Last active
September 28, 2015 06:25
-
-
Save smutch/6e9ca4cff50b715916b5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "from IPython.display import HTML\n\nHTML('''<script>\ncode_show=true; \nfunction code_toggle() {\n if (code_show){\n $('div.input').hide();\n } else {\n $('div.input').show();\n }\n code_show = !code_show\n} \n$( document ).ready(code_toggle);\n</script>\n<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>''')", | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": "<script>\ncode_show=true; \nfunction code_toggle() {\n if (code_show){\n $('div.input').hide();\n } else {\n $('div.input').show();\n }\n code_show = !code_show\n} \n$( document ).ready(code_toggle);\n</script>\n<form action=\"javascript:code_toggle()\"><input type=\"submit\" value=\"Click here to toggle on/off the raw code.\"></form>", | |
"text/plain": "<IPython.core.display.HTML object>" | |
}, | |
"metadata": {}, | |
"execution_count": 1 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(0, 255, 0)" | |
}, | |
"trusted": true, | |
"hide_output": false | |
}, | |
"cell_type": "code", | |
"source": "%matplotlib nbagg\nimport sys\nsys.path.append(\"../\")\nclear_output()", | |
"execution_count": 12, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(0, 255, 0)" | |
}, | |
"trusted": true, | |
"hide_output": false | |
}, | |
"cell_type": "code", | |
"source": "import matplotlib.pyplot as plt\nimport numpy as np\nfrom IPython.display import clear_output, Latex, display, Image, display_html\nfrom dragons import meraxes, plotutils, nbody, munge\nfrom astropy.utils.console import ProgressBar\nimport pandas as pd\nimport seaborn as sns\nfrom aesthetics import models\nfrom collections import OrderedDict\nfrom astropy import cosmology\nfrom astropy import units as U\nfrom StringIO import StringIO\n\nsns.set(font_scale=1.3, rc={'lines.linewidth':3})\npd.set_option('mode.use_inf_as_null', True)\n\nclear_output()", | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(0, 255, 0)" | |
}, | |
"hide_output": false | |
}, | |
"cell_type": "markdown", | |
"source": "# Ionising photons vs. ${\\rm M_{vir}}$\n\n> combining the f_ast plot with the halo mass functions, i would guess it is something like 10^9 — 10^10 Msun, but it is difficult to see.. it would be great to add a histogram of the number of ionizing photons produced as a function of halo mass...\n> <div style=\"float:right\">-- Andrei</div>\n\nLet's calculate this for the fiducial model at z=5 and 7.8..." | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(57, 65, 79)" | |
}, | |
"trusted": true, | |
"hide_output": false | |
}, | |
"cell_type": "code", | |
"source": "# read in the galaxies\nmodel = models[\"fiducial\"]\nfname = model[\"fname\"]\nmeraxes.set_little_h(fname)\nmodel[\"gals\"] = OrderedDict()\nfor redshift in \"5 7.8\".split():\n snap = meraxes.check_for_redshift(fname, float(redshift))[0]\n gals = meraxes.read_gals(fname, props=(\"GrossStellarMass\", \"FOFMvir\"), snapshot=snap)\n gals[\"FOFMvir\"] = np.log10(gals[\"FOFMvir\"]*1e10)\n model[\"gals\"][redshift] = gals.copy()\nclear_output()", | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "Ok - so the yaxis here is a little bit tricky to represent concisely! Basically what is being plotted is the number of ionising photons emitted per Mvir bin, but then renormalised to form a PDF. The peak positions are what is important though. We are moving from low bias sources at z=7.8 ($x_{\\rm HI} \\approx 0.5$) to high bias at z=5. However, there is still a peak of low bias sources in the z=5 distribution as well." | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(0, 255, 0)" | |
}, | |
"trusted": true, | |
"hide_output": false | |
}, | |
"cell_type": "code", | |
"source": "# calculate the distributions\nlim, nbins = (6.,12.), 30\nfig, ax = plt.subplots(1, 1)\nfor redshift, gals in model[\"gals\"].iteritems():\n ax.hist(gals[\"FOFMvir\"], range=lim, bins=nbins, weights=gals[\"GrossStellarMass\"],\n alpha=0.8, normed=True, label=\"z=\"+redshift)\nsns.axlabel(r\"$\\log_{10}(M_{\\rm vir} / {\\rm M_{\\odot}})$\",\n r\"${}^1/_{N_{\\gamma}}\\,{}^{d N_{\\gamma}}/_{d M_{\\rm vir}}$\")\nax.legend(loc=2)\nplt.tight_layout()\nplt.show()", | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('<div/>');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n this.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n 'ui-helper-clearfix\"/>');\n var titletext = $(\n '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n 'text-align: center; padding: 3px;\"/>');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('<div/>');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('<canvas/>');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var rubberband = $('<canvas/>');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width);\n canvas.attr('height', height);\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('<button/>');\n button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n 'ui-button-icon-only');\n button.attr('role', 'button');\n button.attr('aria-disabled', 'false');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n\n var icon_img = $('<span/>');\n icon_img.addClass('ui-button-icon-primary ui-icon');\n icon_img.addClass(image);\n icon_img.addClass('ui-corner-all');\n\n var tooltip_span = $('<span/>');\n tooltip_span.addClass('ui-button-text');\n tooltip_span.html(tooltip);\n\n button.append(icon_img);\n button.append(tooltip_span);\n\n nav_element.append(button);\n }\n\n var fmt_picker_span = $('<span/>');\n\n var fmt_picker = $('<select/>');\n fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n fmt_picker_span.append(fmt_picker);\n nav_element.append(fmt_picker_span);\n this.format_dropdown = fmt_picker[0];\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = $(\n '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n fmt_picker.append(option)\n }\n\n // Add hover states to the ui-buttons\n $( \".ui-button\" ).hover(\n function() { $(this).addClass(\"ui-state-hover\");},\n function() { $(this).removeClass(\"ui-state-hover\");}\n );\n\n var status_bar = $('<span class=\"mpl-message\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n}\n\nmpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n}\n\nmpl.figure.prototype.send_message = function(type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n}\n\nmpl.figure.prototype.send_draw_message = function() {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n }\n}\n\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n}\n\n\nmpl.figure.prototype.handle_resize = function(fig, msg) {\n var size = msg['size'];\n if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n fig._resize_canvas(size[0], size[1]);\n fig.send_message(\"refresh\", {});\n };\n}\n\nmpl.figure.prototype.handle_rubberband = function(fig, msg) {\n var x0 = msg['x0'];\n var y0 = fig.canvas.height - msg['y0'];\n var x1 = msg['x1'];\n var y1 = fig.canvas.height - msg['y1'];\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0, 0, fig.canvas.width, fig.canvas.height);\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n}\n\nmpl.figure.prototype.handle_figure_label = function(fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n}\n\nmpl.figure.prototype.handle_cursor = function(fig, msg) {\n var cursor = msg['cursor'];\n switch(cursor)\n {\n case 0:\n cursor = 'pointer';\n break;\n case 1:\n cursor = 'default';\n break;\n case 2:\n cursor = 'crosshair';\n break;\n case 3:\n cursor = 'move';\n break;\n }\n fig.rubberband_canvas.style.cursor = cursor;\n}\n\nmpl.figure.prototype.handle_message = function(fig, msg) {\n fig.message.textContent = msg['message'];\n}\n\nmpl.figure.prototype.handle_draw = function(fig, msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n}\n\nmpl.figure.prototype.handle_image_mode = function(fig, msg) {\n fig.image_mode = msg['mode'];\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Called whenever the canvas gets updated.\n this.send_message(\"ack\", {});\n}\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function(fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n evt.data.type = \"image/png\";\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src);\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n evt.data);\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig[\"handle_\" + msg_type];\n } catch (e) {\n console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n }\n }\n };\n}\n\n// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function(e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e)\n e = window.event;\n if (e.target)\n targ = e.target;\n else if (e.srcElement)\n targ = e.srcElement;\n if (targ.nodeType == 3) // defeat Safari bug\n targ = targ.parentNode;\n\n // jQuery normalizes the pageX and pageY\n // pageX,Y are the mouse positions relative to the document\n // offset() returns the position of the element relative to the document\n var x = e.pageX - $(targ).offset().left;\n var y = e.pageY - $(targ).offset().top;\n\n return {\"x\": x, \"y\": y};\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * http://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys (original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object')\n obj[key] = original[key]\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function(event, name) {\n var canvas_pos = mpl.findpos(event)\n\n if (name === 'button_press')\n {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x;\n var y = canvas_pos.y;\n\n this.send_message(name, {x: x, y: y, button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event)});\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n // Handle any extra behaviour associated with a key event\n}\n\nmpl.figure.prototype.key_event = function(event, name) {\n\n // Prevent repeat events\n if (name == 'key_press')\n {\n if (event.which === this._key)\n return;\n else\n this._key = event.which;\n }\n if (name == 'key_release')\n this._key = null;\n\n var value = '';\n if (event.ctrlKey && event.which != 17)\n value += \"ctrl+\";\n if (event.altKey && event.which != 18)\n value += \"alt+\";\n if (event.shiftKey && event.which != 16)\n value += \"shift+\";\n\n value += 'k';\n value += event.which.toString();\n\n this._key_event_extra(event, name);\n\n this.send_message(name, {key: value,\n guiEvent: simpleKeys(event)});\n return false;\n}\n\nmpl.figure.prototype.toolbar_button_onclick = function(name) {\n if (name == 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message(\"toolbar_button\", {name: name});\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n this.message.textContent = tooltip;\n};\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n\nmpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.close = function() {\n comm.close()\n };\n ws.send = function(m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function(msg) {\n //console.log('receiving', msg['content']['data'], msg);\n // Pass the mpl event to the overriden (by mpl) onmessage function.\n ws.onmessage(msg['content']['data'])\n });\n return ws;\n}\n\nmpl.mpl_figure_comm = function(comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = $(\"#\" + id);\n var ws_proxy = comm_websocket_adapter(comm)\n\n function ondownload(figure, format) {\n window.open(figure.imageObj.src);\n }\n\n var fig = new mpl.figure(id, ws_proxy,\n ondownload,\n element.get(0));\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element.get(0);\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error(\"Failed to find cell for figure\", id, fig);\n return;\n }\n\n var output_index = fig.cell_info[2]\n var cell = fig.cell_info[0];\n\n};\n\nmpl.figure.prototype.handle_close = function(fig, msg) {\n fig.root.unbind('remove')\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable()\n $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n fig.close_ws(fig, msg);\n}\n\nmpl.figure.prototype.close_ws = function(fig, msg){\n fig.send_message('closing', msg);\n // fig.ws.close()\n}\n\nmpl.figure.prototype.push_to_output = function(remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message(\"ack\", {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () { fig.push_to_output() }, 1000);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items){\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) { continue; };\n\n var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i<ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code'){\n for (var j=0; j<cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", | |
"text/plain": "<IPython.core.display.Javascript object>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.HTML object>", | |
"text/html": "<img src=\"\">" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# Ionising emmisivity vs. redshift\n\nAttempt to replicate the top panel of Figure 12 of Mesinger, McQuinn & Spergel (2012):" | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(0, 255, 0)" | |
}, | |
"trusted": true, | |
"hide_output": false | |
}, | |
"cell_type": "code", | |
"source": "Image(filename='img/Screen Shot 2015-09-22 at 4.03.58 pm.png')", | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAALmCAYAAADCAGu4AAAYI2lDQ1BJQ0MgUHJvZmlsZQAAWIWV\neQdUFE2zds/OBliWJeeck2SWKDnnnBFYcs4ZlSgSVAQBRUAFFQQVDCQRE4KIIoIKGBAJBpIKCigC\ncoeg7/e/97/nntvnzMyz1VU1T3dV90ztAMDBSo6ICEHRAhAaFhNlY6jD6+Tswot7B7AABVgAG1Ah\ne0dHaFtZmYH/sS0PAWjz+lxy09f/rPf/bXQ+vtHeAEBWCPbyifYORXAjAGh274ioGAAw/YhcID4m\nYhMvIpgxCiEIAJZiE/tvY85N7LWNZbZ07Gx0EawHAAWBTI7yB4C46Z83ztsf8UOMQProw3wCwxDV\nTARreAeQfQBg70R0doWGhm/ieQSLev2HH///x6fXX59ksv9fvD2WrUahFxgdEUJO/D9Ox//eQkNi\n/9yDHzkIAVFGNptjRubtQnC46SYmILg9zMvCEsH0CH4Y6LOlv4lfB8Qa2e/oz3lH6yJzBpgBEmwf\nsp4pgpG5RDHHBttr72A5ctSWLaKPsgiMMbbbwV5R4TY7/lFxvtH6tn9wgK+x2Y7P7LAQiz/4lF+g\ngTGCkUxDNSYF2Dlu80R1xgU6WCCYiOD+6GBb0x390aQAXYs/OlGxNpucBRG86BdlYLOtA7OGRv8Z\nFyzlTd7iwIpgrZgAO6NtW9jJN9rJ7A83H189/W0OsI9vmP0OZxjJLh2bHdusiBCrHX34lG+Ioc32\nPMNXouNs/9g+i0ESbHse4IkgsonVNn94OSLGym6bGxoNzIAu0AO8IBY5vEA4CAKBfXMtc8iv7R4D\nQAZRwB/4AskdyR8Lx62eMORsC5LAZwT5gui/djpbvb4gDpGv/5VunyWB31Zv3JZFMPiI4FA0O1oD\nrYY2Q85ayCGHVkar/LHjpflzV6w+Vg9rhDXAiv3l4Y2wDkGOKBD432X/WGI+YgYwE5hBzBjmFTBF\nen2RMW8yDPs7MgfwfsvLzm+PwPSofzHnBeZgDLEz2BmdF2I9/UcHLYywJqF10OoIf4Q7mhnNDiTR\nCshItNGayNhIiPQ/Gcb+ZfHPXP77fpv8/nOMO3KiOJG0w8LrL3/dv1r/9qL7H3Pkg1xN/60JZ8PX\n4W74HtwDt8MtgBe+A7fCvfCtTfw3E95vZcKfu9lscQtG/AT+0ZG5KDMts/bf7k7eYRC1FW8Q45sQ\ns7kgdMMjEqMC/QNieLWRHdmX1zjMW2oXr5yMLAmAzf19e/v4brO1b0PMT/+R+U4BsBvJccr+f2RB\nxwCo6wKAJfcfmbArAGy7ALj6zDs2Km5bht48YQAe0CArgw1wAwEgioxJDigCNaAF9IEJsAR2wBm4\nI7MeAEIR1vFgL0gDWSAPHAXF4CQ4Dc6CC+AyuAZaQDu4Bx6Ax6AfDII3SG58ALNgHiyDVQiCcBA1\nxACxQTyQECQByUHKkAakD5lBNpAz5An5Q2FQLLQXyoDyoELoJFQJ1UJXoRvQPagHGoBeQePQNPQN\n+oWCUQQUI4oLJYySRimjtFGmKDvUHpQ/KhKVhMpEHUGdQFWhLqGaUfdQj1GDqDHULGoJBjAVzAzz\nwZKwMqwLW8IusB8cBe+Hc+ESuAquh9uQWD+Hx+A5eAWNRTOgedGSSH4aoe3R3uhI9H70IfRJ9AV0\nM7oT/Rw9jp5H/8ZQYzgxEhhVjDHGCeOPicdkYUow1ZgmTBeyoj5glrFYLDNWBKuErE1nbBA2GXsI\nW4FtwN7FDmAnsUs4HI4NJ4FTx1niyLgYXBauFHcJdwf3DPcB95OCioKHQo7CgMKFIowinaKEoo7i\nNsUzik8Uq5S0lEKUqpSWlD6UiZT5lOco2yifUn6gXMXT4UXw6ng7fBA+DX8CX4/vwo/gv1NRUfFT\nqVBZUwVSpVKdoLpC9ZBqnGqFQE8QJ+gS3AixhCOEGsJdwivCd2pqamFqLWoX6hjqI9S11PepR6l/\nEhmIUkRjog8xhVhGbCY+I36hoaQRotGmcadJoimhuU7zlGaOlpJWmFaXlky7n7aM9gbtMO0SHQOd\nLJ0lXSjdIbo6uh66KXocvTC9Pr0PfSb9Wfr79JMMMIMAgy6DN0MGwzmGLoYPjFhGEUZjxiDGPMbL\njH2M80z0TApMDkwJTGVMt5jGmGFmYWZj5hDmfOZrzEPMv1i4WLRZfFlyWOpZnrH8YOVg1WL1Zc1l\nbWAdZP3FxsumzxbMVsDWwvaWHc0uzm7NHs9+ir2LfY6DkUONw5sjl+Max2tOFKc4pw1nMudZzl7O\nJS5uLkOuCK5Srvtcc9zM3FrcQdxF3Le5p3kYeDR4AnmKeO7wzPAy8WrzhvCe4O3knefj5DPii+Wr\n5OvjW+UX4bfnT+dv4H8rgBdQFvATKBLoEJgX5BE0F9wreFHwtRClkLJQgNBxoW6hH8Iiwo7CB4Vb\nhKdEWEWMRZJELoqMiFKLaopGilaJvhDDiimLBYtViPWLo8RJ4gHiZeJPJVASihKBEhUSA7swu1R2\nhe2q2jUsSZDUloyTvCg5LsUsZSaVLtUi9UVaUNpFukC6W/q3DEkmROaczBtZelkT2XTZNtlvcuJy\n3nJlci/kqeUN5FPkW+UXFCQUfBVOKbwkMZDMSQdJHaR1RSXFKMV6xWklQSVPpXKlYWVGZSvlQ8oP\nVTAqOiopKu0qK6qKqjGq11S/qkmqBavVqU3tFtntu/vc7kl1fnWyeqX6mAavhqfGGY0xTT5NsmaV\n5oSWgJaPVrXWJ20x7SDtS9pfdGR0onSadH7oquru072rB+sZ6uXq9enT69vrn9QfNeA38De4aDBv\nSDJMNrxrhDEyNSowGjbmMvY2rjWeN1Ey2WfSaUowtTU9aTphJm4WZdZmjjI3MT9mPmIhZBFm0WIJ\nLI0tj1m+tRKxirS6aY21trIus/5oI2uz16bblsHWw7bOdtlOxy7f7o29qH2sfYcDjYObQ63DD0c9\nx0LHMSdpp31Oj53ZnQOdW11wLg4u1S5Lrvquxa4f3EhuWW5De0T2JOzpcWd3D3G/5UHjQfa47onx\ndPSs81wjW5KryEtexl7lXvPeut7HvWd9tHyKfKZ91X0LfT/5qfsV+k35q/sf858O0AwoCZgL1A08\nGbgQZBR0OuhHsGVwTfBGiGNIQyhFqGfojTD6sOCwznDu8ITwgQiJiKyIsUjVyOLI+SjTqOpoKHpP\ndGsMI/Kq0xsrGnsgdjxOI64s7me8Q/z1BLqEsITeRPHEnMRPSQZJ55PRyd7JHXv59qbtHd+nva9y\nP7Tfa39HikBKZsqHVMPUC2n4tOC0J+ky6YXpixmOGW2ZXJmpmZMHDA9czCJmRWUNH1Q7eDobnR2Y\n3Zcjn1Oa8zvXJ/dRnkxeSd7aIe9Djw7LHj5xeOOI35G+fMX8U0exR8OODhVoFlwopCtMKpw8Zn6s\nuYi3KLdosdijuKdEoeT0cfzx2ONjJ8xOtJYKlh4tXTsZcHKwTKesoZyzPKf8R4VPxbNTWqfqT3Od\nzjv960zgmZeVhpXNVcJVJWexZ+POfjzncK77vPL52mr26rzq9ZqwmrELNhc6a5Vqa+s46/Ivoi7G\nXpy+5Hap/7Le5dZ6yfrKBuaGvCvgSuyVmaueV4eumV7ruK58vb5RqLG8iaEptxlqTmyebwloGWt1\nbh24YXKjo02tremm1M2adr72sltMt/Jv429n3t64k3Rn6W7E3bl7/vcmOzw63tx3uv+i07qzr8u0\n6+EDgwf3u7W77zxUf9jeo9pz45Hyo5bHio+be0m9TU9IT5r6FPuanyo9be1X6W8b2D1w+5nms3vP\n9Z4/eGH84vGgxeDAkP3Qy2G34bGXPi+nXoW8Wngd93r1TeoIZiT3Le3bklHO0ap3Yu8axhTHbo3r\njfdO2E68mfSenH0f/X7tQ+ZH6o8ln3g+1U7JTbVPG0z3z7jOfJiNmF2dy/pM97n8i+iXxq9aX3vn\nneY/LEQtbHw79J3te82iwmLHktXS6HLo8uqP3J9sPy+sKK90/3L89Wk1fg23dmJdbL3tt+nvkY3Q\njY0IchR561UARg6Unx8A32oAoHYGgAGp4/DE7fprp8HQZtkBgAOkj9KGldGsGDyWAidD4UyZgb9D\nwFKTiS20eLoQ+keMJKZyFsAazNbHoch5lGuWR4s3n29AAC+oIuQsHCwSKuompiPOJb4g8WBXqWSw\nlLo0tfQ7mQbZVDlreT75zwo3SAcUrZU4lT4o16skqGqr4dWe7y5X99HYpfFNs0Vrr7aODkHnne5t\nvTr9CoMCw/1GZGNNE1aTBdNes3rzCotKy3arSRuMLZsduz2tA+yw5rjqDFwoXYlu1HvQe5bcJzz6\nPe+Sr3tVe5f65Pom+vn72wXoBCoEiQfzhbCF0oTBYYvhExH9kTejzkUfiUmJzYprSkAn+ibd3Qv2\nCe9XTTFOdU2LTT+SUZyZfEDhwGRW/kGrbKEcqlyQhzpEd1j0iEa+xVHHApdCl2NORQ7FdiXWxy1O\nmJYantQp0yhXqZA/JXla/IxMpWlVxtmx88bVl2pma+nqhC7KXlK7rFdv3uB4xeNqwLWI6/GN+5vS\nmw+0ZLfm3chvK75Z3l59q/F2153hu2P3hjoa7vt1snY+7Cp5EN/t93BPj+Mj68emvYZPjPrsnkb2\nnxl49ZzqhfSg7pDxsP5L5VdCr4mvV95Mjbx8e2/07LuMMf9x+wmLSfP3lh8sP5p8UplimRqbzp1R\nmBmbvTCX9NnoC8WX2q+GXyfnzy4kfHP/brlovhS03PHz4K+Wdb2NjZ34y8JoeBo9hpnEzlPAlIr4\nAKpywhhRnCae9gE9G0Mi4wtmOZZ01rfsJI4szn5udh4n3gK+dv4RgSXBZaEZ4SciZ0WjxDTEKcRf\nSJzeFSRJkvwt9UD6iIyjLI/sJ7l6+TgFdRJE6lLMVbJUZlAeUilVdVXjUhtBssBNg01jWPO4lqu2\nsPaqzqDuVb1D+r4Guw3pDD8atRsXm8SZ+pp5mQdYhFuGWnlZW9qo2YrbcdgTHVAOy46fnIac77vU\nu5a55e5Jcg/0cPLUI0t7sXpD3jM+g76dfk3+1QElgZlB4cHOIVqhImHUSCaMR4xGLkbzxXjElsbd\ni3+ZMJk4l7Syl2of937RFN5UbOq7tKb0/IyoTPcD9llOBwOzM3Iqci/nNR1qPtx45Gr+5aO1BecL\nzxwrKyouzi/JOZ5+IrE0/KR/WWB5asWd02JnLlSJnC089/z8Sg3xAnutQJ04kgdKlzXq9RrMrzhf\nDbmWdf1s4+2mgebRlqnW723wTZZ2iVtqt7XuKN3lu4e6N9HRfb+ps6ar7MHR7gMPk3qiHsU8zult\n72N+uq//7TP255ov7Ab9hlKHz798+mrxDf2I5Fuz0Yh3x8dujj+bGJ2ceD/7EYNEP216YJZuTuYz\n6YvwV5qvP+c/Lgx/e/T9xmLlUsqyww+RH8s/21eSfqmtEtb01qd34i8FzaIqYHe0GAaHWcBO42Yo\nJigXqPAEIWptogtNGu0lugH6DUYhJn3mIJYDrKfZGtm7OB5yPuC6yV3Jk8Crw/uL7xy/Kf+sQLag\niGCHkLvQinCRiIzII1F/MZxYjbiR+CeJrF2iu7okvaWAVIX0bumXMrHI202DnJnclHyGArdCK8mG\nNKd4QIlHqQV5a5lSSVFlVr2opq32bLf37i/qyRo4jTJNBc0hrSRtbu1WHUudV7oBuht6VfpWBpQG\n9w33GikYzRhXmbiZspoOmRWb21rQWPRYZlipWS1aN9gE24rYvrertN/jwObwwjHfychpw7nJJcRV\n0PWtW8keiz3L7kUeQh6Nntqer8kJXvxeL5F9JMDX0E/JXyXAOJAcFBpMDtEMpQ0dCTsfHhpBiliL\nvB+VG20VwxTzJvZ0nE+8cPzHhFOJ+okjSSHJjMnP997cd3t/Z8r91BtpteklGRmZ4Qdcs/QPimdj\nsl/klOa65AnmrR4aO/zkyI38M0f3F7gWqh5jP7ZSNFR8reT48cMnCksrT14ve1D+smLm1OoZ6kre\nKvmzRufczodX76/JuXCoNrWOfFHpEvHSt8uf61euEK5yX5O7btWY3NTY/LNV5UZEW+nNK+2tt27e\n7rmzdM+w40anbddSd0mP/KMXvYf7PPuNn2m/0BkKeUUcmZ3om1laXNmM//b/cJsNqwjAsTSkQs0C\nwF4TgIJOpM4cROpOPABW1ADYqQCUsB9AEXoBpDr+9/kBIU8bLKACdIAV8AARIANUkdrYErgAP6Qm\nTgP54BSoB7fBUzAOFpHKkROShQwhDygeKoAuQQ+hjygsShRlhopGVSB13gZS18XBN+DfaEP0MfQE\nRh6TjXmHVcWWYleRCusRhRJFDSUHZQGeCp9Dhac6SmAn1FArULcT1YltNMo0N2mNaN/QxdDT0l9m\n0GMYYLRjHGCyZHrG7MH8k6WUVZ11lG0fOwd7G4c7JyVnO1cctwL3d55rvFF8JL41/m6BEsEAod3C\nROExkeui2WJe4toSwruIu1Ylv0i9lx6UaZJNlpOVG5XPViApfCW1KhYqJSr7qJipyqix7CaqS2mU\naUloH9bp0f2qT2HAZMhmxGksaKJgamEWaX7CotPym7WAjaPtEbtuB7SjnlOWc68rs5vXnjr3955Y\nMp0X1mvJ+4PPiO+MP02AaWBx0KeQ3aFFYV8iTCLrogkxkbGv4w0SWpMkk6v38e4vS2VOK8jAZ6Yd\nWDoYlD2bm3co9EhTAd0x9qLPJbUnPE4yl/VXHD5teGapKv8c4/ns6uULwbXfLh69rN9Ad2Xh2sfG\nqebZ1k9tk+0Ld1ju6d537/Lstu3RfCz9ROyp4kDY85/D6NeUI6ffMYzf/kCc2jur/bnh6+o3xUWD\nZfyPwz8frUz9+rD6aq1x/ehvrw2Zrf1jM/44QAD0gA3wAXEgD9SBEbADniAUJIMcUApqwQ3wGLwF\n8xAGYodktqKfCBVBV6A+6DOKBiWPckFloK6hPsA8sAd8Dp5DK6Iz0YMYMUwaZgSJfRkO4AJwgxT6\nFK2U0pR1eDH8JSoFqjsEK8IkdQKRklhMw0dzBalf39DF0zPTtzA4MHxm3MeEZzrBLMn8iCWclYX1\nLlsgOyP7XY5wTkHOEa5SbiceVp5XvBV8PvwyAkDgheBFoUxhNxEFpJabEesVv448xfIlM6T2SsfI\neMtqyRHk+uRzFUxJLKQFxVdK3crNKlWqh9SSdsep52i0av7Qltfx0c3Tq9ZvNrhpeNPolnGPybgZ\nylzcwsHygFWL9ZytoJ2HfYXDqBO/c5BLsxtuj6P7SY8uzwFyh1etd7ZPoK+Nn5G/c0B64N1g6hCv\n0PZw9oikyLfROjG1cTTxEQmPk/iS4/b27yelnEvjSC/KxB9IzprLJudM5CUdlslHHX1beLUorkTh\n+LfSq2WxFaqnfp2prpI7W3HuU7VITcCFK3UsF8svq9d/vlJ6TeV6XxO5ebW1qs26HdyqvWN2d6Hj\ndKfXA9WHfI/Qj588iXuK7c99RnheNegxbP4q5E3N209jPBNW79M+3p5mmT36RXj+yfei5UMrxqty\na6fW3/9e2Ik/GlACWmT18wEJoAh0gRVwR2K/D1n5laARPASjyLonQMKQFrQHSobKoFvQOIoSiToZ\nVYzqh5lgX/gWmhOdip7BOGOeYHWxt3DquHsUZhRvKaPxNPgrVA4EmNBCHUmUJf6k6aItpYuld2Yw\nZjRhsmY2YVFiFWMjsXtwJHLGcHlx2/FY8JrzmfObCZgL2gh5CEeLHBatE3soPr2LWlJJyk/6pMyQ\nHLu8j0IDaVXJSvmJas5uZw2M5lGtNR1T3Qwkgi0G7Ya3jfqMV01NzZotpCwvWUvZNNvp2g85hjrj\nXS65ObjTeVJ5efi4+r73VwvIC/wYbBPSG2Ye/izSNWoqJjmOO3408UHy3X0VKfapv9IrMx2yeA7O\n59zKO3TYL9+wgK3wcZFf8fLxjFK6k1XlihVPTvtVQlXl55TPD9bE1nLUPbyUUm94RfqaQWNKc1Vr\nfptzO8ut4Ttl95zv4zrPP1Dovtmj/2i4N6FPuh8emH8+NTgwXPBK5HXFm99v9Udz3z0ep5mwnzzz\nfvqj7KfgqTPTD2dm5jCfOb/IfNWbd1wgf/P5brXIv7i0dHiZc7nuh8qPkz9Wfjr+bF5hXolaaV5Z\n/aX1K/NXzypx1Xb1+Gr/GsWa1lrC2tW16XW+def1wvVH6+u/ZX/7/D7++/Hv3xuyG74bJzZ6N+Mf\n7Scvt/X4gAg6AGBGNza+CwOAKwRgvWBjY7VqY2P9LFJsjABwN2T7287Ws4YWgPLNbzzgceuv1H9/\nY/kvXZDG23wmwIcAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5z\nOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRG\nIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+\nCiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4\naWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxY\nRGltZW5zaW9uPjc1NzwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVs\nWURpbWVuc2lvbj43NDI8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlw\ndGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KQa81xwAAQABJREFUeAHsXQd8FEUXf5BK\n7x1p0qX3jgIqSBMpoqAgiigI0hSwIEWRImBXioUiiKAgKKKC0gUERKR9FOnSewuEcN/7TzLL3mbv\ncgm5lrz3+112duZN++/e5c3MK2kcTCQkCAgCgoAgIAgIAoKAICAICAJBi0DaoB25DFwQEAQEAUFA\nEBAEBAFBQBAQBBQCItTLiyAICAKCgCAgCAgCgoAgIAgEOQIi1Af5A5ThCwKCgCAgCAgCgoAgIAgI\nAiLUyzsgCAgCgoAgIAgIAoKAICAIBDkCItQH+QOU4QsCgoAgIAgIAoKAICAICAIi1Ms7IAgIAoKA\nICAICAKCgCAgCAQ5AiLUB/kDlOELAoKAICAICAKCgCAgCAgCItTLOyAICAKCgCAgCAgCgoAgIAgE\nOQIi1Af5A5ThCwKCgCAgCAgCgoAgIAgIAiLUyzsgCAgCgoAgIAgIAoKAICAIBDkCItQH+QOU4QsC\ngoAgIAgIAoKAICAICAIi1Ms7IAgIAoKAICAICAKCgCAgCAQ5AiLUB/kDlOELAoKAICAICAKCgCAg\nCAgCItTLOyAICAKCgCAgCAgCgoAgIAgEOQIi1Af5A5ThCwKCgCAgCAgCgoAgIAgIAiLUyzsgCAgC\ngoAgIAgIAoKAICAIBDkCItQH+QOU4QsCgoAgIAgIAoKAICAICAKhAkHKQSAqKoomTZ7sdkKZMmWi\nvHnyuOWRQkFAEBAEBAFBQBAQBAQB1wjcuHGDDh465JqBSyqUL0/33XefW57kLEzjYErOBqUt/yEQ\nEiprNP+hLz0LAoKAICAICAKCgCDgjMD48eOp74svOmd66U6Eei8B649mRaj3B+rSpyAgCAgCgoAg\nIAgIAq4RiLl503VhcpZgp14oZSCQNiTEgY+3aMLEiar9WbNne6sLR2S6dI4KFSt6rf0RI0eqOSxc\nuNArfURHR6v269St65X20egff/yh+ujTp4/X+mhy//2qjwsXLnilj6VLl6r2hwwZ4pX20WjNWrVU\nH7du3fJaH6FhYY4qVat6rf2hQ4eqOfz0009e6ePatWuq/QYNG3qlfTQ6YMAA1cfKlSu90sfJkydV\n+81btPBK+2h0yZIlqg88D29R1WrVHLwx463mHXPnzlVzGDN2rNf6KF2mjCNL1qxea//SpUtqDo0a\nN/ZaH/hdxf9R/M56g44dO6bab9W6tTeaV21269ZN9fHPP/94pY89e/ao9h9//HGvtI9GZ3/9tepj\n/IQJXuvj7uLFHTly5vRa+1om86ZcZh28GMom5wpJ2hIEBAFBQBAQBAQBQUAQEAT8gIAI9X4AXboU\nBAQBQUAQEAQEAUFAEBAEkhMBEeqTE01pSxAQBAQBQUAQEAQEAUFAEPADAiLU+wF06VIQEAQEAUFA\nEBAEBAFBQBBITgREqE9ONKUtQUAQEAQEAUFAEBAEBAFBwA8IiGNzP4AerF3WrFGDhgweTPeULeu1\nKQweNIiy58jhtfa93XDatGkVRoUKF/ZaVwUKFFB91K5d22t9sFcDwvOOiIjwWh/ebrhr167UpHFj\nSpMmjde6emXIEMrtxWBuDRo0oCExMXT33Xd7bQ7ebrgxP4PIyEgqVKiQV7rKkCGD+j6ULFXKK+2j\nUeCP3z48j2ClMmXKxP5u1KrltSn06NGD2EON19oPDw9XcygWxN+HjBkzqjmwpyCv4dS8eXPKly8f\n5c6d2yt9ZM+eXc2BPdV5pX1fNdqzZ09iD2Be6y4kJIRi+PfblyR+6n2Jtpf70n7qfeYP1cvz8Ubz\nI998k4YNG0YL5s+nli1beqMLadMDBJYtW0YPPPggDXr5ZRo1apQHNYTFGwggCnUGFjLq1atHK5Yv\n90YX0qaHCFSrXp22bNlCN6OjPawhbN5A4EUOEvThRx/RmtWrqZYXF0DeGHtKavPrOXOoU6dONG7c\nOOrfr19QTq12nTq0YcMGqlatGq1ft84ncxD1G5/ALJ0IAoKAICAICAKCgCAgCAgC3kNAhHrvYSst\nCwKCgCAgCAgCgoAgIAgIAj5BQIR6n8AsnQgCgoAgIAgIAoKAICAICALeQ0CEeu9hKy0LAoKAICAI\nCAKCgCAgCAgCPkFAhHqfwCydCAKCgCAgCAgCgoAgIAgIAt5DQIR672ErLQsCgoAgIAgIAoKAICAI\nCAI+QUCEep/ALJ0IAoKAICAICAKCgCAgCAgC3kNAgk95D1tpOQARqM1+h+HzNpiD+QQgrIkeUmEO\nzoXnUL9+/UTXlQrJh0BoaKh6DkWLFUu+RqWlJCHQuXNnatyoUZLqSqXkQ6ARPwMEucqfP3/yNSot\nJRqB0hxMDv8jqlWtmui6qbmCBJ9KQU9fgk+loIcpUxEEBAFBQBAQBASBoEXAH8GnZKc+aF8X3w/c\nceMGXR37DtGtGMow9HXfD0B6FAQEAUFAEBAEBAFBQBCwRUCEeltYJNMWARbqo5cto1uHDlEYhz8O\nb9LYlk0yBQFBQBAQBAQBQUAQEAR8i4AYyvoW76DuLU3GjJTxvXeJWA/3ysuD6NaxY0E9Hxm8ICAI\nCAKCgCAgCAgCKQUBEepTypP00TxCK5SndC8NJMeFC3S53wByxMT4qGfpRhAQBAQBQUAQEAQEAUHA\nFQIi1LtCRvJdIhD5dDcKa1Cfbv75J0V9+JFLPikQBAQBQUAQEAQEAUFAEPANAiLU+wbnFNVLmjRp\nKMO4cZQmZ066xkJ99IYNKWp+MhlBQBAQBAQBQUAQEASCDQER6oPtiQXIeNPmzEEZJ8ATzi2lhnPr\n/PkAGZkMQxAQBAQBQUAQEASSisBff/2V1Kqpol4g4yNCfap4Bb0zybC6dSnyuR7kOH6crgwa7J1O\npFVBQBAQBAQBQUAQ8DoCN9jD3TPPPEM1atakX375xev9BWMHixYtouo1alDPnj3p5s2bATcFEeoD\n7pEE14DS9etLoZUrUfTSZRQ1fUZwDV5GKwgIAoKAICAICAIKgXTp09MXX35JZcqUoZIlSwoqNggA\nmxIlStCkyZMpA3sEDDQSP/WB9kSCbDxp2L1lhncn0sUWLenq26MptHo1CuWXXkgQEAQCHwGHw0HD\nhg2je8qVow7t2yd5wD/88AMdOHgwwfqnT52i1q1bU+XKlRPkTSrDZ59/TteuXVPVW7ZoQYULF05q\nU0FTDzus2FnNli0b1eUT1MQSBJTo6GinatmzZ6fHH3vMKW/fvn3005IlTnm4qVO7NlWpUiVevj8y\nrl69Sp9/8YXRdZcnn6RMmTIZ98GYmPrZZxQVFaWG3qJ5cypSpEiyT6Nbt25Gm2tWr3aL2XlWt121\nahUdOnyY8BsCwne7ZcuWVLVqVaMdd4kY9pz3/fff099//025cuemM6dP09NPP00FCxZ0V82p7CD/\n5nz88cd0V6FCdPHiRSrPv2PNGZ+0aRPer962bRutWLmSQkJCCJh62m/x4sXpj7VrKQfbFGKnvl+/\nfjRx4kSncfn1hh+IUApBIG1IiAMff9D1Hxc7zhQr7jjX5AHHrStX/DEE6VMQEAQSicC06dPVbwZ+\nN/gfZCJr32Zv3qKF0Y7+HUroOmXq1NsNJGOK/9k6jeW///6zbf3AgQMOXsw4KlSs6Dh8+LAtTzBk\nsjqAI3eePMacy5Uv72DhO1FD5x1Ho75+bmXKlo3Xxrx58+Lxgf/t0aPj8forA89bzwFXzIMFSH8N\nJ1n6zZ4jh9Oc3L3TZe+5R73TR44c8bjvnTt3Gu2//8EHLuvt2LHDUat2bUdIaKjBb8Zapz/+5BOX\nbdy6dcvx5JNPuq2/fPlyl/VR8Ouvv7qt/+yzz9rWX79+vWPIkCGOQYMGxav/6quvOnhha9Q7d+6c\n4qlZq5aRZ068NWqU0cbevXvNRUYaWAETVmcy8rydwCpLKIUgoL9Q/prO5SGvKMH+0suD/TUE6VcQ\nEAQ8RODy5cuOgnfdZfxj6tixo4c147MtW7bMMXnKFKOtuvXqObBgMH++nDbNER4RYfDg92rz5s3x\nG7vDnK/nzHHwjp/RDxu12ba4evVqgwf/7IORePfWUaBgQTWPLl26OO5r1Eil27Vvn6jpzJo925E+\nQwYDj8GDBzt4FzVeG1j4mReCeIa4/+eff+Lx+iuDd+rVmCBI6f+JZmHNX+O6k36t77Sr7435nf7z\nzz897hILQY2Vq0rAsHKVKooPVwjG+E7r77j5/UFbrr5Tn3z6qdEX+O5/4AHHxHffdcpDPu+82w7l\n7Nmz8Xjx2wPhW88BV1Yjilff2reZX6eBNYh15o324jXEGVgo6jr4vbMjEertUJE8jxHQL5jHFZKZ\n8da1a45zDzRVgn3UwkXJ3Lo0JwgIAsmJwNChQ9U/pf79+zsqVa6s0hAKkkoQMPVv0KeTJrlsZv/+\n/QZfxUqVHNi5S27CTp8eS0oW6rEjinn26dNHQQgscfKAPOyqJoaee+45A7Pt27e7rdqpUyfFmy17\ndrd8/iz84MMPjfkEu1APHM3vdHIK9YcOHTJwmj5jhstHpgVvd4t/c1ulSpeOd0Jy7Ngxoy9sKOA3\nw0y///67Ua7faXM50tiF199t6+8VFnT58uc3yk+fPu1U3fxOlK9QwXHp0iXHqVOnHL169TLqoG22\nLXC6d2rEdIPfOT2W48ePm0pik/4Q6hNWPPKrcpB0HkwIpImMpIzvv0cUHk5XX3+dbrGOnZAgIAgE\nHgL8z5feGT+ecrJeKAv3NIHToH79+xs6st4aNfSBX+zTRzXPO7ziZeMOgP57yxZV+/HHH1dXxBBh\noUultzK2QoJAQgi89x7/z46jpg8+qJPxrm+++aaRB314O7rrrrvopYEDVdGePXsItjZmGjNmjHE7\nedIkioiIMO6RuPfee6kGe5YBffjRR3T06FGV1n/+/fdfgn0BCLxW+5F06dLRyhUrNDu98w673TYR\n9O41bWVd/oxs6IrfwA8//JAuX7pEbdq0UcWhbCsYFham0u4Mhps1baqbU20YN35MiFDvR/BTYteh\npUpSugEsGFy6TFdH3/4Cp8S5ypwEgWBFgNUrlOHd8OHDKUuWLHTfffdRq1ataNOmTcS7dV6fFu/i\nGX2cPnPGSEsicQho4eqXX381Kp48cUKlQ9kAUEgQcIcAn+wo4Rk8WGznypXLlp33nYnV9VTZN3Pn\n0tKlS235kFna5CjD+t3+7fffjXr333+/kTYn9KIUeTCiNdOWuEUs8jp06GAuMtIwZNXGunPnzTPy\nkYDxN+gjXjBYCQuCeTy3GDZ+vXjhAj35xBOKhU+wrKzGfSE20M2RI4e651MzI9+fCfF+40/0U2jf\nkV270PW58+jGgu8pmr0nhFXzzBo+hcIh0xIEAgqBP/74g+Z88w2VY08R3dkntaZxY8fSTz/9RGww\nRu3atqUMGTLoomS//m/XLqPNHHH/aI2MuAQECdbVp6d5jI0bNVK5a3nsr732GnV89FHCblpSCR4r\nFvNcNXVjrxs1qlenvHnz0qhRo3S2yyvrK9MA3pGEUF2KXf9hXMDtMd4ldzUuVicwBKMXX3yRKlas\nSP/73/9oOe8sbubFFKuI0Br2qsGqANS1SxfKnDmzy/51ARZkIHgwGjxoELHxr3K1B0GjURxmmnfx\n4sU0f/58qt+ggSGw6DJvXdmAkKZPn05stGl0gd1c1v+nYsWKGXnuEsBlxsyZNI6jmNeuVUuxRvKp\nMDytPMg7y554OkEleO7BM8fpBt6tHxkP7D4/0blzvB1jPZ6x3OeunTvVbVv+TsCzCnaPf1++nNav\nW0dXrlyhTZs3E3Zs8U7lyZNHV3V5vX79OsHX+eAhQ6ghPwuMBR5Y7uWFNb531t1rlw1ZCuze6Wrs\niQZjevvtty3csbfwHgN8QQ8+8EBsps1fnACN59O8vn37UqlSpahW3HOwYSXzdztnnMALPnjMgccZ\nUMOGDV1+T+rWqaN48GcXfz8eeughp3t9Y+bTefqK7zI2KFjVj+ANKT276gThJOK7b79N0PvW8BEj\nCF60QE917aqurv405/FhIwTzYxUc9Rviitcn+fxCCaUQBLRuVyBM58aatUq3/nzzlo5bN28GwpBk\nDIJAqkcAOtfaoAweJKw0cOBApSP6+uuvW4sSvPdUpx5eZ/RvFfS/7XTqoeeqeVxd3RlnmvWP7XTq\n8+TNa9t+yVKl3M4TOrquxqPz161bZ9uG1SsP9NF1Hbsr74jatmPOZJd6RhssrDuKFC2q7lkgMbM5\nWNXK4ENfsKewUnLr1MNWw25eOg/GuAkRdMc1v6urK69NZv1pGGO6qo/8NWvW2A6lUePGTvUSema8\nuLJtR2fCU5G7caCMd6M1u9PV/E7b6dS7eqdLlCzp1I75hhd6xnh44WQusk1fuHDBAb11V8SCtNEe\nvkswJtVk7osX5jo73hX2DxqjHj16OJWbvebY/W5oZnjw0W389ttvOtujKwzEdd0XXnghwTrsDtbg\nxzMykz906rFKFEohCOgXMVCmc6lXbyXYX5vu2vgmUMYq4xAEUgMCMITD70Sr1q1tp8u7Tco9IgzF\nXAlLthU50yzUT5g40cG7mPE+EOT07xSudsIJ72Q6smTNavAVKlzYAe868KahvbvoNk6ePGk7HLMA\nZCfU79q1y2H+Z8x+zR28i+hgPWDb9pDJvuAdZqEOnnxQz25cdoI9+tSGrXr8tevUcQArtLFx40ZH\ny1atjHnfXby4y7GYC0a++aZRB+3CNZ+Z4C3EjCd4gKOVzEI9PKfYPT+d1+aRR1SfrgxlzfOExxEs\nwIAvrsA9b758qv4rr7xiHYZxbzaqxJgfbNrUgXGhHatLQzsBzyzUo37VatUc7773nnrn2Me6g3fG\nDdzgzcWOsAC1Lk4grALzlStXqvlYjSw5RoJdUw5WJTH6w3iwoIVhKOazdu1apzK7BszvtN33xvpO\nwzNNQu+0Nn7FeFhf3a5bj/OseEPAN5M2zEdfEPDdUbXq1RUecM9ppvwFCqh8LLbc0c8//2zg+eZb\nb7ljdSozLyKLFivmVObqBhhjTvhYHQSIUO8KNcn3CAH9YjVt1szh6pOYF9yjTt0wxbC/4DP3lHec\nrVTFEXPmjBtOKRIEBAFvIwCBDB4nIIzu3r3bZXfao4M7Lxd2lc1Cvf4tcnd1tVP78ssvG/8kIZhY\nidWHjHL887cjswBkJ9Sjjtn9nyv3e+a2zb6t7dzloQ3zfM/Y/OatWLHC4MHOPXYlrWQWfiBUuiMI\nYligmfuFEG+mYcOHq3Ls2Go+O1/kZqFe8yV0dSXUm90Bwge6lVj9yxiLqzmax2v3DDF3PT4IcVYy\nC5lYEFg9rYAfHlZ0GxDS7YgNMw0e8No917l8qqLbwW68lbBjrV2Pgg/8VmJVLKMNxAOwkvmdthPq\nwW9+pz1xaWl+Ttb+PL3/9ttvjXFrDOxO0cyLn61bt7ptHu5Z0RbcZJpJt+/KD73mxdw1LxZlnhAW\n9LoOrnbfTWs7iAeBd8tczyx76Xxf+qkXQ1mfKDn5thNEFnT1MRuaeHtUafPlo3S9ehI7nKVr45yt\n0L3dt7QvCAgCzgiMZZ15DlpDL7DONsKcu6JnWL+8fPnyBIM43kF0xZZgfgPWFzZ/6tev71QH+sra\n+E4X4B5eeUCNGzcmRAO1EvR5X2P9dRALN8TuF60syX6PcY2L86QBXXXovFsJXjvM3jbsIq+a63wz\nZ46tXvEDJt1mPokwVzHS0OV/6aWXqDg/R3gYgU62prbt2umk0peexF5GoFMMHfAhbCCN6Je9X3jB\n4LFLwCOI+dlZ03Z1zHmsJqF0+vEu3X333aoIutvwiMICOHEAIIP9yy+/NNI6wacWSgce92+99RZV\nqlRJFxnXokWLGmnoqLujb9lg0k5XnXeCjWqIjpoQDWWvbtrY0szb1OQF5YTNM2Mhk/jkQVV5rkcP\namd6Rrods5cVPt3Q2V696u+f1jn3tDMWbokX3MRBqKi9yWC1DBvJHmX7CdjrBBPxSQ81MRnuHmbv\nYK5sY8zzgjcdPjUyZznJXk4FPrpJuqWRjwYo3SQegVM2Pyq6lfDwcJ30yTXy6W50fd63dP2buRTR\nkY3b2DhMSBAQBHyLAEdMVUIpDChZX95t5xAQ4eKS9ZCVi8t1bAQKQ7nEEEK393j22XhVIIzCqHNU\nnOHeG2+8oQzwNKPZ8w4EQ1cE13N86qiK4ckC/XmTYKipyd24YHjMdgmKlXVzqVOcq0ld13zNli2b\n+dZIJ2T4CcO/KmwACQEZBGEV7vjwXEezy0A+DSA+SVAGft+xYewJ9oaDcaE/s1tCo0ObxO+//UZl\ny5a1KYnN6szGpbO//tplec2aNekHFrRZvYMi2asIjGNhLAth0EqsrmLNcnqecIO4YMGCeDzmDBif\nuiM7gd4dv6syVsmwLUro+7GEFzKasFiGca07wjMOVOLTAHqqWzeCe0lN8J71BRuW4jm7IrPswaeG\nrthU/jk2OgVZjfXx24TfEPYvr8pd/TG/D+Z+XfFjgYLfSBDet/z587tidcrH5gfkrVy5c6v8Rx55\nhCaZFmSsXkcwFvcleV2oZ/05ZRHs7UnByhuW6UK33TYFAhZpeBGR/o2hdIU9P8QcOSpCfSA8FBlD\nqkMAO6OsfqA8iGTNmjXB+WM3Gt5FsAMKgVa7d0uwYgIM+Kc8cuRI5eUFwifrOBMbw5HepYTvaE34\nTXdF5p3bLaY6rvjvNN/TccHvNVyDLly4UAnXd9qvXf2ZX31lCPStW7dW3jzAN4I9dkyZOpVYPYSe\nYSG+fr169Emcmz1Ws7Brymt58KLUgt8fTRCY4GawGO+uw+sNGxwb3kU0j/n699atxi12Q7HT7Y4g\nPAUy/cuedzSxehTh447gFScQiW0RqHmLFsrrT4f27YlVv5QnqoQWNZgLB7gzprR+wwa3HnS0f3vt\n9UpXhLcjeHGaxx5sZulMm+teE95sL2HD4Zxl9tVvdwrnzH37Dr9n5pOb7Lxwdrp34dnrdgvJn/Kq\nUI/gAXDd5StayDsjItj7Cm3P+wlvUJ9CV66gtB64aPO8VeEUBAQBTxBgo01jV7UK/2NNSEDSbT7K\nbiMh1D/11FPUlnegrLtmmi8pV7gHhFAP2siu57RQbxYOsCPninBcrslcR+cl99Xch7txoV+9S4h/\n+N4guBbUNIsFfE3o708WlorFqbvoWAB1WOCtUKGCZvPJtUvXrkY/z7Of7w8++MDptAfvpHYZaDCa\nEhpvXKNv3DCVxE9q3vglgZNjHuPNOBeSrkZn5nXFk1z52m2qJycDWFxBiMfJygx24fg4u6tODJld\nUEKtTwegs7YBN5uazD7vkVeO1aUg1OM7iBMoVy5EzW41zf3qds1XqPCxsavKevjhh1UwKnN5Qmnz\nb5F2MZtQHW+We1WnfsmSJd4ce7y2N//1V7w8yQgMBESgD4znIKNIfQh8ajoOrsu7t+yRwaMPVCw0\nnTt3TieT5WrWVzWrZGBsmiDsuyI2nDSK6pjqGJnJnPB0XNBRhs44yJ3f7zsZnj7Ox44i/LWbqXDh\nwvSVSdBHGfTAfUlsJKlOC9AnfP4jWmdiBVXtjx7vBhvaqvpow+7jy7kltS+9wEJ9PD+7eei8pPaR\nlHrsyceoptW5jAxLArEtINgP4KjTCQn0bPysVKYQuVoTbCtyx6mpYMffFa1es8Yogk98M5nHy25I\nzUVO6R1xsQWQWaBAAacy6813331nZCFmQWIJ77sm8/h0nq+vXt2p15OZNWsWmYMQ6PzkuuKohq35\nk6s5aUcQEAQEgRSDAIIewRAOQkNiCcaN7D6OChYsmNiqbvnZ37VRrsOxIwMnAt1YXxeE33U7Q1mU\nmSOoIpBRUsi8k47AMe4I48KJBQjjcnVEb9YzB27+IATm6tSpk9G1eQFlZHoxYX62TVxgkNDOMOwW\ndITOXzl6qSv9fqiUQT9bR/X04rTuqOl7OdiSpqmsIgW9bVcEY3ZPdbqtbSTmnUZdBE7ThMBn7gzo\ntUEzFtuP8S49u0VVthp2vyvTWEd9BKvZTZkyhbrFfW/QD4zl2VuO2mXHYg2GtVZaZopWW9oi1Jc1\n8bP/eYIOu5XwTmjDaXwXEiIsVDRpo25978kVgec0mfHUeT6/8krYa8S6V8rVDwKJeJNYf1H1wy+R\nN7sJ+La1+6SAH6gMUBAQBFIcAnAZqH+DrP6azZPl3WxHaFiYwWt1EcjCs1E2ecoUc1WVhutB3U/j\nJk3ilSPD7P7Pzh0ieNjYzmiHhWBkKYKf/HLlyzus/0/M44KvdSuZ3QlifCycWVkcZpeWrtwSmn2W\nb9iwIV4b8F+v5w/MrQR3m7pcX9FmQmR2ackehdyyAy+0befSEu4Mdb9sEB2vHbhWvatQIYOHde/j\n8SADsRJ0O3YuR+EPHu4D4e/dTsYwu7R05Z5Qu29FP2yrYDsOs0vLadOn2/LgndZjBb+V0D8bDBs8\nX8+ZY2VR971793YgiJQd/uZ32tW7Y36n+aTN6MPVOw13onrc3bt3N/itCcQB0HzWKwJJ8Y68qsJq\nMQ4tj4GPd8GdmkKQL10fMRmshNgYurxe/frxAtOhfTYSN3g4uq9TExgnqw0a5Yj9kBABc91nQq42\n7doCzrq+NW6GP/zUe1X9xucrFOlQEBAEBAFBwOcIQK+Uo5sa/SJt9xnDbjUzZ8lCWg91MjtSMBuW\noYH333+ftAcYFjSJ/XsTC21Kl7cZh2TnoEFGP59/9pmR1gno21rHgjwrwaj13nvvVdnYYWc/4SrU\nO/rcsWMHHeMdUzNhXHon9Pnnn1fu/GCfAB1jjKuBaTf2Z1Y9zccufc3kybg84RkwYIDRLPvxVuPG\nfLFDzr70lZFspkyZaKbJYw8LSAQVEBYM1Tg5FoDRBhKe9As+FmqM54p7/YyRrwnuDHPlyqVuWeAj\nFhaJA3cpXuCF58fCmGZXOtLaMNLI5MQ2k1oDDGEfYTsM2Ctglx/eStj3t3IfiL6sLhn1uHR7uNfv\nnDkP+ZrseFy917oOrp7w4LTkt2XLjGqPs1ckeDCCWht2iuGtCM/oI/biBEN2q2ckT58P3umGce/h\nrNmzE3ynCxUqRKgDmstuP12R+fn+wuplsInRBE9WHMlYfR/CwsPpYfZMpQmG3GaCfUf/fv1U1o8/\n/qjqcAAu9VyBidm70GzW8LCeAuB3YS6rAWnixaE62cP7BbU33iww5jGQvycwzvY28QJNdQH9fv3e\ne7tPt+3brTySK0926pMLSc/a0atFz7iFSxAQBASB5EFA/9br3yBPruyRx2Xn2HHUUUddteUq4i2C\nOlnrsPGobV8IWmTlxT12khFYxkoYFwJ42dXReYjsaUd242JhyInVbs7oz0zYFUYEVN2f9YogRwjQ\nBdq/f78t3/gJE8xNOjJkzBiPr0zZsk48uEFQJGt/uH979GgnXrans+XTdTvwbqp1bE4NxN3gGeg6\ndle0g51/M+GExI7XHEWZjSxteR5q3tzclAORS+3a4gWUwffAgw/a8lhPoFDBHDjNrl1eGDqsu8+o\nlz1Hjnh9uHqn2fNQPF705eqdRkBKPRYEwLIjXrg4Chcp4kAkYU2YH8dEMOrqNvTV7pQJdXFqoXew\nNa/1yuozuhvbq6v3ULeD58YLIdu61kx2q2vMwdV311pH33PcH6Ou9TsFHj1PXwaf8qpO/bsc5GL4\nsGHxVp1uVxlJKERgjA3r1ydoEJGEpqWKlxC4wS7Prn3yKWX6aial5V0lIUFAEAheBKDr6okxLf+j\np17sXhEBhdx508HuIXbKwY9dWgScAsFryte8q97eJniPRg9BoMx63ch3ZSyHQE/72d/246yDzv+D\n1c7gfbx7z9FubceHcSEwDQubytYAu7tFihRR45rNO6Nw8+eK7MZl3c2vXr26YWSq29HGhfoeuG1m\nvWYY6MHwGXrQMJjFrmYD3u195ZVXjN1XjC2Gx8gqS0oHugq794NXI71bqtsEvlZ/8UXY6NZK0F3X\nz8JcZrW5gOvBKD7BYBUYFSRL18HY4fVEe6m7xrvurdnjiCs/8nB/ifHDrWpX9qiDdjBPuDvlCKW2\nOuDwS677M4+xDJ9UaIIdhx2PWWcbvPC2Ah1tK5ntFO5hf/4wkLaS2VZEl6FPzAcnE5h3bTbyxu4z\nPLTANqS0aYy6Dq54d8y638hz9U4jEJb1nYZOP9za2n3n+vTuTRzFGE0SjOonTJig0uY/wPzA/v3m\nLHXCNi8uQB126/X3H/OBXQzeZTsCdn+w/j7iFrAKjqqHueC7DS9Jz/LJjhlfuzZwUoD3CycbOLkC\nrvCaAz/537HOvvV7ZdeGzkPcDHySQhivJnh5CgRKg9VEIAxExnDnCCC6Gwg/GoFOV98ZT1Es1Ed0\n7UIZXn8t0Icr4xMEBAFBQBAQBFIkAgiYhkBhoKtseOxqkZUiJ5/EScFAG6qEIHiYQiA9K2FDAhsT\n1apVUxGdreXeuBedem+gKm0miEC6Xj0pbb68dH3GTA5KdSRBfmEQBAQBQUAQEAQEgeRHAIHLNMFb\nllDCCDz99NMGE072AoVEqA+UJ5HKxpGGQ4dH8vEpW2hR1KTJqWz2Ml1BQBAQBAQBQSAwEIChsVYl\nYe89KuJvYIwsMEeBwFfasBjuOwPpZEOE+sB8Z1LFqCLaPkJp8vJu/bxv6RZ/SYQEAUFAEBAEBAFB\nwPcI9GSPTkXZiw2oJuuos1tN3w8iCHr8+++/FT4YKuIndDbFhAiE4QeUUI9Ia3DRZT7WCASQZAze\nQSANGzSl6/4Msb8zujYlvms67/QqrQoCgoAgIAgIAoKAFYHd7NYVEWMRACuhgGzWuqnl/uzZs3Ts\n2DF6hQ2Pt7KAH2jkE0NZdsivLK+/YUtpd5HfDh8+rPBBCOIZM2YEGlYBP55gMpTVYDrYs8D5Bg3J\nceUqZV21gtJmz66L5CoICAKCgCAgCAgCPkYA3p2SEl3Vx8P0W3ee4uMPQ9lYdylehoajiKlgEegm\nofDQXh6KNB9gCKRhV2yR7P7q2rh3KOqzzyn9SwMDbIQyHEFAEBAEBAFBIPUgIAK9+2cdyPj4RKh/\nmP2xQvcIUfpAD3H0PWukMOTv3r2b9uzZg6RQKkIgsnMnipo8haJmfkWRPZ6ltJkzp6LZy1QFAUFA\nEBAEBAFBQBC4cwR8ItRDgIfuEYIt1OfgGNDZ0mHAzVM4ffo0jRkzRoVPNudLOmUjkIYDukR2eZKu\nvf8BXf9yGqXr0ztlT1hmJwgIAoKAICAICAKCQDIj4BOd+mQeszTnAoFg1KnXU7l14QKdr9+Q0nAA\nLejWp2GDaSFBQBAQBAQBQUAQEASCEQF/6NQHlPebYHxoMubkQSAtR2aDGo6Dhfuor2YlT6PSiiAg\nCAgCgoAgIAgIAqkEARHqU8mDDoZpRj7djYgNZ6OmfkaO69eDYcgyRkFAEBAEBAFBQBAQBAICARHq\nA+IxyCCAQNocOSii46PkOHOGrn89R0ARBAQBQUAQSEUIXLx4kRwORyqaceKneoFPs4UEAVcI+FWo\n/+uvv+iHH34QN5eunk4qzFfBqDgoVdSUKeTgoFRCgoAgIAgIAikfgVOnTlE9dqTRu3dvEexdPO7R\n7EikfIUKBD/pQoKAHQJ+FerHjh2rPOIcP37cbmySlwoRSJs3L0W0fYRuHTtO1+cvSIUIyJQFAUFA\nEEhdCFy+fJnyFyhA27dvpygOSChkj8B1Vks9evQolSxVSgR7e4hSfa5PXFqmepQFgEQhEPlcD7r+\nzVyK+nQSRbRrS2lCQhJVX5gFAUHAtwhs3LiREDkcVKJECfXxZAT/47D0etcxLy/oq1Sp4km1JPOc\nYdW+tWvXUgj/puTPn58qVaqU5LakYvIhUJmf+61bt1SDU/iU1i6Oje7t2rVr6hlCwAXBPXb58uWp\nAC8KEkOrVq2iS5cuqXehbt26lJFdKyeFDh8+TBnYW1v2O4iGvnPnTipWrBhFRES4HcIbQ4fS9OnT\n6cCBA0qwj7l50y2/FKZCBFh/zW/UsWNHR9qQEAf/qPttDCmpY2CJT0qgSwMGOs4UK+6Imj8/JUxH\n5iAIpGgEmrdooX579G/QokWLEpzvyDffdKrzSNu2CdZJKgML8k596XHiOmPmzKQ2m+h6b7zxhqNM\n2bKOvn37JrpuSq3Au/PGs+Ho8y6n+ffffzu6d+/uyJI1q8Fvfo5I//TTTy7ro4BPBBxDhgyxrc9q\nLY5//vnHbX1r4bp161RbeP+TSqxupNoY9847HjXBO/XG+JcsWeJRHWHyDwK1atdWz6pGzZo+GwB0\n1/xGItQnL/T6By55W/VPazd5oXfm7hKOc/c/6OAdHP8MQnoVBAQBjxD4atYsJ2Hp7uLFE6ynf69w\nHTZsmOPrOXMSrJMUhplffWUIQbrP9h06OOX5Qsg+ceKEU59XrlxJynRSXB39THB1RXyi40ifIYPC\nL3eePI5evXqpdwbvTeYsWZxwfWvUKFfNOGrWquXEqwVq8xgOHjzosr65YO/evU5tmcs8TZv7f+qp\npzyt5sACRI9Z/j96DJvPGUWo9znkKatD/SVPKbO69EJvtVt/ffHilDIlmYcgkGIRYF1oQ9DAbxF2\nFF0RBCf9e4Wrt2jBggVO/ezfv9/oCkJ1kaJFjXIIiN6mzp07q/7ua9RINisYbCwG9Xvw+++/u4Qf\neIHv7dGj2X/CjXh8O3bsMNoBH6uDxeOZO3euwYOddVbfMXi+++47o6zhvfca+a4SW7dudZQoWdKo\nEx4R4YrVNv/q1auOgQMHGvUx5n79+tny2mXu2bPHqPsNz0soMBEQoT4wn0vQjEr/OAbNgBMYaPSu\nXUqoP9+8ZQKcUiwICAL+RsAq1L/73nsuhzR+wgRDKMHvljfo3LlzTn3g3ko3b950lL3nHoNv27Zt\nVpZkvUd/33//vePs2bPJ2q6/GpvP6pGVKld2zJs3L9FDYPeVBu7YhXdFEFrxjhS86y7H6dOnXbE5\nNm/ebLTXrVs3Jz6o3aRLn94ox3Ow0iuvvGKUYzHoirZs2eIICw83eDG2xAr1epGi/2fjmhihHmPT\n88mXP78sEF09LD/n+0Oo96v3m1RowiBTTgQCoWzhH9a4EcWwEdGN339PRE1hFQQEAX8jMGHCBJdD\n4F1Tl2XJVTBu3DijqVmzZlHWrFmNe52Awezcb77RtzTklVeMtDcS6K9Vq1aULVs2bzTv8zbPnD1L\nvGtNp9kAObH03vvvG1U+/PBDI21NrFi+XGX9999/1KdPH2uxcV+5cmW6//771f138+cb+UjAOFob\n1r7+2mvKONaJgW94IWBkffvtt0bamqhYsSI9/thjNOfrr6nLk09aiz26f5Hn8fxzz9Gvv/ziEb8d\n06CXX1bZrNZFixcvtmORvFSIgHi/SYUPPZimnO6FXhS97Df2hDOZwu+7L5iGLmMVBAIGAd5dpBf7\n9lXePhIzKHgU+Y4FnLCwsMRUU7xHjhyhQ4cOUaFChZzqIm/Dhg1OeZ7csMoOTZo0iXhXV7Hnzp2b\nnnziCQ5CHWlbfe68eUb+w61bG2lromzZssoLDjD68ccfFUaZMmVSbP/++y/Nmj3bqNK5UycqUqSI\nca8TbORoCI0Q+ODJxEoTJk40YrJ0fPRRKl68uJWF+HSD4N4R1KF9eypZsqRK8wkC/bRkieojir2/\n9O/f3623laVLl9K69etV3TKlS1Pbtm1Vmk8r6NvvviO4kb7OriNbtGhBNWvWVGW+/vPnn38aXbaL\nG5+RYUqw7R198umnKqcUz8UdwTMOCB5xzLR9xw7jtlGjRkbanLj77rsJHpiAzZa//zYXxUt/+eWX\nKi+pwnRrfh/x4dOFeG17moF5jBg5UrH/9ttv1Lx5c0+rCl9KRsCfpxO//vqr4+NPPnHgGE7ozhHQ\nR3l33lJgtXCp/wDHtc8+kyPGwHosMpogQmDU228b6gJQHfDko39P7PST7aau1W8KFyli9GXn0UOr\n3hQtVszgs2tP50E3n32YG7x6XLjCIHfZsmWa1bjuYtU9zeeJVx14pdH80L3WBG8qOh9XqImw0KeL\njavZWDMkNNTBu8pGmU7kyJnTqS12haiLjGvefPmceN586y1H1WrVnPL0eNgNpMNsI2A0wokBAwY4\n1Rk2fLgDxsGR6dI55eu2YIiaFJrKv8to49NJkxJdvUDBgqou5pEQrVy50oFnZNaDt9YxP6sXXnjB\nqRhec/Rc8Z66oq5duxp8MTExrtiMfBi3ot3Eqt/oBjZt2mT0l1j1G+jl6znBAFgo8BBIdeo3TZo0\nUUdQelckJS+eZG5JRyDj+Hcoko9G3fkuTnrrUlMQSPkI8L87Nclveff6Bvv39uTzXI8eqo6u6ylK\n2Jm/6667FLudCo5WvXG3O6v7gv/7u7g9c4BCqD3g9ODZ7t2Vv+6HeIcSkcnN9KNJHcGTHUzsWGvC\nbr2mqlWr0nze2c6TJ4/KYoGQsNttpa95N1/7SQde8IdvpZkzZlD/fv2MbERQtdI03gHWahUoG8p+\nyRF5HbuykydPpk/jdqxRxi4eqc0jHKgvzr878jRBlYSFYH1LI0aMIKiUYIxDX39dzcl8gsLCB7Ge\nucHv7UR0dDQdO3ZMdVOPfcQnRPU50iwbMlM4Rxu3EnzNs3BNbPxqFD3//PNGGonf4tQ38Tzd+YJn\nI1mjHk5pApnSpUtHNWrUUEPEqYc+pQjkMcvYvI+A8xmV9/uTHgQBQUAQEARSOAJa9xn6vjq4FKas\nVW9qsxDJO7VuUYDQyjuQBs9iFrYRbKddu3ZKdeGTTz6hqVOnEgTEdqyqwj7GDd5DrKqjqbIHAaag\nj63pEAcT0pQrVy6lA9+qZUudZXtt1qwZJcTTtGlTaplAOw888EA8nr9YRQO610+zoN79mWcUBu0Z\nAxD02dllZ7wxQaXIOp7x48fTnt27lbAPvf79LLS+w2pDoAsXLtBnn38erx1vZZgF5joeCPV242Av\nOPTSSy9RVrZPmM4LJk1LfvqJMH8z8YmGuq3GQr07gqqSJruFmS4LlGsd/h5pSopKm64r15SDQEDo\n1EP3ET9aDz74oKH7l3IglpkIAoKAIJC6EMAuPAQuEHsvoSGDB6v0vDgDRAjmCRGMWzXBmBX/H6z0\neZwgCsH+T97VR2RRK3lywmfmSezJhLW/5LyH7naFChXiNcl+2knbDGyF/jfbFrijfPnyUd8XX4zH\n0tikX67aiccRmwEdfZxSWEmfauBagCP0Wgm74tp41VxmPu0oVrSouSjBNJ71g7xAWrFihRPvC4zJ\n6NGjCTvYyUGB9B64mk8xtgPQdJwX0EKCgN+FehgP6R9/7BTAY4H5iFIekSAgCAgCgkBwIQDVDhiU\nIpz9RP6N10K9WfUGBpvuSHswgaeYNm3a2LJqLzIwljWrcYSG3v7Xxv7obeuaM8085rpmHn+kS7MH\nMDtyZRxsx4s8V6pOVoNSV/Wf7NKFcOriiiDUawHfzJMzZ046wYanyUWsW089WXjfyR7RNL0yZIiS\nITJnzqyzXF61BxxXDOZyeCoSEgSCDYHbv3x+GvmqVauceob1udCdIcBhz102UJj/2TZo0MBluRQI\nAoKAIJAcCPTs2ZNeZrd7UGNgw1VKnz698noD1ZuCCajesJEiaRWNXtyOeSfdPDbou7Pfd+VhR3uK\nQTmHZTfYli5bRnUTUPHATrSmWqa6Oi+1X7HxBt11K+GkhA1+CScBzz77rLWYMsR5KopXkIQMnPhw\n8C7CuwFVJuzMQ+3JE4JOPmQNs62FXb2NmzYZ2YULFzbSkhAE7BDAidMPJhscK48/VKL8LtRrEKBr\niC8q3IEJ3RkCbMHvsoFH2LBKhHqX8EiBICAIJBMC0PuGUA+aw+oz2iGCJ6o3ZqNNDq7jckTYabbb\nxW9qUtWBEe0bbHAKfX6orEBtIx9vHnXh3ec6deqots2GtmajWZcdp7KCfuwO1Y5geAth/nU2vu1h\nI9Tb1UGeWdh3dwKg6+P5QKCHoSyMpGF7kBiCXQWEehgnw34gS5YsttXXrFlj5MNlaqDTSdPpSRYP\nTioCfT7BNj642XUnb/ljPn4X6tPF+RhGIAY7nUl/gBLsfb777rsup1DcpIPnkimACxxXr9L1ufMo\nhP03h9W+bUQXwEOWoQkCqRIBqODA9zcMZaGCU6ZMGYWDNvJ0B4rZy4k7XW9XbUAVAx5j4L8bvsBn\ns8cc/PM1LxbYHSMNHz6coL6BXWBQ9uzZqXr16q6alfxkQgDvhSYEhkrIgHgoe/LBDv2ihQvpvgTi\nlcBgGnr15jgAJU1qTOvWrXMpa+gTG+1VRo8xUK9rGDtN/oo3oPtPjVecOLqTt/q6WAx7Eyu/C/XP\nsTCPXZwBAweqXRO9m+PNSaf0tnu/8EKKnWLMnj10dcRICq1VU4T6FPuUZWIpBYEe7BYTu/VQ3cBR\ntPJ6w7u7CRHUbXCiCB3qSezKEYsCd64I7dp7kqN9QqgHYZcXhEieUAvavn07PcHlY8aMIeits89v\nVf4UC/6uVH0Ug/xJFgSgigXBG24YzYKpXePwgoQPhHSoxEDv3d27UIk9GVWpUoX+NAU4M9sm4KTG\nbgMRevo68JeZ325MgZCHBao2FsaCWduXBMLYUssYYDPiTt6Csb+vVXD87tISP9xd+RgUXyj4G+ZA\nVC7fh5MnTyqfxc+wWy+h1IlAKIfoDq1SmW6uW083TcZSqRMNmbUgENgIWA00PVG90TMyq1iYfa7r\ncn1FVE0OZKhvjStUOc3GjjCAhVtHCIeI5onFBoT5RzliqaaBvLlkR2aDUr0AMPPBI4uOemrOl7Rr\nBLSdA1Re4J7SFU2bNk0V7d27l0rwCS0iCqeLs8+w1vn5559VltVzDRaTWbNmVWVjxo617Q9xADQh\nim2gExY6OkaB2Ug80Mct4/MuAn4X6jE9+DSGoQ2O4bLx8Wezhx4ijg5HCKhg/uDYjCP10WmbwB7e\nhUlaDyQEIrs9pYYT9fkXgTQsGYsgIAhYEMDOarVq1YxcT1RvNHM3DiikvbxwZFriyKOGBxaoYmAH\nDCe9UKHpw+4azao1aAMCPXzba0I5dv1RF2Td7YXA70qP2hzACosALdhDqPrjjz/oYRfeeXTfco2P\nQAWT+9Hf44JDxeciI6gS3gX9zLAIqM32EBy9Vy3KhrAKVZP771cbg2jDGogJdafHLQ5QnpuDiXEU\nXSSVq87evXvT+x98oO5hfGu3k68KA+jPapP+f31xfhFAT8bPQ+EVrV+JBXUj1LEOeZzQtfXDD/t1\nzIHaucYtUMeXXOO6dfOm41z9ho4zpco4Yk6eTK5mpR1BIMUi8NaoUep3dv78+R7PkdVUVB3eWEmw\nDkf0dOTJm9f4LS9UuLDjyJEjqh4bURr5yDh69KgD5fr3Clfcs6pOvH7Yu4SjaLFi8XgzZc5s5BUu\nUsTBevvx6uqMRYsWGbzmPs3p4SNGaHaX10aNGzu1gzFz4COnPHObHJ3Uqa2KlSrF461br54TT7Xq\n1ePxcAAuJx4det7cV9Vq1Zx4Rr75Zrx2KlSs6MTz9ujR8XgwJzYodeJzd8N2CaqNTydNcsdmW8Ze\nc4z+WSC35UEmL9wU36ZNmxQPn+o7wsLDjbpmHHR6x44dtu01bdbMqZ75PdJ1eePQtq45855y5Wzf\nYeDHJzZmVts0nxbEq4/+UZ8XK7Z1rJns4cmYC8cQsBbLfQAgoL+reFa+Ir/v1I9mnUYhQSAxCKTh\nHbjIrk8Sh5KkqBkzE1NVeAWBVImA1hNvyx5psEvpyYcFNYWVWfXEFXhQP0EfOXLkIOiZYieV/4kp\n9v79+9MRdnuICKYg5KMc0VqhBwzjVNxbd9rBC5UJREH99NNPcasIvHl4Dp07daIpU6bQZnZDWKxY\nMV0c7wpvNjt37HAysLTuyHfgiLQJEXb9X3/tNYMN48D4Oj3+OM3giKaXWHUUKj/AAO0DEzPhHvmY\nLz5Iow0z4d7K46od9IN2gKO1HZxGoB0zj7UdOx60o1U6zONylcZpyg3WcX+2e3dXLC7zYWT45ptv\nqnLYPpgDUpkrffzxx6oP6MmDSnPUV/S5iYON1atXz8xK5cqVo58WLzaMsp0K+WYhuz/9jA2kNZm9\n8PR8/nk6wJFnoTWQEAEnfPQ7rN95T/ED9uC1PiPkWZ+T3VjAs5HnD4Khpj7BsOOVvNSFQBqsHvw5\n5TbsYnEhW7R/zd4J8ifwZTp27Jg6aoOl/IL58/057IDsG0eRIIRST+nkYMO7c3XrUxp2cZZ1zSpK\nw5ELhQQBQcAegb/++oseY+HTHFzHntM5dzIL9nYRQZ25gvdO/2bC1e9sNmpDjA+4u4R7ZSHvIwDh\nNDIuAiy8FSGyvFDCCAwaNIjeYXUx0FUOriZCfcKY+YMDKmJQE4QK4npWH/cFxUqBvujJRR9Z2V8s\nVrsNODgEdl/cEQxlwYs6QqkbgTSZMlFEh/Z0/Ysv6fr8BRTZ8dHUDYjMXhBwg0Bl9giySwzL4yEE\n3WkYV37HQayKFC1K2DhCoCIR6uNB5ZWMsLAwmsve79p36KA8FeF/PHavhVwjgIWQFuiHcnwAEehd\nY5UaS/yufvPFF1/Qcf4hTUigx8PBlx28X375ZWp8VjJnCwKRXbsQcfCZKBbs/XzgZBmZ3AoCgkAw\nIFCKvalogkAPqiF+6jUkPrnilEQTFlZC7hFoxZ6bNLnzCqV55Jq6EPC7UJ+64JbZJicCIayTGcYe\nD26xq7PolauSs2lpSxAQBFIBAlBjaNiwoTFTuLscyy4PhXyLwO44TzRQD/vgww9923kQ9YYTJR0g\ny+zZKYimIEP1MgJ+F+pnzZ5NQzmEN4KTCAkCiUVA3FsmFjHhFwQEAY1AXtaf/23ZMnUCfPTIEfrf\nrl26SK4+RAARZv/iyL8w/P2ejVkTY6zrw2H6vStgg2jLsD0IBrebfgcsFQ7A7zr1czk8Nwxlc7Ku\nPKzPESBESBDwFIGwalUppEIFurl6Nd3cvYdCS5bwtKrwCQKCgCCgEICtlpB/EajAv+OrOIJwoUKF\nWKvS7/uN/gXDRe+ff/45wZtURQ7CKCQI2CHg928OXDiB+vXrR+yPmBAd8Pjx43ZjlTxBwBYB2a23\nhUUyBQFBQBAIKgTgrjI9R4sVskcAAdVEoLfHRnJjEfC7UI+jJBC8DZw9e1ZFB+RgIoQwzStWrIgd\npfwVBNwgEN6sKaXNl5du4NhWog27QUqKBAFBQBAQBAQBQSClIuB3oV4DO4XDdyNAyTscDhyhxefO\nm0ccwY84Ch5xhDa6fPmyZpWrIOCEQBpW2Yp44gniaB50/atZTmVyIwgIAoKAICAICAKCQGpAwO9C\n/csvvURzOPAUDGQQXbBf377KWAmW3QgyxeGe6YUXXqAC7Omkd+/e6j41PBiZY+IQiHisI1FkJEXN\n+YYcHK1PSBAQBAQBQUAQEAQEgdSEgN+F+tq1a1M7Dl0eyQKZJoQbh2U3osbCGwEs47FT//Enn1B5\nNqZpzmG/169fr9nlKghQ2syZKfyhZuRge4zo5csFEUFAEBAEBAFBQBAQBFIVAn4X6l2hfeLECRr5\n5ptUslQp2rdvnxPbkiVLqE7duvRQ8+aE8OdCggAQiHjsMQXE9dlzBBBBQBAQBAQBQUAQEARSFQJ+\nF+rhdxUhj69cuaKAX7NmDXXq1InyFyhAw4YNc3oYuD/BO7E/LFpE1TnqH8J71+OQ3joYgxOz3KQ6\nBMKqVKaQUiUpmg2sb8VFh0x1IMiEBQFBQBAQBAQBQSBVIuB3of7LadMIUf3GT5igVGsacHS/r+fc\n3mktwML91KlT6SoL/a+/9hrlzJmTmjVrRuv++IOmT59ON2/epNYPP0xr165NlQ9QJu2MQMSjjxJH\nLqGob+Y6F8idICAICAKCgCAgCAgCKRgBvwv1CAsNGj58uJMR7AMPPEA/s5rNoYMH6amuXSkiIiLe\nY+j0+OP01cyZFBUVRf04IIOQIBDe5mHWw4mg6yzUi8GsvA+CgCAgCAgCgoAgkFoQ8LtQ73A4nLB+\n5umnads//9BPixdTk+vajT8AAEAASURBVCZNnMrsbhCFrkSJErRx40aljmPHI3mpBwFlMNv8ITGY\nTT2PXGYqCAgCAYbA//49G2AjkuEIAqkDgVB/T1N7vXm2e3caMWIEJTZc97M9etCePXvUNDaz0Sy8\n5gilbgRgMHvju/kEg9lwjnUgJAgIAt5DYP2W/+jdzzcSvJZ5StHRt6hr+3LU/L67Pa0SkHzHT10h\nzH/TthP076HzrPkXu0l18OhFNd6n2pWjR5qWpOxZ0/l8/L+vO0Q//raPhvetRxnSh3nU/8VL1+mT\nr7bQwqV7KVf2dJQ+XRhhLkUKZqY3XqxLJYtmT7CduT/uone/2KT41szr5MTfb+QyOnH6qlNepgzh\nNGmU8/9tLAqGv7eG1Wtv0dETl6lwgczUpF4R6ta+vFNdX9z8vfMk/bxyP/V/ujqFhvpnH3TrrpO0\n8Z8T9Nf2E3Tm3DVj2ng2WTNH0KDnalKdKgXcju/kmas054dd9PWinao+MEX9ciVzUu+uVdXVaFgS\nQYuA34X6qlWrUnR0NL311lvKV31ikaxQvjytWrWKwsLCqEP79omtLvwpEAGrwWzafPlS4CxlSoJA\nYCCwfN1hOvTfJWMwEeEhKn39xu14EToPBTp/yfL9QS3Ur9xwmF6fsFoJnpgXBL6QtM4Lmy/mbSN8\n5n7UmvLnyQg2nxCE+VEfr1N9bdt9impWyp9gvxcvX6dmT80z+E6dhfAYK0AeOHKRnnrpJxozuCHV\nq1bQ4LEmIIxrgd5ahnu0qRc8uhyLByvd4HfnyLFLFGNaJGHB4WuaPGsLTftuu+q2VuX81KDGXb4e\nAn0y8y+auWCH0a/+LkXzggd0/uJ1GjJ2pVp4TX67KWXghZiVDhy5QJ36/uCUrZ/Dtt2nqccrP9Pz\nnStR54fvceKRm+BDwO9C/WuvvnpHqI0ePVoFpmrdqpXyZ39HjUnlFINAOraxcLC9RpocOVLMnGQi\ngkAgImBWoTTvzHYduJj2HDhH6SJDaenMR42hdx+yhHbsOUPnLkYZecGWOMW7nkNZoIcM/+xjFQkC\nX4ki2ShtnFB/6coNGjd5Ay1bc1BN7bXxq+jzsc28Ps2YmFv0/a97afzUP42+LBquRr418XbcIgD5\nnR8uS915XqEhafkk4hj1f/M3xT5o9Ar6dUYHtYNvrX/lWjQvclZZs53uZ05sQVO//lstdFDw4fAm\nVPmePE48uCl9d3aqXSU/rd54lCqWyUXvvHKfbZ/xKiZjxj//O6UE+ox8yvFG37pUy4OFUTJ2r5ra\nte8MffX9DrUb34d306uUy8MnKOmNbrRAjgwsvN7nE5IhPWsZ5Ujg+6mfH+5b31+cenepqr6Xv6za\nzycisU5GPpm5he6rXYgK5MkENqEgRcA/Z0nJCFb69Olp0MsvU+nSpZOxVWkq2BEIb9KYIli3Pk14\neLBPRcYvCAQ0AkeOx+7SF/BwJ7pUsVgVjv2HLwT0vNwN7gfeCcdOaasmxalL23KEOWmBHvWgUjKi\nXz3qyuo3IOxgL2d1GG8ShOrHX/zBSaD3tD+omKzccESxP/nIPbxrW1kJ9MioWSkfzZjQ3Gjqw+mb\njbQ5MW7SBjp6/LI5K0np6OgYwiLInwI9Bm5WJ8P5i1m77NyFKJrNaixrNx9N0hw9rYTFGRZl/bpV\nowcbFHUS6NEGVGdWznmM1aKyqSbxXmJBaaYff/vXUHl68amq9HKPmkqgB88D9Ys6PdvxU24vBs1t\nSDp4EAhIof7ChQt0/vz54EFRRioICAKCQCpF4H/7Yo0iS/HuqidUuljwn55BCAbN+2k3bdx63OW0\nITRpgrqOlW7yzvqxk54JwoePxerpW9vQ91C7KFYoCzVtWJTGDblXZ3t0XfBLrF0amJ+y0VsvVigr\n67QXVm3hJAAnAmZatGwv/br6AJVg4bLNAyXMRYlKB4pAj0FDYIZNxOWr0TRw1HJ6rM8ieqL/j1S3\n3VfU4ulv6cNpm2ni1I2Jml9imE+dvapOtFAHC6nLFmFdtxXCpym9nqiibwm7+2ZavPx28M6H7i1m\nLlJpPFucioBwKnP8lGfvo6ogfwIOgYAU6qtxYKm7ixcPOLBkQIKAICAICALOCETF6c7fUyKnc4GL\nO6hWBDvlznlbBeJvNmJ0ReFht//FcvgMJ4JaxBuswvMs6zND59kd/fj7PrULD+HZHb01sAG93rsO\nFcibOP39pXFqQhDuwsNibSKs/ZjVT/YdvL3phhOXiZ9tVLu/I/vXY/u223O2tuHuPpAEej3OZzpW\npI9H3q9uD7OOP4yhzZQ5k/dOgnHakyVTrCtv2CKcd2NTkD7dbU1qq7oVVHRA95TIQRm5TTuqWj6v\nkb111ykjLYngQ+D2m+Dlsd+4cUMFmLrAO/DF2QXlLf6F2/jnn9SxY0dq1KhRvN6xUz/1s8/i5efi\n4FOtW7eOl++LjNOnTyt/+t3ZUw9caXpKW7ZsoUGDB6vIt02bNqW/2EtPwYIFaeqUKYlqx9P+hE8Q\nEAQEAV8h8MGwJgShE15ePKHirHvesWUZKls8eHfsoZMMypsrIz3Z5h6X016x/vbufIXSuZz4oN5R\nhjFYzjy9hy0l4FikYBYnHtwAW+i7wzah6F1Z45WbM8wqQOZ8d+nT7E1Fe+0p5qZ9eEvRtJX1zUuy\nytH16zepy4AflUFrpbK52TvLSVq07PbOMLzo1KtWIEHvP4Eo0GOusJ3o+fqvetrq2r1jBbq3ViEK\nCUlD+XInbvHk1FACN5ERofTRiPtp+nfbqGq5vFQwr72uOxaHMMbWVPSu2+8QjJ9jYmI9MpUvnVuz\nxLtWKHX73dy685RSy4nHJBlBgYDPhHpEiX2NI8Ja6bPPP6drV69SuI3ucw92V2lHMRxF1tcEgT5P\n3tjV7OXLl+mLL77waAjdunWjaRz5VtMSDqgFOnHiBFWuUoX69O5NEydO1MVyFQQEAUEgqBCAMIdP\nYqh3l9vqAompl1Te3fvP0j9J3IGsXjEfFcp/W6DFGLCL+krP2i6HAw8/732xURmtggnGljBQtFLn\nuAUB3EjaCfZmgX7i64294nYQBqGarPPU+biay7Cb265ZKcIusPZQs2XHScLHTGM+XU+FeafbnUtP\ns0CPhY8/jGLNY9bp3/84pHT79X2n1mWp5xOV9a3tdSmrIF1ws6NuW4kz07CB9SMPxl8UQ0CHK1FX\ndPDoBerx6i906XKsHn2dqgWc9O7NXqmsi0pzm9rOBXlYsAkFLwI+E+of7dCBFi5cSPPnz3dCa9q0\nabYCvROTn2/+++8/avbQQ8YoMmTIYKTdJVavXu0k0L/33nsEHFauXEkdHo31BvH+Bx/QfffdR63Y\ne4+QICAICAKCQPIjAL33j2b8laSGX+9d20mgTagR6M7DxaCZvhj3EO/s2qulWAV7eIQpXCALLf79\nX2OH3lsCPca4lz0UaXKntgPVDSxmYIi5Z39sHahtvP1yA4LhqKb32AOLdlv6co8adFc++x1m8MPY\nGFj98dd/qnreXBl87uVGj9t8BfZvffSHkTX7/ZYevQNffruNkmIADiNcO6HeGIAlgROSMWyYDP/5\nmrAAGMz+6s103GSv4e5kDO5YoZ6znb1SQbUKNhOu3ldz+5IOPAR8JtRHRERQrVq1lFBfnn3LL/31\nV8rJqjSuCH7nT5+KXTHe5J35jhxQ6Feu06JFC1dVvJK/YMEC6tK1K2F3XlPatPY/zrocV/jeb3jv\nvUaW+TSibdu2BDWkLFljj1LbPPII/btvHxUuHGuIZFSSRLIgcOv4cYqaPoPC6tblT51kaVMaEQQE\ngeBBAC4ns2aOTNKAy1vUZlw1AvedcONpJhiN9mXPJQkFLTIL9i+8sZRg0AhXhlC58aZAj7EiwJMm\nuLB0R9pGwGwoa/XdPpaFTU3VK+Rzu0sPLzdX2BBV0y+rDtBD9xUj1PMX/bTcWaD/ZXoHj4N39Xi8\nkrFrnpjxeyBSGM19Pvcf+mzOVuMeCdgyNKoTX364Gad6Ax7t3x5pO4pgdR9NUMcKsTet0CxyDVAE\nbj9FHwxw8uTJKkjU4h9/dCvQ12Ph6xIL0Rkz3tZX+2HRIip7zz0E9RWowrhbECTnVMqWLUtYkAwf\nPpwGDBjgcdNazQYVMHarehHmNnPmTOrcubNqc9KkSTRq1CiP2xdGzxGIOfofRU2aTDF79opQ7zls\nwikIpBgE4OEDH28Qdma//el/NN/kQQa68nBpmZiAUxDsHTzAT1kVRwcbmvBaI6+o3HgDB7s2j564\n5BYDCPRQC3nhySrKYBhtvMy+8H/6oh1Bp9zXtHrjEXrzw9s79Asmt/FYoMdY61cv6JUhQ8jGCdCr\n76xyav/5TpWoffPSCQrsTpXkJkUj4LNvDVRR9vFudJs2bSh//lj3Sa6QtdNXDw0Npaeeekrp5X81\naxa92KePq+rJml+yZEk6dPAgRUZGJkqox3w12RkCo+xhk8Hvzl27NLtckxmBsKpVKKRkCYpevpxu\nHTtGEmE2mQGW5gSBVIrANz/uog/YtaE2NM2eNZKmj29O2bIk7VQgR1bn6KqZM4Z7HVmzvru7gGDY\nnT9zPlbNxlzHOsBxr9xrGGciIFdCNP7V2MBSiGiKAEiIJjt59t+EYEu+pincr6Zp7zzkpJ+u8319\nxUkKgnrpOALovwvHEoBnnoQMozNluB1d9uiJy5Q5zpuO3RyOxsWbgCedMBcekOzqSV5gIeAzoX7l\nqtgV5iOsapJUast1YWwLnXRfCfUYKwT6xNLqNWtUlaysYoOdfjtKly4dVatWjTZu3Ejr16+3Y5G8\nZEIggr0sXR0xkq5/M5fSveibBWEyDV2aEQQEgTtEADr1SQ3+BHWQsjbuOt+ZsoHm/7yHIHgjqA/U\nH1y5g/Rk+FD7GPXxH6xTHkpVOMoqgi9BFUfr2HvSRlJ4zEbOOHWwqtPoNo+YAkuZ6+hyfa1TpYBO\nJniFP/307F8f9HirsqwjfkC5jZzzwy5qUrewLe4JNppEBhj57o1z1XlvzbsIXpoSS9CpP80ecxJL\nMJQd8Ez1eNXg2UYL9GVZ573/09WVx6R4jC4yipg84WzefsJl3f9Y4D9xOnbc8LQjFLwI+EyohwtL\n0KFDh5KMFtxignRbSW7IyxWvX79O69atU73UqeNeh7t+vXpKqIc3HNgO4ERCKPkRCG/zMF0dM5au\nz51LkS/0ojSiMJj8IEuLgkCAIgDvN2b1mMQMs1ypnPGESwi/EOjz5MxAHwxvTAXyuDYG9aQvrced\njlVOoHJTnl0Mzpi/XanixAr297PxrLMHHk/a9YTHvJvuzshz/+HbPtor86IjOQg2A5qw6zzqpfrU\nsfcildVv5G/04+ftErRH0PXv9AqhV1NTmyBNuszdFd5v3GHoqi4MZe2EegSDwg49Yju8O7QxIcBY\nYigfu1zV9Ne2EwQPPnb0l2nuVcolz7O160fyvI/A7W+Ul/vSIZdfffVVGvTyy04hmD3tul79+op1\n27bbPlk9retLvu3btxvdlUggiBaMhzUdPnyYiha9HYFQ5yf2eqeLHk8MgRM7Jn/zp82cmcIfakY3\n5i+g6BUrKNwmNoK/xyj9CwKCgHcQQJTVpAqiBfLcFoz06DZvO66SHVuWpvwJ+CpHZNBR7EkFO6Da\nIFa3g6uTQP96rECP/CegY887tZNm/c079r/yjr13BHsI0zUr5VPRRBEVdlhfexeKu/89i2Epcuce\nUfMk5XpXvszUl0893mUPOojkOp0XNt1sItwmpe2E6jhYb12TNgjW955eR/avT1HsmSaxBKHejuCF\nB/Qc684nJNCD99fV+5m3MmkXlXi2JTnK7272VgQPQ4hgbGcMbV7QJPV7Yjf+YM+7U1nqTusnBT+f\nCfUD+venoUOHqjH26tWLPv7440SN90t2fXnp0iVVZ9ZXXyWqrq+Zo6Ji9Q7Rb0KqO5lZ2NSkTyL0\nfVKvYTY+/xPT1pdffklPxBnwJqZeoPNGsAclCPXXZ88RoT7QH5aMTxAwIbBz7xnCLih0gru0LWcq\n8SwJHXB3euCetXKb6/d1sSfOcN+IDwg64G05AJfV0806FqY2/H2co4PGV+N0JdDrnp58JHau3hbs\n4W0Hu8KgP7cei+d9Bi4Up30Xu1kFgd68w67HmlzXdg+Vou85aBV2vOHlpVHtQrZBuZKrP91OCRZ+\nNf20fD8vdNzb/mle89Uc+Mmcn5T0taibtGztQVW174jfjCYm8sKveoW88TZGcbJz6L+L9Fir6wYv\nEvXYeBdCPWjTPyfUAk7dxP2BoL9kxX51h1gExQt7x6Dc3GcwpDds2EC1E9C0CMR5+Eyoh3DbsmVL\nWsSeYCaxFxyoqCDoklmotQMoJiaGJjDfYI7Iqql69fi6Z7osEK76VMKTsWAnRlNi6uk6dtcaNWrY\nZXuch6i9KZHEYDYlPlWZU2pAAFE1taFgozqF2Pf57c0Qf8wfkVNB2NG9ER2rWvr+l5sIn84PlzU8\nvuzad5YQVRWUNbOzbRV++7G7qlRuTDv0itn0xyzYr2HvLIUL2KtQmKokOtmkXhHllx1zgQD54+dt\nDRegMAIePHaF0aarnXyD4Q4T+D8IXft2Pb9XLSEo1/eTH4lnFApB9F0O8AX990Hsn/1O/3/Ccw2E\nciwmcGJxf73CVLead7zZeAIRosFqgurVwaMX1S3UkkDdOpSnnNnSKZekm1i1BgI9qFB+Z1Wwzg/f\nQ59/848q6//mbzT3o9bG+4l4AsPeXa3K8OeVnrXuGEejsSBPwEPhncpSWBj4mnwm1GNiU1iYL1mq\nFF28eJGw8z5r9my1e//kE09QgQLOxjUXLlygOd98QxMmTKA9e/YYuGz8808jHaiJQoUKGUM7evSo\nkbZLbN+xw8jOnTu3kb6TxB9r195J9RRd1zCY/fY7Sse69UKCgCCQvAjs2HOatnOkUfhtB2HHcS57\niYGAlBgXj+ZRdWdPH2GhIazbnsPvAj3GVbV8HrXr+f2UR5RaBNwgwsc6SLujVDemP9YouhBCx7Lw\nepiFsZLFsps44ych2FconXDkXpxmIBCUFgDR0tzF/1N9hIeHcFTbEvEbj8uZMaEFPdp7obpr3u1b\npddfnu0JZi3cadTBggV2BEklLGIwHk1IQxi1jgunHVrAPssedzryuAY/X4u0vveN6Bga8+k6taBa\ntGwfNb/vbvI0noDu23rF83jp2RrU8/VfVRFca0LtBWpQ/iQsBme915JOn7tGT/T7gS7GRY/Vgrp5\nbFC3yWvSo0cZ/NPDw9CAt35XrO17fa+8M0HlSu/QowAnMHeKoeoghfyBO/M7laWw0+9rwT4N7xbc\n3ir2wcOAQWgd9kN/4MABp97gCQYfEPSQznNwJiv9yaueKlWqWLN9dh8SZ8Taq2dPev/99932m4/d\ndp48eZIqV65M7hYi7dq3N6LsxrCh7J2QHt+dtnMnYwj0urf4vTpfuy6l5QVUluW/ya5EoD8wGV/Q\nIWAXHAeTQORRq2cV6Jv/rI/+eTcS5RDYvmHvJ6AsLNC0bFycjVJ3qyBFdaoWMPzNY9GwnlVb7imZ\nU/lyX8fqIwePXlCRMKGycSfCp+rczZ+law7Q8ZNX6NEWpQ33f9jhHcI72oePxaqJmqtPHd3UpecR\nM9+dpru+tNiI9mptC9Fgl0xrb812ut+y4wT1GrrUKU/fwI1i98cq3tFvZrueC+gY42Ymu3HBE02v\nobHCteZ9mAN5QejWNI09zcD1JQhCKwKMJQedvxhF7fmU4CovRkGYd7dHK9jqoidHf67auHItmuYv\n2U2F4r4Xmm/TP8fpVQ7adSlOuNf5eN8/Hnk/C/X2i65Vfx6hwWNun7joerjCgPaZjhXuyHuTuT1J\nxyKghXp4OVwf5zzF29j4XKjHhKBzPmbsWBoxYoRH8+vapQuNHj2acuXK5RG/t5i00OyJUI+gUrO/\n/loNxZ2QnYGPeIBHXV7orGQDzjshPT53/d1J+yml7uUX+9KNH36kTNOnSTCqlPJQZR4Bg8C+g+eM\nXXrzoKqwoWjuHOnNWfTP/07Rc6/+YuStmdeJdyKvU7Ou85zy7u04m6LjIp9i1xLqCAs42NO4yfbH\n23ezXjD8xfua4Mt97eb/eAFyw+i6ZNHsxkLEyPRSYu3mo3Tx0m21DXM3OOlozG4iPSHYMGAHHXt+\ncDkJ1ZQ7VW9BvwigdJWFVTPZjQunDeu3/GdmY7WSzPG8EPVml58w8pwxoXmyYwwbA7gYPX32mjq1\neH9Y44AReqN54Yv37FpULJaxxs752W7DWcXLCcC4m38PnWfXned485R4xz4iSbYDdu1KXnwE/CHU\n+1T9Rk8Z+vVvsNHsyy+9RGtZVQR+56FiYz40QICqBg14Z4c/2bLdNmDRbQT6tS67qtRC/UEOXlW4\ncPwf0507dyqBHnMpzWpJQr5BIKJDeyXUw71lWN06vulUehEEUgkCdxfORvh4QoVZUDOTEiIjwzjo\nTzo6xcKUFkJ7sBrEhxzkCXTi9BUl1NeomM9clWpXyU9/sKADOsC75v6gkJC0Xosq6sl8EuMj3l17\niIiLT3KT9aTGVfsI3tW0YTFXxSofcQcg0MPdozeiBUM9ZQYvDN9gnXMYOs/6fgd1bVfe7Zh8VYjg\nUA3ZliAp5M3oykkZj9RJXgT8ItTrKUDdpnHjxuqj81LKtVnTpsZUYOQ7m+0HrDR4yBAjq8n99xtp\nSXgXgVDWc0vLNhw3fv6FbrHtRtosWbzbobQuCAgCtgjAm837bzSmPsOXqXK43atUJjdB9QC7jq/2\nqq3ya7EnEi3U64as+vljBjUk6F//wnrl1crn1WxyTaEIYDcf+uJWW4XknC7ez2F96xH00OFdBkan\nVu9GydmftCUI3CkCae+0Aalvj0CRIkWof79+qvAb3hFevHixEyPyfvjhB5X3aIcO1IF164V8gwCO\nkSPatSWOR043vo81DPNNz9KLICAIWBGoahLAR7y3Vvltv3rtJrVqUlwJbVZ+u3sYVWKXPBer90A/\nWPvptuOVvJSBQJsHS9KcD1tRpbLeC5YEn/NYXBYtmIX9z8fQdVZ7ERIEAhkBEeoTeDoICNW1a1f1\n0awfsY99nbd3716dHe86cuRII69lq1YEnXfo2uP6GPtM1zSZvQIJ+RaB8HbtiJVE6fo3c33bsfQm\nCAgC8RCAES3o0pUbNOGzjRTCXjzaPOjaU4u1gXp+dD1oHYvc+w6BXNmdbTSSs2d46mnaZS6fIi2l\nbezNCQa9OBkQEgQCGQER6hN4OmfPnqUZM2eqj5lV58HDjSuC7cBOdllpDkCl9exRB7YC+3hRAH+o\nQr5FICR/PgqrV5di2K7h5rbtvu1cehMEBAEnBGCIaab6NQp61XuNuS9JCwJ2CCDA1i02FEbApsiI\nEHprYH2fe8CxG5fkCQLuEPCrTr27gQVKWenSpemfrVtdDqdo0aIuy1BQsmRJunL5suKBweyVK1fY\nBVoYlSjh+S6U2w6kMMkIRLDaU/Sq1Wq3PrScf30RJ3kSUlEQSAEIQCUO+vNvffSHmk17jipqptGf\nrDNuYbAII1mzdxToOyMSKYLxCAkCyYHAfewWtULpNsovfE423MZOvZAgEOgIiFCfwBOKiIggBCFI\nDrLzgJMc7UobSUMgrEljSsOnJTcWLqT0rw6hNPyshQQBQcA/CDzYoIhyZxkZERpPT/rI8du+36E7\nD7L6O4+K8yvun9FLrykRgRy8SMRHSBAIFgREqA+WJyXjTHYE0oSHU/jDren6F1/SjSVLKKJ162Tv\nQxoUBAQBzxCAsN6xZRlb5pkTW1DMrdg4iVqvuWnDolTPpLaTjQNVCQkCgoAgkJoREJ361Pz0Ze4E\nFRyQGMzKyyAIBC4C8FsO1Rp8tBoEdvR1Hq56Bz9wZyEjEwQEAUHAuwiIUO9dfKX1AEcgtGQJCqlY\nkW6uW08xbPMgJAgIAoKAICAICAKCQDAiIEJ9MD41GXOyIoAIs6Drc2+Hpk/WDqQxQUAQEAQEAUFA\nEBAEvIyACPVeBliaD3wEIlo0J+Loxte//Y4cMRJcJPCfmIxQEBAEBAFBQBAQBKwIiFBvRUTuUx0C\naThOQPhDzcjBMQeiV65MdfOXCQsCgoAgIAgIAoJA8CMg3m+C/xnKDJIBgYiOHYlu3aK0+fMnQ2vS\nhCAgCAgCgoAgIAgIAr5FQIR63+ItvQUoAmFVKhM+QoKAICAICAKJQ+Dk1aP07Z5JqtK1m5do34XY\nKN0fNfolcQ0JtyAgCNwRAiLU3xF8UlkQEAQEgdSNwMGLu+nng7Pp5q1oj4FIQ2mofoGWVC5nDY/r\nBCrjxRvnaMPxZbT3/Fa65bilhnn15mVKH5qRupYdROnDMvll6Acu7lLjalO8O4Wl9Twa6oXrZ+id\nTX0pb/pChEi/x64coI6lXqR7clS3ncd/lw/QWxuetS27ERNF4SGRRtnMnRPo4o2zxj0SkSHpqVu5\nV5zyjl05SPP3TlF5Ry/vpwIZi1K5HDWoQcFWTny+uIm5dZM2n1xJ1fM28kV3tn0sP/I97Tjzp1PZ\nLUcMHbm0jy5Fn1cYjm+4wKnc7uYSv6uTtg6jGMdNyhyenY5c/peeumcIFc9azo5d8oIQARHqg/Ch\nyZAFAUFAEAgUBNb+9xP9fWpNoocTfet6UAv1Z66doG/3fkr/nP7DEOatILy0qi0vXlqwUNzHWuTV\n+xNXj9C4jbF9ls9Rk8rkqOZRf1P+GUFbTq1WvGejThh1Pv77VZV+u94cFgazGflIHLz0P+M+a0RO\nCk8bQUWylKFS2SpRSJowowyJ3ee20Jmo40556XjxY6Ur0Rdp+5kNRvb566coW0Qu495XiX3nt9FX\nuybSiauHKSRtKFXJ3cBXXRv9YHGz9NBc494uERVz1S7byIu+dYPe3TyQsNCz0sTN/VXWqzUmUX5e\nPAkFNwIi1Af385PRCwKCgCDgVwQcFLs7jUGMZqFP09sbnqcLcbuy5vw31z9Ll6Mv0LWb7gUR3U4g\nXiF0jtnYi3DNk/4uqpXvAaqcqz5FhqZTw91xZhNN3zlWpVcd/YGq5r6XSmSr4JOpYDd2xLpuRl+3\nKDYSr5HhIvH74fmGQA+W/lUmUPbIPDR120hDGHx9bWd6t+EPagdfN3P44h6V7FNpDOVOX1AtcDLw\n6URkaHrNYlxfrv4hLdr3Ba3+70eV93S516hk1opGuU4UzVyGauV9gNYd/0XtQvet8g7lSldAF/vk\nevzKIZrIgjDe75p576cSWcv7pF9rJ1qVyZofwScgxbLcoz4leQHljr7iExKzQN+9/FDKl6EIvbf5\nJf6OnlFV39rQgyY2XOh0suKuTSkLTAQCSqjfv38/NW7ShNo8/DCNHz8+MBGTUQkCgoAgIAgYCED9\nBJQxLAtlMu3iIg2hHsKHOb9M9mr054ll9B+rVQQrrT++VAn0NfI2pifLvOwk5GJONfM1oZLZKtJr\nazupKUI49bZQD3UMqLfonfbEYHviymGat+cTVQU77H0qxy5IkPFStfdp55mN9OHfrygVK+wa31+4\ng9H8znObVfr9LYOMPJ0YUXsG5UiXR9/yO5KZ34Wsxn2msKyUMTyLca8TPx34Sgn0WFT0rzKeskXm\n1kU+u566dlQJ9OjwwcIdnd5hqORsO7NejatQphJeGxPUuY5e+peyhOeg12tNNfoJSRPisfC9g5/d\nnyd+U3Vr5G1CXcq+bLQzqt5s2nNuK73710CVB7uIx0q/aJRLIvgQ8IlLyx07dlD2HDkoJDTU7ad4\niRJ0kKN6nmTXgkKCgCAgCAgCgY8A9HpBBTPe7dFgC2aK5bvpiPaIPxCZIOSCoEt/+PJe2yFmi8xF\nOSLzqrLzrKfuiq7dvOKqyCn/avRlp3vrTVoW9E6y2k0Yq79UzFnXWuz2ftnh24H3upd/Ix4v1Hew\new5asG8qORyxu/8QOtEnKAvraJfPWYuKZC6t7vFn6B9PUNTNa8a9J4mfD8wmCPVQ5XmRFxf+EOgx\nzlLZqhhzGbH+afpgyxCaves96vXbA9Rn+UM0+Z/hNH3H7cWPJ3NLLM8pNkC+cSuKd+PLUrrQDMbH\nbKeQUJtm1R3YV1gJi83CmUqpbJyg6EW6lU/ugwMBnwj1p0+fpgsXLgQHIjJKQYARiN64kaI3bBAs\nBAFBIAEEzrG+M6hApmIJcMYWeyr8e9SYn5jMQtWmEytcjiJtGvf/Yuft/kTpvl+4ftZlGyjYeXaT\nEpC3nV7vlu8ZVqt4m3dfW939lFs+ayEMQUFQ44DwaEd18jc1sqFjDsL8ymSvqnTN36w7i56rMELt\n7I+tf3uRgFMZT2nZoXm08N8vlN7+i5XHUc50+Tytmux84SERNKDqRD6JeUkZGu/iZ6DVhnRnN2Ku\n66RXrnrBeFem4klu/+DFWJsHfO+s9hC60Qq56ugkwY5AKHgR8In6TYMGDWjMmDE0aFDs8dyihQsp\nJCQkHmq79+yhvn37xsuXDEHAlwjEHD5Mlx59jEIqVaIs37o3UPLluKQvQSAQEaiTrymtPbaEqudp\n5NHwimSO3RUslKmkR/yByNS0yONK/SJXuvzUpFBb2yFC3/7Utf9UWUYbDzjY7YYBIwTk9/56iXel\nx1GWiOzx2oJAP2nrG+yxJIYSOt3IGpEjXv2EMjBOfVpQIINrQ8ncbDugCXreeTMUUrcvVHqbTl87\npgR8XZ6B1WwKZCxGR9m7yi8Hv1bGwrrM1XXlkYX03d7JSo0L6j+50/tWh95uXHg+q/9brJ6TLi+R\ntQLVK9CcMoRmosKmUwldnpzXw3GnYNn5xGflkUW0gRdIZ67FGhprL0LuDFyj2G5FG9FC/94V3W0q\n+5efbeXc9V2xSn6AI+AToR4YDBwwgKKjo6le3bpUv779C1OXywoWKECFCsX+WAQ4djK8FIpAyF13\nUWiNGnSTd+pv7t5DoSW9pzOZQiGUaaUiBB4t1ZuaF+vC6hKeCZQwoIThbAS7MvQVQeg8znrjSSGo\nC1nnhp1T6IvDbWVYyG13kdtOx57ubTzxu7Ib0P1Vz9NEJ40r3EVqrzjYAbYT7M0C/dPlXqVKueoZ\n9ZMr8e+FHUZTeTLcFtyNzLhEXpNQ/+/57VQ3fzNVMm3HGKWG9ESZgcpgWNfLFpFbCfVXoi/pLJfX\nNexBac7uDxnPTKzPP4aNOAu75PVVAVy1jt34glN3o+t942QT4FTIN3t5lxuCdGKJXwV2GVojXrUj\nl2JVu77c8bZRBleUcAmrCQaucDf6bPlhFJrW2duQVo0CrzuhvnDcQht8+/jZCgUvAj4T6gHRkMGD\n3SKVMWNGatOmjVseKRQEfIFARPt2Sqi/8d13FDo4vgGYL8YgfQgCwYAABAmr0JvQuM2GswnxJkf5\nlpOraf6+KUlqCoawMHy1knVXHfrln2x9zcrG/tVrUVkXLiXtBHt4eoGaxK6zm40dem8J9BjsoUt7\njDHnduNhBgat4WkjlY73wUu7VZ3omBtKoMeNPpXQjW07s04ltfCv863X9ceW0ix2GwnCLjh2+P1N\nu87+xTr0t3/3O5XuR3XiFjHuxvb1/95Xfv3d8diVQUj/sNHP8Yp2xRkhw5d/o7se4ffwfkMl6VzU\nKcMQezv7sB+x7mmCdyEYI2s6xYtZTcXYzagrgqoRDH7xLsBFKd7lhFTHXLUl+f5FwKdCvX+nKr0L\nAp4jEN70QbryxjC6vuB7SvfSQEpjoy7meWvCKQgIAv5EAIaGzYp0StIQCnpoKwDBTPcBQ09NlXLX\ndSsgWQV7+BOHeg8EXajceFOgxxhvsoqJpoSCVOGU5caNKFZHidUlxylFtTz30sYTy9UiJGdkPqXu\noT3poN2GBVvr5uNdN51cQauOLjLy/z69RgmW3vQoY3TmImEV6K0efFxUU9kNOCZBUgxN09jYXpj1\n9bHQs+rVwxAbEXun7xhH64//qvz/L9g7lTqXifU7jwHFmIzR7VyMmucSabKlgCclEerN6ARPWoT6\n4HlWMlIfIpAmfXoKf/ABujF/AUWvWUvhDexVxnw4JOlKEBAEkohAsazsz5s/3iQI5y1YDQmEq3YV\nOHPneDofdZqaFXW9qLAK9lBpAXX/P3tnASdV9cXxM7WzwbJ0d3cJEoqklHQpoRjE38DCRBELO8BA\nTFQalBJJEVA6VJBO6c7Nqd3/PXf3zc7uzmwxM+/NzO/4ebz77r3v3nO/b8Dz7jv33Hqv+MTlRjbu\npT/6VhslNpXaKeOgu8ZC5+bvrjHaObPsrjs26DlaD7/E/CIWyLJ88+8bNL7FVLHZU9Z1d+7a8GYe\nuyK5ztC/dOtXGUJy5tSXN3e85dnzRxpOoGLCnz47tyh2ezokdjPmzcK2ilCrrkZ9TvqiPPgIZL80\nP/jGixGBQK4JmPv2lXXZBQcCAiAAAnkhwKECGxa/Td6y5NgPFGu9lu3tbNg3KpHRZ97XLyKskOuO\nrokOz+E1eWGvsjjT9Z4YsZbilRbfES+YHVD9EepX/X/SVeTNVtPpjnI9sh0zF3LEnC6VBol7+sm6\nvOOsaxjGHBvwYoWlx6Y5Wxvd6B2xw2ol57UaCfaVz86gZ534d3N7mbukeo4UO11MSF2czRlmQ4TM\n5z9y+oJwPS3sqkEnQo+LAxKYBFR9crPnzKFdO3fSs88+S4ULZ9x6OjBxQutgImBs2YL0ZUqTdeUq\nSomNJV10dDAND2MBgZAhwNFdOMpLfoQ3S3I1jpQ2eAMigz77/4XypkU7L26Qt6w6MZf6Vhup3J7l\nzG4fHOVGR3riHVl51112xVF87LPc4KUMJf48N3dexJx3t2CTy66lhS7ldJW0mPWcZuEwmBzako+8\nyJ0VBlKtIo3lLT2rPECbz66kBHusCGv5nXzBKSl2qPWXXLNckqFDuT+OtV+rSJM8d81t2JNteb6P\nXbeKRqTuaZD5Zl634LoYO3M5X7Pxz8xYLiWdpeKRZWTadRdeXgDraQEy/91QwpRWLVQvy2ZqsjH8\nERAEsv8XycdDWLRwIc2dN4+GDx8Oo97HrNF83gnwDEiY2N04afIXZFm6jMLvHpj3RnAHCICA6gQ2\nnF7q1YWyHP2FNyMqFF5MzjR7Mj55FluR68Lg8yRs0E/ZNU74QNtpeL2X5Qz/rAOTaIMIpzjpLxHu\nssn7HmOMe2ozt/mukU94Z1lPwga/It76guD6AsGG66ONJsi4/dzPN/++TmNv/dJvBubfF/5UhkfN\nS93pTOcl8dk/Y726UPb3k/OJ/eT5ZWmE2IMgc3QbRTdee6GIa2QcxbjnMg5VeXvZbkq1DOdj1/c5\nr13DWzozkQgYAqoa9QFDCYqGLAFz3z7SqLfOXwCjPmR/BRh4oBNgF4YmJe7I1zCKRpTMct8KEXud\nd/rkkIGbziyn3tWGZ6mT2wxXg/6hui87XXAG1XxCNuFrw559tznePkevUTYqcqe7MpPLZb4y/HiG\nnL9uMN8z8f/JzZ5ai8Wn/hDXLzlKDP689stRjkqnxe/Py738dSazxFmv0/xDX1KK+G/35S3it3ba\nozvQNrGzsSKus/G88LmwuTjxBnFs1HsS3ndAEV89W6V9nH1LAEa9b/mi9QAnYKhcWW5CZRc7zDpO\nnCAD9lAI8CcK9QORAMeZPx13TEZdaVqyXZ6HUL9YC+LDW6JEBuEQj+1EqEFPciltoyAuDzdEZanm\nyaDnivyl0F+GPce/Z/cg3sGUWbvbydU1ok3h8BJZxuKtjG6V76V1YiMq3jSJQ0TycytkLuat5j22\n47qT7uFr/4rddRt6rOupIDv3Kk/3eMrX69IXCvOXA0/+/VeTLtCaUwtkMyWEu5Lr1yHOrFCwBl29\neFG+tJ2LP+HcNMy13z9PL3FeVsom9KWzEhKaJZD19VCzqkIxEFCHAM/Ws1hEJBwICICA/wmwC8JX\n/75KU/e8LWcs/a9Bxh4bp836VxYGkMHF+HKtxQtjvxYuJIp0qNBfScozLzxdePhr6XLjOkPvWkkx\n7G8r043OJZwQu4oudi32WvrOiumuheM3DcviF/6rWEDKsctZHm7whtf6ddcQu5g81eRDZxFHw3En\nB6/+Q+9tG00r/pvlrjjPeS3FzsiK/HrsR7lxlnKtxjnSVEDuXMt9czhKDjOZWdigf3njUGc2x7LP\nLLxWQZHPd4517h6s5K08PkfkxcnLPmLNh+vLjVIH58AhgJn6wHlW0FQlAmHd76KENycQu+BEPD7a\nbz6eKg0X3YLATRFgNwF21TgVd0S2Y3Ek0b+XNhP7bvOmSvkRjqLCs8h1izSTriL5acOb9zQu0ZpW\nn/iJDlz9m8ZuGET1ijWnxsXvEMZXarQRjt7Cs72K3FX5PioRWVa5lGc22B9u+CadFLuG1iuWdTdR\npbJi2LNbRLNSHZRst2fukxcFu/rG7760RRqERhHRpLaHTbCixIZFjzd6lz5J23DpibV3UdtyveVG\nUDP2f+Tsq5bw7eax5lfYEGd9FPlXbFDFcfIz68Ux2JXNkI7d2Ecc4pMX1ZYpUFneahP3TNn1CvFv\nizdL4vtvNrY9G9HD642jb3anvkS8tfV/YpfW8c4IRorO/jyzQb7n8lbx5WIR/SN8/puV6ihdn/g3\nsezYDDl2RZ+htcdQy9KdlUvnmV2J+AvC/MNfibCXF+iZP/pQg2KtiBfELhB5irCrToe0CERKHs6B\nR0AnZgtS1FJ70KBBcqHsoYMHqUqVKmqpETT9Goyp72jGtLO7gfUTYRpnzpzprgh52RCIfXQ02ZYv\np+jZM8nUrFk2NVEEAqFNYOmx6cQznZmFt7FvWLxVhmz2Yz4gDD0WdrHgTaI4qszOSxtlnhJVhQ0b\nNuAqRtd0xg1nNxHeAbNUZHlp7LHBwj7hRhGRpo4w/nOKTCM7uIk/2LBcc3IBbTyzLMtuqq7NDqzx\naLYbMLnWvdn021sfdr5MZW6Lw1B+cEf24Xk3ivUBrka8axts0P+vwWsirnyYa3ae0q9svE9ukuR6\nkzu9+OXk47/GuFaTYRsH1UpdZ8AFs/ZPkj73nOZ47hwBxhvCLipvbElfIzGk1tNiN9n0WXxv9JGX\nNng2fsnRH+mvC3/IdRzu7n3mlknEX42yE56RX3TkW7dVahRuRA/VfYl412BI7gns2rWLmt3q+YXc\nbrfLxpo2bUpbNqfusJz71vNXEzP1+eOm6bvq1KnjUb9y5fwXIsyjEgFYYO7XRxr1lp8XwKgPwOcH\nlf1HoHqhBsQz05nF3eJDjqjy7e43ZVWjzkST2v0qjPdEZx4X8K6ZXIeNehaOf84+3fuu7JA+15zH\nM5Tbz68RPvepu6OyewxHkfGlsHHbqeLd8mAjlA/FRYVdJcoWqEI8o+9PaV22hzOWfOZ+c2OMs/HK\nLNedXkyJtji5SJOZ8ji94ZbB7iEJaa4ein7u9CoSXlL+hlLY5UfMSvN/FaJrKLfI8z01HxdGrkVu\nuOTNuOr8O/2s3Qr6/eTP0pjml5z9V/6i++u+oMouq/xbv7fOMzRAvBxyeFSO48/Cv7Eq4usNL87N\njSi/1S1neffZ8/IWXoTLX0B4sTQk7wTMZjNlZ2+x0e9vgVHvb+J+6O/vv/7yQy+h1YXpjjtIV7QI\nWZcto5RXXyFdeHhoAcBoQSCXBHjTJT5yI2y8KWJP29LeJAyMcEOkXChZKrKCLGZ/57WnUte0nBOu\nPWzouMZX33R2hbzHRqlGPbsq+FOqFapPfKgtnkIW5kUvdu1oW65XXm7Jdd225Xvnqm4R8Xy7VU73\nFXd3E++guuviRvmywV94vCnMgNdA1C/WUrrj7LiwVv6m/RWJx91Y2LWreemO7orylNe8dP7Cdeap\nkxCpXLNmTcrO3mrZqhVt3brVrzRUXSjbr18/emXcOMSo9+sjR2f5IaATLk1hPcX/6OLixGZUK/PT\nBO4BARDIRKCQiOM+rM7zzlyOcMOzrjwrzAsmn74l1Z/79rKpO2Y6K4pEueiqrpdyk6YnGr8n8ziC\nCiS4CfA6DY6Qw4a2r2aaeR0E73jLXxN+Ofq928WqwU0Zows0AqrO1Pfv35/4gIBAIBAw9+1NlqlT\n5YJZc8+egaAydAQBzRO4pURbuRCSFV0iDCd2AeG42reKRYG8gDM3wq475aOryarsOsEzrZDgJtBG\nfE0oaC4iFij71sWJvxrwIm92r7I6LDISTXCTxegCmYCqRn0gg4PuoUfAKNYqGMTnNtv6DZR8/jzp\nS6a7DoQeDYwYBLxDwKA3UM8qD8pt7ndd2kSxtuuy4by4OrSv0M+pDAx6J4qgTvBzzu+GYrkBk2RP\nFIuGPxQx+8s4Ixkp+xPk5n7UAQE1CKjqfqPGgNEnCNwMgbB+Ig6wCBhlWbjoZprBvSAAAi4E2pRL\n//J17PpeucjU237SLt0hCQI5Eth0drmMOLNS7G7LkrqgFGupcgSHCqoSCCij/ryYHY0uWJA4FCYE\nBNQgYO4ljA+DgawLFqjRPfoEgaAkwJvrNCuZHoM98yw9h6pURInBft1yRcmiI8I1wuZIXSTrzEQC\nBG6CQLvyfWjMLRPlZltjb51CvasNv4nWcCsI+IeAptxv/v77b7ootjP2JGfPnaOEhARKTEoNbeap\nHvJBwFcE9MWKkan17WRbu47s/+4mY/16vuoK7YJASBHoXe0h2nZ+tRyzq4HPGdP3feRk8cfpX4ij\nqOxKi2XPBUeu75F++Jk3eHLehAQI5IMAvhblAxpuUZWAJoz6tWvX0qDBg+nChQuqwkDnIJAbAmFi\nAy826i3z58Oozw0w1AGBXBDgzac4Jr076V7lPoq3xcqicgVSo97wub3LDpiRpmh3tyIPBEAABEKG\ngOpGPW9o26Fjx5ABjoEGPoGwjh0oITqarL8socixL5LOZAr8QWEEIKBhAl0qDc6iHe+gmdMumllu\nQgYIgAAIBDEB1Y36eT/95MT72muvUe9evUivd+/qf/bsWerUubOzPhIgoAYBndhFLqz7XSJe/Spy\nHPuPjDWqq6EG+gQBEAABEAABEAABJwHVjfqxY8dKZdq2bUsvv/SSUzF3ieLFi1P16tWpbJky7oqR\nBwJ+IxDx3LMU+ep44k2pICAAAiAAAiAAAiCgNgHVLZL69evTsWPH6Ltvv82RBRv1+/fty7EeKoCA\nrwnoRRQmCAiAAAiAAAiAAAhohYB7Pxc/ahcuXBlYLl++7Mde0RUIgAAIgAAIgAAIgAAIBA8B1Y36\nu7p3lzRnzZoVPFQxEhAAARAAARAAARAAARDwIwHVjfq+ffpQgQIF6Mdp03KcrefNp4oULUpDhw71\nIyJ0BQIgAAIgAALaJGDf9S/Fv/oaJbzzLiX9OI1SrFZtKgqtQAAEfE5AdZ/6yMhIat68Oa1evZpK\nlCxJ8+bOpaLCcHcnvPnU9evXKS4+3l0x8kAABEAABPxMgMMS2//+h8iWB2NSpyNjnTqkExM6wSaO\nU6dIX7o06cTO03mRFLud7Fu2EPHi+xRxuqVJjuFy4x5/gqy/Ls3QjWXhIio4d7ZzEb/jyBFKvnQp\nQx2+MDZsSLrwcGe+fI5btzqvlYSxUSPiiF/+lhTeZFKEC84rR2/ryewcR4+KZyIeCouIzsfP11Cu\nXOp1Lv5MsVjIvm2bHA8ZjGRs0ph0HqL8eWrOcfIkJZ84kcqkUGFEXfMEKsTzVTfq//zzT2nQK89h\nwMCBShJnEAgYAik2m/zHXu3/AQUMMCgaNAQSP/yIkr6YkufxhPXpTQU+eD/P92n5hviXXibL7DkU\n9c7bZB7QP1eq2jZvodghnr8+x/z+GxkqVszSVsLHE50Gva5oEYp67z2Ke2g4OXbuJPvWbWRq1VLe\nk/jpZ3JPjcwNxPy2igyVK6Vni3/DYgdn1SNm3Zo8GbDpDeYvxf+W8m/KMmeuGNO7FHZnx/w1dJN3\nJf3wI1l+/pkce/Z6bCnqw/fJ3Lu3x3L7wUN0o2s39+XiRang7FlkbFDffbnITXE4KP6558kqXtTc\niXnwIIp8/TXSiZdkCAgwAdXdbz76+GM8CRAIaAKWJb/StVa3i11m1wb0OKA8COSHQMqVK87bzMPu\no/DhD8nDmSkSSh6fFUk+dVpJBsU54aOPpUHPg3GIiG65EZ4FzmzQuzLiNq6370gpiYkZmuP7kj77\nXOaF3dWNCm/dQrqI9Fn3ZJfAE6b27dw+D11Mpghe4ssCv2i5CuuiExvt+VPinnyakr7+hoSlSilX\n039b/tQh4YMPKeH1N8ixdx8ZGzci8wMPOH/D+jKlnarEj3mW2HB3J8nXrmUx6M333ZteVcze3+jT\nl1JiU3dKTi9ITyV9NzWDQa8vX55MrW93VrDMnEVJX37lvEYCBFSfqVcewS+LF1OZHOLP8+ZT3Xv0\nUG7BGQQ0QUBfqiSxYWP56WcK69BBEzpBCRDwF4GUROEmwSLcRqJeGZeaFn/aNmwkB4cgFi6WkS++\n4Mx3HDlKtjVrhEvDEWdeICfYwE546x2yLkqfTc2tu0rck085hx49eyaZmjWT18zLumwZxT32uLyO\nH/dKhq8a9r/+dt4XPmIEWVespOTTp8kkNmdk4z5MGPKKmHv2JBJH0jepYaN5j42IUSOVYuc55eo1\ncuzeLa/Ndw+kyAlv+n0GmF9GbMuXSx1i1qwmfUyMUz9/JWw7/pJfnvTCHome/mOWryT8bNgd5/qd\nqRthJr73PkV/k9Wwjn/qaafK0dOnkallC3kdNf4Vsv7+O8WNGCWv48XLQ4H333PWVRLJwt5JFOsk\nWAw1a1LM0iVKkTxfa9dBuuMkvv8BGcXvxiTctSAgoLpRX7JECaooPi02bdqUSoh0dlK2bFlZl++B\ngIBWCJjEb1dfqSLZfl9DycK41xcpohXVoAcI+JyAY1+qe4KhXr1c9WWoX08a9SmX1ZmFzZWSeahk\nmfeTNOj11apR8uHDub7T/vffZN+0WdaPeGaM06BXGgjr2pWMwoXGvnETWRcsJOtdd1FYu7ay2Cbc\nVhW50buPkpRn85AhpIuKypCX00XypcsUKwJQOA4dJrUMetZRJ/7tNDRoQI5du+h6t+5kuv026ftv\n37lLuBr9SiS+WOgrVaKY5UtzXG+Q05g9lScKNyYWdn2Rfv1uKhqqVJG68mSO47//stSwLFxItj9S\nn1GYeKFSDHqlYlj79mS+dyhZpk0n6/wF5BAvWQbx+3GV+DfedF5Gf/+dM60kOI+/4rDEPTaaCm1c\n7/eXMEUXnLVDQHX3mylTptBRsZAnJ4OekfHmU1z3yy+/1A5BaAICgoC5Xz8isdDNumgxeIBASBFg\nQ5DFWK9ursad23q5akwDlcIffED4Nb9KMUvy9nffunadU3tuw51EjnnamS0XWqZduRqSPKMcPvox\nZz3LjBlkFYEncitaMehZX/YNj576rfji0IlSRFAMq/j6mSC+Ulh/+kka9FwnWRjRKQkJnPSJJKe9\nbKaIaHs8C+5RdB5LyLY5fcFxxBOpX1sy1454LP2ZKS8ArnVs4usLS1j//qR3M5HJ6ywUd6mUCxco\n+cwZ19uRDlECqhv1Icodww4yAmb2RRX/Q2IXHAgIhBIBU5s75HDDunTJ1bA5mgoLz8oGg7CrTTjP\njotILXkRp5EuIgB5ctdx/fohI7AoHYhZZEUKzptDkU8+QUWOHCJdmrtK/AtjleJsz1oy6BVF9YUK\nUYFPJpGxVk0lS575dxYx9kWKnjPLp245kWOFq1jaswwfMTyDDsoFv1QoX5p0ERFKtvOcrLiWiS8m\nBvEV153oi6VH+WOXH1dxfdbGmjVcizKkTbemumtxJru1QUDACAQgAAI3T4BDnBlvu43s69eTfe9e\nGa7v5ltFCyCgfQJRkyZSsvAx5hCJuRG9CFlcUPgHh7KbWmr4ytTZXNOtt3rEphPrFIyi3C5CTdq3\npM/+cshLRfSlSilJinjsUUqY8JZc48PuI9lF49KiQc8DsYmwnq5RePQVK1DMqpXZjsUJwAsJdo2J\nWbZUWMn2LC4x3DxH57kx4G5nT+H3DXWmlYQ9zUg3tW6tZLk9c2hLXh9hE//fcBX7jh0crpjtAABA\nAElEQVTOS71w9fEkRuH6qQj/HaQ7su9PqYtz8BLQlFF//PhxWigWG82ePZu2psXL7SfcGjqIxYdd\nxSxQhQoVgvdJYGQBT8Dcv5806nm23vhKnYAfDwYAArkhoBfRUfS5NOiV9oxi4Z8/hf9OJn71db66\njHz+Wa8vgHfs2+/UxVDVs9HGlYzNmkqjPuXGDeKXAWnoizCIbOizcAx0ZabfdcY3J4P+xuAhlCzc\nWQ1166iyKFYq7/JHSnIyxT8vFggLH3NFCnw5hcI6Zh98gKMOWZevUG7J07nAp5+Qu5lwQ+VKWdqJ\nHT5CRjVK/u+4s0xfubJ0j3FmiARHvVEkp8Wr+ipViXjRc1wccRx6g4huw2LbIfLSJLvfB/v2K+I6\nu6/k4Rx6BDRj1HO8+rbt2mV5Aj+LOLF8sKwVERNa5/Dmm6UBZICAnwiEdbqTEoSBw371kS88T7qw\nMD/1jG5AAASyI5AijKb8+hynJGQMJ5ldP7ktSxb+2oroihVTkm7PhiqVnfkpYuNFdrFhX2olms3V\neg2o8F/bKWnuPGfkmIinnnTekzmRIiLM8KJYNuhZOA47z/IaqgoDUyXhBamxw+4n+/bUGWpddAEq\n9OcfuQqnmXLter6fLYlZ99xKMvutZwrDGv7A/VkWp3IUIUXY6M9O9CWKO4v5N6EY9Snnzznz9Tn8\nPvj3kyIiMHEUJggIaMKoPyZi+mY26O8fNkzuHPsTL5BJE65zREQXqFSpkpKFMwhohgDPloX16E4c\nO9gmQpbl1sdYMwOAIiAQpATC7x9GfGhGlN1J86pQ2n3GWrUo/NFHKOnzyWJqOJmuNmqS3pLYJTb8\nkYfTrzOlkr79TuboROCJlIsXZTpu9ONU8JfFfnNxcVWJ/dOv9+ojXyw43yTcXwp8NSWLsex6j2s6\nSixS5sPXErM4NWQpu9/wl4F4EY404ZXxYi2FkcwZNs108Y3Ki1KuvwnXdE5tiLVcUvJyT05tojxg\nCei1oHm16tWdanz//fdkEW/t3377Lc0RbjhxYmOGr75KjwFbNVPYJ+eNSICABgiwCw6L5af5GtAG\nKoAACGiRgC7SZXFlpo2lMuvLM9GKKG42fB359FOkhDrUFSwoq3A4y8K7d5FOn/3/2jlsZaFNG8g8\n6B55n+PAQVKMfZnhxz8si39JN+iFm21eDHo/qunsihdEm8XkjT7NHTj+xZekn72zgpjcUSTlRvqz\nU/Jcz66biukiItOLxN4OirjWUfJcz8qLWYb7XSsgHVIEsv+b7wcUa9eudfby26pVdK/4LGgUi4MU\niRAryx968EHiMkXWrVunJHEGAU0R4MWCHK/aJn6jyWmzYJpSEMqAAAioTiBDVJtj/2Wrj/2v9Mgo\nmSOt8EJMjnpT+O8d8swz1hwWMidRNpaKFNFkeHMwlsR33xMRVFJdcnK635vl9s2psfq5zagJb+RK\nf2/2n9+2IsUmUorwRmuKuC5ctrv4xivlrudkl52HDS5RboxizYQijmx+H67++4bKlZRbcA5hAunW\ns0oQRo4aJXuuW7cutXPjU6+oxWW1a9emfWKHwhEjR9LBAweUIpxBQFMEeLaedwK0iA1jIkaO0JRu\nUAYEQpFA4tffOHfnzOv4oz54n2TI2rzemE193imVo7okHz9Bjv1i191sxCo2tWPhKDjeEN5RVjH8\ndcKgLyh2Tb3Rt79sOnbESIr5bVWOM/3e0ENpw/pL6k6pJrEmicNZ5lXinn8xNY59Xm8U9QsuEEEN\nxGZXrsIbCMaK3V71hUVozY8/8ujXb2p9u/M2x549RG3byGv+SsKz+MknTpB9W+piZmfFTAnbtu0y\nh3eEdQ2JarzlFmdNGdXmFhf3KmeJ2BrF5YUvuyg5LrcgGeQEVDfq2Zg/ImYHFi5IX/HuifliERmn\neo0aVKdOHU9VkA8CqhMw9+4lNy2x/DwfRr3qTwMKgACJzXuKE+9kmx/RFS6cn9tyvMfUsiVZ2KgX\nri+exMEbCqW55xiq+WYhK39djHh8NCV+8ql8yWA3nAgP8dk96emNfGPDjMZ1bts0lC+X/2frJsZ8\n3FNjyPHPP+QQCsS/PI4KiJCt7iRDdCGxrsFVDMJGYaPecfAQpQgXYp0IoJBZOGoRiYXPLMZMRrvr\ni4bDZTY/cxtK6EzOzy5KTub7cB28BFQ36g+kzbivEW44VVzCM7lDznVYToi/LBAQ0CoBvViAZrrj\nDrKJaE32nTtzHb9bq+OBXiCgNoEUqzU19ro4G/IR2tjcqxfxoSUx3XknWWbPkSrZRHhKd/HqrQtT\nF2dyJYPL2jNvj4MX3VpEUIrkM2flF42wDu3JNVyit/tz155rmE935Z7yODY/H94SNsYVcY0Dr+Qp\nZ8epU0pSbPsalp4WKQ6TaVu+XOZZxJeI8MGDMpTzhW3NWmcez9S7Cq+d0JcpLZ9H0pdfUcQzY7J8\nPeGXgqQfpzlvMyCAiJNFKCdU96lnlxqWkcKlJidR6uRk/OfUDspBwNcE0hfMpoZj9XV/aB8EgplA\n/LjxdO221nS9XQdyCMMzGMTUsoVzGLGDhhBHgXEVnqVP/PAjmcUzvea+fVyLvZrm2PfR09INxBv3\nDCKOG59ZOE5+/JsTKFFE3UnxUrSVsK5dZTfWJb+SbeOmzF36/do8ZLDs0yiej3noEI/9J4x/1VnG\nL0GuorTBeQnjXqHkq1ddi+V13KOPpeYJdx2Tm02jIl9/zXmP5YcfnWklwcY+pf1m+EuLTkQ9goCA\n6kb991OnOp/CM88840xnTowZM8aZNfW71JBczgwkQEBjBEziH3n+bM/+ovIzq8b0gzog4CsC7JPs\nOHSIHCL8sBRhePA1x1jPrxjr15W36sXmPPqiRfLbjE/u4+gkcrxijIrw2JU8/srgTng2NvrHH5xF\nV+s3pHgRItEuXDYS3n6HrrdO9dHmCtEzp5OuQAFn3bwkks+dk7oo9yi6ZdbLUKkimdPCfqZcviI3\ngpLPzSWWe4Iw6C1Tv6dEseGT8sKhtJvfc/j/UtfV8f2x994nvhioOxHCoU8NYrLRvmkzxQ4ZSkmz\nZpNdeBQoz9O6YiVdqVqdbGvXySGzb70hU1Q+3jU5etYMJ5JrTW+V7k32/fspbswzxNeKFFw4P8ss\nPJeFiXWEhjR/f+Z+tUUrGUrTtm0bXevUhRInfSKbYF3DR6e9ICiN4hyyBHTibTtF7dHf1b07LU/7\nVNWiRQt68MEHqZHw87OKfww3iy2jZ8yYQX//nbrDWhcR8urXJakLa9TWW2v9G9KiBjnEbApEfQLx\nr79BPMMSNfFjGQJNfY2gAQj4ngD7ZisGh2tvBaZ8QWF3dnTNylPavncv6cuWJV5kqiXhyCex9w3z\nqBIvPDVUruSxnA15y4yZHsuj3nmLzAMGeCzPqSBOxFNXFqO61s2sFxv5V2unvjxlqLduDRnKlZNZ\nsY88RrYVK2Sao7XELP3VtWq+0xx157owVBWJevcdUr52Knn+PCdfEht0PfQQOXbvybZbXZEiVOj3\n39z6zPONvIsxRxXyJDzDHvHE456KiTekutYqfUGuu4qFtmyinDaocncf8nxPoGWrVrRVuNY1bdqU\ntrhEefJlz5ow6u3CCL21eXPaKfyPs5NGjRpJMK4hL7OrH2plMOq19cTZCLnRoxcZb7+dCv6Q/kVK\nW1pCGxDwLgHrb6vJmmb4ubbMM6BGERjBVewiakjcqP9R8tlzxNFPor8Qbh1iYeH1rt1knvG226jg\nj9/TjYF3y+vIsS+Q4q5hWbxYLEj/kNjVgRcWJon9TOy86FTMLEeIGO7u/Jhd+/ZWmme+E78UrhAe\nJPL553I0ung3UF6gyutwDPXri8WzB2S0Gzb69Gkx6D00n2N2ktgMz542KeZaObNeKQ4Hxb/wYuoX\nFZFWYt9HvvgC6YXxysIbL9nWr6e44SPlbHbMksWuTd50OkG4GyWJLwG8ODhMuBtFCReUzGE8b7qT\nPDTAvycOTyy/Oinzn+Llx3HoMEW9/26W37O7pvnLVcJ7H4hFswflYlb73/+I9R09pWuPPheLsNkN\nyr5hA8W//iax37xOROWxi6g5kS+PJZOYzc9pTwJ3OiHPPwRC1qhnvGzYv/LKK/Tue+7fal8aO1aW\nw6D3/GOEUe+ZjVol17v3FCHr9ostz9eRvnRptdRAvyCgSQL2Xf/SjT59nbpxzPVkYdRfc9khlfOu\n1BGRazhaiBB2WTHd1oos8xdQ/LPPOe/NkBCx2oscFgY+xOsE4l8cS5a58yjiqSe9ukBVUZRn7XmH\nW44KxJtkRb01QSnCGQQCikBIG/XKk4oXfpczZs6kA8IQMhgMdIeIIsIuNzDmFUKez4pRf/8wz5+C\nbxGfgR55+GHPjaDEqwSSvv+BEt54kyLGPE0R2Wzd7tVO0RgIBBCBePH3wyL+nrAU2rFNxiq/MfRe\n6dNccMF8MQsvZq6Fv/r1Lt1knWjx1cskvn6xsG+zIrwTKb8kJH32Ob6OKVC8fOa9N+KfeVbG2I9Z\ntpRcd7j1Zle8aPha+47yq02hzRtJLxYKQ0BAawROnjxJr776qke1vv8h9d+1kHO/8UgEBXkioBj1\n2d3Ut29fmjd3bnZVUOZFAhz14FrL24QvcBkqtPo3L7aMpkAgOAjwzsvXxCJAFnY3MYloKDeE+41B\nuFvG/DxP5ufGqOcZfRZekKuLipJp/OFdArwoOH7sy/I5ZbdOwBu9xr/2OllEyMbo6dPINVKQN9pG\nGyDgDQL/iP0MeKI0J/GnUa96nPrLly+LqEwJVJYXQInQTpCbJ7BT/NA8SYzGFpl50jNY8tln0tS+\nnVhctpJs27eTKRf/AATL2DEOEMgNAd7Xgf3krcuWyQghcsMlcWP4sPtyc7usY77nbmddGPROFF5P\nsH97gY8/9Hq7rg3K2Ot6Hdl37EjNdhNa07U+0iCgFoFatWpRdvYWu9+wfetPUd2oHz5iBC0WC56O\nHT1KFfKxqYg/YQVKX/XqCf9TiGYIcBQHNuotP82HUa+ZpwJFtEQg4vlnpVHPOllFSEOdNPTTo6Hk\npKuuUKGcqqA8AAjYtu+gBDFDr4i+dCnpfqVc4wwCWiIQLvYGyM7e4jKOfuNP0czUeJWqVem999+n\na9eu+XP86AsEfE7A1KYN6YoVI+vSpcSfryEgAAIZCRhE/HlD/fTJCI5cozOZnJU4xKAiyddvyKTr\n3yUO/cfRWyCBTcDU9BYq8O03FPnKOIp8/VUqOF+84MGfPrAfKrT3KwHVjfqkpCQ5YA6X/+KLL1KF\nihXp8ccfpyNiBTwEBIKBgE4s+I56TfwPSizwUzM8WzCwxBiCl0CB99Mjn5mFUe8qsWLhrCJK3G9e\ntKmIVaSTT55SLnEOYAJhbdtI16vwIUNIX6JEAI8EqoOA/wmo7n7Dny9Y/hL+cwsXLaIvvviCPp88\nmSaLc8+ePempJ5+k1q1b+58MegQBLxII69LZi62hKRAIPgKG6tWp8J5/SSyuIl1YWIYBss98slh/\nxWJMW5diKF+OTC6bWemiIjPcgwsQAAEQCDUCqm8+9drrr9OmTZtoptg1tojY4MIiYhFPF+mJEyfS\nXrF5DwuvHH5SGPcD+vdHaMtsfqFK9BvsKJsNJBSBAAiAAAiAAAiAgI8JIE59JsArxK6EHwvjftWq\nVbKknNiq+sEHHqCnnnqKCt7kLnuZugqKSxj1QfEYMQgQAAEQAAEQAIEAJ6CGUa+6T312z6xTp070\nzJgxVK1aNVnt1KlT9Pobb1DlKlXk+caN1AVT2bWBMhAAARAAARAAARAAARAIdgKaNOp5ly423k3C\nr7Kz2E328OHDGZ4Dx/187bXXpHE/6ZNPMpThAgRAAARAAARAAARAAARCjYDqRj0b5506d6azZ8/S\nTz/9RF27daNKlStLo50j4ijyv1Gj6N9du4j9xc+cPk0vv/QSOUQIs6effprGjx+vVMMZBEAABEAA\nBEAABEAABEKOgOrRb7aJXTZXr15N5USc4sxSqlQpekkY7/cOHUrRLrFqC4tdOvllYNiwYdSufXt6\nc8IEKlGyJD36yCOZm8A1CGiOgG3LFrIuXESRIsxl5igfmlMWCoEACIAACIAACAQEAdVn6l1n4xVi\n/UWUm9+FoX9a+NA/8vDDGQx6pQ6fqwjfeq5XoEABafyfO3fOtRhpENAkAeuSX8kydx7Z1qzVpH5Q\nCgRAAARAAARAIPAIqG7Uh7nEI35l3Dg6eeIEzZk9m9qIXThzIxzbPi4ujmJjY2UozNzcgzogoCYB\nc98+snvL/PlqqoG+QQAEQAAEQAAEgoiA6u43CstjR49ShQoVlMtcn+fMmeOsyzP2EBDQOgFj48ak\nr1SJbGvXUfKVK6QX+zNAQAAEQAAEQAAEQOBmCKg+U//dt9/K2XmOQZ8fmfDmm1RJGEijRo6kB+6/\nPz9N4B4Q8DsBOVsvFn1bf1ni977RIQiAAAiAAAiAQPARUN2o50WvZcqUETuD50+VO++8k46IkJeT\nJ08ms9kcfE8IIwpKAmF9estxwQUnKB8vBgUCIAACIAACfieQP0vay2pu2LCBxohNpjZt2uTlltEc\nCGiTgEG8yBpbtiDH7j1kP3hIm0pCKxAAARAAARAAgYAhoLpR//vvv1OHjh1p4qRJdHvr1rRmzZqA\ngQdFQeBmCJj79pW3WxcsuJlmcC8IgAAIgAAIgAAIkOpG/ZQvvySbzeZ8FKtWrXKmkQCBYCYQ1qUz\nUUQEWUTM+hSxkRoEBEAABEAABEAABPJLQHWj3tWgb9myJb3wwgv5HQvuA4GAIqCLjCQ27FMuXCDb\nho0BpTuUBQEQAAEQAAEQ0BYB1Y16nU4niWwVu2z+sW4dFSxYUFuEoA0I+JAAXHB8CBdNgwAIgAAI\ngEAIEVDdqG8t/OhZPv/883xHwAmh54WhBhkBXiyrL1OarCtWUorYQA0CAiAAAiAAAiAAAvkhoLpR\n/9ijj1LNmjXphx9/pA8/+ijbMfDOsS+//DLNmDkz23ooBIFAIcBfqsJ69SKyWMi6bFmgqA09QQAE\nQAAEQAAENEZAdaPeZDLRB++/L7E899xz1LBRI3r11Vdpx44dtH///gzHtm3b6O133qF58+ZpDCPU\nAYH8EzD3S42CY5m/MP+N4E4QAAEQAAEQAIGQJmBUe/S7du2iHj17OtXYvXs38fGG2CkWAgKhQMBQ\nuTIZxMusXby0Ok6eJEP58qEwbIwRBEAABEAABEDAiwRUn6kfL2blISAQ6gTMfVN3mLXOR8z6UP8t\nYPwgAAIgAAIgkB8Cqs/UK0rfddddVKZ0aeXS7fnsuXO0ZMkSt2XIBIFAJhDWvTslvPmWjFkf8cTj\ngTwU6A4CIAACIAACIKACAc0Y9VO++ILKlCmTLYKzZ89SORj12TJCYWAS0MfEkKl9e7ItX0627dvJ\n1LRpYA4EWoMACIAACIAACKhCQHX3m3Eims2SX36hokWL5gigSJEisu4r48blWBcVQCDQCJj79ZEq\nW36aH2iqQ18QAAEQAAEQAAGVCag+U9+kSZNcIzCbzdS1a9dc10dFEAgkAqY77iBdsWJk/fVXShn3\nEumiogJJfegKAiAAAiAAAiCgIgHVZ+pVHDu6BgFNEdAZjWTu348oIYEsv2DtiKYeDpQBARAAARAA\nAY0TCCijPlbsuPnkk0/SnLlzNY4V6oFA/giYBw6QN1rm4DeeP4K4CwRAAARAAARCk4Dq7je5xX7w\n4EGqXaeOrM5RcO4eODC3t6IeCAQMAUPFimRs0Zzsm7eQ/cABMordliEgAAIgAAIgAAIgkBMBzczU\nHz58mPoPGEAFoqPJHB6e4TCFhTkNeh7Q0CFDchoXykEgYAmY775b6m6ZPSdgxwDFQQAEQAAEQAAE\n/EtAEzP1hw4dolq1a+dq5KMfe4x69OiRq7qoBAKBSCCscydKqlWL9DmEeA3EsUFnEAABEAABEAAB\n3xDQhFE/ctSoLKOrI1xtmt5yi8zfu28fbRexu1m6desmz/gDBIKVgE5EeYr59ZdgHR7GBQIgAAIg\nAAIg4AMCqhv1s2bPpj/++IM6duxIK8TGO5M++YSefvppGj16NI0cMcI5ZN5Jtm+/fjRi5Eg6JPzr\nw4RLDsQ9gd9++819gcgtWbIk1a9f32M5CkAABEAABEAABEAABLInEBcXR5s3b/ZYaevWrR7LfFWg\nulE/f37qRjtvvvGGHGNt4XbAcuzoUXlW/ujevTsNf+gh+vKrr+i7qVPpf25m95W6oX7u3KWLRwR9\n+/aleYge5JEPCkAABEAABEAABEAgJwK8FjQ7eyun+31RrrpRb7fb5bjKli0rz1WqVJHno8eOZRnv\nY8Kfno36VatWwajPQic944Xnn0+/yJSqW69ephxcggAIgAAIgAAIgAAI5IUAez5kZ2+98+67eWnO\nK3VVN+ozj6KiCOmn1+vpaKaZeq5XuHBhWd3hcGS+DdcuBCZMmOByhSQIgAAIgAAIgAAIgIA3CZQu\nXZqys7d+X7OG/O2Co3pIy3CxKJBl79698mwymSg5OZn++usv4k8brrJw0SJ5efnyZddspEEABEAA\nBEAABEAABEAgpAmobtSPSFsMy4tg27RtK11rlCdSU/jXKwY8z9yz+w1LxQoVlCo4g0DQE0ixWMi2\nYWPQjxMDBAEQAAEQAAEQyD8B1Y369u3by91h4+Pjaf369fTNt9/SNpcVwyWEz9KtzZtT9Ro1nKOc\nPHmyM40ECAQ7gdhhD1DssPsp+ezZYB8qxgcCIAACIAACIJBPAqob9az3pEmTqFZa1JuWLVtSkyZN\nqHXr1s4h7dixw5nmzacKFizovEYCBIKdQFiXzkQpKWSZ91OwDxXjAwEQAAEQAAEQyCcBTRj1xYsX\npz27d5NDRMJ58okn5FBWrVxJ74qVw0WLFiWj0Ui8gHb69Ok0ceLEfA4Vt4FAYBII69ObxMYM0qhP\nEetNICAAAiAAAiAAAiCQmYAmjPrMSvE1L5h9ZswYunD+PFmSkujokSM06J573FVFHggENQF9TAzx\nbH3ymTNkW78hqMeKwYEACIAACIAACOSPgGaN+vwNB3eBQHASMA8cKAdmmTM3OAeIUYEACIAACIAA\nCNwUARj1N4UPN4OAfwgYWzQnfcUKZPvtN0pGSFf/QEcvIAACIAACIBBABDRl1K9bt06GrTQIH3rl\nKFe+PD3zzDP0559/BhBWqAoC3iWg0+nIPHAAkVh3Ypm/wLuNozUQAAEQAAEQAIGAJ6AZo37W7NnU\nvkMH+mLKlAxQz4owfh+LxbFt27WjOXPhepABDi5CioBZ7OVABgNZ5s4LqXFjsCAAAiAAAiAAAjkT\n0IRRv23bNho6dKhT26ZNm9Jbb71Fr4wbR2XLlnXmDx48mLguBARCkYBeRIkytW9HyWIjNhv+HoTi\nTwBjBgEQAAEQAAGPBDRh1LcQsekV2SA2oNqyeTM9/9xzNH78eDpx/DitXbNGKSbXus5MJEAgRAiY\n78aC2RB51BgmCIAACIAACOSJgOpG/TQRe16R3f/+Sy1atFAunWfeiIrLFJkxc6aSxBkEQoqA6Y47\nSFeqFFmXLqPk2NiQGjsGCwIgAAIgAAIg4JmA6kY9u9mw9OrVi2rXru1RUy7r2bOnLH/zzTc91kMB\nCAQzAZ3wqTf3F771FgtZFy0K5qFibCAAAiAAAiAAAnkgoLpRX6tWLanuJ5Mm5aj2Z59+KuvUrFkz\nx7qoAALBSkBGwRHRcCxzsGA2WJ8xxgUCIAACIAACeSWgulEfU7Cg1PlfF/caT4PYtWuXLFLu8VQP\n+SAQzAQMYvG4sVUrcuzdS/bde4J5qBgbCIAACIAACIBALgmobtSPHDlSqvqGcKlJTk72qDaXcR2W\nUaNGeayHAhAIBQJytl4MFOEtQ+FpY4wgAAIgAAIgkDMB1Y36VmLGsXPnzrRlyxZ68MEH3Rr2bNBz\nGdfhunwPBARCmUBYpztJV6gQWRcvppSkpFBGgbGDAAiAAAiAAAgIAn4z6uPi4qh8hQrOnWKVHWP5\nvGLFCvkwOBKOKSwsSx3OU6LkKHXx9EAglAnoxN+JsD69KUVEwLEuWx7KKDB2EAABEAABEAABQcBv\nRj3vCnvmzBlABwEQ8BIB84ABsiW44HgJKJoBARAAARAAgQAmYPS37m3atKHu3bvnu9tSIkY3BARA\ngMhYswYZGjYk+9at5Dj2HxkqVwIWEAABEAABEACBECXgd6P+qSefpB49eoQobgwbBLxLgHeYTdi5\nkyzz5lHkc896t3G0BgIgAAIgAAIgEDAE/OZ+8/jo0XTk8GHq2LFjwMCBoiCgdQLm7ncRRUaS5ef5\nlGK3a11d6AcCIAACIAACIOAjAn4z6mNiYqhSpUoUERHho6GgWRAIPQK6qCgK69aNUi5dItuataEH\nACMGARAAARAAARCQBPxm1IM3CICAbwiwCw6LZc5c33SAVkEABEAABEAABDRPAEa95h8RFASB7AmY\nmjQmQ/VqlCxm61NstuwroxQEQAAEQAAEQCAoCfh9oWxQUsSgQEBlAtFzZpNeuLhBQAAEQAAEQAAE\nQpMAZupD87lj1EFGAAZ9kD1QDAcEQAAEQAAE8kgARn0egaE6CIAACIAACIAACIAACGiNAIx6rT0R\n6AMCIAACIAACIAACIAACeSQAoz6PwFAdBEAABEAABEAABEAABLRGAEa91p4I9AEBEAABEAABEAAB\nEACBPBKAUZ9HYKgOAoFAIPnq1UBQEzqCAAiAAAiAAAh4iQCMei+BRDMgoBUCiVOm0LUWrci+61+t\nqAQ9QAAEQAAEQAAEfEwARr2PAaN5EPA3AUOlSkR2O1nmzfN31+gPBEAABEAABEBAJQLYfEol8L7s\ntlTp0h6b79G9O3399dcey1EQ+ARMHTqQrkgRsv7yC0WOfZF0ERGBPyiMAARAAARAAAQ0RGDPnj3U\noWNHjxpdvHjRY5mvCjBT7yuyKrYbHh5Ong6TyaSiZujaHwR04hmb+/SmlNg4si5d5o8u0QcIgAAI\ngAAIhBQBnU7n0dZiG0wN0aUIUaNj9Ol9AgZj6ocXh3C9gIQ2AceRI3S9UxcyNr2FCs6ZHdowMHoQ\nAAEQAAEQ8DOBlq1a0datW6lp06a0ZfNmv/SOmXq/YEYnIOBfAoaqVcnYpDHZt+8gNvAhIAACIAAC\nIAACwU0gYIx6h8NBL7zwAs2ajVnH4P5JYnTeImAePFg2lfTjNG81iXZAAARAAARAAAQ0SiBgjPpF\nixbR+x98QEOHDqVp06drFCfUAgHtEAi7qxvpihYly/wFwr8+VjuKQRMQAAEQAAEQAAGvEwgYo75Q\noULOwf/333/ONBIgAALuCejCwsg86B6ihAQR3vIn95WQCwIgAAIgAAIgEBQEAsaob9SoEfExeNAg\neuH554MCPgYBAr4mED5EuOCIBdRJ06ZTSnKyr7tD+yAAAiAAAiAAAioRCJg49UVE3O0d27erhAnd\ngkBgEtCXKEFh3bqSdfEvZFu7lsLatw/MgUBrEAABEAABEACBbAkEzEx9tqNAIQiAgEcC4cPuk2VJ\nU3/wWAcFIAACIAACIAACgU0ARn1gPz9oDwI5EjAKtzVDgwZk37iRHIcO5VgfFUAABEAABEAABAKP\nQEAZ9bxP1o0bNygxMTHwSENjEFCRQPj9abP1CG+p4lNA1yAAAiAAAiDgOwIBZdSfO3eOCgvf+kFp\n8bd9hwUtg0BwEQjrJsJbFi9OlgULKVm8GENAAARAAARAAASCi4BmFsrabDZauXIlXbp82SPhs2fP\neixDAQiAgGcCOpOJwkV4y8RPPiXL3HkUMfwhz5VRAgIgAAIgAAIgEHAENGHUz58/nwYMHBhw8KAw\nCAQSAbMIb5n4xRSyiPCW4Q8+QDp9QH2oCyTU0BUEQAAEQAAE/E5A9f+rOxwOGPR+f+zoMBQJ6IsV\nI95lNvnUKbKt/j0UEWDMIAACIAACIBC0BFQ36r/6+msn3G+++YYuXbxIly9dcnvs/vdfZ10kQAAE\n8k4gfNgweVPS99/n/WbcAQIgAAIgAAIgoFkCqrvfTJw4UcK55+676YH7788WVLLYEbNNmzZUv169\nbOuhEARAwD0BY4P6ZGzciOybt5D9wEEy1qzhviJyQQAEQAAEQAAEAoqA6jP1derUkcDefffdHMHx\nrrK/r15Nb7zxRo51UQEEQMA9AXPabL3lB2xG5Z4QckEABEAABEAg8AiobtQXiIqS1E6ePBl49KAx\nCAQggbCuXUhXsiRZFi2m5GvXAnAEUBkEQAAEQAAEQCAzAdWN+t69e0udpk+fnlk3t9cWi4Xsdrvb\nMmSCAAjkTEBnNFL44EFESUlkmTM35xtQAwRAAARAAARAQPMEVDfqe/ToQexWM2PmTDp+/Hi2wDhO\nfaSY2e8/YEC29VAIAiCQPQGziFlP4eGUjL0fsgeFUhAAARAAARAIEAJ+XSi7fft2OnT4cBY05cqV\no127dlGVqlXp7bffpvLly2epwxnYfMotFmSCQJ4J6IsWpUKbNpC+YME834sbQAAEQAAEQAAEtEfA\nb0b95s2b6bbbb8+RwIsvvphjHVQAARC4eQIw6G+eIVoAARAAARAAAa0Q8Jv7zarfftPKmKEHCIAA\nCIAACIAACIAACAQVAb/N1CvUvvrqK+rRvbtymaczu980ueWWPN2DyiAAAiAAAiAAAiAAAiAQ7AT8\nZtSzn3yLFi2oVs2aVKJEiXxxNRgMso3atWrl637cBAIgAAIgAAIgAAIgAALBSECXIiQYBxaKYzKI\nUIUsDoT8DMXHjzGDAAiAAAiAAAhohEDLVq1o69at1LRpU9oi1pX6Q/zmU++PwaAPEACB/BOw791L\nKXghzD9A3AkCIAACIAACKhLwm/uNimNUtWsO1Xn58mW3Opy/cIEKFypEnTt3dluOTBDwF4HEL7+i\nxPfep6iJH5O5R/7WvPhLV/QDAiAAAiAAAiCQlYCmjHqr1UrzfvqJvvjiC9q3bx+xD32bNm3ovnvv\npa5du5Ixzb0k6zC0mbNw4ULq179/jsrBXSZHRKjgYwKmtm2lUZ/0/Q8w6n3MGs2DAAiAAAiAgC8I\naMao379/P9WtVy/LGOfPn098sOzds4dqioW2gSJvTpiQo6rNmjXLsQ4qgICvCRhr1iBjq5Zk37iJ\n7P/8Q8ZGjXzdJdoHARAAARAAARDwIgFNGPUHDhzIYtDXEwa+xWKhQ4cOOYdbp27dgDHsbTYb7d69\nmyIiImjjhg3OMZhMJqpUqZLMd2YiAQIaIBB+/zCKE0Y9z9YXmAijXgOPBCqAAAiAAAiAQK4JaMKo\nZ2NdkTmzZ1O3bt0oMjJSZl25coVWrFxJQ4cOlddcNxDcVfaKRYds2A8cMIAaNGigDA9nENAsAVO7\ndqSvWIGsy5ZT8osvkL5kSc3qCsVAAARAAARAAAQyElA9+s3PP//s1GjH9u3UX/igKwY9FxQpUoQG\n3XMPcZkiijuOcq3F89/ChYGlcZMmWlQPOoFAFgI6vZ7C77uPSETASZo+I0s5MkAABEAABEAABLRL\nQHWjfuxLL0k6HTp0oEbZ+PFyWTsxk8jy4tix8qzlP/75+2+pXmOhN7sQfTd1Kn3w4YfyeOGFF+jX\nX3/VsvrQLUQJmPv3IypQgCyzZlOKcH+DgAAIgAAIgAAIBAYB1d1v6tSpQ4cPH6Zvv/kmR2JTv/uO\nKlWuTLVr186xrtoVlJn6Hj17UkJCQhZ13v/gA5n3ww8/0NAhQ7KUIwME1CCgEwY9G/YW4VdvXbSI\nzAMHqqEG+gQBEAABEAABEMgjAdVn6jlsJcvFixdzVP3SpUuyjnJPjjeoVIE36V2/fr3sPSkpie66\n6y567733aNasWfJo4uKSM2zYMPrhxx9V0hTdgkBWAuH33Uuk08kFs1lLkQMCIAACIAACIKBFAqrP\n1Pfo0YMWLFhA4155hZb88ouwJXRuObGh/PK4cbKsp5j9dpV/hP/6pEmTqE+fPpS5zLWev9JHjx51\ndvXrkiXUqVMn5zUnePEsv6CULFVK5j/44INUonhxGYs/Q8V8XowZMyafd6beNnjwYLrllltuqg3c\nHLgEDBUrkql9O7Kt/p1smzaTqWWLwB0MNAcBEAABEACBPBI4efIkTZw4MY93Zay+devWjBl+uFLd\nqOeNpb4RrjfLly+n0aNH06effprFsGeD/rHHHpN1WrZsKTejcmXD8H+cNo2qVK2qCaO+dOnS1Lx5\nc7r77ruzGPSK3sWKFSP2u2/UuLHM+low4A22vCETxQvOzQjrBKP+ZggG/r3h998vjfqk77+HUR/4\njxMjAAEQAAEQyAOBs2fP0s3aUnnozmtVdcJgTvFaa/loiN1TooQfrzfk1VdfpXEvv+yNpvzWRp++\nfWnx4sWyv6TEROI49vkVQ9qOu+vWrs1vE/I+3uCruPhyAAltAte73UWOg4co5vffyFChQmjDwOhB\nAARAAARChkBcXByxF8jNSJu2beXtTZs2pS2bN99MU7m+V/WZ+kHC1SOUhRfJKkb9f//9R9WrV79p\nHLfffvtNt4EGQMAs1nskjH2Jkn6cRlEvp0apAhUQAAEQAAEQCHYCBcRk883aUrfeeiv52wVHdaNe\n+WGMHDGCSpcpo1zm6bxE+K3v2LEjT/f4uvKKFStoxMiRNH78eHpI+Mx7Et5xVhGVP5ooauAMApKA\nuXcvSnz/A7LM+4kin3yCODIOBARAAARAAARAQJsENGPUjxOLYMvk06jnWPC9xSJZrci5c+eoV+/e\nckfZkcKwv1/MeHqK2LNS7JarSH7Hr9yPMwh4k4DObCbzPXdT0hdTyPLzfAofJjamgoAACIAACIAA\nCGiSgOohLSeJ1cW8YLREiRL5BtRW+C1xG/8bNSrfbXjzRnajsdlsssmKIpKIp4g+VquVPv3sM1mv\nQYMGYs8fzIR68zmgrZsnED5U7KEgws4mibCr+JJ08zzRAgiAAAiAAAj4ioDqRn0FsQCvfv36ZExb\n5JmfgUZHR8s2tLK4s169evIlhRe98qZaen1WzMnJyRm+LvTo3j0/Q8c9IOBTAnoRdjWsaxdK/u84\n2das8WlfaBwEQAAEQAAEQCD/BLJam/lvC3emEeAZ93fffVfO1j8g/Ok/nzyZrl696uTDcexNYWHE\nfvcszZo1o2effdZZjgQIaIlA+P3DpDpJU3/QklrQBQRAAARAAARAwIUAjHoXGN5Mcvz9MU8/TRxD\n//HHH5eLgGvWqkV8VK9Rw9kV19sgdp/lrw0QENAiAaPYt8DQsCHZN24kuwhxCQEBEAABEAABENAe\nARj1Pnwm7733Hh09ckRGwKlcuTKdP39eHkqXe/fsoalTp3pcRKvUwxkE1CagzNZbfsBsvdrPAv2D\nAAiAAAiAgDsCqm8+5U4p5OWPgLL5lMNuz18DuAsEPBBIEQu/r7VpRynCjazQH2tJj83JPJBCNgiA\nAAiAAAgQtWzVSsap9+fmU5ipxy8PBEAgRwI6seg7YviDRCJiU9I33+ZYHxVAAARAAARAAAT8SwBG\nvX95ozcQCFgC5kGDSFekCCXNnEXJLgu/A3ZAUBwEQAAEQAAEgoiAZjafCiKmGAoIBCUBndj9OOLh\nUeQ4cZJE0PqgHCMGBQIgAAIgAAKBSgBGfaA+OegNAioQCBchWiEgAAIgAAIgAALaIwD3G+09E2gE\nAiAAAiAAAiAAAiAAAnkiAKM+T7hQGQRAAARAAARAAARAAAS0RwBGvfaeCTQCARAAARAAARAAARAA\ngTwRgFGfJ1yoDAIgAAIgAAIgAAIgAALaIwCjXnvPBBqBAAiAAAiAAAiAAAiAQJ4IwKjPEy5UBgEQ\ncCVgW7+eYh8dTbzjLAQEQAAEQAAEQEA9AjDq1WOPnkEg4AlYly4j2/LlZF2wIODHggGAAAiAAAiA\nQCATCCijfufOnXT27NlA5g3dQSCoCIQ//D8ig4ESp3xJKQ5HUI0NgwEBEAABEACBQCIQMEb9X3/9\nRU1uuYXKlS9PS5cuDSTG0BUEgpaAQfx9DOvRnZKPnyDrr78G7TgxMBAAARAAARDQOoGAMerj4uKc\nLDdv3uxMIwECIKAugYhHHibS6Shp8heUkpKirjLoHQRAAARAAARClEDAGPU1a9akatWqUY8ePWjs\n2LEh+rgwbBDQHgFD1aoU1qULOQ4dJtuKldpTEBqBAAiAAAiAQAgQCBijvmTJkrR/3z5aKBbkhYeH\nh8CjwRBBIHAIhD8qZuuFJE6eHDhKQ1MQAAEQAAEQCCICAWPUM3Od+MQPAQEQ0B4BY+3aZGrXjhx7\n9pJ1zVrtKQiNQAAEQAAEQCDICQSUUR/kzwLDA4GAJhDx2CNS/6TPPw/ocUB5EAABEAABEAhEAgFn\n1GMhXiD+zKBzKBAwNmpExlatyP73P2TbhMXsofDMMUYQAAEQAAHtEAgoo55j1BtNJurdp492CEIT\nEAABJwFltj7xs8+ceUiAAAiAAAiAAAj4noDR913krofk5GRaL7acv3jxoscbzp4757EMBSAAAuoT\nMDVvTsZmzci+eQvZtmwhvoaAAAiAAAiAAAj4noAmjPply5ZRr969yYEdKX3/xNEDCPiYQMRTT1Ds\n4KGU+PEkMs2e6ePe0DwIgAAIgAAIgAATUN39hmfou4vY8zDo8YMEgeAgIGfrWzQn+7ZtZNuwMTgG\nhVGAAAiAAAiAgMYJqD5T/+O0aU5EH3/8MfXq2ZP0evfvGuxT31IsxIOAAAhom0DEU09S7N2DKHGS\nmK2/DX9ntf20oB0IgAAIgEAwEFDdqJ8wYYLkyDvFPj56dLZMIyMjqUmTJlRN7GAJAQEQ0C4BU9Om\nZLztNrJv2EDWP/6ksDtaa1dZaAYCIAACIAACQUDA/ZS4HwdWr1492dunn3ySY69FixalbVu30gcf\nfJBjXVQAARBQl0Ck8K1nSfx4orqKoHcQAAEQAAEQCAECqs/UR0ZESMznRGSb8uXLhwBy3w9xx44d\nHjspXLgwValSxWM5CkDAWwSMjRuTqc0dZFv3B1l//53C2rf3VtNoBwRAAARAAARUJZCYmEh79+71\nqEN2tpjHm26yQHWjvofwoZ89Zw7NmDGDmolQeJCbJ3BrNmEE+/btS/Pmzr35TtACCOSCQMSTT0qj\nPnHiJBj1ueCFKiAAAiAAAoFB4MCBA5SdvaXGKFQ36nv36kUxMTE0bfp0ev7556l06dIeOfBsfoWK\nFamneBH4ad48j/VCvWDUyJEeETQWaxIgIOAvAsYG9cnUoT3ZVv9O1pWrKKzTnf7qGv2AAAiAAAiA\ngM8IFCtWjLKzt7786iuf9e2pYdWN+vDwcLn4dc2aNVROuN9MmTKFSpcq5VZf3nyKQ1/a7Xa35chM\nJTB58mSgAAHNEIh48glp1CdO+oRMd3YknU6nGd2gCAiAAAiAAAjkh0C5cuUoO3vr73/+oa1iHag/\nRXWjfuXKlcQGvSL/+9//lCTOIAACQUDAWKcOmTp3ItuKlWRbvpzCunYNglFhCCAAAiAAAiCgLQKq\nR7/5QszMQ0AABIKbQMQTaZFwxGx9ithwDgICIAACIAACIOBdAqrP1CvDeeLxx6l0mTLKpdvzObH5\n1ESxmQ0EBEAgsAgYa9agsP79SF+oEJHVSiTc7iAgAAIgAAIgAALeI6C6UV9JLHzlWPUvvvgiFS9e\nPNuRXbp0iX5bvZr4HggIgEBgESjw7juBpTC0BQEQAAEQAIEAIqC6Uf/xxx/nGhevNN4pFh5AQAAE\nQAAEQAAEQAAEQAAE0gmo7lOfrgpSIAACIAACIAACIAACIAAC+SEAoz4/1HAPCIAACIAACIAACIAA\nCGiIgKaM+mQRFWPRokXURYS8q1S5MlWpWpUeeOABWrt2LaWkpGgIG1QBARAAARAAARAAARAAAe0Q\nUN2nXkFx7Ngxqla9unLpPP84bRrxwXL40CGqLIx9CAiAAAiAAAiAAAiAAAiAQDoBTczUuzPoK1So\nQLww1lXY6Oe6EBAAgcAnYFu/nm4MHkIpsbGBPxiMAARAAARAAARUJqAJo951hv6bb76hixcu0LGj\nR+n8uXP0nzDiv/jiCycm17rOTCRAAAQCjoBt02ayb9lKiZPT/34H3CCgMAiAAAiAAAhohIDqRv2y\nZcucKDaImbsH7r+fihQp4swrX748jRwxgtb/+aczz/UeZyYSIAACAUUg4pGHSSe+xiVN/Z4cx48H\nlO5QFgRAAARAAAS0RkB1o/6JJ5+UTJo3b04tWrTwyKdly5bUrFkzWa7c47EyCkAABDRPQBcVRZHP\njCGy2SjhbWxMpfkHBgVBAARAAAQ0TUB1o75u3boS0MwZM3IENWf2bFmnTp06OdZFBRAAAe0TCOvf\njwz16pJt1W/E7jgQEAABEAABEACB/BFQ3ah3OBxS88OHD+c4gtzUybERVAABENAMAZ1OR5HjXpb6\nJLzxJqWk/XugGQWhCAiAAAiAAAgECAHVjfqjYkEsS+cuXXJE1qlzZ1nn9OnTOdZFBRAAgcAgYGra\nlMK6dSXHgQNkmTM3MJSGliAAAiAAAiCgMQKqG/Vr16xxInnkkUec6cyJhx9+2Jm1bOlSZxoJEACB\nwCcQ8cLzRGFhlPjxREpGiMvAf6AYAQiAAAiAgN8JqG7Ucyz6vn37yoF/+dVX1LNXL1ovouCw2MQC\nuoULF8pZ/K++/lrmcd3M8etlAf4AARAIWAKGsmUpfMRwSrlyhZI+/SxgxwHFQQAEQAAEQEAtAroU\nIWp1rvTLxnvNWrXoeA5h7SpVqkT79+0jk8mk3IqzCwGDMXWDYIfd7pKLJAgEBoGUhAS61uFOadjH\nLF9GhsqVAkNxaAkCIAACIAACmQi0bNWKtm7dSk2Fi+mWzf4JBKH6TD0zYCN9mxg4h630JLfffjtt\n3bIFBr0nQMgHgQAnoIuMpMhnnyESL6UJb70d4KOB+iAAAiAAAiDgXwKpU7v+7dNtb0WLFpUbTJ06\ndYpWrFxJJ8SsvV6vp/r161ObNm2IyyEgAALBTSCsT29KmjadbL//TrYNG8h0223BPWCMDgRAAARA\nAAS8REAT7jdeGkvINwP3m5D/CQQFANtff1PsgIFkqFGdCi75hXQGQ1CMC4MAARAAARAIHQJquN9o\nZqY+dB4zRqoQ4OUc604vJrvDSh0rDlCyKdZ6leYf/prsyVayijJ7io1MehNFGqMpwih2ITVFi3QB\nedQv1kJeKzcnpySTXqcJrzJFJZzzSMDUpDGF9exB1sW/kGXWLAofOjSPLaA6CIAACIAACIQegYAy\n6u3C13bXrl1UqFAhqlKlSug9rQAZsU0Y4hcST9GlxHN0OUkc4qykH6w7lsoUqCRHwhsPLT36I8Xb\nY6l9hX5OY5wN+a3nfsvVaF9u/nUGo/6F9QOlsf9Ki+9c2rPQufjjVCyijKhbIFftopK6BCKfe5as\nK1eJEJeTKKxHD9LHxKirEHoHARAAARAAAY0TCCij/uLFi9Ts1luph/if/MIFCzSONnTUcyQ7aM/l\nrXTk+m5x7KGTNw7J2fXMBIw6E123XqYyVMlZdG+dZ8kmZuRdpZC5GI1r/o2YnQ8jozj4bE22UKI9\njhJsseIcTwniRSBBnLmuIlaHhQqbi1NyisNp0HPZqbgj9OGOJ2W1CDHDXyKiLFUsWJOqxNSRR9GI\nUkoTOGuEgL50aYoYOYISP/lUHlFpu85qRD2oAQIgAAIgAAKaI+BXo/7QoUP0x59/0pDBgyk8PNwJ\ng+PTnxYLZHOSs2fP5lQF5X4gcCHhNMWYi5DZECF74xn3H/a+S0mOBHldKrKCNJqLRZQWs+OlqGi4\nOEQ6JqwIcV1XYfeZzGLQG6hUVIUM2ZFUQBjw2S+WDjOY6cVbv8hwH1+wy07L0l3E14Kz4svBWToR\ne5COxx6gP4TrD0tBoVflmNrCwK9L7cv3ES8E8OGWYFT+I3zUSLLMm0cWsXA2fPAgMlStqrJG6B4E\nQAAEQAAEtEvAb0Z9cnIy1apdW5JY/dtvNHPmTJn+7PPP6YknntAuIWiWgcD0fR/SprMraGT98dSw\neGpkEvZh71d9FEWHCbcoYRhHmQpmuEfti9JRFWlo7aedaiTZE+n4jf109PpeeRy7sY92Xtwg8g5Q\nxwr9nfXibTfodNwxqhpTj/hFA+JfAjrx4h/x3HMU/9TTFP/6m1Twh6n+VQC9gQAIgAAIgEAAEfCb\nUR8fH+/EEi82mVFk9erVShLnACDALiux1mty9ttV3VZlurpeajodboygmkUay4MV5QW75xNO0nXL\n5Qx677y4kWbs/4haiVn+IS4vBRkq4cKnBMxiwaxl5iyyi12mrcuWUVjXwPmd+RQMGgcBEAABEACB\nTAT8FiYkOjqapk6dSq1bt6YPP/ggkxpEJ0+cIN4JNbvj1MmTWe5Dhn8JsPH+cMM3qEbhRv7t2Ie9\nsUsQu/uwoe8qPMPfonQn5xcJpWzV8Tn024mfxItAzi5jyj04559A5GvjiURYy4QJb1FKYmL+G8Kd\nIAACIAACIBDEBPw2U88M77v3Xnm48uzYsSMVExtLRUVFuWa7TUeKHScffOABatQ4o/HltjIyQeAm\nCbCfPR+uwrP6bNDH2a7TgsNfyUW3DYQbUrOS7ahcNHy+XVl5K22sWZPM9w4ly/c/UOJnn6fuOuut\nxtEOCIAACIAACAQJAWw+FSQPkoeBzaf88zCvJF2g3Zc207/iOHh1pzPSD8/sNyvZnpqKo2hESf8o\nEyK9pMTG0rWOnSjl+nWKWfYrGSpXDpGRY5ggAAIgAAKBSACbTwXiU4POIUegSHgJuqNcT3nwottd\nlzbStnO/0/6rO2jx0any4AXDD9V7OceIPSEHL58D1gn3vcgXn6eEN98ix4mTMOrzyRG3gQAIgAAI\nBC8Bv7rfBC9GjCxUCfCi21tLdZAH74S748IfwsBfLcNnFhTRgBSxJ9tE/Pxk4rCbkPwRMPfuTab2\n7UlfUFvRlfI3GtwFAiAAAiAAAt4lAKPeuzzRWggTiA4rTG3L9ZIHb5DlGu+eQ2bO3D+RelS5n9qW\n7x3ClG5u6DDob44f7gYBEAABEAheAn6LfhO8CDEyEMhKgDe8chXe7daoN4kY/jGu2UiDAAiAAAiA\nAAiAgFcIYKbeKxi11UjtOnU8KtS5UyeaOHGix3IU+IZAyzKdqVmp9qSj9Pdodsd5e+vDVK1Qfbq9\n7F1UtgAWf/qGPloFARAAARAAAe8S2L9/P/Xp29djowcPHvRY5qsCGPW+Iqtiu2fOnPHY+9WrVz2W\nocC3BHim3lUuJp4RG15doj9OL5ZHpYK1pHHftEQ7MhnCXKsiDQIgAAIgAAIgoCECNpuNsrO31FAV\nIS3VoO6jPhHS0kdgfdisLdlK/1zYQOvPLKHD1/6VPRUQLjp3lO0ho+tEuyy29aEaaBoEQAAEQAAE\nQMCLBBDS0osw0RQIBAIBkz5MuOW0k8f5+JP05+kltPHsMlr633RaeWIONS91J3Wo0J9KRpYLhOH4\nXUfLz/Mp6YcfqOCc2aSLiPB7/+gQBEAABEAABLRCIN3BVysaQQ8QCFECJaPKU/8aD9ObrWZS76oP\nUZSxIG04s5RW/DcrRInkPGz7vn3k2LNX7jSbc23UAAEQAAEQAIHgJQCjPnifLUYWoAQiTQXozop3\n0xutptF9tZ+lTiLtKidiD4mY9w7XrJBNRz7xOOmKFaOkb78jx7FjIcsBAwcBEAABEAABGPX4DYCA\nRgkY9EZqXvpOKhVVwalhnO0GfbTjaXp980Nkc1id+cGacDiSKTbeSvGJNrKLdGaRO82+8DyRWLCU\n8NrrmYtxDQIgAAIgAAIhQwDRb0LmUWOgwUCAd6ZtUuIOYl98f0fIiRPG9bUbFmlks6EdG2eluITU\ns7zmPHFwPUdyCoWZDGQOUw6juNY788JEvkmUJybZZX1uK3MbnJcgyl3FoNcR36u0m9qHiR4vVpUq\n/7mepo94h041aUvRUWEUXSCMChYwO9NKXuGC4RQVr3+J+QAAQABJREFUmTESkWsfSIMACIAACIBA\nIBKAUR+ITw06hyyBQuaidF+dZ7OMn/3uecOrVmW6yk2uslTIJoMN6wuX4+ni5US6dJWPBLp0JZEu\nXxNpcZaHSFut/nH5MRh00hAvWjiCKgnDvIAwwO2OFLLaHGQROlgsqWe+5hcBznu3eFeadHkK3bFu\nBj16PoauhBXMZsQkXwqKFoog7qNo4XAqJs8i7cyLoJLFIuVLQbYNoRAEQAAEQAAENEIARr1GHgTU\nAIH8ErA6kmjVibmUaI+nFcfnUGfhg+9q3NvtyXTuUjydvRBHZ87HiXM8nRFp5Zpn37MTntUuXTxK\nGsCFY8KpoJgFL5A2Ey5nvzkt80x08fwpWrH8F9LpUsiRoqfkZJ08HCmp52RxdiSLfL4WR1REGN03\ndGDqbHpam+HmvP+zxG46cd8UIMd779DXERvo9LgP5JcEOfsvZvxvKF8CxPnq9ST5wnJZvMAwh+yE\nXyhKlyxAZUsUoDJ8LhUtz5wuJZgYDfBgzI4fykAABEAABPxHAHHq/cfa5z0hTr3PEWu2g6tJF4RB\nP5s2nlkujGk7mRwxRCea04kdleniJYswrFPc6l6sSASVEQZr6RJRYrY6kviaZ6vlWcxeFxeHOQ9G\n9oIFC6j/gAFu+3KXWbRoUbpw/ry7ojznpaSkUOyQoWTfspUiX3+NwocMzrENnuVn456/SsizTAuj\nX5zPXYyn0+dj6cKlBOlOlLkxvXAFKlE0MpVfyShh7AuDX3AszS8A4uCvABAQAAEQAIHQJKBGnHq/\nGvW8m2lUVJTwicVumb74icOo9wVV7bZ58UoCHTh6hfYfvkz7xZnTsfbLVLLJv1Sk9iHSG5LJHh9F\nKf+1oOLW5mK2OUYa7zzLzIYnzzSzT7o35dy5c7R9+/YMTZ4TRvuoUaNk3qKFCzOUmc1muvPOOzPk\n3cyF49Qput71LtlEzK+/kKFC+iLj/LbLC3TPiy8d/JWDj9NpZ+Wavwa4E/b95y8cbOAz86oVC1Ht\nqkWpSoVCZDRiht8dM+SBAAiAQLAQCHqjfsyYMTTlyy+pRYsW1KZNG2orDk4rRv57779PY8eOpXlz\n51KfPn3kcz0l/ie9fsMGatigAdWuXTtYnrVPxuFro37jxo0UF5e9u4LrwOrUqUPlymHTJFcm+U2z\nAXng2BU6xMb7sat0UKSvXEvK0FxMtJlqVilCtaoWofKViM5FrqZ/rq6WM/dFw0tR72rD5SLbDDf5\n4YIN/bLid9C9e3fKbNT7ovuk2XMo4aWXydi0KUXPmkE6vW8NaF4YnOrOxIZ/rEgLVyc2/NnFScz2\nZ16LYBIGPRv4qc+qKNUSzwyGvi9+CWgTBEAABNQjoIZRn3fn1ZvgU7xECSpfvjytXbtWHq+JtsLD\nw51G/pYtW4g/ofOhyNatW2nIkCE0YcIEGPUKFJXOI0aOpP379+e698mTJ9MocQ8k9wTYTeb46RvS\naD8oDPiDwoA/9N9VuSDUtRU24G9tWEoYhsIoFEY8H6WKF3CtItKN6HLiUFomdqfdfHYVXUo8m6k8\nOC/D77mbbCtXkm3dH5T03VSKGP6QTwfK6wtqVC4ij8wd8b9l/PJ18mwsHRIvYsoXFX6u+49coUWr\nDstbFEO/lpjJr1G5sGyLDX9vf0nJrB+uQQAEQAAEgoeAX436F55/nvg4c+YMrV23jtaxcS/OipGv\nYB0wcCCNHz9ezuRbRfxpiDYIjBQG+sULFzIo8/Y778hrnoWtX69ehrImjRtnuMaFewJHT1yj7f+e\no607z9LOvReyhHEsLvzcG9Yum2o4illdNvpKFoty31im3KIRJWlo7TFiA6t7iCPnuMqx6/uockxw\nfv2Kevstut6lGyV++BGFtW1DhmrVXIfut7ROp0uLsBNBjeqUcPbLEYcO/Se+ugjDPrOhr1Ti8J0V\ny8WIF7dUI59fHKqLZx8VgXCcCiOcQQAEQAAE0gn41ac+vduMKcXIv/feezMWuFzxjP6ypUszuOu4\nFCMpCPja/cYd5OHDh9PU77+nf/7+m+rXr++uCvIyEeCwkdt3nRVG/DnaIYx5vlaEF17Wq1ks1YCX\ns7+FiSPOeFvYoP9gxxNUr2gLerihbzdt8rf7jcLKsngxxT81hgz161HBn+aRzujXOQxFjVyf2dA/\nLL7KsJsVu1cdPHqVjp68Rg4RztNVyokIPLWqFaH6NYtTg1rFqVrFwsSLdiEgAAIgAALaIRD07jf8\nKZpnrjJLmTJlaPCgQXTixAl66aWXaNKkSVSkSBE5k//Nt9/K6klJSdSufXvprtOyZUunT37z5s2d\nPvmZ28U1CGiBAEdY+Wv3Odryz1k5I3/s5HWnWhwusnWzctSsQSlq2qA0VSybfXx15403mQg3RlKd\nIs2oRuGGN9mSdm839+xJ1hWryLZ8OSVN/oIiHh+tXWWFZhHhRqovjHQ+FLGJWPxHxe+FF0GnumNd\nocPHr9Gp9bH02/rjslpkhJHq1Sguvuak3lu3ejHKT1hQpU+cQQAEQAAEApOAX6eu2KXm5/nzpVtN\nm7Zt5bmE8LPPLGVKl6a+fftKQ79z587E7jj1hGtHC2HAs7vOmjVr5MH38Qw+G/n33HMPDX/It76z\nmfXENQh4InDuYhxt3HFGHKdpx57zzsWSvLFSw9olpBHfrGFpEQ2lCBlUiHVeOqoiPdpoQhb1lx2b\nQY1K3E5cHgwS9cZrdH3bVkr8fDKZOrQnY926ATUs3nWXF9TyoQjH5GdDf9e+C7Rz/0X6VxzsusUH\nC//G2FWnoXg5aCB+a/VqFEN4TQUeziAAAiAQxAT8atRfu3aNjhw5IhdbchQcllq1ajmN/Mz+2q7c\nB4mZfPbHZ1HcdRSffDbya4t2ICCQE4GPPv6YZs+enVM1Z/nrr71GXbr8n72rAIzq6Lpnd+OuRAkJ\n7k6x4lCgLVKou9BSCl/7t5S6fdS9pW4fdQEKVKgApaW4awhuQQIJxD27+e+dzb7sxgnZZJfc2w5v\n3rx5M/PO2+yeN+/OuaO0/coyHOBp2+7TWLPZTOR5savFWNKwb/dI9KHUrX2YmpG1HHOkLbvk/Hro\nCyw69BV6RwzH5XE3I9Cj/EO3I425urHo6Y2fNy2yz7p7CrIfnAG/hQugIxlNZzZ+CGwVG6jSxNFt\n1KWwpv52+vxtT0jG9j3JtAj3DBJI6vT7X80L21m+lN11OpFrF295EW5DPEw6M+4ydkFAEBAEHB2B\neiX1s2bNwssvvwyWRlzOC2QpsboNK6pYSD4DNnXaNAoLb1RkvyIALe467LLDdvz4cQquY6qoqpQJ\nAjYIHEtMxKZNm2zKqto5S7EVKjOOTLp683Gs3ngc68lHPie3SFXlmdLuHcPQr0cU+hGRbxZFgaCc\nwGL92uL2Do/hl4Ofk1rOYmxM+hsDo8diZOx18HGtH7cge8DkNmI43K4Yj4IFC5H71tvwevghe3TT\noG0yaQ8PjcMlA+LUOFhmcweRe57F37E3RRH8JSsPgxMbu/q0axmMTjSL35Fm9PntkSzAVdDIP4KA\nICAIOC0CDb5QNjc3VyP5z7/wQqVAdu3aVS2Urchdp9KTGtmBhlgoa+lz9uzZuLmKhc6OfCvYdWvu\nvHnYv28f4uLMpKiy8R44koqVROJXbTyGXTQTalFfDaHooX26RaoZeXarqQ1BSk9PPyfJ0JCQELRo\n0aKyoda63GgyYvXJ3/Hboa+RUXAWHgYvDI+5CkNjJsDdULMoqUeOHAEvkGXj7YSJExEaGmqjU9+6\ndWsEBgbWepzncqIpM1Op4RRTICzfOT/AtXvjUmZil50D5IuviP6eFLXl2X2L8YMoB8bqSWs7eH0H\n++hLgCwLOrIVBAQBQeDcEWiIhbINTuqtYXqJZvF5oeyUu+9WC2V5Jn8VBZ6yNg5AxUGrLD75TBTE\nzAhYCLaxyDxjbG9cOHJobwoexubv74+zZ87Yu0u7tF8VqS+ghYpbyCfeTOSPq8iilkGwNvzFPaPR\nn2bkW1v5PFuOn+t2MWmrj7700hqfdu011+Cbb76pcf1zrVhgzMPfiQuw+MgPyDPmwM8tEKNjb0D/\nyMtg0BsqbW4LKSFdROtfqnt7NmDAAPxDrnP1ZYUrVyLzltugp1gZfj8vhN7Ped8+1AVmZ0h1iUn+\nNvLN3xJ/WsVDsLTLM/ldafbeQvJbkMKOmCAgCAgCgkDNEWgIUl+v7jc1hWIoqdzwQlm2b779Fjff\nfDP5fxqUnCW76yQkJOCDDz9Uxy0kf8yYMeBFtWL1h8D9DzygdcazzPNotvvKK6/Uypw1k59fhBU0\nE79s9VG1+JClBtnc3QxKqaZ/T3ariarzxYcxMTG4Z8oUG9i+/OorLYqv5Vj8rl1IJDciVpP6g5Rd\nqrOoqKhayY26GTyU683FUZfhzyPfY/mxn/DD3ncR7BmODsEXVdrtaYplYCH0POYkmh2fTwvk2SzX\n8P4HH+DQoUOVtmGPA64XXwz3225DPr1Vyn7gQfh88lGFalz26NsR2wymt0uD+8SoxONLy8hT6kwb\nSGp1w/YkrNlyQiU+FhTggZ6dwtXbKH4jxcHPxAQBQUAQEAQcCwGHIvVdOnfGbbfeitjYWA0lT1K3\nYZs5c6ZaKGvtrmPxyWeSz+VC6jXY7J75Yc4c5TZl3dFDtJCZH67cnXIhoo4WGKbiq19O4t/1ibAQ\neQ78NHJgHJjI9+gYroi99TXXZZ4Xjb/zzjs2Tfa66CLcRkSUZV6nTZ2qjt15551qTcrBgwfB96E6\nu+nGG/E5xRKorXmTP/2ElndhSPR4rEv6q0pCb93H4489pv5u2f2GST0HKLNcH6tgNYR5PfIQjDu2\no5DeECiZy6n3NMQwHLLPAD8PDO8fqxIP8BhFwd1Aa0WY4G/eeQqLVxxWiVWJ25M/Pq8Z6UsPtxwM\nrSKpYoe8SBmUICAICAIXMAIORepHjx4NTtbGr+iXkFtCy5KIkJ6enhg2bJhKXC8nJ0eRy+Bg22iZ\n1m1Ivm4R4JgBjzzyiHp70rNnT6xbtw79+/dXrlKsLvMoHXMW27UvBckFbdF91Nt45dMENexgmpUc\nO7wlRlwcqxYTOtq1MDmOINlXa/sfzT6fPHkS/Hdw9+TJ1ofA61HqwlgJZxQtmrW2NSf/RHzKeoxv\nOQkhnrZjsq7nKHkOQOXzziykjxkH09mzjjIshxxHdIQvOF0xsjW9eSlWi23X0MJwnsGP33dGpU++\n3w7+e+lNs/dM8i+iWAsce0FMEBAEBAFBoP4RcChSX9Hls888u+NUZl5etIhv+PDKDku5HRB4/Y03\nVKAwdqXgNyRM6v/7zDOYSK43L730knrbEh4eboee66bJxJMZWPyvedbxWFImoG8FvSEXraNNuOf2\n4WpG3pEjdI4bNw6crC2WFvjyDD6/0SpL6q3r1XV+y+l/EX9mA/pFjnYKUs/Xr6fYGP6/LwLLXYrV\nDAH+e+hASjmcJl3bBWfTcs3uOSThyvr4v/19UCUVh6EtxWHowgtuI5S+viP/LdXs6qWWICAICALO\ngYDDk3rngLHxjJJng5m4BwQE4Bki8g+XxA5gJZYnn3wSDz74IJ544gl8+umnDgUKR3X9e80R/LRk\nP+l5J6uxsbpH80gd/lj4DlKTtmIn+cx//GoqhITU/Nbd3flZJJzdiPbBPbWTTDDB4KrX9h0xI4T+\n/O5KUIAnLhvSQqUiUtZh6UwOtMaz+JtpYTmnj77dBl8fN/ToEEYkP0Ituo0O9z2/juVsQUAQEAQE\ngUoREFJfKTRyoCIEHiM/aXZ5eu6555Srh3Ud9vn+iIKKff7FF5hK+W7dGl428PCxdCxcvA9/LD+E\nTNLuZutMutyjBsXRYtcwXNSrK86eOKrK8/IK8eZbb+GhGTPUvvxTPQJ6nb6cj/0R/XZcN7sP8lNS\n1GLe6luRGs6MgAsFw+pGxJ3T1Ju7K4Uotdh2x0lsJH/8f9YlqsTXGNHEW83g86Jbls70kwW3znzr\nZeyCgCDgYAgIqXewG+LIw2EJS1ZjYRs6ZIhSIUqgwGFsvHUhf+Xbb78djz76KG6hBc/bt21Tx+r7\nn4pm5X293XD1ZW0wbkQrxEabg0FxXISjR82E3jLGZ599FteRbn1Tkj0Uqx0CBciBZ5Absprsx2ub\n7sOQoKtq15Cc5ZQIhIV44/JhLVRihab9pI+/kRbcridVHZbP/HnpfpV4wW2HViEqtgOrSdWFLKxT\nAiaDFgQEAUGgjhCwK6ln2cn4nTtVFFlvb+86GnL5ZnZSHx9SX7yAcNSoUeUrSEmdIPDuu+9q7XQt\nMwt/XUl0X0uF+Ph4JcXo4+NjKbL7VpuV/5dm5bNKZ+XHjWiJIX2b2SjXsBsRRzdmN6Lu3btj2bJl\nmE4Snbxe4IHp0zG3Bqoydr8gJ+2gjakfnpn8Jvrd1RLosxuzM57F8Mc64J9Pl6JDx47qqk6RzGV0\ndLSTXqEMu6YIsCpOq9hAla4b2x6FFPdhBwW/YlWddVtPYidFu+XEC245gFvvbhFKLra2AdxqOi6p\nJwgIAoLAhYiAXUn9okWL8Pvvvyvfa3uSeta75geIMFqcKaTefh/TSZMmoYgCW3HMAIt9XRL8qEuX\nLuhUQthySR1n0h13oD4IfU5uIf5afQS//nVAkQMeF8/KX3WpeVY+rql5Vt4yXsuWg5xlZ2fj9ddf\nx9o1a1TxZFKN+fuff5T8Iuu/N9RnaevWrWoBMg/KMjbe9qCHD4uxGpR14LUd27erQ1s2b7ZUabAt\nu135IgjLX9qPiM6n0f22GLQcHIbYfiFI+DkJO+YdV2PbuWNHg42xoo6LTSbkzf4cHtdcDV09PoxW\nNJYLtczV1YDuHcNUmnx9V3AArLXkh7+aVHV4we2iZQdVsiy47ds9kuRko9Esyu9ChUSuSxAQBASB\nOkPArhFlLyfNcib1p0inmhdS2st++eUXjL/iCvXw8CQt0mysVt8RZRlnJvqzSQN9K0UR7dSpU71B\nz5Ewf/lrvwoQZdGU79IuVElRlp2VLzuoTZs2qYinrVu3Vi5CN910E+ZS4Kz9+/YhOTkZ/Uies3nz\n5mCiXN+a+6/RQ4Zl8XHZcVvv80PUZroONnZxcHEtlREsLCigxb6Os1D1xMkTuGRyH1x8V1sYvOih\nyzUA41rcgb6RjhUsLu+LL5Ez81m4UhA73/dL30pZ4y55+yFQVGRSi9hZNpNJ/uFjGVpnzWMCMLRv\nDIb2ayYEX0NFMoKAIODICEhEWUe+OzK2BkcgNT2PFrweJDJ/AEeOm3/wOdLlhFGtcfnQFoiJrNls\nniUS7quvvAJXKzLMF3gRBXu6kx5UPv7kE7xMx58iRZ/6tCRyC2JjbfkBFAGV1zBwtF52Y7AEn3qH\n3KAOHz6s6vE/lrcllgJeqHw7BaxyFOPFtAm/nUBLj2645YUx+CdxAQ5l7HI4Uu9+3bXI/+lnFP75\nJ3I//Qyek+5wFAgbxThYjcoyi88LbpOSs4jcn8C/tNCWg199+sN2lYTgN4qPg1ykICAI1AIBu7rf\nWMZzI82EhtgxONQvv/5q6Uq2FxgCPAvNvre8uG7lxmMwGouV5GR/CnQzhgJE8et5Vt+oqc2ZO1cF\nyeL6BTSjzZFO5y9YoE7nbVxsLHpQQC0Qqf/vf/+LG2+4Qc3a17T9uqr3FgXx4sBr3Xv0UBFl3yJV\nHgup/43efqWQsgwbKxGxIpG1saTo1VddVS/uT9b9VpcvLtDhipaTMCDqMrgbPG2qZxWkw8etYlcp\nm4p23NG5ucHn3XeQMXYccl95FS6dO8GVHvLEGgaB8FAfTKDAV5zSMvKwnMj9stVHlVymNcEf1i9G\nrZkRF52GuU/SqyAgCDgOAvVC6pcsWeI4VywjcQoEWPt66crD+HrhLhxKTFdjZo1rVtUYPbi5WlRX\nmwv59ttvtdOuuvpqLc+Zhx56yGafd8rO5Jer0MAFr9DbhBMnTsDPzw8ZGRmKyPMi1BdffBHPP/98\nA4+u4u7LRp49k3sKz66bhN7hw3Fd2/sqPqmeSg2REfB56w1k3no7sqb9B34LF8AQGVlPvUs3lSEQ\n4OehlKtYvaoswedFtpyY1PclFZ1+PSLRhQJg8cy/mCAgCAgCjQkBu5L61197TfnU1wegERERDuVy\nUB/XfCH2kZdfhF9oVv67X3YrvWuWvRt4UTTJUbZVOtiVXfOnn32mZt0rO24p379/v8qyr/xTTz2l\n8rxolo3dbjgyq8Vatmjh0NKWiYmJeJX+xoLpLdgjjzyCGaSvz9fyBin4sN4+R5iNpTcPjm4ZBWcR\n4B4MF33puoCGHLMruT15Pjgdua++hqw7J8Nv7g/QUeRqMcdAwJrgs0vev+vNM/hbdp3C978kqOTl\n6aL08Fkqsw+9zWNlHTFBQBAQBC50BOxK6tu0aYMTx48rNwd7A8lKK4GBgfbuRtq3EwLpmfmY9/se\nzPttDzJIjpJn2dhP/vpx7Wu0MG4P6eT/Sb7QNbURI0bgkZJouLzIlxfK8gLVOCtSX9O2GqoexwPI\nI6WhV199FR4eHmoYPGM/c+ZMTJkyBQ8T0f/h++8bang17jfOvx2e7P0pCk2FNufsT9uBOL/2MOhL\n1ZZsKthxx/PuyTDSA2DBgoXIemA6fD54X61rsGOX0nQtEAj0L53BzyYlLA52xZFtWVGH3XU4sbWK\nC0S/bpHoS257rI0vUaNrAbacIggIAg6PgF1JPV99WFiYw4MgA6wZArwA0+LLbTmDlW/YWBqyYxn1\nm0uIOHfu3Fkdr+yfpORsmpVPIEnK/cjLN8LLwwXXjW2Hay5vi9Cgms+Osv87z1ZbG/vI33333Up/\nvqyijBv5Tzuz8eLZ74iwt2/fHpPvugtffPmldjksJ/rBBx9gHj2orFy5EhfTzLOjm0HvQuS99Ovo\ndM5xvL3lIYR4hCulnK5N6v8avJ9/DiZakFy4ZClyX3sdXjMedHQYG/X4vD1dMah3U5UYiL2HzqqF\ntqyms2vfGew7lIov5seDF9cP7kNKOqSm06VdEyH4jfpTIxcvCFxYCJT+il5Y19Wor6ablZ55WSBG\nDB8O9sOujfGM8O6SCLJlz//q66/LFsHX17dSUr//cKoi80vIb54Xvwb4ueOmCR0xkZRsWGf+XM2L\n3CM4WVtwUJDaDSL3FHZRuVCMFw9b7A16mLKOG8DlLGfJ5cPpoYqVftavW+d0s8zuBg9cFDYM65KW\n4JOdM9HCvyOubHU3YvxaWy7d7lsduWj5fPgBMq6YgLwPP4KhVUu4jx9v936lg7pBoHVcEDjdOrEj\nMuhN4NqtpIe/6QRWbTqG+X/sVSmYCP4gIvi82LYz+eHLDH7dYC+tCAKNAYE9e/bg2jKBN62ve3tJ\n/BjrMnvnhdTbG+EGaJ+juVZmbcklqrbGRDGdFmPW1HqScktZW0c/rN/+lICNO5LUocgmPmpm/jJy\ntXF3q383i7Ljc5T9wUOGgHX09+7dq4Z033334b333lP5gwcPasO8l8rZLPWmTp2Kt99+Wzu+mYJR\nbdiwQUl1aoVOkPEnH/ub2j+IoTETMH/fx9iduhkvb5xGi2lHYGyL25UPfn1chp7ia/h8/BEyrroG\n2Y8+DkOzZnApE025PsYhfZwfAn6+7rhkQJxKBRTVlhW1/l5zBCs2lCf4MoN/fljL2YJAY0GA3V+r\n4lsNgYOQ+oZA3c59FuTn26WHkRSUpzbGoeGXrDyiZuYPHk1TTbRvFYzrKWw8L4I1nIMkZW36d6Zz\nhg4dCnZzKiwsVKo21mNnlZuyVl0Z6+5zqi/jdQ2TyeXJ2pIo+BzbryQ9a70Qmcv4DcqmjRs5W6FF\n+TTHf7q9hJ0p6zB//8dq5n7L6RUY0exqDI+5Cm4G9wrPq8tCl3bt4PM6LZq9ZyoyJ08pUcSJqMsu\npK16RMCNotoO6BWtUmUEn110WC6X1XQu6hIBdu0REwQEAUHAGgEOAlkV37IEn7I+x955IfX2RrgR\nt5+ZXYCFi/epxa8pFA6elWz4x5R95tmXtSGMZ7SPHj1q0/XSv/5S+7xlnXpr69ixI8LDw62L7Jq/\n9NJLkUJRbS3Gwaduo0BSPPtu0am3HLPe/m/2bKV2w7P5d0+ebH2oXvNGoxG5ubk2ffr7+6uHFHYL\nKnuMZzpqYh1DeqNdUE+sOP4LFh36itKXWHXiN0zt8gIifWJr0sR51XEbeQk8pz+A3NffQNZdpIgz\n53tRxDkvRB3j5MoI/sqNx7Fo2UGVDAadkshkqUwm+bHRDRtPwTGQk1EIAoKAIyIgpN4R74qTj4kj\nQX5PkpS/LjuA3LwiuJFbzfhLWqnFrzWN+movCHgB6ax33qmweV5UW9a+pAWoN1x/fdli2a8EAX4o\nOVUyM19JlVoXswrO4KbjcVH4MPx26GvEn92AJl5RtW7vXE/0vGcKKeIcQMFPPyFr+oPwef89p1ur\ncK7X3JjqWxP8oiITtu9OBi+yXU1pc/wpld79cgsimnib9fBpJr97x3BxG2xMHxK5VkHAwREQUu/g\nN8iZhnfgSKoKFvXXqiMwmsyLX3lWnhe/sra0I9hwWijs6VlzzeqOHTo4wrBlDFYIeLn64srWUzDe\nNMlG2/5E1iEVqTbY035vVrxffB7GI0dQuHiJmrX3Ij17sQsPAZbU7d4xTKWpN3fHydNZRPBpoS0R\n/E07T2kLbXkdELvpDO3bjIJeRcGT1LvEBAFBQBBoKATkG6ihkL+A+t266zS+XhCPNaQNzRYV7qP8\n5Tnyq6Mtfr3sssvAScz5EbAOVsWKQF8lvIYT2Yfxf91eA2vf28NYEcf3I1LEGX8F8j740KyIM26c\nPbqSNh0IgQha0D+BJic45RcYsXlnkiL5Kzcewz9rE1USgu9AN0yGIgg0UgSE1DfSG3++l80kiv1O\nv14Yj517UlRzrSnAy43jO2AI6T+LNNz5IiznnwsCxShG/8hLseHUMsT42lf2UlPEufpaZD/yGPRR\nUXDt2fNchit1nRgBM3mPUi44D0zqhfi9KVi25iip6RwVgu/E91WGLghcCAgIqb8Q7mI9XgP7mi5e\ncRjf/BSPw8fM8pb8mvqmKzoolYh6HEq5rrKzs/H9Dz+At2wLKPgU2zvkQ2/RsGdN9wlXXIGICFEv\nUeBcIP/odXpcHHWZStaXdDAtHkXFhWgd2NW6+LzzLhT0y+eN182KOLdPgu/s/8G1R/fzblcacD4E\nOrQOAaf/3NK9coJP0Ww54FW/nlGipON8t1hGLAg4DQJC6p3mVjnGQB966R+l8cxKNoMpeuONRObb\ntXSMwE5vz5qFJ598shxQLKl4//33a+XxO3fi/fff1/Ylc2EiwG+Tvtszi1xyDqFzSF9c0fKuOl1Y\n63bJCHi/+gqyZzyEzNtuF2J/YX6MzumqKiX468hFh5Ir+er37ByOIUTwWQmM9fPFBAFBQBCoKwSE\n1NcVko2kndGDmqNJsBeuH9ceDa1kUxby/BJ5xOspwtvIUaPUTP3ChQvRnmZVH374YRw4cAAzZ85E\nWppZK7/s+c6y/1+6hvnz59sMdyc9qLBx8ClW+LG2sWPG4Nlnn7UuahR5HT15XtNmGn7c9yG2p6zB\nzjPrMTh6HEbH3ggvV586wcD9CnOEWSH2dQLnBdWINcFP2H+GXHPM7jm84JaTQa9Dtw5hFNG2KQZd\n1BTBgTVfwH9BASUXIwgIAnWGgI5ms0pjztdZs9JQQyBgcDE/oxmLihqi+wbv8+mnn8Zzzz+PRRTk\naBSReia+V119NZ6nskdKSH1riqh7DZV9++23DT7esgNYtWoV7pg0yaZ437592n6rVq1U3rrM1dUc\nFIeDVVnMUmbZv+nGG/HJJ59Ydhvdlr/i1ictxU8H/of0gjPwdPFRgauGkDymu6FuiFT+goVqxp78\nvOA3by5cWpvvVaMDWy64WgRYJYwX1/5NJP9QYrqqz28+O7UJxSB6+3lxz2hER/hW245UEAQEAcdG\nwBJ8qietuVq3dm29DFZm6usFZulEEKgegYKCAliir1pqs/wmB2hyJ9UVyzFfX/MP/lVXXtmoyboF\no+q2PGPfO2IEujUZgCVH52LZ0R/xy8HZ+DtxPi5pdg0GRo2Fq8GtumaqPG6ZsS/8axkMzeOqrCsH\nGzcCLZoFgtMd13TG0RMZWM6uOUTwWRef0ztfbKa3oL7oT+T+YvLBZ7IvUbcb92dGrl4QqCkCQupr\nipTUEwTsjMCQIUOQlppq514ab/NuBg9cFncTBpELzpIjc7D82E+Yv/9jJGYewK0dHj5vYJjYW8j9\neTcmDTQKBNiFkUUGOHHQPlYUW0UymZvjT+O7nxNU8vVxQ5+ukYrg96YFt77e5/cA2iiAlYsUBBop\nAhcUqS8it5Ovvv4akaRsMnLkyEZ6S+WyBQFBoCoEfFz9aNHsJAyLmYg/D39HEWqHV1VdjgkC9YJA\neKgPrhzdRqWc3EKs33aSCL45ou2SlYfBif3wu7RrggEXRStXnbAQ73oZm3QiCAgCzoGAU5J6Ju9v\nvPkmnnnmGeTn55dDevDgwULqy6FSeUF8PGnNU6qp9ejeHS1btqxpdaknCDgkAn5ugbiq9T02Y8sr\nysV72x6j2fyx6Bk2xOaY7AgC9YWAl6erksBkGUwTReeO35eiCP6qTcdpFv+USm/P3qSUxwbTQluu\nFx0ufvj1dX+kH0HAURFwSlI/kXyJf6XFkGJ1g8C8efMw8xzUUVj3XUh93WAvrTgWAntTt+JQ+i54\nu/oKqXesW9NoR8OB/NivntPdN3TFydNZSh5zOS223bEnGays88HXW8lPP8D8IECLbZvHBDRavOTC\nBYHGjIDTkXqepbcQ+nbt2mHwoEHa/cvKylLuN1qBZGqEwIgRpLftYyvxt2TJEixduhRubm7l5BD7\n9e1bo3YbqtJll1+O4cOHq/HzGB5//HH8/fffStKyocYk