAAgOVT8AJAV9PcXN5LNymXtsvbe/eddtghOfTQ8h68V13VdvkAAAAAAFguBS8AdDUPPZQ8/nhSX5986lOr997Pf758vOaaZP781s8GAAAAAMAKKXgBoKv58Y/LxxNPTPr3X733fvjDyWabJVOnJjff3PrZAAAAAABYIQUvAHQlCxYkt99eHn/mM6v//rq65Mwzy+Nf/7rVYgEAAAAAsGoUvADQlYwcmcyZk2y0UbL33mt2jWOOKR9HjLBMMwAAAABAO1PwAkBXcued5eORRyY1a/g/A3bdNRkwIJk3L/nrX1svGwAAAAAAK6XgBYCu5K67ysejjlrza5RKyYc+VB5XCmMAAAAAANqFghcAuoqXX06ef768j+5hh63dtSoF8Z13Js3Na58NAAAAAIBVouAFgK6iMnt3//2Tvn3X7lqHHpp065aMGZO88MLaZwMAAAAAYJUoeAGgq6gsp7w2yzNX9OmTHHjg0tcFAAAAAKDNKXgBoCuYOze5777yuLJ/7tqqXKcyMxgAAAAAgDan4AWAruCee5IFC5Ittkh22KF1rlmZCfy3vyWzZ7fONQEAAAAAWCEFLwB0BUsuz1wqtc41t902GTw4Wbgw+ctfWueaAAAAAACskIIXADq75ubFyyi31vLMFZZpBgAAAABoVwpeAOjsXnwxGT8+6d49Ofjg1r12peC9++7WvS4AAAAAAMuk4AWAzu7vfy8f99or6dGjda+9335JTU0yblwyYULrXhsAAAAAgHdR8AJAZ1cpeN/3vta/dp8+yXves/R9AAAAAABoMwpeAOjs2rLgXfK6Cl4AAAAAgDan4AWAzmzq1OS558rj/fZrm3soeAEAAAAA2o2CFwA6swceKB+33z7p379t7lEpeJ94Ipkzp23uAQAAAABAEgUvAHRubb08c5IMGpRstlmyaFHyz3+23X0AAAAAAFDwAkCnNnJk+diWBe+S17dMMwAAAABAm1LwAkBntWBB8sgj5bGCFwAAAACgU1DwAkBn9eij5ZJ3gw2SbbZp23tVCt4HHywv1QwAAAAAQJtQ8AJAZ1WZTbvffkmp1Lb32mWXpHfvZNas5Omn2/ZeAAAAAABdmIIXADqrSsG7//5tf6+6uuS97136vgAAAAAAtDoFLwB0Rs3NyQMPlMdtvf9uRaVIVvACAAAAALQZBS8AdEYvvpi8+WbSvXuy++7tc89KkTxyZPvcDwAAAACgC1LwAkBn9OCD5eOee5ZL3vawzz5JTU0yblwyaVL73BMAAAAAoItR8NJ6mpvf/dykScmVVybPPrvs1wFoG489Vj7utVf73bNPn2T77cvjRx9tv/sCAAAAAHQhCl5ax803l0uE2bOXfn7UqOTss5Mdd0wGD07OOSd55JFiMgJ0JZWCtb2WZ66o3K9SMAMAAAAA0KoUvKy90aOTE08slwnf/ObSr40bt3g8ZkzyP/9TLoL32y/5v/9LFi5s36wAXcGiRcnjj5fHe+zRvveu3M8MXgAAAACANqHgZe2dd17S1FQeP/304nGSHHpo8sMfJoccktTVLX7+wQeTj3882Wqr5OKLk6lT2zczQGf2/PPJvHlJr17Jdtu1770VvAAAAAAAbUrBy9qZOzf585/L4003TX7zm6RmiT9WW2+dfOlLyYgRyZQpyTXXJDvvvPj1115LLrgg+chH2jc3QGdWKVeHDElqa9v33rvtlpRK5Z/vb7zRvvcGAAAAAOgCFLysnYkTk/XXL4933TWpr1/+uX37JmeemTz5ZLnwPeaYcgmQJN/+dttnBegqKvvftvfyzEnSu/fiWcNm8QIAAAAAtDoFL2tn9uzyzNwkGTBg1d5TKpWXbP7tb5MXX0yuuip5//uXPueRR5K7727drABdRaVY3X33Yu5fua+CFwAAAACg1Sl4WTubb754/Morq//+rbdOPvvZpZ9rako+//nksMOSj30smTBh7TICdCVNTcnjj5fHRczgXfK+lZnEAAAAAAC0GgUva6d//2S99crj559vnWvedVfyz3+WxzffnGy/ffLDHyYLF7bO9QE6sxdeSObMSXr0KP/8LEKl4DWDFwAAAACg1Sl4WXu77FI+vvZa8vTTa3+9D30o+fnPF+/tO2dO8uUvJ7vtljzwwNpfH6Azq8yaHTIkqasrJsNuu5WPr766eBl/AAAAAABahYKXtXfssYvHt9yy9terqUlOO608I/iss8p79ibl8viAA5ILLzSbF2B5KrNmi1qeOUkaGpJtt106DwAAAAAArULBy9o77rjFJezNNyfNza1z3fXWS37yk+Qf/0j23LP8XFNT8p3vJPvumzz3XOvcB6Az6QgFb5Lsvnv5qOAFAAAAAGhVCl7W3qabJvvvXx4/+2zrLNO8pL32Sh56qFzsVpYbffTRZMKE1r0PQLVralq8RHOlYC2KfXgBAAAAANqEgpfWccIJi8e/+EXrX7+2NrnggnLRu/32ybnnJoce2vr3AahmL7+czJ6d1NcnO+5YbJZKwVspnAEAAAAAaBUKXlrH8ccn3bqVx48+2nrLNL/THnuUr//d7y79fFNTct99bXNPgGpRmS27666LVzwoSmUG8dixydSphUYBAAAAAOhMFLy0jo03Lpeut9+e3H334j1520LPnuXZaUu68srk4IOTT34ymTmz7e4N0JFVZssWvf9ukvTtmwweXB6bxQsAAAAA0GoUvLSeL385+bd/a9tyd1nGj0+++tXy+Be/KM9cu//+9s0A0BE8+WT5OGRIoTFaVHJUcgEAAAAAsNYUvFS/gQOT//3fpE+f8q/HjUsOPDD51rfKSzcDdBWjR5ePO+9cbI6KXXctH0eNKjYHAAAAAEAnouCl7fztb8lLL7X9fUql5BOfKM8QO+CA8nPN/z979x0eVbW2cfiZJJBQEkCa9N57F0SpgoggiIooWEDFCooF/FTEinLOsYOIiOWINAEVK0WRrtKlIyC9CKHXkMz3x3s2Q+jJzGTPTH73dc01a0121n6Jx5GTZ9a7vFL//lKHDtK+fcGvAQDctnevtHWrjatUcbcWR/Xq9swOXgAAAAAAAAAIGAJeBN7mzdK119ou2meeybj7liwp/fKL9PLLvjbRkyZJ9er5drUBQKRy3ueKF5cSEtytxeEEvCtWSElJ7tYCAAAAAAAAABGCgBeBlyePtGiRjceO9Y0zQnS0hco//ihddpm99tdfUoMGFv4CQKRyAt5q1dyt43QlSlj7/KQkafVqt6sBAAAAAAAAgIhAwIvAy5kz9c7dp5+2lskZqVUracECqXZtmxcs6DsLEgAiUaidvytZNwXaNAMAAAAAAABAQBHwIjh69pSKFbPxTz9Jo0dnfA0lS0qzZkn33SeNH+/b0QsAkSgUA17JF/AuWeJuHQAAAAAAAAAQIQh4ERyxsdJbb/nmjzwi7dqV8XVkyyZ98IFUq1bq13fulH7/PePrAYBg8HqlP/+0cSi1aJbYwQsAAAAAAAAAAUbAi+C58Ubp5pttvGeP9PDD7tbjSEqSbrlFuuoqadiwjG8fDQCBtn27tHevnUNeoYLb1aTmtMcn4AUAAAAAAACAgCDgRXC9956UN6+Nx42zVsnpNXOm1KaNVLq0VL681L691K+f9McfaVtn6FBpxgzpxAlrJX3PPdKxY+mvCwDc5rRnLldOiotzt5YzOS2jt22Tdu92txYAAAAAAAAAiAAEvAiuAgWkd9/1zR980HbzptUXX0hXXy39+KO0YYO0dq00aZL0+utS/fr2+PRT6ejRi691//1S796++YgRUuPG0tataa8LAEKB05451M7flaT4ePtgjsQuXgAAAAAAAAAIAAJeBN+tt9puW0lq0iTtLZGTkqQnn/TN4+LsbN3T/fGHdNddUtGi0tNPW6vS88mSxc4HHjnSt86CBdIVVxA+AAhPzg7eUDt/18E5vAAAAAAAAAAQMAS8CD6Px9oif/mlNHaslC9f2r5/wwZr7SlZCHvokD3+/lv68EOpZk3ftYmJ0muvSWXL2s7hpKTzr3vbbdK8eVLJkjbfssV28v70U9rqAwC3OQFvKO7glQh4AQAAAAAAACCACHiRMQoVkjp1St/3HjniG1evLkVHS1FRUokSdn7uwoXSnDnS7bdLWbPadYmJUq9edv3PP59/7erVLeStX9/mBw9KbdtacAwA4SA5WVq+3MYEvAAAAAAAAAAQ8Qh44Z7Dhy/tuty5fWNnl9rpPB6pYUPp88/tbN7bb/d9bdUqqUUL2627ffu51y9YUPrlF6ljR5snJ0uzZ6e9lTQAuGHDBjt/PC5OKlPG7WrOrUYNe16+XDp50t1aAAAAAAAAACDMEfDCHePGSaVLSz/8cPFrS5aUqlSx8dy50o4d57+2eHELen//3do5O0aNsjXGjj3392XPbjX16SM1ayYNG2bBMQCEOueDL5UrW4eDUFS6tL3PHjtmH8QBAAAAAAAAAKQbAS8y3k8/SbfcIu3aJd15p+983Qvp0MGevV5p0qSLX1+vnu3CHT5cypvXXtu7V+rcWerWTdq//+zviY6W/vMfC52dVs8OdvMCCFWhfv6uZG31q1WzMW2aAQAAAAAAAMAvBLzIeK1a2Tm3kvTPP9ZSOTn5wt/jBLySNHr0pd0nKkrq0UNavdoCZcfnn9t5kL/+eu7vi41NPV+5UmrQgF1nAELTn3/asxOghirO4QUAAAAAAACAgCDgRcbzeKRPPpGKFLH59OnSyy9f+Hvq1JFKlbLxzz9Ls2Zd+v3y5rVQ+PPPpVy57LVNm6wV81NPScePn/97d+6UrrtO+uMPa/k8c+al3xcAMkI47OCVfAH0uc5SBwAAAAAAAABcMgJeuCNfPjsXN+p//xN84QXpl1/Of73HIz33nG/+f/+XtrbJHo/tFF66VGra1F7zeqV//UuqX992+Z5LUpIUH2/jxESpZUvpiy8u/b4AEEzHj0tr1tg41ANepz5nxzEAAAAAAAAAIF0IeOGeq66SXnzRxl6vdNttdi7v+XTrJlWoYOOZM+0s37QqXlyaNs2CXeec3aVL7czeiRPPvr5oUdst3KqVzU+csKD4lVc4lxeA+1avlk6etO4ETleEUOUEvBs2SIcOuVsLAAAAAAAAAIQxAl64q18/2xUrSTt2XPg83pgY6aWXfPP/+z8pJSXt94yKkp54wtouV6lirx08KN14o6155v0TEqRvv5Xuvdf32rPPSj17XvzsYAAIJqfdcbVq1qkglOXPLxUsaOMVK9ytBQAAAAAAAADCGAEv3BUdbWfjOr/0nzpVev7581/fqZNUq5aNFy2yNs/pVb269Ntv0q23+l4bOFBq00basyf1tVmySB98IL32mu+1Dz+UunS58Bm+ABBM4XL+roM2zQAAAAAAAADgNwJeuK9gQWnMGAt78+aVrr76/NdGRUmvvuqbP/qo9M8/6b93jhx2pu6bb9r9JWnKFKlOHWnhwtTXejxS3752fUyMvTZunNS+PTt5AbjDCUrDLeB1gmkAAAAAAAAAQJoR8CI0NGkiffaZharOebfnc+21tpNXknbvlh55xL97ezwWFE+bJhUoYK9t3ChdeaX06adnX9+li/TNN1K2bDZv0cIXDgNARjq9RXM4cOok4AUAAAAAAACAdCPgRei47TapePFLu3bwYNvtK9nu34kT/b9/kybSggXSFVfY/Ngx6a67LPw9c4dumza20/eFF6SnnvL/3gCQVgcPSn//bWPnPPFQxw5eAAAAAAAAAPAbAS9Cl9crTZ587q8VLCi9845v/sADUmKi//csWlSaPt3Wc7z9tu0YPnw49bVXXin173/2GseO+V8HAFzMihX2XKiQ7wMvoa5yZXvescM6MAAAAAAAAAAA0oyAF6HpwAHplluk1q2l99479zVdukjt2tl4507psccCc+/YWGnIEGn4cN9Zu19/LTVtaqHEhfzwg1SunLR0aWBqAYDzcc7fDZf2zJIUHy+VKmVjdvECAAAAAAAAQLoQ8CI0TZkiffmljXv3ln788exrPB5p6FApVy6bf/aZnY0bKD16WGCbkGDz+fOlBg2k5cvPff3vv9tO3y1bLAz+/ffA1QIAZ3ICUqftcbigTTMAAAAAAAAA+IWAF6GpUyepXz8bp6RInTufO1gtXFh6803f/O67pc2bA1dHy5bS7Nm+s4E3bZIaNZKmTj372nLlpOrVbbx3r9SihfTrr4GrBQBOR8ALAAAAAAAAAJkSAS9C1yuvSB072vjAAWvH/M8/Z193113SjTfaODFRuvVWKSkpcHVUrSrNmyfVqeOrpU0b6eOPU1+XJ4/tPG7a1OaHDknXXnvu3ccA4C+nRXO4BrxO/QAAAAAAAACANCHgReiKipL++1+pVi2bb9hgge/x46mv83ikjz6SSpa0+Zw5Uv/+ga2lUCHbjeuc+XvypNS9u/Tcc5LX67suPl76/nvpuutsfuyY1L69NH58YOsBkLnt2mUPj0eqXNntatLGOTN42bLU758AAAAAAAAAgEtCwIvQliOHNGmStWKWrF3yvfeeHQrkzi2NHi3FxNj8tdekb78NfC0TJ0q9evlee/ll6b77pORk32vZstl1N91k86Qk6ZZb7IxgAAgEp2V96dL23hROKlSw9+oDB+zMcgAAAAAAAABAmhDwIvQVKSJ9840Fp5Lt6h048OzrGjSQXn/dN+/WTVq/PrC1REdLb78tvfWW7ZyTpOHDLcA9fWdx1qzSqFHWPlqyc4TvvNOuBQB/hev5u5K9P5Yvb2PO4QUAAAAAAACANCPgRXioU8eCXceYMWe3apakxx7znce7b5/toj16NPD19O5tAW6WLDafMEFq21Y6eNB3TUyMtY5++GHf/LLLAl8LgMzHOb/WaXccbjiHFwAAAAAAAADSjYAX4aNTJ+nVV+1825kzpdjYs6/xeKSPP5bKlbP5okXS/fcH55zHzp2tfXT27DafNk1q0ULas8d3TVSU9M47Ut++0rhxvvAZAPwRzjt4pdTn8AIAAAAAAAAA0oSAF+GlXz9r15yQcP5rEhJsR60TvH72mTRoUHDqad1amjpVypPH5n/8ITVtKu3Y4bvG47EzgTt0CE4NADIXrzf8A16nbgJeAAAAAAAAAEgzAl6EF4/HzsE93eHD9jhd1arSp5/65v36SRMnBqemhg2lGTOkyy+3+bJl0tVXS5s2Xfj7Bg+WvvgiODUBiFybNlk7+CxZfGfZhhsn4F2xQkpOdrcWAAAAAAAAAAgzBLwIb1u3SlddJXXrJqWkpP7aTTdJL73km3ftKi1cGJw6qla1ttHFi9t87Vqra+3ac1//zjt2Nm+3btLo0cGpCUBkcna9VqzoOwc83JQqJWXLZmep//WX29UAAAAAAAAAQFgh4EX4Sk6WrrnGztmdOFF69NGzz9p95hnp9tttfOSI1K6dtG1bcOopW9ZCXuf8302bpCZNpDVrUl/n9UqrVtk4JcWC53HjglMTgMgT7u2ZJevEUKWKjWnTDCCDDRgwQB6P56xHXFycihYtqvbt22vs2LHynvn3SqTZ7Nmz1atXL9WsWVP58+dXlixZlCdPHtWoUUM9e/bU1KlT+TkDAAAAAJAOBLwIX9HR0htv+Fo2v/uu9Morqa/xeKThw6VGjWy+bZvUvr2FvcFQvLi1a3aCl+3bpWbNUu/k9Xik996T7r3X5snJUpcu0vjxwakJQGT58097DueAV+IcXgAhoWDBgqceHo9HW7du1aRJk9S5c2e1bdtWx48fd7vEsLRjxw61bt1ajRs31rvvvqslS5YoMTFR8fHxOnz4sJYuXaphw4bpmmuuUZ06dfQX3RwAAAAAAEgTAl6Et2uvtQDX8dxz0gcfpL4mLs52+JYsafMFC6Q77zy7pXOgXH65NH26VKOGzbdts5B33TrfNVFR0tChUo8eNk9Olm69NXjnBAOIHE4gWq2au3X4i4AXQAjYsWPHqcfhw4e1bNkyXXPNNZKkH374Qc8++6zLFYafDRs2qG7dupo8ebKyZMmiBx54QL/99ptOnDihxMREHT9+XOvWrdPbb7+tUqVKadGiRVrGfwsAAAAAAEgTAl6Ev7vukv71L9/8gQekL79MfU2BAtKkSVJ8vM2//NLC4GDJm1eaOtUXwGzdaiHv+vW+a6KipGHDpLvvtvnJk9Itt0hffx28ugCEt5MnpZUrbRwpO3idHckA4LKoqChVqVJF33zzjcqWLStJ+uCDD3Ty5EmXKwsfx48f14033qitW7cqPj5eU6ZM0ZAhQ1S/fn1F/6/rjsfjUenSpdWrVy+tWbNGzz///KmvAQAAAACAS0PAi8jwxBPSk0/a2Ou1c3enTUt9TdWq0ujRFqxK0quvWqvkYMmXz2pwQozNmy3k/ftv3zVRUdKHH0p33GHzkyelm2+2MBoAzvTXX9KJE1KOHFKJEm5X4x/nAzBr10rHjrlbCwCcJi4uTjfffLMk6eDBg1q1apUkae/evfroo490yy23qFq1arrssssUFxenEiVK6LbbbtO8efPOu6Zz7m/Tpk0lSePHj1erVq1UoEABRUVFacCAAaeuXbZsmQYMGKDmzZurTJkyypYtmxISElSrVi09++yz2r1793nvU7JkSXk8Hn3yySc6cuSIBgwYoEqVKil79uwqXLiwunXrpg0bNpy6fvfu3erbt6/Kly+vbNmy6fLLL9c999yjnTt3putnN2LECC1evFiSNHjwYDVp0uSC18fExGjAgAFq27Ztuu4HAAAAAEBmFeN2AUDAvP66tHu39PHHFoB06CD98otUt67vmuuuk95+W3rkEZv36mW7bbt0CU5N+fNbyNusmbRihbRpk9S0qfTrr75wJjpaGjHCWkZ//rmUlCTdd5+1dM6ePTh1AQhPp5+/GxXmn9EqVEjKk0fau1datUqqWdPtigDglKJFi54aHzhwQJL09ttv64UXXpAkRUdHKyEhQZK0adMmbdq0SaNHj9Zbb72lXr16XXDtxx9/XG+88YY8Ho9y586tqDPez6+//npt3LhRkoXN2bNn1969e7V48WItXrxYn3zyiaZNm6YKFSqc9x779+/XFVdcoT///FNxcXHyeDzavn27Pv/8c02bNk1z5sxRSkqKWrZsqQ0bNih79uxKSUnRzp079dFHH2nGjBmaP3/+qT/jpXrvfx+eLFeunLp27XrJ33fmzwAAAAAAAFwY/08akcPjsZbH7dvb/NAh6bPPzr7u4YelZ56xsddru2d/+il4dRUoIP38s1Sxos03brTAd9Mm3zXR0dInn0i33SZddpn0/feEuwDO5pxRGO7tmSV7z+YcXgAh6u/TOq5cdtllkqTChQvr+eef1/z583XkyBElJibq6NGjWr9+vXr37i1J6tOnjxYtWnTedRcsWKA33nhDffv21c6dO5WYmKjDhw/rbufIDklNmjTRJ598oo0bN+ro0aPas2ePjh07pqlTp6p+/fraunWrbrvttgvWP2DAAB08eFCTJ0/W4cOHT43z58+v7du3q2/fvurSpYty5cqluXPn6vDhwzp06JDGjBmj7Nmza+3atRo0aFCafmY7duzQihUrJEk33HCDPB5Pmr4fAAAAAABcOgJeRJaYGGvDfNVV0qOPSm+9de7rXnrJdslK1hb5xhul334LXl0FC1rI6+y02LDBQt4tW3zXREdLn34q/f67VKtW8GoBEL4iKeCVfG2aOYcXQAg5cOCARo4cKcnC3fLly0uS7rvvPg0YMEB16tRR1qxZJdl5sqVKldJbb72lBx98UMnJyRo8ePB51z506JD69Omj1157Tfnz55ckxcbGqsRpbfc//fRT3XnnnSpevPip17JmzaoWLVpo2rRpKliwoBYuXKhZs2ad9z7Hjx/XlClTdM011ygqKkrR0dG65ppr9Nprr0mSxo4dq40bN2rq1Km64oorJElZsmTRLbfcoscff1ySNHr06DT93JYvX35qXIu/ywIAAAAAEFR+B7xer1derzcQtQCBkS2bNHmy9MYb529h6vFIQ4ZYsCtJR45Y++b/7ToIikKFLOQtV87m69dLrVtLe/b4romJkcqUSf19Xq+0a1fw6gIQPk5v0RwJ2MELIITs27dP06ZNU/PmzbVt2zZJUu/evS+5fbBzjuyFgteoqCj17ds33TXmzJnz1Lm2F7pPp06dVLZs2bNeb9269anxfffdp7x58573mnXr1unw4cOXXNue0/5O6+x6BgAAAAAAwZHugPejjz5S1apVFRcXp7i4OFWtWlXDhw8PZG1A+sXFWYh7urVrLch1REdLI0faTlpJSky0wPX01smBVriwnQvshLgrVkjXXy+d75dnycnWUrpOneDWBSD0HT0q/fWXjZ2dr+GOgBeAyzwez6lHnjx51LJlSy1YsECS1LVrVz3jHOvxP+vXr9cTTzyhOnXqKHfu3IqOjj71/dddd50kacvpHVrOULZsWRUoUOCidX377bfq3LmzSpcurRw5cqSqc+zYsRe9T/369c/5esGCBU+N69Wrd9Fr9u3bd9FaAQAAAABAxotJzzf1799fb7zxhh555BE1bNhQkjR37lw99thj2rRpk1588cWAFgn47bffbIdugwbS119LWbLY63Fx0ldfWci7cKG1TG7VSpo1S8qXLzi1FCliO4yvvFLasUOaN0+66Sar63/t/k554QXbaSwFvy4AoW3lStvRny+fne0dCZyAd9Mm6cABKSHB3XoAZDqnh5mxsbHKly+fatWqpdtvv13NnA8B/s/EiRPVpUsXHT9+/NRrCQkJiouLk8fj0YkTJ7R3794L7nq9WLibkpKirl27atSoUadei4mJUZ48eU61hd6/f7+OHTt2wfvEx8ef8/WYmJg0XZOUlHTBek93+m7gxMTES/4+AAAAAACQdunawfv+++/rww8/1MCBA9W+fXu1b99eAwcO1LBhwzTECaOAUHHsmLViTkyUfvhBuvtuKSXF9/WEBHvdaZ28erV07bVSMHcslC4t/fijlCuXzX/88ey6JOmRR6T/nfum1astpD54MHh1AQhdp7dnPrNDQbjKk8c+9CKxixeAK3bs2HHqsXHjRi1YsEDDhw8/K9zds2eP7rrrLh0/flzNmzfX9OnTdeTIEe3fv187d+7Ujh07NG7cuIveLzo6+oJf/+ijjzRq1ChFR0erf//+Wrt2rY4fP67ExMRTdd50002SFHLH5FSuXPnUeNGiRS5WAgAAAABA5EtXwJuUlKS6deue9XqdOnV08uRJv4sCAiouTho1SoqNtfnIkVKvXrYTzlGggO2qLVTI5gsW2I7Z/fuDV1eNGtKkSVafJH3xhfTYY6nryp/f6ipc2OZ//GFh9Wk7RwBkEk4AGintmR20aQYQBr7//nsdOHBAefLk0aRJk9SkSRNly5Yt1TU7duzw+z6jR4+WJN1zzz164YUXVLZs2bPOAA7EfYKhUKFCp0Ler7/+OuQCaAAAAAAAIkm6At5u3brp/fffP+v1YcOG6fbbb/e7KCDgrr5aGjNGcn5BNnjw2WFqyZLS1KkWqkoWprZubW1Dg+Wqq6wuZzfHO+9Ir7yS+poSJSzkzZPH5lOnSt262fm8ADIPJwB1AtFIQcALIAxs3rxZklShQgVlz579nNdMnTo1YPepVavWOb9+6NAh/fbbb37fJ1geeughSdLatWv1+eefX/L3pZzZxQYAAAAAAFzQJQe8ffr0OfXweDwaPny4qlatqnvuuUf33HOPqlWrpg8//PCsT5gDIeOGG6RPPvG1Nn37benxx1OHvJUrSz//7Dvn9rffrF1zMNsit28vDR/umz/3nPTBB6mvqVJF+vZbydkpMm6c1Q4g8yDgBQDX5PrfsRpr1qzRsWPHzvr64sWL9cUXXwTsPkuWLDnn11966SUdDOHjOnr06KFq/+s08dBDD2nGjBkXvD45OVkvvviivvvuu4woDwAAAACAiHHJaeyiRYtOPf7880/VqVNH+fPn17p167Ru3Trly5dPtWvX1vLly4NZL+Cfbt2kESN8Ie+bb0pPPZU65K1aVZo2Tcqb1+Zz50pt2gQ35L3rLmnQIN/8gQekr75KfU2jRtL48VJMjM1PD4UBRLa9e6UtW2xcpYq7tQSa03L6zz9TvxcDQAhp1aqVoqKilJiYqNtvv11bt26VJJ04cUJjx45Vq1atFB8f7/d9rr32WknShx9+qGHDhunEiROSrC3zY489pkGDBimv83fUEBQbG6uJEyeqUKFCOnjwoFq2bKmHHnpIf/zxh5JP6z7z999/a8iQIapYsaKef/75VF8DAAAAAAAXF3OpF/7yyy/BrAPIOHfdJaWkSD162Pzf/7YWya+95rumenULeZs3lxITpdmzpbZtpe+/l3LmDE5dTz4p7dpl9Xi90u23S7NmSae36GvTxnYhd+0anBoAhCbnw1PFi0v/290VMSpVsg/d7N5t74EFC7pdEQCcpVy5cnryySf1+uuva8KECZowYYJy5cqlI0eOKCkpSaVKldLLL7/s93E1jz/+uL788kutWrVKPXv21AMPPKCEhATt379fXq9XPXv21LFjx/Tpp58G6E8WeGXKlNH8+fN1xx13aNq0aRoyZIiGDBmiqKgo5c6dW4cOHToVXEtSgwYNVL16dRcrBgAAAAAg/NBPGZlT9+7SsGG+ecmSZ19To4add+ucfTtzpnT99dLhw8Gra9AgqUsXGx85IrVrJ23blvqa22+X3nrL6gOQOURqe2ZJyp5dKlPGxrRpBhDCXnvtNX322WeqX7++smXLpqSkJJUtW1b/93//p0WLFqlw4cJ+3yN37tyaM2eOHn30UZUsWVLR0dGKiYlR06ZNNWrUKA0dOjQAf5LgK1y4sKZOnaoZM2booYceUvXq1ZU7d24dOHBA2bJlU40aNXT//fdr+vTpmjdvnkqXLu12yQAAAAAAhBWP1xuZ/RAPHDigXLlyaf/+/UpISHC7HISqoUOlqCjpvvvOf82CBVLLltK+fTZv2tTOw82RIzg1HTsmNWsmzZtn87p1pV9/tRDkNCcPH9aE/51XduONNyom5pI35CNMbdmyRcWKFeN9LTN66CFpyBBrKf/6625XE3gdO1pb+rfeknr3druaTO/kyZOaMGGCpOD/94W/rwEAAAAAAABpxw5eZG7333/hcFeS6tSRJk/2tUWdPl269lpp//7g1BQXZ0FH8eI2nz9fuvNOayt9utjY1POkJOnvv4NTEwB3OTtbnfNqI83p5/ACAAAAAAAAAC6IgBc407hx0iuvpH6tXj0LeZ3dRbNmSS1a2JmRwVCwoO0Sds77/fJL6fnnz3/93r0WOl99tbRjR3BqAuAOrzeyWzRLvj8XLZoBAAAAAAAA4KIIeIHTjRljZ+A++6z06qupv1a/vvTLL1LevDZfsMDaNW/fHpxaqlWTRo+2FtKS9PLL0siR57728celn3+WNm+WbrhBOno0ODUByHjbt0uJiVJ0tFSxotvVBIcT8C5ffna3AgAAAAAAAABAKgS8wOm2bZOSk238zDNnn3VZu7Y0Y4ZUqJDNly+XrrpK2rAhOPW0bSv9+9++effu0ty5Z183cKBUrJiNf/9duvtu2/UHIPw5u1rLlbMW7pGoXDkpSxbp0CFp0ya3qwEAAAAAAACAkEbAC5zuscekQYN88379UgesklS5srVoLlnS5uvWSY0bB6+16KOP+s4JPnFC6tRJ2rkz9TUFC0qTJkk5cth8zBjphReCUw+AjBXp7ZklC3crVbIx5/ACAAAAAAAAwAUR8AJnevJJ2xF7+vyNN1JfU7q0NHOmr13qtm12/u28eYGvx+OR3nvP2kFL1q711lulkydTX1ejhjRqlF0vWcA7alTg6wGQsTJDwCtxDi8AAAAAAAAAXCICXuBc+vWzM28djz9u89PbHhctaiFv3bo237tXatlSmjw58PVkyWLn8RYubPPp08+9Q7ddO+lf//LN7747OKEzgIzj7Ggl4AUAAAAAAAAAiIAXOL9nnpFefNE3f+45C35PD3nz5ZN+/llq3tzmhw/bubmffhr4egoWlMaOlWJibP7mm+e+rk8f6Z57bHz8uHTDDdLGjYGvB0DwpaTYWd+SVK2au7UEmxPw0qIZAAAAAAAAAC6IgBe4kOeeS30G7+DB0vr1qa+Jj5e++07q0MHmJ09Kd90lPf986jA4EK688uwzgc/k8VidTkvnXbtS70YGED42bJCOHpViY6UyZdyuJricAHvVKikpyd1aAAAAAAAAACCEhUzAm5KSouTkZLfLAM72+OPS0KFStmzSN9+cO2SJi5PGjZMefND32osvSnfeabtoA6lXL+nGG1O/dmYYkjWrNH68VK6cdMcddoYvgPDj7GatXFmKjna3lmArXlzKmdPez9audbsaAAAAAAAAAAhZIRHwrlixQnfccYdat26tBx54QHPmzHG7JCC1nj2ldet8rZjPJSbGgtT//Md20UrSf/8rtW4tJSYGrhaPR/roIwtDHC+9dPZ1l10mzZkjffKJ7f4DEH6c82gjvT2zJEVFSVWq2JhzeAEAAAAAAADgvFwPeFevXq1GjRopOTlZ9erV09y5c9W7d2+98847aVrn+PHjOnDgQKoHEFCFCqWee70WtB454nvN47EzcL/80nb8StKvv0qNGp3d2tkfuXNLn33mm7/5poW5Z8qXzxc2O06eDFwdAILLCTqd82kjnRNkcw4vAAAAAAAAAJyXqwGv1+vVZ599ptatW2vUqFEaOHCgZs6cqQ4dOujjjz/WoEGDLnmtgQMHKleuXKcexYoVC2LlgKwF8z33SK1aSfv2pf7ajTdK06dLBQrYfPVq6YorpHnzAnf/unV9Y69X6t7dzuq8kFWrpOrVpZkzA1cHgOBxgs7MEvA6f0528AIAAAAAAADAebka8Ho8Hm3btk07duw49Vp8fLx69eqlrl27aty4cRo5cuQlrfX0009r//79px6bN28OVtmAtG2b9MYbNp49W2rSRNq+PfU19etboFuxos3/+Udq1kwaMyY4Na1eLb3wwvm/vmqV1LChtHKl1LmzdNq/dwBC0PHj0po1NibgBQAAAAAAAAD8j2sBr9frlSTVrl1bycnJWr169amvxcfHq3v37qpVq5aGDBmiI6e3wD2P2NhYJSQkpHoAQVO4sO3QzZ/f5kuXSo0bn92GuVQpa53ctKnNjx2Tbr1VeuKJwLZKzprVnv/1L+mPP859TdmyUu3aNt6+3eqgXTMQutassX9Hc+WSihZ1u5qM4QS869albn8PAAAAAAAAADjFtYDX879zQa+77jqtXr1agwYN0qFDhyRZ+JsnTx4999xzmjt3rmbMmOFWmcD51aolzZolFS9u8/XrLeQ98+zIPHmkn36S7rrL99p//iNdc420a1dgaunXz55TUqS777adf2eKiZFGjbJwWrKzgZ95JjD3BxB4p5+/e+ZZ2pGqYEH74IzXK61Y4XY1AAAAAAAAABCSXG3RLEllypTR2LFjNXLkSPXr10+7d+8+Ff5myZJF1atXV65cuVyuEjiP8uWtRXOlSjbfvl26+mpp7tzU12XNKo0YIb33ngWtku0ArlNH+u03/+t47DELnCVp+XLplVfOfV2BAtK4cb4aBg2SJk70//4AAi+znb/roE0zAAAAAAAAAFyQ6wGvJDVr1kzjxo3T8OHD1bNnT40ZM0YrV67U22+/rV27dqlYsWJulwicX9Gi0owZUr16Nt+3T2rZUvrhh9TXeTzSQw9ZsFuokL22ZYsFwh9+6F8NWbJIH3/sC25fe036++9zX9uoke0gdtx1l7R2rX/3BxB4TsBbrZq7dWQ0Al4AAAAAAAAAuKCQCHglqV27dpozZ4727Nmjvn37ql27dpowYYK+++47Fc0sZw8ifOXLJ02bJrVoYfMjR6Qnnzz3GbdXXiktWGDtnCXpxAnpvvuke+6xM3rTq0YNO9tXkpKSpBdeOP+1jzwide5s4wMHpJtv9u/eAAJv6VJ7rl7d3ToyGgEvAAAAAAAAAFxQyAS8klS7dm198803mj59uiZOnKjZs2erltN2Fgh18fHSd99JN91kZ0h+841vR+2ZChWSfv5Z6tXL99pHH0kNG1qL5fTq21fKndvGn312/jMsPR5p+HBfa+klS6Q+fdJ/XwCBtW+ftGmTjTPbDl7nz3vmeeYAAAAAAAAAAEkhFvBKUkJCgkqWLKlq1aopX758bpcDpE1srDRmjJ2rW7r0ha/NkkV6+23p88+lbNnstcWL7Vzet9+WUlLSfv/cuS3klez7+/c//7U5c0pjx0pxcRb4Fiwoeb1pvyeAwHPCzeLFfR/ayCyqVLHnbdukxER3awEAAAAAAACAEBRyAS8Q9qKipFKlUr929Kidv7tr19nX3367NG+eL9Q4flx69FGpdWtp69a03/+RRyyslaTx46X5889/bdWqtnN42jTp+ect6AXgPqc9c40a7tbhhoQEC7Yl/zoaAAAAAAAAAECEIuAFgi0lRerWTRoyxFowr1599jXVq1sQ++ijvtemTrVWpWPHpu1+OXJIzz7rmw8adOHrb7tNatYsbfcAEFyZ9fxdB+fwAgAAAAAAAMB5EfACwbZ1qzR3ro3Xr7eQd8aMs6+Li5PefFOaMkUqUsRe27tX6txZ6tpV2r370u95771S3rw2/v576dixtNWclnsBCLzMHvByDi8AAAAAAAAAnBcBLxBsxYrZmbxOULN3r3TNNdLIkee+vmVLC3c6d/a9NnKkVKGC9OGHl3Y2b2ys1L69jQ8ftt3Al+LkSdvxW7z4uUNoAMGXkuILNjNrwMsOXgAAAAAAAAA4LwJeICMULSrNnClde63NT5ywXbkvvyx5vWdff9ll0qhR0uefS7ly2WuJidJ999kOYGdH8IV06OAbf/XVpdU5apTUt6+dGdyjh3TkyKV9H4DA2bDBPpgRFyeVLet2Ne44PeA913skAAAAAAAAAGRiBLxARklIkCZNknr29L323HNS9+4W+J7J45Fuv11audLOyXX8/rvUqJF0xx0Xvt8110jZs9t48uRLq/G222xtSfrrL6sPQMZy2jNXqSLFxLhbi1sqVpSio63jwfbtblcDAAAAAAAAACGFgBfISDEx0vvvWxtkxyefSG3aSAcPnvt7ChWyFs0//yxVrux7fcIE33jKlLNbN2fLJhUoYOPjxy+tvuho6aOPrMWzZGcCz5t3ad8LIDAy+/m7ku1eLlfOxpzDCwAAAAAAAACpEPACGc3jkZ58Uho71hekxsZaIHshzZpJS5ZYQJw/f+qvdexoZ/QOGiRNny5t3SpNmyZt3mxfd9o8X4qKFaUXX7Sx1yvdfbd07Nilfz8A/yxZYs+ZOeCVOIcXAAAAAAAAAM6DgBdwy803267cli2lMWMurRVrTIx0//3WPvn551N/7a+/7PzcZs3szN+WLaXkZPta27Zpq61PH6lePRuvWuULfAEEHzt4DQEvAAAAAAAAAJwTAS/gpkaNrL1yfHzq19et84Wz55KQYLuAHc2anf/aMmXSfpZuTIw0YoSUJYvNBw2SFixI2xoA0u7QIfv3X5KqVXO3Frc5f34CXgAAAAAAAABIhYAXCDVbtljw27atlJh4ad8zaZLttH3/falXL+naa6Vbb5X+/W87v/Kyy9JeR9WqUv/+Nk5OtlbNJ06kfR0Al84JMwsVOrsVe2bj7OBdvvzCH3gBAAAAAAAAgEzmEnrCAsgwXq8Fs7t2ST/9JNWtK02YINWsefHvrVDBHoHUt680fry0eLF0+LCd6VumTGDvAcCH9sw+ZcrY+eRHj0obNkhly7pdEQAAAAAAAACEBHbwAqHE45Feftm3c2/DBqlhQ+m//3WnnixZpI8/lh57zIInwl0guAh4faKjpcqVbUybZgAAAAAAAAA4hYAXCDVNm0oLF0r169v82DHpjjukhx92p0VyzZrSG29IOXJk/L2BzIaANzXnHN4//3S3DgAAAAAAAAAIIQS8QCgqWlSaMUPq2dP32uDBUrNm0rZt7tUFIHhSUqQlS2xMwGucgNf5uQAAAAAAAAAACHiBkBUbKw0dKg0fbmNJmjNHqlNHmjXLvbo2bJBeesnOCwYQOBs2SAcO2L/vlSq5XU1oqFXLnhctcrcOAAAAAAAAAAghBLxAqOvRwwLdYsVsvmOHtGWLO7UMGiRVqCD17y99/707NQCRauFCe65Wzc6/hi/gXb9e2rfP1VIAAAAAAAAAIFQQ8ALhoG5dacECqUUL6bHHpFtvdaeOsmWlpCQbP/OMtZQFEBjOLtXatd2tI5RcdplUooSNFy92tRQAAAAAAAAACBUEvEC4yJ9f+vFH20V7ppkzM6aGjh2tRbRkZ2KOG5cx9wUyA2cHr7NrFYY2zQAAAAAAAACQCgEvEE5iYuxxpjZtpC5dpL17g3t/j0d69VXf/LnnpJMng3tPIDPwen0BLzt4U3N+Hs7PBwAAAAAAAAAyOQJeIFKMHi1Vry79/HNw73PNNVKTJjZeu1b69NPg3g/IDLZtk/75R4qOtjN44cMOXgAAAAAAAABIhYAXiAS5ctnzli12Tm+fPtKxY8G5l8cjvfKKbz5woO0+BJB+TnhZsaKULZu7tYQaZwfvypXSkSPu1gIAAAAAAAAAIYCAF4gEv/0mNW/um7/5plSvnp2TGwxXXik1a2bjdetonQr4i/bM51eokFSggJSSIv35p9vVAAAAAAAAAIDrCHiBSFC0qDRlivTGG1JsrL22bJlUv770r39JycmBv2eXLr7xmDGBXx/ITJwdvE47Yvh4PLRpBgAAAAAAAIDTEPACkSIqSnrsMWn+fDuLV5JOnJCeekr6z38Cf7+OHe28UEn64YfArw9kJuzgvTDn50K3AAAAAAAAAAAg4AUiTtWq0u+/S08+aTvfLr9c6tkz8PfJl0966SVp/Hi7H4D02bNH2rTJxjVrulpKyGIHLwAAAAAAAACcEuN2AQCCIDZWGjRIat9e2r9fypUr9deXLZMqV7Zdv/54+mn/vh+AtHixPZcpc/a/qzDODt6lS6WkJClLFnfrAQAAAAAAAAAXsYMXiGSNG0tt26Z+bcsW6YorpLp1pV9+cacuAD5O22HO3z2/UqWkhARrO79ypdvVAAAAAAAAAICrCHiBzKZPH+nwYWt12ry51KGDtGaN21UBmZfTdpiA9/yionztq2nTDAAAAAAAACCTI+AFMpsHHkh9zufXX0tVqkg9elj707T68ENp6FBpwoSAlQhkKs4OXqcNMc7N+fk4Py8AAAAAAAAAyKQIeIHMplkzaf586eOPpUKF7LWTJ6URI6QaNezrX30lJSdffC2vV+rb10LjPn2CWjYQkQ4d8u2gZwfvhTk/HwJeAAAAAAAAAJkcAS+QGUVHS3fdJa1dKw0YYGdbOqZPlzp2lCZNuvg6kydLe/fauFy5IBQKRLiFC+2DEkWKSAULul1NaKtTx54XLrQPpQAAAAAAAABAJkXAC2RmOXJIzz8vbd0qvfeeVL68vV6smHT99amvnTpVGj7cnn/4QRo4ULr1Vt/X77wz4+oGIsVvv9lzgwbu1hEOKlaU4uOlI0ekFSvcrgYAAAAAAAAAXBPjdgEAQkDOnNJDD1mr5cmTpcOHpZgz3h4GDJBmzz7399evL912W9DLBCLO77/bc/367tYRDqKjpbp1pV9+sZ9b9epuVwQAAAAAAAAArmAHLwCfqCjp2mulTp1Sv75njzR37rm/5847rZ1zFG8nQJoR8KaN83Nyfm4AAAAAAAAAkAmxgxfAxcXFWYi7caP099+2u7dMGal2balmTberA8LTjh3Spk2Sx2M7U3FxTitrp7U1AAAAAAAAAGRCBLwALi5HDum669yuAogszi7UypXtbFlcnLODd9kyayWfI4e79QAAAAAAAACAC+ipCgCAG2jPnHZFitgjJUVauNDtagAAAAAAAADAFQS8AAC4wWkz7LQdxqVxAnHaNAMAAAAAAADIpAh4AQDIaCkp0h9/2JgdvGnj/LycHdAAAAAAAAAAkMkQ8AIAkNHWrpX275fi4qSqVd2uJrw4O54JeAEAAAAAAABkUgS8AABkNKe9cJ06UpYs7tYSburUkTweaeNGaedOt6sBAAAAAAAAgAxHwAsAQEZzdp/SnjntEhKkypVtzC5eAAAAAAAAAJkQAS8AABnN2cFLwJs+zs/N+TkCAAAAAAAAQCZCwAsAQEY6dkxassTGznmySBsn4GUHLwAAAAAAAIBMiIAXAICMtGSJlJQk5csnlSzpdjXhyQnG//hDSklxtxYAAAAAAAAAyGAEvAAAZKQ5c+y5fn3J43G3lnBVtaqULZu0b5+0apXb1QAAAAAAAABAhiLgBQAgI82cac9XXeVuHeEsSxbpiits7Pw8AQAAAAAAACCTIOAFACCjeL3SrFk2JuD1j/PzI+AFAAAAAAAAkMkQ8AIAkFFWr5b++UeKjZXq1nW7mvBGwAsAAAAAAAAgkyLgBQAgozhhZIMGFvIi/a64QoqOljZtsgcAAAAAAAAAZBIEvAAAZBQn4L36anfriAQ5c0p16tiYXbwAAAAAAAAAMhECXgAAMsqMGfbM+buB4fwcnZ8rAAAAAAAAAGQCBLwAAGSEzZuljRulqCipYUO3q4kMnMMLAAAAAAAAIBMi4AUAICM4IWStWlJ8vLu1RIrGje155Upp9253awEAAAAAAACADELACwBARnACXtozB07evFLlyjaeNcvdWgAAAAAAAAAggxDwAgCQEQh4g4M2zQAAAAAAAAAyGQJeAACCbc8eaflyGxPwBtbVV9szAS8AAAAAAACATIKAFwCAYJs9254rVpTy53e3lkjjBOYLF0qHDrlbCwAAAAAAAABkAAJeAACCbcYMe2b3buAVKyaVKCElJ0tz57pdDQAAAAAAAAAEHQEvAADBNnWqPTdt6moZEatZM3t2fs4AAAAAAAAAEMEIeAEACKYdO6QlS2x8zTXu1hKpWrWy58mT3a0DAAAAAAAAADIAAS8AAME0ZYo9167N+bvB0rKlPS9eLO3c6WopAAAAAAAAABBsBLwAAASTs6vU2WWKwMuf3wJ0yReoAwAAAAAAAECEIuAFACBYUlJ8gWPr1u7WEumcn+9PP7lbBwAAAAAAAAAEGQEvAADBsnSptQzOkUNq2NDtaiKbs0N6yhQL1gEAAAAAAAAgQhHwAgAQLE575qZNpdhYV0uJeI0aWZC+c6cF6wAAAAAAAAAQoQh4AQAIFifgpT1z8GXNKjVrZmPn5w4AAAAAAAAAEYiAFwCAYDh8WJo508ZO+2AEl/NzJuAFAAAAAAAAEMEIeAEACIYZM6QTJ6TixaXy5d2uJnNwAt6ZMy1gBwAAAAAAAIAIRMALAEAwnN6e2eNxt5bMonx5qUQJC9ZnzHC7GgAAAAAAAAAICgJeAACC4ccf7Zn2zBnH4/H9vH/4wd1aAAAAAAAAACBICHgBAAi0lSulVaukLFmka65xu5rM5frr7fmrrySv19VSAAAAAAAAACAYCHgBAAi0CRPsuWVLKVcud2vJbK65RsqRQ9q8WZo/3+1qAAAAAAAAACDgCHgBAAi08ePtuVMnd+vIjLJlk9q2tbHzzwEAAAAAAAAAIggBLwAAgbR+vbRokRQVJd1wg9vVZE5OsD5+PG2aAQAAAAAAAEQcAl4AAAJp4kR7btJEypfP3VoyqzZtpNhY6a+/pGXL3K4GAAAAAAAAAAKKgBcAgECiPbP74uOl1q1tTJtmAAAAAAAAABGGgBcAgEDZtk2aO9fGHTq4Wkqmd+ON9jxhgrt1AAAAAAAAAECAEfACABAoTnvmhg2lIkXcrSWza99eiomR/vxTWrvW7WoAAAAAAAAAIGAIeAEACBTaM4eOPHmk5s1tTJtmAAAAAAAAABGEgBcAgEDYtUv69VcbO+2B4S7nn8O4ce7WAQAAAAAAAAABRMALAEAg/Pe/UkqKVK+eVKqU29VAsoA3JkZauNBaNQMAAAAAAABABCDgBQDAX16v9NFHNr7nHndrgU/+/HYWr+T75wMAAAAAAAAAYY6AFwAAf82bJ61cKWXPLt16q9vV4HQ9etjzf/8rHT/ubi0AAAAAAAAAEAAEvAAA+MvZHXrzzVJCgru1ILXWraUiRaTEROnrr92uBgAAAAAAAAD8RsALAIA/Dh6URo+2sbNbFKEjOlq66y4bDx/uaikAAAAAAAAAEAgEvAAA+GPsWOnwYal8ealxY7erwbl0727PU6dKGze6WwsAAAAAAAAA+ImAFwAAfzjtmbt3lzwed2vBuZUuLTVrJnm90scfu10NAAAAAAAAAPiFgBcAgPRauVKaO9faAN95p9vV4EKc9tkffywlJ7tbCwAAAAAAAAD4gYAXAID0evNNe77+eunyy92tBRd2441SnjzSpk3SxIluVwMAAAAAAAAA6UbACwBAemzbJn36qY2feMLdWnBx2bJJDz9s44EDrV0zAAAAAAAAAIQhAl4AANLjjTekEyekxo3tgdDXq5eUPbu0cKE0ZYrb1QAAAAAAAABAuhDwAgCQVomJ0tChNn76aXdrwaXLl0+6914bDxzobi0AAAAAAAAAkE4EvAAApNV770mHD0s1akht2rhdDdLi8celLFmk6dOlefPcrgYAAAAAAAAA0oyAFwCAtDh0SHr7bRs//bTk8bhbD9KmWDGpa1cbs4sXAAAAAAAAQBgi4AUAIC2GDbMWzWXLSjfd5HY1SI++fS2Y/+YbaelSt6sBEGQHDx7UoEGDdNVVVyl//vyKjY1ViRIl1LRpU7366qvauXOn2yUCAAAAAACkSYzbBQAAEDb++Ud66SUb9+snRUe7Ww/Sp0IF6eabpbFjpT59pClT2IkNRKh58+apY8eO2rFjR6rXN23apE2bNunXX3/ViRMnNGDAAHcKBAAAAAAASAd28AIAcKmeeUbat0+qWVO66y6Xi4FfBg6UYmOladOkCRPcrgZAEKxZs0atWrXSjh07lCdPHg0aNEgrV65UYmKi1q9fr7Fjx+qmm25STAyfeQUAAAAAAOGF32YAAHAp5s+Xhg+38bvvsns33JUuLT31lO3I7tNHatNGyp7d7aoABND999+vgwcPKk+ePJo3b57Kly9/6mt58uRRqVKldPPNN+vkyZMuVgkAAAAAAJB27OAFAOBiUlKkXr0kr1e6/XapcWO3K0Ig9OsnFS8ubdokvf6629UACKAVK1bol19+kSS99NJLqcLdM7GDFwAAAAAAhBsCXgAALubzz6W5c6WcOaVBg9yuBoGSPbv0n//Y+PXXpQ0b3K0HQMD8/PPPkiSPx6Pbb7/d5WoAAAAAAAACi4AXAIAL2bpVevxxGz/3nFS4sLv1ILA6dZKaN5eOH5fuuUdKTna7IgABsH79eklS8eLFlTt3bneLAQAAAAAACDACXgAAzufkSalLF2n3bqlmTal3b7crQqB5PNKQIVKOHNLPP0uvvOJ2RQAC4ODBg5Kk+Ph4lysBAAAAAAAIPAJeAADO5/nnpZkzpfh4aexYKTbW7YoQDBUqSEOH2njAAAt6AYQ1J9h1gl4AAAAAAIBIQsALAMC5/PST9OqrNv7wQ6lcOXfrQXB17Sr16CF5vdJtt0k7drhdEQA/lClTRpK0adMm7du3z91iAAAAAAAAAoyAFwCAM61ZY4GfJD3wgNS5s7v1IGO8845Utaq0c6d0yy3SkSNuVwQgnZo3by5J8nq9GjVqlMvVAAAAAAAABBYBLwAAp1u/Xmre3M7drV1beuMNtytCRsme3Vpxx8dba+6OHaVjx9yuCkA6VKpUSS1atJAkPffcc/rrr7/Oe+3JkyczqiwAAAAAAICAIOAFAMCxaZOFu1u3SpUrSz/+KMXFuV0VMlKlStL331vYO3my7eQ9ccLtqgCkw5AhQ5QzZ07t2bNHDRo00L///W+tXr1a+/bt08aNGzVx4kTdeuuteu2119wuFQAAAAAAIE0IeAEAkKQNGyzc3bjRztudOlXKn9/tquCGxo2lSZMs3J80SerSRTp61O2qAKRR+fLlNXnyZBUoUECJiYl68sknVbFiReXJk0clS5bUjTfeqDFjxrCDFwAAAAAAhB0CXgAAfvxRqlNHWrdOKlVK+vlnqVAht6uCm5o3lyZOlLJmlSZMkK680j4EACCsNGzYUGvWrNHLL7+sevXqKXfu3IqNjVXJkiXVokULDR48WI888ojbZQIAAAAAAKRJjNsFAADgmpQU6ZVXpOefl7xeqX59afx4qWhRtytDKLj2Wgv/b7lFWrTIPgQwcqTUpo3blQFIg1y5cumZZ57RM88843YpAAAAAAAAAcEOXgBA5rRokXT11VL//hbu9uwpzZhBuIvUmjWTFi608H/vXqltW+mee6Rdu9yuDAAAAAAAAEAmRcALAMhcdu2yMLdOHWn2bCl7dmnECGnoUCk21u3qEIqKFbPw/4EH7MMAH30klS8vvfmmdOKE29UBAAAAAAAAyGQIeAEAmcPixVKPHlKJEtKwYRbUdekirV4t3X2329Uh1MXGSkOGSLNmSbVrS/v3S3362P+eXnhB2rHD7QoBAAAAAAAAZBIEvACAyLVmjfTvf0uNGkm1atlO3WPHpHr1bEfmF1/Qkhlpc+WV0u+/24cEChWyYHfAAKl4cenGG6VPP5V273a7SgAAAAAAAAARLMbtAgAACIgTJ6SVK6XffrPHrFkW8DpiYqSbbpIeeURq2FDyeNyrFeEtOlq6917pzjulCROkd9+V5syRJk60R1SUndnbsKHUoIGNS5Sw1wEAAAAAAADATwS8AIDQlZIiHTpk7XAPHLDn/fvtHN2tW6Vt26QNG6zN8oYNdv3psmSRmjWT2reXOnaUChd258+ByJQ1q3TrrfZYssTC3a+/tnbg8+bZw5Etm1SunJ3dW7iwVKDA2Y/LLrMzobNm5QMIAAAAAAAAAM6LgBcAwk2HDrYbVbJzZE935jxQ1wRz3ZMnbfft6Y/jx62V8sGD5173fBISrP1ygwb2aNJEypXr0r8fSK8aNewxYIC0aZO1AHdC3qVLpaNH7Xnp0ouvFRVlgXD27PacLZv9Ox8d7XtERV18nJaQ+PRro6MttJakW26RkpPPfV1a1jyfpKRLXw8AAAAAAACAJAJeAAg/v/zidgUZLybGgtpcuSzELVDAdkEWKSIVKyZVqGA7IwsVYucj3Fe8uNS1qz0k+xDD33/bTvO1a6WdO20XuvP45x97PnzYrk9JsbEzz2ixsb6A9/vv7QMXAAAAAAAAAEIGAS8AhJthw2xnn+PMQPNcAWcgrgnWujEx1pI2NtaenUdsrIW5uXJJcXEEtwhfMTFS2bL2uJATJ2yn79Gj0pEjvucjR2wXrfNISbn4+PRdt+dzKbvj333XvzUu9vUjR6Q+fS5eBwAAAAAAAIBTCHgBINx07mzBJ4DI4ny4we224idPShMm2Pjuu30t4YPhwAECXgAAAAAAACCNotwuAAAAAAAAAAAAAABwaSJ2B2/y/1oTbtmyRQnsdEMEOnnypPbs2SPJ/nceE8wdVggJmzdvlsT7GoDgysj/vuzbt0+SlJiYGLR7AEBG8nq9OnjwoAoXLqyoKD5PDQAAAAAIDo/XeykHsIWfP/74Q/Xr13e7DAAAAABAJrN582YVLVrU7TIAAAAAABEqYrf8lS1bVpL9H2t2uiESnTx5Ut98840kqX379uzgzQQ2bdqkatWq8b4GIKgy8r8vW7ZsUZUqVXhfyyT4uwsygwMHDqhYsWKKj493uxQAAAAAQASL2N+qREdHS5ISEhL4hSEi0smTJ5U9e3ZJ9r9zfkka+XLnzi2J9zUAwZWR/31x3st4X8sc+LsLMhOPx+N2CQAAAACACMahQAAAAAAAAAAAAAAQJgh4AQAAAAAAAAAAACBMEPACAAAAAAAAAAAAQJgg4AUAAAAAAAAAAACAMEHACwAAAAAAAAAAAABhgoAXAAAAAAAAAAAAAMIEAS8AAAAAAAAAAAAAhAkCXgAAAAAAAAAAAAAIEwS8AAAAAAAAAAAAABAmCHgBAAAAAAAAAAAAIEwQ8AIAAAAAAAAAAABAmCDgBQAAAAAAAAAAAIAwQcALAAAAAAAAAAAAAGGCgBcAAAAAAAAAAAAAwkTIBLzJycmSJK/X63IlAAAAAAAAAAAAABCaQiLgXbx4sTp06KAjR47I4/G4XQ4AAAAAAAAAAAAAhCTXA94lS5aoUaNGqlKlirJnz37q9bTu5D1+/LgOHDiQ6gEAAAAAAAAAAAAAkcTVgHfp0qW68sor9fDDD+u111479fqJEyfSvJN34MCBypUr16lHsWLFAl0uAAAAAAAAAAAAALjKtYB3x44dat26tRo3bqxBgwYpOTlZjz32mK6//nrVqFFDb731llatWnXJ6z399NPav3//qcfmzZuDWD0AAAAAAAAAAAAAZLwYN2/esGFDbd68WV9//bWGDh2qpKQk1axZUyVLltQ777yjZcuWqX///ipevPhF14qNjVVsbGwGVA0AAAAAAAAAAAAA7nAt4L388ss1ePBg9evXT126dFHjxo01ZswY5c2bV5L0xRdf6KGHHlKnTp0uKeAFAAAAAAAAAAAAgEjn6hm8hQoV0sCBA/Xoo4+qX79+yps3r7xeryTptttuU758+fTLL7+4WSIAAAAAAAAAAAAAhAxXWzRLUuHChdWvXz/FxcVJkjwej7xerxITE5U/f37VrFnT3QIBAAAAAAAAAAAAIES4HvBKUkJCQqq5x+PRO++8o927d+vKK690qSoAAAAAAAAAAAAACC0hEfCebvTo0frll180btw4TZs2TSVKlHC7JAAAAAAAAAAAAAAICa6ewXsulStX1tatWzVz5kzVqlXL7XIAAAAAAAAAAAAAIGSE3A7e6tWra8KECcqaNavbpQAAAAAAAAAAAABASAm5HbySCHcBAAAAAAAAAAAA4BxCMuAFAAAAAAAAAAAAAJyNgBcAAAAAAAAAAAAAwgQBLwAAAAAAAAAAAACECQJeAAAAAAAAAAAAAAgTBLwAAAAAAAAAAAAAECYIeAEAAAAAAAAAAAAgTBDwAgAAAAAAAAAAAECYIOAFAAAAAAAAAAAAgDBBwAsAAAAAAAAAAAAAYYKAFwAAAAAAAAAAAADCBAEvAAAAAAAAAAAAAIQJAl4AAAAAAAAAAAAACBMEvAAAAAAAAAAAAAAQJgh4AQAAAAAAAAAAACBMEPACAAAAAAAAAAAAQJgg4AUAAAAAAAAAAACAMEHACwAAAAAAAAAAAABhgoAXAAAAAAAAAAAAAMIEAS8AAAAAAAAAAAAAhIkYtwsAAAAAgKA4dEgaNEj6+2/fa02bSnffLXk8blUFAAAAAADgFwJeAAAAAJEnJUXq1k366qvUr//3v9KxY9KDD7pSFgAAAAAAgL8IeAEAAABEngEDLNzNmlV67jkpWzZp9Wrpww+lXr2kihWl5s3drhIAAAAAACDNCHgBAAAARJaxY6WXXrLxsGHSnXfa2OuVjhyRRo6Ubr5Z+uMPqXRp9+oEAAAAAABIhyi3CwAAAACAgFmyRLrrLhs//rgv3JXs3N0PP5Tq1ZMSE6UbbpAOH3alTAAAAAAAgPQi4AUAAAAQOZ59Vjp6VLr2Wun118/+erZs0sSJUqFC0rJl0ogRGV8jAAAAAACAHwh4AQAAAESG9eul776z8TvvSNHR576uSBELgiXpvfeklJSMqQ8AAAAAACAACHgBAAAARIb337dzdlu3lsqVu/C13bpJ8fHSmjXStGkZUx8AAAAAAEAAEPACAAAACH9HjkgffWTjhx+++PXx8b7zeQcPDl5dAAAAAAAAAUbACwAAACD8jR4t7d0rlSwptWlzad/z4IP2PGmStHFj0EoDAAAAAAAIJAJeAAAAAOHN67WzdCULbc939u6ZKlWSWrSwM3iHDg1efQAAAAAAAAFEwAsAAAAgvM2bJy1aJMXFSd27p+17H3rInj/8UDp2LPC1AQAAAAAABBgBLwAAAIDwNmSIPXfpIuXNm7bvbddOKlZM2rNHGjs28LUBAAAAAAAEGAEvAAAAgPB1/Lj01Vc2vu++tH9/TIx0zz02/vLLgJUFAAAAAAAQLAS8AAAAAMLXrFnSoUNSwYJS/frpW6N9e3ueNo02zQAAAAAAIOQR8AIAAAAIX999Z89t2khR6fy/NzVqSIULS0eOSL/+GrjaAAAAAAAAgoCAFwAAAED4+v57e27bNv1reDzSddfZ2AmMAQAAAAAAQhQBLwAAAIDwtG6dtHq1naN7zTX+reUExN99J3m9/tcGAAAAAAAQJAS8AAAAAMKTs3u3cWMpVy7/1mrRQsqSRVq/Xlqzxv/aAAAAAAAAgoSAFwAAAEB4ctop+9Oe2REfLzVpknpdAAAAAACAEETACwAAACD8HD4sTZ9uY+f8XH856zg7gwEAAAAAAEIQAS8AAACA8PPzz9Lx41LJklKlSoFZ09kJPGOGdPBgYNYEAAAAAAAIMAJeAAAAAOHn9PbMHk9g1ixfXipbVkpKkqZMCcyaAAAAAAAAAUbACwAAACC8eL2+NsqBas/soE0zAAAAAAAIcQS8AAAAAMLL2rXS5s1SbKzUrFlg13YC3qlTA7suAAAAAABAgBDwAgAAAAgvs2fbc716UrZsgV27USMpKkrauFHaujWwawMAAAAAAAQAAS8AAACA8OIEvFdeGfi14+Ol6tVT3wcAAAAAACCEEPACAAAACC/BDHhPX5eAFwAAAAAAhCACXgAAAADhY88eadUqGzdqFJx7EPACAAAAAIAQRsALAAAAIHzMmWPPFStKefMG5x5OwLt4sXToUHDuAQAAAAAAkE4EvAAAAADCR7DbM0tS8eJSsWJScrL0++/Buw8AAAAAAEA6EPACAAAACB+zZtlzMAPe09enTTMAAAAAAAgxBLwAAAAAwsPx49L8+TYm4AUAAAAAAJkUAS8AAACA8LBggYW8+fNL5coF915OwDt3rrVqBgAAAAAACBEEvAAAAADCg7ObtlEjyeMJ7r2qVZNy5pQOHJCWLw/uvQAAAAAAANKAgBcAAABAeHAC3saNg3+vmBjpiitS3xcAAAAAACAEEPACAAAACH1erzRnjo2Dff6uwwmSCXgBAAAAAEAIIeAFAAAAEPrWrpX++UeKjZVq186YezpB8qxZGXM/AAAAAACAS0DACwAAACD0zZ1rz3XrWsibERo0kKKipI0bpR07MuaeAAAAAAAAFxHjdgHI5A4ckJYvl5Yts+c9e6SkJOnECalZM+mRR1JfP326lCOHVKWKlD27KyUDAIJs5Uppxgxp/Xpp1y77b4Lz34akJGvTmjevVLCgVKKEVLSoVK6cVLmyBTEAItPChfZcr17G3TM+XqpYUVqxQlqwQGrbNuPuDQAAAAAAcB4EvMh4K1dKn38ujR0r/fXX+a+Ljz/7tW7dpC1bpOhoqVo1qX5936NyZXsdABD6Tp6UliyxHXkPPJD6/funn6THHrv4GtHRUnKyb37ZZVLTplLz5vaoWFHyeAJeOgCXLFhgzxnVntlRu7YFvAsXEvACAAAAAICQQMCLjNe7tzRlysWvO3Ei9TwlRdq+3cbJydLixfYYNsxeu+wyqXVr+8XbdddJefIEsmoAgD+8Xgt0v/5a+vVX6bffpCNH7GuNG0s1a/quLVXq0tY8PdyVpMREacIEe0hSpUoWFHftKmXL5vcfAYCLkpOlRYtsXKdOxt67Th37cKITMAMAAAAAALiMgBcZr2tXC3ijo23nbbVqUtWq9ihSRMqa1R45cqT+vqQk6cUXpXXrpD/+sJbOKSm+rycmSqNG2WPCBKljx4z9cwEAUktJsR26EyZIEydKGzac+7o5c1IHvPXqSR98YEFvkSJ21maWLPbImtXC4j17pG3b7LFhg+2smz5d2rvXt87KldJ990nTpkmjRwfzTwog2Favtg+F5MghVaiQsfd2AmUCXgAAAAAAECIIeBE8SUnSk09a683TfxHXsaOFsV262PmJlyo2Vvq///PNDx2yX+j//rsFCFOn2pm+2bLZTt7T/fmntHOntezkfEYACL6UFHvvP18r/mLFpCuvtMeZ79mFC1sweyH58p0d8iQn2y7hn3+2QHnOHHv9nnvS92cAEDqccLVmzYw/kqNWLWv3vmWLnQteoEDG3h8AAAAAAOAMBLwIjuPHpc6drRXn8uXS5Mm+cxDj46VHH/X/HjlzSldfbQ/JAuU5c2wnV/bsqa99/XVp5EipdGmpRw/prrssQAAABEZKSuoP0ERF2bmVTsAbHW3n4954o3T99VLx4oGvITra7lm7tvTEE9btYdw4qUWL1Ndt2SLFxVlIDCA8LFxozxndnlmyv3NWqCCtWmVBc5s2GV8DAAAAAADAadjKiMA7elTq0MHCXUmaOVNasyb4982SRWrSxMLb0yUmSl9+aeP166VnnrFgoUsXaenS4NcFAJFs+XKpVy+pfHnp2LHUX7v1VumGG6RPPrFdb1OnSg8+GJxw91zq1ZMGDfJ9wEiyILprVzsegP8GAOHD2cFbu7Y793fuS5tmAAAAAAAQAgh4EVher/1C/8cfbZ49u/Tddxl/VtrpcuaUPv9catXK90v+5GQ7j7FGDdtJNmuWe/UBQDj67TepfXs7P/3dd+189AkTUl/TsaP01VfSnXdKl13mSplnGTJE+vVXaccOa9u/ZInbFQG4mJQUadEiG7uxg/f0+zo7iQEAAAAAAFxEwIvAGj5c+uYbG8fHW9B7ZmvMjJY1q3TTTdJPP9kO3mefTd2W87vvpKuussfOne7VCQDhYMYM+8DMFVdIkyb5Xs+WTdq61b26LlWnTla7JO3ZYyHv4sWulgTgItaskQ4dsveZihXdqcEJeNnBCwAAAAAAQgABLwJnyxYLTx2jR1toGkpKlpReeknauFF6553UbUJ375by53etNAAIWV6vnaV+9dXWCn/KFN/XihWT3npL2rZNevJJ10q8ZIUK2Qd+Gja0eWKifRBp82Z36wJwfs6u2Zo1pZgYd2qoVcueN22yvzMCAAAAAAC4iIAXgdO3r52xKFmb5uuuc7eeC8meXXrkEemvv+xsyEqVrP6oM/6VcP48AJCZDRggtW5tZ6o7Spe2rg1//SX17i3lzu1WdWmXkGAdJho1snliotSjhwXZAEKPs2vWrfbMkr1vlC+fuh4AAAAAAACXEPAiMHbskMaMsXG+fNLgwe7Wc6myZLGzIZctk7p1S/21ZctsZ9r999ufDwAyq27d7P1Ssg/E/Pe/0urVFopmzepubemVkCB9+61UpIjNp0yR3n/f3ZoAnFsoBLySVLu2PRPwAgAAAAAAlxHwIjA+/VRKTrZxz57SZZe5W09aRUVJ0dGpX+vbVzpxQvrgA6lsWenll20OAJHsyBFp6dLUr5UtK732mjR2rH34pWtX99qkBlKePNKIEb75E09Ia9e6Vw+As6Wk+Fo0OwGrWziHFwAAAAAAhAgCXvjP67U2nY7u3d2rJVBSUqx1Z3y8zQ8flp57zs5fmz3b3doAIBi8XumLL6wFadu2FvSerk8f6eabz25lH+5atbJODZJ09Kid0w4gdKxbJx08KMXFSZUru1uLE/A6gTMAAAAAAIBLIuy3tHDF77/bGYyS1KKFncsY7qKipGeesT/XQw/5dveuWCE1biw98IC0b5+rJQJAwKxbZ2fs3n67tHWrtGWL9MYbbleVcf71L2vJ/+CD0rPPul0NgNM5u2Vr1HC/c4Czg/jvv6U9e1wtBQAAAAAAZG4EvPDf77/7xp06uVdHMBQoIL33njR/vlS3ru/1oUNtF8n48bbrDQDC0cmT0qBBUtWqdgat4/rrbbduZpEzp4XcgwfbDmYAocPZLev2+buSlCuXtayX2MULAAAAAABcRcAL/y1a5Bu7fTZasNSsKc2bJ731lpQjh722fbvt8k1KcrMyAEifP/+UrrjCzhs/dsxeK1ZM+uYbadIkqUIFd+vLaFmyuF0BgHNxzgSvWdPVMk5x6jjzrHIAAAAAAIAMRMAL/zkBb1SUVK2au7UEU3S01Lu3tWm+/np7bdgwKWtWd+sCgLRISpJefNF2wzmtT6Oi7P1t+XKpXTt36wOA0y1bZs9Vq7pbh6NGDXtessTdOgAAAAAAQKbm8kFWCHtJSRYISFLFilL27O7WkxGKF7cdbgsWpG7bLEk7d0qHDkllyrhTGwBczOrV0ssv+7oPVK4sjRghNWjgbl2hwOu1s9enTbMP73Tv7nZFQOa2d6+dCy5JVaq4W4ujenV7ZgcvAAAAAABwEQEv/OPx2Dm0R49Kl13mdjUZx+M5O9xNTpa6dLEz2T75ROrQwY3KAODCqlaVXn9devJJqV8/6bnnpNhYt6sKDYcOSZUq2ft5xYoEvIDbnN27xYtLCQnu1uJwAt4VK+yDMrR3BwAAAAAALqBFM/wTE2PtPG+5RWrZ0u1q3PX229Ivv0j790sdO0pPPMH5vADcd/jw2e9FvXtbe9GXXybcPV18vFS/vo1XrfLtHATgDifgDaUjQEqUsPeKpCTriAAAAAAAAOACAl4gUO69V+rc2Tf/z3+kZs0ICAC4Z9EiO2v3hRdSvx4VFTrtTkNNixa+8a+/ulcHgNA7f1eyLi60aQYAAAAAAC4j4AUCJT5eGjVKeu89X7u+2bOlWrWkqVPdrQ1A5vPBB9IVV9gOs1dftQ4DuLjT2++vWeNeHQBCM+CVfAHvkiXu1gEAAAAAADItAl74JynJziD7+Wfpjz/crsZ9Ho/00EPSrFl2Xpwk/fOP1KqV9OKLUkqKu/UBiHwnTkj332+PEyfstVq1pCJF3K0rXJQu7Rtv2OBeHUBm5/VKf/5p41Bq0SyxgxcAAAAAALiOgBf+2bXL2ny2aCG98orb1YSO+vWlhQul666zudcrPf+81KaNdPy4u7UBiFw7d9r78Qcf+F7r1UuaM0cqX969usJJiRK+8ZYt7tUBZHbbt0t790rR0VKFCm5Xk1qNGvZMwAsAAAAAAFwS43YBCHMFCvjGO3a4V8eGDdJ331krv2XLbNdsUpI98uSxX9g7j9KlpcaNpYIFg1tT3rzSpEnS669Lzz5ru3dLlJBiY4N7XwCZ04IFUocOvlAyNlYaNky6446Mr+XoUWn9entv3rAh9XjTJilrVil3bnsUKWLhc5Mm0lVXSTlzZny9p4uPl+LipGPH7L8lANzhtGcuV87+nQwlTsvobduk3bulfPncrQcAAAAAAGQ6BLzwT5Ys9kut3btt51hG8nqlMWPszNvZs89/3ZYtvhZ/p6tZ01ont20rXXml7RAJtKgo6emn7RzMQYOkd94J/D0A4IsvpB49LJSUpMKFpYkTrZtARklMtA+1TJwo/fSTr5bz2bUr9fz116WYGKlZM9t1fN119h6a0Twe++/ali0EvICbnL+7hdr5u5J9EKR0afvwytKlUvPmblcEAAAAAAAyGVo0w3/OTtgdOyx0zQhr1lgb0i5dzh3u5splu4sLFbIQ+lwWL7bQtUkTqVgxqXdvWysYf4ZmzaQffjh7B8rMmdL+/YG/H4DM48QJ6dVXfYFqw4bS/PkZE+5u2yYNGSJdc4295951l/T11+cPd7NkkUqVsm4GuXJZmHq6kyelKVOkdu2kSpUsKHaDU5cbATMA4+zgDbXzdx2cwwsAAAAAAFzEDl74r1gxafly+4X+li02D6bff5dat5b27fO9Vrmy1LWrhbVVqlhw4EhJsfD577+ljRvtF3GTJ9sZuY7t22137TvvSLVqSf36SZ06BWdXr2P1atuhVry4hb/FiwfvXgAiV9as0ldfSfXqSTfdZF0NgtkKPjlZGjfO3i/nzj33NZdfbjvaypSxXW6lStmjSJHU76snT0qbN1t76Z9/tvfCv/+2r61ZI117rXTffdJ//pOxrZsrVbL20fnzZ9w9AaTmBLyhuINXsoD3q68IeAEAAAAAgCsIeOG/2rWlH3+08fz5wQ14FyyQWraUDh60ealSFjK0bXv2TjBHVJS1Ky1cWGrUyHb9Dhxo7UF/+kn68kur/8QJu37RIqlzZ6lsWempp+z8ymCEJffdJx06JK1YYTvufvjBtxsEANKibFkLGYoWPf97ob+SkqSRI2238Nq1Z3+9VCnpxhvtccUVl7b7NSbGF/7edJN9IOfbb627gtOdYdgwa9X6449SQkJg/0zn49bOYQAmOdk+PCiFdsArEfACAAAAAABX0HsQ/qtb1zdesCB49zlyRLr1Vl+427Sp/VLt+uvTF2gUKCB162btRHftkj79NPWf5a+/LIQtXdp2jzn3DZQRI6Ry5Wy8bZt01VW2gw0ALmT3bunRR89ug1ysWHDC3WPHpKFD7f3q7rtTh7tVqkj9+9sHY9atk/79b/sgTXpbG0dFSe3bW/v699+XcuSw1+fOtc4NgX4fBhCaNmyQjh61oy3KlHG7mnOrUcOely+3bgQAAAAAAAAZiIAX/qtTxzeePz9493ntNQtdJWtF+t13gWvZmSuX7dT9/Xc7/7F5c9/Xtm2TnnjCzox85RXp+PHA3LNMGduh1qCBzQ8csHako0YFZn0Akefvv6Urr5Tefts+oJKcHLx7HT4svfWWvVc98IC1uHc0ayZNm2Y7a194QapZM7Dhsscj3X+/vUfmzWuvzZtnwTaAyOe0Z65cObjHZfijdGkpe3b7EMy5uhoAAAAAAAAEEQEv/FesmO+cwgULJK838Pc4flwaPNjGWbJIn31mv1QLNI/HWkBPm2ZhQocOvq/t3Ss9+6y15Pvll8DcL39+27Xbrp3Nk5Kk226zXXDB+DkCCF/Lllk79zVrbD57trR1a+Dv4/VKX3xhwe5jj9mHXBxt2kizZtn7VvPmwWsH7ahRw+4VH2/zESOkSZOCe08A7gv183cl6zhQrZqNadMMAAAAAAAyGAEv/Ofx2I7auDjbjXroUODv8dVXUmKijW+5RapYMfD3OFODBtLEidZ67447fDtI1qyxYOOOO6R//vH/PtmzSxMmWDtox5NPWrCSkuL/+gDC359/2q7ZHTtsXrGitS0uXjyw91mzRrrmGun226WdO32vd+xoHRq+/952EGek6tWlN9/0zXv3Du7O5QULpAoVLMwePTp49wFwfn/+ac9OgBqqOIcXAAAAAAC4hIAXgTF4sLRnj/Ttt76dVoE0caJv3KNH4Ne/kMqV7XzehQulK67wvf7f/1oIMHy4/0FsTIydcfnSS77X3n7bdsoByNyWLLFwd/dum9evb+8NJUoE7h4nTlir5WrVrIOBo0MHC1omTEjdjj+jde/ua52/YYN96CdY1q61oPvHH6XNm4N3HwDnFw47eCVfAO3UCwAAAAAAkEEIeBEYJUsGp2WyY+FCe46Lk666Knj3uZDq1a0l6tChUu7c9trevdK990pXX207ff3h8VgL6I8+srZ/b71l6wLIvJYskVq0sA/QSNZZYPJk37m0gbpH/frSgAEW9EoWHk+aZB+uCYWAxeOR+vb1zd96K3j3Wr/eNy5dOnj3AXBux4/7WtGHwvvPhTj1OTuOAQAAAAAAMggBL0LfwYO2o0qynRIxMe7VEhUl9ewprVplLUwds2dLNWtKr7zi/27e7t0tLO7d2791AIS3xYtt16oT7jZsaOFurlyBWT8pyboG1K1rIa9kreifesreg66/PjD3CZRrrrGuCZK95zpt+wPt9IC3VKng3APA+a1eLZ08ae91RYq4Xc2FOQHvhg3BOaIEAAAAAADgPAh4EXgnTki7dgVuvdPPuQ2V3VQFC0qffy5NmSKVK2evnTxpO3Cvv94XyKTXuc4Y/vFHaf9+/9YFED769/eFmI0a2XtAQkJg1t661boh9O9v712SfYDm99+l11+XcuQIzH0CyeORrrvOxl6vNH16cO5z+lmaZcoE5x4Azs9pd1ytmv17H8ry57e/E0rSihXu1gIAAAAAADIVAl4Ezu7dUufO9suuhx4K3LpHj/rGwWwDnR4tW1oY8Oyzvl9C/vCDVKuW9NtvgbvP119bcNy8ue8cTgCR7fPPbdfulVcGNtydM8d27TrvUdHR0jPPSH/8IdWuHZh7BEuLFr7xr78Gfv3Dh6VFi2xcuXLgdksDuHThcv6ugzbNAAAAAADABQS8CJzcuaWff5YOHJC++cb/XayOY8d849jYwKwZSHFx1uZ08mQLtyVp82bbHffuu7bTzB/HjllgnpxsZxE3b25n/wKIbAkJFuz+8IMUHx+YNYcPl5o2lXbssHnJktLcudLLL4fm++uZ6tb1jZ3W/YH0++++Hc1XXhn49QFcnBOUhlvA6wTTAAAAAAAAGYCAF4ETEyPdcYeNT5yQRo4MzLp58vjGgQqNg6FlS9v51bixzZOSpF69bFfzgQPpXzcuzsLjwoVt/uefUrt20pEj/tcMIHQkJp79XpGQEJhwNynJPihy7702lqRmzWzXbr16/q+fUQoUsPdESdq0KfDrz57tGzvv5QAy1uktmsOBUycBLwAAAAAAyEAEvAisHj18448+8n/3qiQVKeIbb97s/3rBVKSI7WJ+4gnfa+PG2a4zf1r3Va5s7UgLFLD57Nm+MB1A+Dt82M6XbdZM2rkzsGvv2mUfQBkyxPdar17STz9J+fIF9l7B5vH43gdPP589UGbN8o3ZwQtkvIMHpb//tnGVKq6WcsnYwQsAAAAAAFxAwIvAqlxZuuIKGy9dKi1Y4P+asbG+X+hv2eL/esGWJYv0r39JEyf6zm9cu1Zq0MDO0k2vsmWtXauzm+/HH/2vFYD7kpKkm2+2M3EXLrRxID4cI1lXgXr1pBkzbJ41qzRihPT22/ZeFY6igvRXl5QUa9EsSZdfLpUuHZz7ADi/FSvsuVAhKW9ed2u5VJUr2/OOHdLu3e7WAgAAAAAAMg0CXgTembt4A6FoUXvets13PmKo69DBAu5atWx+9Kh0443S0KHpX7NWLTvf+MyzMgMVBgHIWCkpUvfuds6uZC2Z333Xdqr668cfbReq08q4UCHrBHD33f6v7SanxXSgA+qoKAuX3n9f6t07MP8MAKSN0+0kXNozS/bBu1KlbMwuXgAAAAAAkEEIeBF4nTtLOXLYeORI/86fdZQpY88pKbbDLVyUKSPNmSPddpvNU1KkBx6Qnn02/aFs06bS6NGpd7G98YbfpQJwwUsvSZ9/buPYWGnSJKlGDf/X/f576YYb7IMlknUQmD/f12EhnJ04Yc/B2IF8+eXS/fdL/foFfm0AF+cEpE7b43BBm2YAAAAAAJDBCHgRePHxvkDz4EHpww/9X7NVK9940iT/18tIcXHSf/8rPfWU77VXXrFde+ndjdyhg+3yc1Sq5FeJAFwwfrw0YICNPR5p1Cjp6qv9X/e776SOHX1BaKdO0vTpUuHC/q/ttqNHfS1Q8+d3txYAgUfACwAAAAAAcEkIeBEcffr4xm+95WupmV5t2/rG337r31puiIqSXn9deucdX9vPTz6RbrlFOn48fWveeadvfN11fpcIIAMtWSLdcYdv/vrrFsr669tvrRW8E+7ecosFx3Fx/q8dCv76y9f9oEIFd2sBEHhOi+ZwDXid+gEAAAAAAIKMgBfBUbGi1K6dVKKE9MQT1prYH4UKSXXr2njxYmnzZr9LdMUjj0jjxklZs9p84kSpfXvp8GF36wKQcXbtsn/vjxyxedeu9j7pr0mTUoe7nTtbm/xgtDJ2y+rVvnEgA95XX5Ueflj65RcpOTlw6wK4dLt22cPjkSpXdruatHHODF62LP1HcAAAAAAAAKQBAS+CZ/hw223Vu7edLemvdu184+++8389t3TqZLvssme3+eTJUuvW0r59gVn/3XftrE0AoemNN6RNm2xcv761sXd29qfX11/be4vTLeHWW+1s35gY/9YNNWvW+MblywdmzeRk6f33pcGD7b344MHArAsgbZYvt+fSpaUcOdytJa0qVLD32wMHpC1b3K4GAAAAAABkAgS8CJ4CBQIbLlx/vW8cbufwnumaayzYzZXL5rNnS23a+LeT1+uV/u//pF69bK3Td7oBCB0vvyw99pidiTtxov/tk7/6SrrpJl+4e9ttdu53pIW7krRihW8cqB28P/zgC2RatZJy5w7MugDSJlzP35WsM4vzoRPO4QUAAAAAABmAgBfho1YtC0Qkado0af9+d+vx15VXWjvQ/PltPm+ehTROe9W0OnFCmjXLxrt3W1DBLhIg9MTE2C7epUt972np9euv0s03SydP2rxrV+mzzyIz3D15UvrpJxtnzx64HbxDh/rGPXsGZk0AaeecX+u0Ow43nMMLAAAAAAAyEAEvMsa6ddYy9NNP07+GxyN17Gjj48eljz4KTG1uqlVLmjLFt5P3xx+lu+5K35nFsbHSN99INWrYfNMm2/V89GjAygUQQHnz+vf9GzZYW2Yn3O3WTfrkEyk62u/SQtLMmfbhFcm6FGTL5v+af/8tff+9jYsXl667zv81AaRPOO/glVKfwwsAAAAAABBkBLwIvg0bpEqVpDFjpGef9S9wfPhh3/idd3zBRjirUcNaTjttWkeNkh591Foup1Xu3BYSly5t8yVLpEceCVSlANLj6FHbnb94ceDWPHRIuuEGac8em7duLY0YEbnhriSNH+8bd+oUmDWHDfO91953X2T//IBQ5vWGf8Dr1E3ACwAAAAAAMgABL4KvVCkLHyRrGfzOO+lfq2JF27klSRs32tmTkeCqq6SxY33hwrvv2jmd6XH55baTN3t2m3/0kfTxx4GpE0Da9elj4WSDBtLo0f6vl5Ii3XGHrw1o+fK2biS2ZXakpEgTJtg4a1apbVv/1zxxwtcJIiZG6tHD/zUBpM+mTdLBg1KWLIFrv57RnIB3xQopOdndWgAAAAAAQMQj4EXGeO01Kep//3N79VVfm830eOwx3/j119O30zUUtWuXuu10//7S+++nb60qVVKfK/ngg7abF0DG+vJL37+L0dGBOVvyhRekiRNtnCuXfaAjd27/1w1lv/0mbd9u41atpIQE/9ccN07atcvGHTvah2MAuMPZ9VqxooW84ahUKWsdf/y49NdfblcDAAAAAAAiHAEvMkaVKtLdd9v4wAHplVfSv1bLllLNmjaeP99aEkeKO++U/v1v3/yhh2xnb3p06yb17GnjY8esRez+/f7XCODSbNgg3XOPb/7OO/Ze6I9x46QXX7RxVJTt3K1Qwb81w0Gg2zOnpKT+79BDD/m/JoD0C/f2zJJ9iMd5j6dNMwAAAAAACDICXmScF16wnQ2SNHiwtGZN+tbxeKTnnku9bqTs4pWkxx+XnnrKxl6v1LWrNHNm+tZ66y2pdm0bHz5sba0BBF9ysn3IwvlQRefO/rcAXrTIPgTi+Ne/pGuv9W/NcJCc7At4o6Ot24G/duywVs+S1KiRdPXV/q8JIP2clvPhHPBKnMMLAAAAAAAyDAEvMk6RInYWpSQlJdnu0vQGsx06+Fqd/vab9NNPASkxZLz2mtS9u42Tkiwc2rkz7evExVmL2A4dpIULperVA1omgPN4+21p9mwblyolffCBfTglvfbskW64QTp61OZ33pm6XX0kGz9e+vtvG7doIeXN6/+ahQtbYP7119KgQf79swHgPycQDUQbezcR8AIAAAAAgAxCwIuM9fTTFnZI0vTp0iefpG+dqKjUu3gffdTOPIsUHo8FQs2b23z7dqlLF9vJllalStl5nZwvCWSM1aulZ56xsccjffqpnZXrj4cekjZvtvEVV9i5vpkhlExJkV56yTd/4onAre3xSO3bS1deGbg1AaTdyZPSypU2jpQdvM6OZAAAAAAAgCAh4EXGypFDev993/zxx+1M3vTo1MmCDskClX/9y//6QklMjPTFF1KhQjb/5Rfp+ecDs3ZKinTwYGDWAuCTkmKtmI8ds3mvXtJVV/m35pgx9pCkPHlsR2tcnH9rhouvv/bthGvQwM5gBxBZ/vpLOnHC/o5YooTb1fjH2YG8dq3vvwMAAAAAAABBQMCLjNe6tXT77VLJktKoUVJCQvrWiYqyXWzR0TZ/+WX7JWEkKVjQgh3nz/jKK9J33/m3ZmKinWHZqVP6dgQDOL85c+whSWXLSq++6t9627dLDz7omw8ZYu2FMwOvV3rxRd+8f3//dy3PmSPNm+ffGgAC6/Tzd6PC/P+aFCpkH8RJSZFWrXK7GgAAAAAAEMHC/LcoCFvvvmu7slq39m+dGjWsPbNkLZoffDD95/qGqquusjN5Hd26SRs3pm8tr1e67jrp+++lKVNStz4F4L/GjaW5c+286+HDpezZ07+W1yvdf799KEOSbr7ZzuPOLL79Vlq82MZ16kht2vi3XlKSdPfdUsOGUqtWvp8rAHc5u/TDvT2zZB9C4RxeAAAAAACQAQh44Y48eawVXyAMGCAVK2bjKVOk0aMDs24oefxxqUMHG+/da0FPes4c9ngsLHZ2yLz4ovTTTwErE4CslfCiRVKTJv6tM2GC9M03Ni5QwHbvZoZzd6Xg7N4dPFhas8bGR47Yf4cAuC+SAl7J16aZc3gBAAAAAEAQEfAiNHi90sKF6fvenDml997zzR97TNq3LyBlhQyPR/r4Y6l0aZv/8Yf09NPpW6tpU2v1LNnP/fbbpa1bA1ImgP/xt83o/v3SI4/45u+9J+XL59+a4eSnn6T5821co4a1lffH7t3SCy/45m+9lXnCciDUnd6iORKwgxcAAAAAAGSAdP0GeuDAgRoxYsRZr48YMUKvv/6630Uhk1m3ztpl1quX/pC3fXvfDtedO6X/+7+AlRcycueWvvxSio21+bBh6V/rqaek66+38Z49Uq9efpcHZFonT9p54oE80/rZZ+38XUlq21a66abArR3qkpKkvn198+ee8z+Mff553wd/7rpLqlvXv/UABMbRo9Jff9nY2fka7gh4AQAAAABABkhXwPvBBx+oYsWKZ71epUoVDR061O+ikMmMGSNNnSqlpEj33mu/3E+Pd96x3bySNHSo9PPPgasxVNSqZTvP/BUVJX36qbV9lawV7Fdf+b8ukBkNHSrddpt9SOWPP/xfb/Fiaycs2Rm+772XuXabvvWWtHSpjWvVkjp29G+9Zcvsn5FkRwM4HQwAuG/lSusmki+f7+8k4c4JeDdtkg4ccLcWAAAAAAAQsdIV8O7YsUOFChU66/X8+fNru7PjCLhUTzwhVali44ULU+/cSotixaSXXrKx1yt16SJt2xaYGkNJz57SVVf5v85ll0lvv+2bP/wwv4gE0iox0XaHSnbubkqK/2u++KK9h0l2xnjJkv6vGS7+/tv38/R4pA8+8K/dtddrbfudfy7/939S4cJ+lwkgQE5vzxwpH2TJk0cqUsTG7OIFAAAAAABBkq7fmhYrVkyzZ88+6/XZs2erML84RVplzSp98ok9S9Kbb0rjx6dvrV69pNatbbxrl9S5c/p3BIcqj8d2o2XJ4ntt9er0rdW5s9SmjY23bpWeecb/+oDM5IUXLOSVpK5dpQYN/Fvvzz+liRNtXKhQ6nN4I53XKz34oLVslexDJ/Xq+bfm6NHWIUKSSpSwsBdA6HAC0Ehpz+ygTTMAAAAAAAiydAW89957rx599FF9/PHH2rhxozZu3KgRI0boscce07333hvoGpEZ1K1rwa7j7rultWvTvk5UlPT557abV5JmzYrM83grV5YefdQ3793bt+MvLTweacgQawMrSVu2BPYcUSCSrVyZupXywIH+r/nyy75x375SXJz/a4aLzz6TfvjBxkWKpP5ZpMfu3anPF3/rLSlbNv/WBBBYTgDqBKKRgoAXAAAAAAAEWboC3ieffFI9evTQgw8+qNKlS6t06dJ65JFH1KtXLz399NOBrhGZxQMPWFtlSTp4ULrpJunIkbSvky+fNHasb4frv//t2xEXSZ56yjeeNcvO1E2PkiXt/OLx4+0s3ujogJQHRLz+/X0fiOjbVypa1L/1VqyQxo2zccGCdiZ5ZrF5c+owdvBgKSHBvzWTknw7qjt1kjp08G89AIFHwAsAAAAAAJAu6Qp4PR6PXn/9df3zzz+aN2+elixZosTERPXv3z/Q9SEz8XikYcOkSpVsvnSptehMjyuukP7zH9/8rrukdev8LjGknLkT7YknbMdaevToId14Y+ScfwcE2/Ll0pdf2rhgQfv3z1+vvOLbif/kk76d9ZEuJUXq3t13Bvgdd0g33OD/uoUKSZMmWZvmd9/1fz0AgbVvn3UOkaQqVVwtJeCcltN//pm+DisAAAAAAAAXka6A15EzZ07Vq1dPVatWVWxsbKBqQmaWM6eFJjly2Pzjj30hSlo9/LB0yy02PnDAdgQ7ZztGoj17bBchgOB75RXf+Kmn/A9j16yxIFKyLgT33+/feuFk8GDfOblFi0pvvx24tT0eO2u8UKHArQkgMFassOfixaVcudytJdAqVbL3n927pV273K4GAAAAAABEIL8CXiAoKle2nbySdN990vXXp28dj0caPlyqUMHmixdb6BuJOyni4+35k0+k1av9X2/CBKlr18j8WQH+WrXKF8bmzy/17On/mq++ajtZJdsN7HzIJdLNmCH16eObf/SRlDu3f2ump7U/gIznBLyR1p5Zsg/9lCljY9o0AwAAAACAICDgRWi67TZp3jzpgw+kuLj0rxMfbzuAnXbGI0ZIL74YmBpDyeOP23NKSuqdhenxyCN2XuXIkb7zQAH4TJ3q+/DD44/7H8bu2SN9/rmNL7tMevBB/9YLF3//be81J0/a/LHHpFat/FtzwgSpbFlrzQwgtC1fbs+RGPBKnMMLAAAAAACCioAXoatBg8CsU7Wq7QpzDBggDRkSmLVDRc+eFgxJFsyuXZv+tVq39o3/7/+kEyf8qw2INA8/bOcqdu8emDD266+l5GQbd+/u25EfyQ4dsnN2nXPDW7WSBg3yb82//7bzxLdvl9q3l6ZP97dKAMHk7OB1zquNNKefwwsAAAAAABBgBLwIH6tWSZ99lr7v7dJF+s9/fPOHH/a1WI0E8fG+NqcpKdbuNb3atpWaNbPxunW2ixpAas4HRwIRxk6Y4BvfdJP/64W6lBTpjjukpUttXq6cvR/HxKR/zaQk6/ywb5/Nb7lFatLE71IBBFEkt2iW2MELAAAAAACCioAX4WHsWKlePdvdNmtW+tbo00fq18/GXq8FDJMnB65Gtz3yiJQnj41HjrRdbOnh8aTeSffii9L+/f7XB+BsBw5IU6bYuGhRe5+LdC+8IE2caONcuaRvvvG9d6VX//7S3Lk2LlXKznH3ePxbE0Bw7d0rRUdLFSu6XUlwOAHv8uW+M9YBAAAAAAACJGQC3pSUFCU7LSqBMy1ZYi09k5NtZ9bOnelb59VXpXvusXFSktSxo/Tbb4Gr000JCdaqWbI/mz9tqOvWtV3PkrVQ9bd1KhAJtm8P/C/pv/3W1wb9xhulqJD5z3JwjBvnOwc9KkoaNcr/cGfyZOm112wcE2O7gXPl8m9NABmjXDkpLs7tKoKjXDkpSxb7++umTW5XAwAAAAAAIkxI/CZ5xYoVuuOOO9S6dWs98MADmjNnjtslIdS88IKvbfD27VK7dtLBg2lfx+OR3n/fgl1JOnJEuu46X5vAcPfww742p0OHSkePpn+tV16xX0xK0ptvSlu3+l8fEK68XjsntmJFa/ceqKB3/Hjf+MYbA7NmqFq0SLrzTt980CCpTRv/1tyxQ+rWzTcfOFCqX9+/NQFknEhtzyzZ36EqVbIx5/ACAAAAAIAAcz3gXb16tRo1aqTk5GTVq1dPc+fOVe/evfXOO++kaZ3jx4/rwIEDqR6IIDExttOrSBGb//GHhSHHj6dvrS++8AXGiYlS69bSxo2Bq9ctRYrYDmfJdt6OG5f+tUqVkh56yMZHj/p23QGZ0ezZdo7i2rV2Zm4gdtoePiz98IONCxSQGjf2f81Q9eefFpA7Hzq54w7fueHplZQk3XqrtGuXzdu08X9NABkrkgNeiXN4AQAAAABA0Lga8Hq9Xn322Wdq3bq1Ro0apYEDB2rmzJnq0KGDPv74Yw1KQ1vYgQMHKleuXKcexYoVC2LlcEXBgtJPP/nOapw61XZupae1d1yc9NVXUu3aNt+yRWrSRPrrr4CV65r77/eNv/nGv7WefVaKj7fxxx/bzwnIjN5/3zd+4IHArDltmi/w7NDBzqKMREuXSs2b24dOJKlhQ+mDD/w/I/fRR6Vff7VxoULSJ59EfotrINIQ8AIAAAAAAKSLq78J9Xg82rZtm3bs2HHqtfj4ePXq1Utdu3bVuHHjNHLkyEta6+mnn9b+/ftPPTZv3hyssuGmKlWk776Tsme3+bhxtsvU6037WgkJtnuufHmbb9woXXVV+P8SrlEjKW9eG//0k+98z/TIm9faPkvStddKx475Xx8Qbvbulb780sZ580o33RSYdZcu9Y1btgzMmqFmyZLU4W6DBva+G4gzN9u1s7N2s2a1XdUFCvi/JoCMVa2a2xUElxPw0qIZAAAAAAAEmGsBr/d/gVzt2rWVnJys1atXn/pafHy8unfvrlq1amnIkCE6cuTIRdeLjY1VQkJCqgciVMOGFrY4Z81+8IHUv3/61ipQQJo+3YJjyc5zbNLEWkCHq+hoO1dYkg4d8u1wS68+faTFi203cNmyfpcHhJ1vvvF9UKJr18CEk5K0Zo1vXLFiYNYMJYsXW7i7Z4/Nr7jCPnSSK1dg1r/2Wum336x9/xVXBGZNABkna1apTBm3qwguJ8BetcraygMAAAAAAASIawGv53+tGa+77jqtXr1agwYN0qFDhyRZ+JsnTx4999xzmjt3rmbMmOFWmQhVbdpYO07JAs1y5dK/VqFCFoLWq2fzxESpRQtrnxqurr/eN/72W//WypdPqlHDvzWAcDZ+vG98882BW9f5YJPHE3kfnli0yN5HExNt3rBhYMNdR4UKdh47gPBTqVLktqZ3FC8u5cxp4e7atW5XAwAAAAAAIojrh9WVKVNGY8eO1ciRI9WvXz/t3r37VPibJUsWVa9eXbkC/QthRIbbb5cGD7azdO+4w7+18ua1M32bNLH5wYMWIl9ii/CQ07q1b4fzpEnpa2ENwN4LJk+2caFCFlQGgtfr28FbvLiULVtg1g0FCxemDncbNZJ+/NHa4vvj4EFpxAjez4BI4XRPiWRRUb4/Z7gfAQIAAAAAAEKK6wGvJDVr1kzjxo3T8OHD1bNnT40ZM0YrV67U22+/rV27dqlYsWJul4hQ9eCDqXer+sM5k7d9e5snJVk71kGDwi9QyJXLF1Zv2CCtXBmYdZOTbTfjpEmBWQ8Idd99Jx0/buOOHe2X9YGwe7e0b5+NnXPAI8GcOXae8N69Nr/yysCEu0lJUufOUo8e0t13cx44EAkqV3a7gozhtGnmHF4AAAAAABBAIRHwSlK7du00Z84c7dmzR3379lW7du00YcIEfffddypatKjb5SGc/Pe/0ty56fvebNkswLz/ft9rfftKDz/sO4MzXJwefP/8s//r7d1r7VBvukl68UX/1wPCwYQJvnGnToFb1wlAJalgwcCt66bhw6WmTX1/tsaN7UMz8fH+rZuSInXvbmtJ1rVh61b/1gTgvswS8Fatas/s4AUAAAAAAAEU43YBp6tdu7a++eYbJSYm6uDBgypUqJDy5cvndlkIJ2+8IT3+uJQnjzRzZvra/8XESEOGSMWKSc88Y68NGWJnSo4ZY6+Hg9PPzd240f/18uTxnZ85f760ZAln8yKyeb22UzRbNil7dunqqwO3dlKSb5w1a+DWdUNSkvToo/Y+6WjRwoLYnDn9W9vrlZ58Uvr8/9u77zC7qnJ/4N+ZSSGBJGAShEASqrSI0ouRplKkXJog5YIF5IIKiC2oCFYUFC8g/JCOAnJBQLAg0pQqLRCqlBAIGCAQSkICJpmZ3x+LwyRS0s7MnvL5PM9+9jpnJvu8OTOzCPPd613nl8d9+yZXXpmsvPKiXReoRq0jQiLgBQAAAFgEnWYFb83AgQOzwgor5IMf/KBwlwXT3Ny2wuvll5Ott06efHLhrtXQkHzrW8m557aFL7fdlqyzTnL11fWotv3NGUQ/80x9rvn5z7eNzzqrPteEzqqhoYSJr76a3HFH277W9TBnwNu7d/2u29EmTy4tmecMdw89tMzFixruJsnxx5cbd5LSHvuii+obtAMd6/HH28bLLVddHR2pFvCOH5/MmFFtLQAAAEC30ekCXlhoTU2lneoGG5THkyaVkPf55xf+mvvvn9xyS7LCCuXxlCnJdtslRx9dAuXObM5fnD79dH2uuffeyWKLlfH559sHk56hd+9kpZXqe805w+I5V7R1JffcU+bbG28sj/v0Sc4+OznxxPqE1ueeW1rk1/zqV8nOOy/6dYHqPPRQ27ihobo6OtL7358MHVo6Esz59wcAAABYBAJeupcBA5I//7nsFZskjz1WVntNnLjw11x//WTs2LY9bVtbyx60225bVq91Vv36JYMHl3G9At4ll2zbh/Tll0sLVmDBLb102/i556qrY2H99rfJRz7SNrcuu2zy978nn/1sfa7/hz8kBxzQ9vhHP5r7MdA1Pfhg1RVUQ5tmAAAAoM4EvHQ/Q4Ykf/1rMmJEefzoo8lHP1rC3oW11FLJFVckP/lJaROaJNdeW1o233zzotfcXpZcspxfe61+15yzTfO559bvutCZtLYmLS3td/0hQ9pWw0+Y0H6vU2+vv54ccURZzf/66+W5jTYq+3JvvHF9XuO665Ldd2/rknDoocmRR9bn2kC1BLzV1gEAAAB0GwJeuqcRI5KbbkpWXbU8njixhLz33bfw12xsLO1Cr78+WWaZ8tykSckWW5SWzZ2xXXEtgOnfv37X3Hzztv19b7ghmTatfteGzuLxx0tLzZ12Si69tP7Xb2xM1lijjB99tLR/7+xuv73c1PKLX7Q999nPJn/7WzJsWP1eZ9SoZOWVy3ivvcrr9ZRWrtDd3X9/1RVUQ8ALAAAA1JmAl+6rFvKuvXZ5/PzzyR57LPreuZtvXvae3HLL8ri5ubRsXnvtsqq3M5k+vZz79avfNRsbkx13LOOZM5NrrqnftaGzuPPO5KWXSqvgf/6zfV6jNoe0tpb2xp3Vv/9dVtBuumnyyCPluT59kpNOSs46q20lcr28//3lRppvfCP59a/buiYAXdsrryTPPFN1FdX44AfLuacG3AAAAEDd9aq6gPY2e/bszJ49u+oyqMrgwaXd5847l1VyF15YwpRF/Z4YMqTs9XvsscnPf16uN3Fi2ad3zz3L83PusdkO5vy+fsfv8eeeK6uK+/ZNVlxx0f/Oc9p++xLsJMlVV5VVjrS72tfZvNYBnnii/OwkyZpr1vfnp2arrZJTTinjK6/snD9Hf/97cthhZUVz797luXXXTU4/PVl99UW/YaamtXXuVbpDhpR9d5P2ee95T/P870s7vRbdXE8ON9daq5wnTSo3D73vfdXWAwAAAHR5Da2tra1VF9Eepk6dmkGDBuWcc85J/3q2pwWoyJQpU3LIIYeY14Buozavvfrqqxk4cGDV5dCeTjkls7/61Vz2618nSXbdddf06tXt7zVtM3JkuRnwxhvLtiF0W7X/DzWvAQAA0J70PQQAANrXffdVXUG17MMLAAAA1FG3v21+p512cuc0b9famnz5y8m55yZf+1py9NFztwddWC++mHz728kFF7Q919CQ/Nd/JV/9arLOOov+Gm+aPXt2rrzyyiTl+3yuVTDTpyerrJJMm5b075+MH58MGFC316Yaz7y5d6F5rQN84AOlleaQIcmTT7bf6zz7bGndOXNmmSuuuioZPbr9Xu/dvPxycuqp5Xj11bbnl1wy+eEPk/32q/9euKecknzzm22P99orOe20pKmpvq/DAnvP/77U2TM9dU/WnqinB7wf/GDZ3qMnt6oGAAAA6qbbB7y9evXqWe3fmD/XXZf86ldl/KMflZZ5Z56Z9OmzaNddZpmyN+1//3fyP/+TPPJIef7//q8cn/hEcuSRyRZb1CdQftPbvs9//vMSNifJvvsmSy1Vt9eiOrWvsXmtnb3xRjJhQhkvv3zSnu/18OHJd7+bfP3r5fF++5X2nSus0H6vOafJk5MTTihh62uvtT3f2FjmseOOq/9+4i0tyZgxyfHHtz13wAHC3U6qvecbc1kP0dIi2LSCFwAAAKgjLZrpmT72seSXv2wLWX/zm2T77ZOpU+tz/S22SMaNKwHGMsu0PX/NNclWWyWbbJJccUX5hWe9XX998uMfl3GvXmXlcHtpbU2eeir54x/b7zWgo825grXe4eY7+cpX2vZjfPrpMn+MH9++r/nMM8nhh5cg+ac/bQt3e/VKPvvZ5OGHS4eDev/9Z81KPvOZucPd7343Of104S50ZxMmlO4ifftWXUl15gx4W1urrQUAAADo8gS89Fxf/GJy6aVtv2y89tpk881L8FEPffuW9s8TJpSVaSut1Pax229Pdt65tOs74YQS6tTDn/5Ugurm5vL4W99K1lijPtd+JzvtVAKiHXdMXnih/V4HOtKsWW3jjggjmpqSiy9OVl+9PH7qqdLO/cwz6xsCTJhQ5pvRo5MRI5ITT0xef718rE+f5OCDk8ceS84+u7SorrfXXitzxW9+Ux43Npa58Xvfq2tHA6ATqrVnXnPNauuo0uqrl/n+5ZdLe34AAACARSDgpWfbZZcS7NZaGN97b7LuuuW5ellsseSgg0q75gsvLKFuzUMPlRW2I0Ykm26a/OxnC7ey45lnkv33T3bYobSXTUqQctRR9ft7vJNVV20b3313+74WdJSZM9vGvXt3zGsus0xyww1tN2RMm5YceGCywQZlT+85a5pfra1lPvn+90tgvNJKZb655Za2OaZfv7KCeMKEsv9ue7WGnjq1rEy++uryeLHFyg02Bx3UPq8HdC61gLe2irUnWmyxtn839fR21QAAAMAis/EZjB5dAo/ttisr5154Idl66+SYY5LvfKesMquHXr2SvfZKPv3pstL22GOTW29t+/htt5Xj619Phg0rrZxXWy0ZObIcK6yQDBhQgp4ZM5JHH237s2us0RbsJsnuu5dQqL33NlxvvbbxuHHJttu27+tBR1hqqbKP9cyZ7bsC/j8ts0zyj38kRxxR9vJOyo0T++5bOg5ssUWy5ZYlIFluuWTJJcvxxhvJE0+UkLZ2njChtFl+6ql3fq0110w+9ankkEM6pg31gAEl2Lj77lLzH/5Q5l6gZxg3rpx7csCblL//P/9Zbr7ZZpuqqwEAAAC6MAEvJCXEufvu5L//O7nqqrK6bc7wtZ4aGspK2x12KL/ku+SS0p71gQfaPmfSpOT889/7On37Jr/+dRnXVuMtuWQJjg88sGP2s5yz7fSkSe3/etARllqqhKxVGDiwtGbebbdyg8nYseX5V18t+3ZfccXCX3uDDUrXgl12aWsH3VEaGkpo/frryY9+lKy1Vse+PlCtOVfwTplSbS1VGjUq+d3v5v43HwAAAMBC0KIZagYPTv74x+SHPywrZs8/v36rd9/N6quXNsr331/C3v/937KSuF+/BbvOyiuXFcePPJL8z/90TLibJO9/f9v4+ec75jWhJ9huu+Suu5K//72s+h8yZMGv0b9/WfV70knJxInJHXckRx7ZMeHurFmlBf1/1vP73wt3oad57bVk/Pgy7uk//7VtOgS8AAAAwCKyghfm1NiYfPvbZU/K/v3n/ti//lVaJzc0tM9rr7ZaOQ47rLRcfeih0l61djz5ZPLvfyd9+pR9QedcPXvvvR23V+ic5gx4n3uu418furOGhmSzzcrR0lICgVtvLUHJ5MnJK6+Uo1evZMUVy7HSSm3noUPbb756Ly++WNo/jxuX3HlnuQEF6LlqYeayyy7czSrdSa1F9YMPJs3NHXdDHgAAANDtCHjhnfxnuPvCC8lGGyUbb1zajA4a1L6vv9hiybrrluPdzJ6dXHZZGVcR4iTJ4osnSyxRVucIeOlOmptL2/HJk+fea7oqjY3J2muXozO7/fZkzz3b9v7dY48S8rZ3NwSg86q1Z+7s81dHWHnlssXG66+XvdJXWaXqigAAAIAuym9cYV5aW5N99y0reC+9NFl//bIyjaK2Gqcn76lH97PaasmIEck221RdSdfQ0pL85CfJ6NFt4e4yyyQnnyzchZ5OwNumqSlZc80y1qYZAAAAWAR+6wrz0tCQfPGLyZJLlsePP15W8p59dqVldRqzZpVznz7V1gH1tPzy5TxlSvLqq9XW0tlNmpRsvXXZ33f27PLcJpuUPYQ33bTa2oDqCXjnVtuH9/77q60DAAAA6NIEvDA/dtopGTu2rVXrG28kn/988rnPJTNmVFtb1V5/vZz79au2Dqin2gqrJLntturq6Oz+9KfkQx9KrruuPG5oSL7zneTGG5Pllqu2NqB6LS1tXU8EvEUt4NUNBgAAAFgEAl6YXyuumNx8c3LwwW3PnXNOadl8yy3V1VW1p59OXnyxvDfQXWy5Zdv4+uurq6Mz+/73kx12KD//STJsWHmvfvCDpFevamsDOocJE5KpU8u+s2usUXU1ncM665TzPfdUWwcAAADQpQl4YUEstlhy6qnJBRckiy9ennv44bLv5FFHVVtbVfr3TwYPLvttQncxZ8BbW53K3DbaqG28005lNdoWW1RWDtAJjR1bzh/8YNK7d7W1dBa1gPeJJ5JXXqm0FAAAAKDrEvDCwth77+TOO5MNNmh7rvYLO6DrGzKktB5OyiqrKVOqracz2mab5NvfTn75y+T3vy/vGcCcaqtU11232jo6k/e9Lxk5sozvvbfSUgAAAICuS8ALC2uNNcrenCeemOyzT7LLLlVXBNTTxz9ezq2tyYUXVltL1a6+Otl337Kf5px++MPki18se+8C/KfaCl43wc1Nm2YAAABgEQl4YVE0NSWHHpqcf/7bA4799ivhb3NzNbV1hP/3/5IDDkhOOcUKR7qfz3ymbfy//9u9f5bfzeTJ5QaWbbctrenPOKPqioCuorW1LeC1gndutfej9v4AAAAALCABL7SHyy9PfvOb5PDDk0026b4t+C6/PDnrrORLX0qmT6+6GqivUaOSrbcu4yeeSK68stp6OtIbbyTHHZesuurcq5evuqq6moCuZdKk5IUXys1wH/xg1dV0LlbwAgAAAItIwAvtYc5f2N15Z7LeeslBByXPPltdTfX27LPJ9deX8fLLJ8OHV1sPtIcjjkj69CmreddYo+pq2l9ra3LJJcmaaybf/GYydWp5fqmlkrPPLjd1AMyP2r+FVl896dev2lo6m9oK3ocfTmbMqLYWAAAAoEsS8EJ7+P73k5tuaguEWlqS009PVlklOfroZNq0auurh/POa2tZu//+9uCke9p662TixOScc0pI0Z3deWfy0Y8me+yRTJhQnmtsTA48MPnnP5PPftbPOTD/tGd+d8sumyy9dPn34f33V10NAAAA0AUJeKG9jB5dVq/8+MfJgAHluRkzSvi76qrJaacls2ZVW+PCam0trZlrPve56mqB9tTQkLz//VVX0f4mTUo23TS55Za25z7+8TKHnX56CSIAFkRtBW+tHTFtGhq0aQYAAAAWiYAX2lPfvsmRRybjxydf/nLSq1d5/vnnk4MPTu6+u9r6FtYFFySPP17GW22VrLRStfVAR3riiWTmzKqrqK9hw5IDDijj1VZL/vjH5K9/TdZeu9q6gK7LCt73Vntfau8TAAAAwAIQ8EJHGDo0Oemkstfapz5Vntt552TjjSsta6FMmZJ87Wttj7/+9epqgY7U0pL88pfJqFHJ7rsn//531RUtnNtvT/bdN5k+fe7nv/e95OSTS7vQ7bfXjhlYeFOmlPb2SfLhD1daSqdlBS8AAACwCAS80JFWWSW5+OLkttuS44+f+2PNzWX/y2OPTV59tZr65qWlpazye/758njnnZNtt620JOgwDz+cfOMbyeuvJ3/4Q9cKeWfPTq64IvnEJ8qNJRdckJxxxtyfs/TSyZe+lPTuXU2NQPdx773lvPLKyaBBlZbSadVW8N53X9fdsgMAAACojIAXqrDxxiXsndPvfpfcfHPyrW8lI0aUoGXcuGrqezfnnZf8/vdlPHhwcuqplZYDHWqttUrr4n79yuM//jHZcce2Gx46o2eeSY45JllhhXJDxrXXtn3soovKftoA9VZrO2z/3Xe34orJwIGl5f/DD1ddDQAAANDFCHihs3jggbaWqFOnJqecUtoabrhhcvrpybRplZaXJNlvv2TvvZOmpuTcc5Nll626IuhYW22V/PnPSf/+5fE115Tg95JLqq1rTrNmJX/6U7LTTsnIkaX18r/+1fbxlVYqc8qNN2rDDLSPWtthAe+7a2xsa1+tTTMAAACwgAS80Fn84AfJI4+UFsi1FYJJcuedyUEHlTD1859Pbr21uhqbmsoq3r//Pdlhh+rqgCptsUUJeYcOLY+nTEn22CPZc8/k0UcrLS1JCZt32KG0kW5pKc81NpbA909/KjUeeGDSp0+1dQLdV20Fb60NMe+s9v7U3i8AAACA+STghc5k1VXLvpiTJrWt4K2ZPj05++yyYrAjTJ6cfPnLpY459eqVfOQjHVMDdFabb548+GCy225tz118cbL66qXVekeYODE5//xyE8icPvnJ8nOaJMstlxx9dPLkk2UP3k9+styoAdBeXnut7WYXK3jfW+39EfACAAAAC6hX1QUA72DJJZNDDinH3XcnZ56ZXHBBadM8Z6BUs8UWyXrrlXbOG25Y9vddmNarM2aUEOj885Orr06am8v+cLvuqh0z/KehQ8tq2YsuSr74xeTll0tL5E02mfvzHnwwGT68/CwtrFmzkvvuS265paziv+WWsr9uknz2s8kGG7R97pJLlo4Aa6yRbL99W9gL0BHGji37ey+3XPL+91ddTee23nrlPHZsMnu2+RoAAACYb36LAJ3deuuV4+c/T264oez3+Z/uuqsEPjVLLllWhYwYUX7BOmxYCXu22mruP3fllSV8euCBcvzzn8nMmXN/zuzZJWTWkhnerqEh2WuvZNtty40YQ4e+fYXsnnuWn6311kvWXDNZccXyc7n00uVndfbsEuBuvPHcIfCllyannppMmFBW6zY3v3MNV1759mBgzJi6/1UB5svtt5fzRhtVW0dXsPrqyYAB5Qa+hx5K1l676ooAAACALkLAC11F//5lNd78eOWVEgbP6eMff3vAe9BByXPPvfM1hg9P9tknOfjgEhQD726ppZKvf/3tzz//fLmJIknuuKMc7+buu+fer/LFF5Prr3/nz1188RKefOQjycc+VvbYBegMavPchhtWW0dX0NSUrL9++TfbHXcIeAEAAID5JuCF7uDpp5N77mkLkO64owRLcxo27O1/rnfvtnFTU7LaaqW97L77JpttJjSCRTVrVvKlL5Wg9qGH5v25c1pxxXIeNKiMV1892XTTEuquvbZWnkDnJOBdMBtu2BbwHnBA1dUAAAAAXYTfDkN3sNRSydZblyMpe9+9/HIyaVI5/vWvZIUV3v7njjoqWWKJZNSo5AMfSPr27dCyodtbfvnk5JPLeNq00m55woSycn7y5GTq1BLU9u799n2uN9sseeml8vMN0BU891xpKd/QUFamMm+1Vta11tYAAAAA80HAC91RQ0PyvveVY9Sod/+8Aw/suJqgpxswoKy8nd8WnIstVg6ArqK2enfNNcucx7zVVjo/8EAyfXppwQ8AAAAwD/qvAgAAi0575gW33HLlaGlJxo6tuhoAAACgixDwAgAAi67WZrjWdpj5UwvEtWkGAAAA5pOAFwAAWDQtLcmdd5axFbwLpvZ+1VZAAwAAAMyDgBcAAFg0jz2WvPpq2Tt81Kiqq+laaiueBbwAAADAfBLwAgAAi6bWXni99ZLevautpatZb72koSF56qnk+eerrgYAAADoAgS8AADAoqmtPtWeecENHJisuWYZW8ULAAAAzAcBLwAAsGhqK3gFvAun9r7V3kcAAACA9yDgBQAAFt4bbyTjxpVxbT9ZFkwt4LWCFwAAAJgPAl4AAGDhjRuXzJqVDBmSrLBC1dV0TbVg/M47k5aWamsBAAAAOj0BLwAAsPBuvbWcN9wwaWiotpauatSopF+/5JVXkn/+s+pqAAAAgE5OwAsAACy8m24q549+tNo6urLevZONNy7j2vsJAAAA8C4EvAAAwMJpbU1uvrmMBbyLpvb+CXgBAACAeRDwAgAAC+eRR5IXXkj69k3WX7/qaro2AS8AAAAwnwS8AADAwqmFkRttVEJeFt7GGydNTcnEieUAAAAAeBcCXgAAYOHUAt7NNqu2ju5giSWS9dYrY6t4AQAAgPcg4AUAABbOjTeWs/1366P2PtbeVwAAAIB3IOAFAAAW3NNPJ089lTQ2JptsUnU13YN9eAEAAID5IOAFAAAWXC2EXGedZMCAamvpLkaPLueHH05efLHaWgAAAIBOS8ALAAAsuFrAqz1z/QwenKy5ZhnffHO1tQAAAACdloAXAABYcALe9qFNMwAAADAPAl4AAGDBTJmSPPhgGQt462uzzcpZwAsAAAC8CwEvAACwYG65pZxXXz0ZOrTaWrqbWmA+dmzy2mvV1gIAAAB0SgJeAABgwdx4YzlbvVt/w4cnI0cmzc3JbbdVXQ0AAADQCQl4AQCABXPtteW8xRaVltFtbbllOdfeZwAAAIA5CHgBAID599xzybhxZfyJT1RbS3e19dbl/Ne/VlsHAAAA0CkJeAEAgPl3zTXlvO669t9tLx//eDnfe2/y/POVlgIAAAB0PgJeAABg/tVWldZWmVJ/Q4eWAD1pC9QBAAAA3iTgBQAA5k9LS1vguM021dbS3dXe36uvrrYOAAAAoNMR8AIAAPPnvvtKy+DFF0822aTqarq32grpa64pwToAAADAmwS8AADA/Km1Z95ii6Rv30pL6fY23bQE6c8/X4J1AAAAgDcJeAEAgPlTC3i1Z25/ffokW25ZxrX3HQAAACACXgAAYH5Mn57cdFMZ19oH075q77OAFwAAAJiDgBcAAJi3G29MZs5MRoxIPvCBqqvpGWoB7003lYAdAAAAIAJeAABgfszZnrmhodpaeooPfCAZObIE6zfeWHU1AAAAQCch4AUAAObtL38pZ+2ZO05DQ9v7fdVV1dYCAAAAdBoCXgAA4L09/HDyz38mvXsnn/hE1dX0LDvsUM6//33S2lppKQAAAEDnIOAFAADe22WXlfPHP54MGlRtLT3NJz6RLL548vTTyV13VV0NAAAA0AkIeAEAgPd26aXlvNtu1dbRE/Xrl2y/fRnXvg4AAABAjybgBQAA3t0TTyT33JM0Nib/9V9VV9Mz1YL1Sy/VphkAAAAQ8AIAAO/h8svLefPNkyFDqq2lp9puu6Rv3+Txx5MHHqi6GgAAAKBiAl4AAODdac9cvQEDkm22KWNtmgEAAKDHE/ACAADvbNKk5LbbynjnnSstpcfbdddyvuyyausAAAAAKifgBQAA3lmtPfMmmyTLLVdtLT3dTjslvXol99+fPPZY1dUAAAAAFRLwAgAA70x75s5jqaWSrbYqY22aAQAAoEcT8AIAAG83eXLy97+Xca09MNWqfR0uuaTaOgAAAIBKCXgBAIC3+81vkpaWZIMNkhVXrLoakhLw9uqVjB1bWjUDAAAAPZKAFwAAmFtra3LWWWV8wAHV1kKboUPLXrxJ29cHAAAA6HEEvAAAwNz+8Y/k4YeT/v2TT3+66mqY0+c/X86/+U3y739XWwsAAABQCQEvAAAwt9rq0E99Khk4sNpamNs22yTLLZe89FJyxRVVVwMAAABUQMALAAC0mTYtueiiMq6tFqXzaGpKPvOZMj7zzEpLAQAAAKoh4AUAANpcfHEyfXrygQ8ko0dXXQ3v5HOfK+drr02eeqraWgAAAIAOJ+AFAADa1Nozf+5zSUNDtbXwzlZaKdlyy6S1NTnnnKqrAQAAADqYgBcAACgefji57bbSBnj//auuhvdSa599zjlJc3O1tQAAAAAdSsALAAAUv/hFOe+wQ7LMMtXWwnvbdddkqaWSiROTyy+vuhoAAACgAwl4AQCAZNKk5LzzyvhrX6u2FuatX7/kS18q42OPLe2aAQAAgB5BwAsAACQnnJDMnJmMHl0OOr9DD03690/Gjk2uuabqagAAAIAOIuAFAICe7qWXktNOK+Mjj6y2FubfkCHJgQeW8bHHVlsLAAAA0GEEvAAA0NP98pfJ9OnJhz6UbLdd1dWwIL761aR37+Rvf0v+8Y+qqwEAAAA6gIAXAAB6stdeS048sYyPPDJpaKi2HhbM8OHJvvuWsVW8AAAA0CMIeAEAoCc7/fTSonmVVZLdd6+6GhbGN79Zgvkrr0zuu6/qagAAAIB2JuAFAICe6oUXkh/8oIzHjEmamqqth4Wz2mrJpz5VxkcckbS2VlsPAAAA0K4EvAAA0FN9+9vJK68kH/5w8pnPVFwMi+TYY5O+fZPrrksuu6zqagAAAIB2JOAFAICe6K67kjPPLOOTT7Z6t6tbaaXkG98o4yOOSGbMqLYeAAAAoN0IeAEAoKdpaUkOPbS08t1nn2T06Koroh7GjElGjEgmTkx++tOqqwEAAADaiYAXAAB6mvPPT267LVliieS446quhnrp3z/5+c/L+Kc/TSZMqLYeAAAAoF0IeAEAoCf517+Sr361jI86Khk2rNp6qK/ddku22ir597+TAw5ImpurrggAAACoMwEvAAD0FLNnJ3vtlbz4YvLhDyeHHVZ1RdRbQ0Ny6qnJ4osn11+f/OhHVVcEAAAA1JmAFwAAeoqjj05uuikZMCC5+OKkb9+qK6I9rLZactppZXzMMSXoBQAAALoNAS8AAPQEV1+d/PjHZXzGGcmqq1ZbD+1r332Tz38+aW1N9t47ee65qisCAAAA6kTACwAA3d2jj5bAL0kOPjjZc89q66FjnHRSMmpU8vzzyR57JDNmVF0RAAAAUAcCXgAA6M6eeCLZaquy7+666yYnnFB1RXSU/v1LK+4BA0pr7l12Sd54o+qqAAAAgEUk4AUAgO5q4sQS7v7rX8maayZ/+Uuy2GJVV0VHWmON5M9/LmHvX/9aVvLOnFl1VQAAAMAiEPACAEB3NGFCCXefeqrst3vttcnQoVVXRRVGj07+8IcS7v/hD8leeyWvv151VQAAAMBCEvACAEB385e/JOutl4wfn6y4YnL99cmyy1ZdFVXaaqvk8suTPn2Syy5LPvKRchMAAAAA0OUIeAEAoLtoaUl+8IPkk59MXn452XDD5MYbk+WXr7oyOoNtty3h/5AhyT33lJsArrqq6qoAAACABSTgBQCA7uCee5LNNku++92ktTU56CDhLm+35ZbJ2LEl/H/5sbEuZgAADuZJREFU5WT77ZMDDkgmT666MgAAAGA+CXgBAKArmzy5hLnrrZfcckvSv39y9tnJaaclfftWXR2d0fDhJfw/+OByM8BZZyUf+EDyi18kM2dWXR0AAAAwDwJeAADoiu69N/n855ORI5PTTy9B3V57JY88knz2s1VXR2fXt29y6qnJzTcn666bvPpqcsQR5fvpe99Lnnuu6goBAACAdyHgBQCAruLRR5Of/SzZdNNknXXKSt033kg22KCsyLzwQi2ZWTAf+Uhyxx3lJoFlly3B7jHHJCNGJLvumpx3XvLii1VXCQAAAMyhV9UFAAAA72DmzOThh5Pbby/HzTeXgLemV69k992TL3852WSTpKGhulrp2pqakgMPTPbfP7nssuTkk5Nbb00uv7wcjY1lz95NNkk22qiMR44szwMAAAAdTsALAAAdpaUlee210g536tRyfvXVso/uv/6VTJqUTJhQ2ixPmFA+f069eydbbpnstFOyyy7JsGHV/D3onvr0ST796XKMG1fC3SuuKO3A//GPctT065esumrZu3fYsGTppd9+vO99ZU/oPn3cgAAAAAB1JOAFAKBaO+9cVqMmZR/ZOf3n43p9Tnted/bssvp2zuPf/y6tlKdNe+frvpuBA0v75Y02KsfmmyeDBs3/n4eF9aEPleOYY5KJE0sL8FrIe999yeuvl/N99837Wo2NJRDu37+c+/UrP/NNTW1HY+O8xwsSEs/v59b7mrNmzf/1AAAAYCEJeAEAqNYNN1RdQcfr1asEtYMGlRB36aXLKsjllkuGD09WW62sjFx2WSsfqd6IEcm++5YjKTcxPPlkWWn+2GPJ88+XVei144UXynn69PL5LS1lXHsMAAAALBIBLwAA1Tr99LKyr+Y/A813Cjjr8Tntdd1evUpL2r59y7l29O1bwtxBg5LFFhPc0nX16pWssko53svMmWWl7+uvJzNmtJ1nzEiam9uOlpZ5j5ub513XvFbHz8/q+UW9xowZyRFHzPt1AAAAYBEIeAEAqNaee5bgE+heajc39KS24lOnCngBAABod41VFwAAAAAAAADA/Om2K3hb32ydNXXq1IorgfYxe/bszJgxI0n5Pu/Vq9v+OPOm2nxmXgPaU0f+98W81rP4tws9QW0+a52fdtAAAACwkBpau+n/eT7zzDMZPnx41WUAAADQwzz99NNZfvnlqy4DAACAbqrbBrwtLS2ZNGlSBgwYkIaGhqrLaXdTp07N8OHD8/TTT2egPex6DF/3nqW5uTmPP/54VllllTQ1NVVdDp2IuYB66ejvJfMaC8p8R73V+3uqtbU106ZNy7Bhw9LYaEckAAAA2ke37YvW2NjYI++YHjhwoF929UC+7j3HBhtsUHUJdGLmAuqlI7+XzGssDPMd9VbP76lBgwbV5ToAAADwbtxSDAAAAAAAANBFCHgBAAAAAAAAuggBbzfRt2/fHH300enbt2/VpdCBfN2BxFxA/fheorPzPUq9+Z4CAACgK2pobW1trboIAAAAAAAAAObNCl4AAAAAAACALkLACwAAAAAAANBFCHgBAAAAAAAAuggBLwAAAAAAAEAXIeAFAAAAAAAA6CIEvAAAAAAAAABdhIAXupiWlpY0NzdXXQZQMXMB9dba2lp1CfCOzHe0h9r3lLkPAACArkjA2408/fTTGTduXNVl0I4eeuih7Lffftlmm21y8MEH59Zbb626JKAC5gLqZfr06Zk2bVqmTp2ahoaGqsuBtzHf0R7uvffe7LzzzpkxY4a5DwAAgC5JwNtN3HPPPVlrrbUyfvz4qkuhnTzyyCPZdNNN09zcnA022CC33XZbDjvssJx00klVlwZ0IHMB9fLQQw9l1113zeabb5411lgjF1xwQRKr2eg8zHe0h3HjxmXTTTfNWmutlf79+7/1vLkPAACArqSh1f/Jdnnjxo3L6NGjc8ABB+QXv/jF2z7e2trqzvQurrW1Nd/5znfy+OOP5//+7/+SJNOmTctJJ52U3/3ud9lrr73yjW98o+IqgfZmLqBeHnrooWy22WbZb7/9sv766+fuu+/OySefnDvuuCMf/vCHqy4PzHe0i/vuuy+bbrppDjnkkBx33HFvPT9z5sz06dOnwsoAAABgwfSqugAWTe0XtAcddFB+9rOfpbm5OTfccENeeeWV9OvXL9tvv71wtxtoaGjIpEmT8txzz7313IABA3LooYdmscUWy0UXXZTlllsu++yzT4VVAu3NXEA9vPTSS/nKV76SffbZJyeccEKSZO+9987YsWNz9tln56STTnJzGJUz31Fvzz33XLbZZpuMHj06xx13XJqbm/O1r30tjz32WMaPH5+DDjoo2267bVZfffWqSwUAAIB50qK5C2ttbc13v/vdzJw5M3vttVdmzZqVHXfcMUceeWQOOeSQ7Lnnntl9990zY8aMtz6frqf2dVt33XXT3NycRx555K2PDRgwIJ/73Oeyzjrr5NRTT33raw10P+YC6mXWrFl55ZVXsvvuuydJWlpakiQrrrhiXnrppSQR7lIp8x3tZZNNNsmUKVNyxRVXZIcddsj999+f1VdfPR/72Mdy0kkn5Wc/+1kmTpxYdZkAAAAwT1o0d3FTpkzJbrvtllmzZuW1117LsGHDcvzxx2fxxRfPM888k9122y3bb799zjnnnKpLZRGNHz8+G2+8cXbaaaeceOKJWWKJJd5aYfX0009n5MiR+fOf/5xtt9226lKBdmQuoB4ee+yxrLrqqklK4Nu7d+8cddRReeqpp/LrX//6rc977bXXssQSS1RVJj2c+Y56e/bZZzNmzJhccsklGT16dH77299m8ODBSZILL7wwX/ziF3PhhRdmu+22q7hSAAAAeG9W8HZhzc3NGTx4cC699NIkSb9+/XLaaadl1KhRWXHFFfPRj340P/nJT3LNNddk/PjxFVfLolp55ZVz8cUX54ILLsiYMWPy4osvvrXCqnfv3ll77bUzaNCgiqsE2pu5gHqohbstLS3p3bt3krJqcvLkyW99zrHHHpvTTz89s2fPrqRGMN9Rb8suu2yOPfbYHH744RkzZkwGDx781orxvffeO0OGDMkNN9xQcZUAAAAwb/bg7cKampreCnmvuuqqXHvttVlmmWXm+pyWlpYMGjQoQ4YMqahK6mnLLbfMJZdckk996lN59tlns8cee2TttdfOr3/960yePDnDhw+vukSgA5gLqJfGxsa59tttbCz3/n33u9/ND3/4w9xzzz3p1cs/F6mO+Y56GzZsWMaMGZPFFlssSWlJ39rampdeeilDhw7Nhz/84WoLBAAAgPmgRXMXN3v27Pf8xevhhx+ep556Kueff34WX3zxDqyM9jR27NgcccQRefLJJ9OrV680NTXloosuyjrrrFN1aUAHMhdQDy0tLWlsbMwxxxyTZ599Nquuumq+853v5NZbb826665bdXmQxHxH+zv66KPz29/+Ntdcc01GjhxZdTkAAADwngS8XVhzc3Oampry5JNP5m9/+1v233//t1bgPProoznvvPNyyimn5Oabb86oUaMqrpZ6mzp1al566aVMmzYtyy67rFXa0EOZC6iXH/3oRznqqKMycODAXHvttVl//fWrLgnmYr6jPVx00UW54YYbcskll+S6665z0wAAAABdgoC3i6qt3H3yySez2mqr5dOf/nTOPffcNDQ05IEHHsjPf/7z/O1vf8vll1+uzRgAME933XVXNtxwwzzwwANZc801qy4HoEPcd999+da3vpWf/vSnWWuttaouBwAAAOaLgLcLmjPcXXfddbPLLrvkV7/61VutmqdOnZoHHnggyy+/fEaMGFFxtQBAVzF9+nRbOgA9zsyZM9OnT5+qywAAAID5JuDtYv4z3N1pp51y5plnvuc+vAAAAAAAAED30Fh1Acy/5uZm4S4AAAAAAAD0YALeLqSpqSlPPfVU1lprrey8884566yzhLsAAAAAAADQg2jR3IU0NzfnC1/4QhoaGnLaaacJdwEAAAAAAKCHEfB2MS+//HIGDRqUxkaLrwEAAAAAAKCnEfACAAAAAAAAdBGWgQIASZItttgihx9+eNVlAAAAAADwHgS8AAAAAAAAAF2EgBcAAAAAAACgixDwAgBvmT17dr70pS9l0KBBGTJkSI466qi0trZWXRYAAAAAAG8S8AIAbznvvPPSq1ev3HHHHTnxxBNzwgkn5Mwzz6y6LAAAAAAA3tTQalkOAJBkiy22yOTJk/Pggw+moaEhSTJmzJhceeWVeeihhyquDgAAAACAxApeAGAOG2+88VvhbpJssskmeeyxx9Lc3FxhVQAAAAAA1Ah4AQAAAAAAALoIAS8A8Jbbb799rsf/+Mc/suqqq6apqamiigAAAAAAmJOAFwB4y8SJE3PEEUfkkUceyW9/+9ucfPLJOeyww6ouCwAAAACAN/WqugAAoPPYb7/98vrrr2fDDTdMU1NTDjvssHzhC1+ouiwAAAAAAN7U0Nra2lp1EQAAAAAAAADMmxbNsAj+8pe/ZPTo0VlyySUzePDg7LDDDhk/fnzVZQEAAAAAANBNCXhhEUyfPj1HHHFE7rrrrlx33XVpbGzMLrvskpaWlqpLAwAAAAAAoBvSohnq6MUXX8zQoUNz//33Z9SoUVWXAwAAAAAAQDdjBS8sgsceeyx77bVXVlpppQwcODArrLBCkmTixInVFgYAAAAAAEC31KvqAqAr23HHHTNy5MicccYZGTZsWFpaWjJq1KjMnDmz6tIAAAAAAADohgS8sJCmTJmSRx55JGeccUY++tGPJkluvvnmiqsCAAAAAACgOxPwwkJaaqmlMnjw4Jx++ulZdtllM3HixIwZM6bqsgAAAAAAAOjG7MELC6mxsTEXXXRR7r777owaNSpf+cpXcvzxx1ddFgAAAAAAAN1YQ2tra2vVRQAAAAAAAAAwb1bwAgAAAAAAAHQRAl4AAAAAAACALkLACwAAAAAAANBFCHgBAAAAAAAAuggBLwAAAAAAAEAXIeAFAAAAAAAA6CIEvAAAAAAAAABdhIAXAAAAAAAAoIsQ8AIAAAAAAAB0EQJeAAAAAAAAgC5CwAsAAAAAAADQRfx/xUxCmy867y8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1200x1200 with 6 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.patches import Ellipse\n",
"from matplotlib.lines import Line2D\n",
"\n",
"def plot_fisher_single(i ,cov, mu, ax, lims, truths, labels) :\n",
" nb=128\n",
" sigma=np.sqrt(cov[i,i])\n",
" x_arr=mu[i]-8*sigma+16*sigma*np.arange(nb)/(nb-1.)\n",
" p_arr=np.exp(-(x_arr-mu[i])**2/(2*sigma**2))\n",
" ax.plot(x_arr,p_arr, color='red') \n",
" ax.axvline(truths[i], color='darkgrey', lw=1.5)\n",
" ax.set_xlim(lims[0][i], lims[1][i])\n",
" ax.set_ylim(-0.02, 1.2)\n",
" ax.set_title(labels[i], fontsize=18.5, y=1.02)\n",
" \n",
" if i == 0:\n",
" custom_lines = [Line2D([0], [0], color='red', lw=4),\n",
" Line2D([0], [0], color='darkgrey', lw=4)]\n",
" \n",
" ax.legend(custom_lines, [\"Posterior\", \"Truth\"], bbox_to_anchor=[6, 0.5], frameon=True, fancybox=True, fontsize=19)\n",
"\n",
"\n",
"def plot_fisher_two(i1, i2, cov, mu, ax, lims, truths, labels) :\n",
" covar=np.zeros([2,2])\n",
" covar[0,0]=cov[i1,i1]\n",
" covar[0,1]=cov[i1,i2]\n",
" covar[1,0]=cov[i2,i1]\n",
" covar[1,1]=cov[i2,i2]\n",
" sig0=np.sqrt(covar[0,0])\n",
" sig1=np.sqrt(covar[1,1])\n",
"\n",
" w,v=np.linalg.eigh(covar)\n",
" \n",
" angle=180*np.arctan2(v[1,0],v[0,0])/np.pi\n",
" a_1s=np.sqrt(2.3*w[0])\n",
" b_1s=np.sqrt(2.3*w[1])\n",
" a_2s=np.sqrt(6.17*w[0])\n",
" b_2s=np.sqrt(6.17*w[1])\n",
"\n",
" centre=np.array([mu[i1],mu[i2]])\n",
" \n",
" e_1s=Ellipse(xy=centre,width=2*a_1s,height=2*b_1s,angle=angle, color='red', lw=2.)\n",
" e_1s.set_fill(False)\n",
" \n",
" e_2s=Ellipse(xy=centre,width=2*a_2s,height=2*b_2s,angle=angle, ls='--', color='red', lw=2.)\n",
" e_2s.set_fill(False)\n",
"\n",
" ax.add_artist(e_1s)\n",
" ax.add_artist(e_2s)\n",
" \n",
" ax.axvline(truths[i1], color='darkgrey', lw=1.5)\n",
" ax.axhline(truths[i2], color='darkgrey', lw=1.5)\n",
"\n",
" ax.set_xlim(lims[0][i1], lims[1][i1])\n",
" ax.set_ylim(lims[0][i2], lims[1][i2])\n",
" \n",
" ax.set_xlabel(labels[i1])\n",
" ax.set_ylabel(labels[i2])\n",
"\n",
"def plot_fisher_all(mu, cov, lims, truths, labels, suptitles, fig=None): \n",
" n_params = len(mu)\n",
" \n",
" if fig is None:\n",
" fig=plt.figure(figsize=(12, 12))\n",
" plt.subplots_adjust(hspace=0, wspace=0)\n",
" for i in np.arange(n_params):\n",
" i_col=i\n",
" for j in np.arange(n_params-i)+i :\n",
" i_row=j\n",
" iplot=i_col+n_params*i_row+1\n",
"\n",
" ax=fig.add_subplot(n_params,n_params,iplot)\n",
" if i==j :\n",
" plot_fisher_single(i, cov, mu, ax, lims, truths, labels)\n",
" ax.text(0.5, 1.5, suptitles[i], \n",
" horizontalalignment='left' if not i==0 else \"center\",\n",
" verticalalignment='center',\n",
" transform = ax.transAxes,\n",
" fontsize=18)\n",
"\n",
" else :\n",
" plot_fisher_two(i, j, cov, mu, ax, lims, truths, labels)\n",
"\n",
" if i_row!=n_params-1 :\n",
" ax.get_xaxis().set_visible(False)\n",
"\n",
" if i_col!=0 :\n",
" ax.get_yaxis().set_visible(False)\n",
"\n",
" if i_col==0 and i_row==0 :\n",
" ax.get_yaxis().set_visible(False)\n",
" \n",
" ax.locator_params(nbins=2)\n",
" [l.set_rotation(45) for l in ax.get_xticklabels()]\n",
" [l.set_rotation(45) for l in ax.get_yticklabels()]\n",
"\n",
" # fig.align_labels()\n",
" # plt.show()\n",
"\n",
"ii = 0 # Which index to plot\n",
"\n",
"# Automatically choose limits as 6-sigma away from central value\n",
"lims = [mu[ii] - 6 * np.sqrt(np.diag(Cov[ii])), mu[ii] + 6 * np.sqrt(np.diag(Cov[ii]))]\n",
"truths = mu_truth[ii]\n",
"\n",
"labels = [\"a\", \"b\", \"c\"]\n",
"suptitles = [\"Param A\", \"Param B\", \"Param C\"]\n",
"\n",
"fig=plt.figure(figsize=(12, 12))\n",
"plot_fisher_all(mu[ii], Cov[ii], lims, truths, labels, suptitles, fig)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c36ab71-2124-49f6-979d-8e21053ad17a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf2089a9-cdc3-4093-9b91-5a5a53d6541b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment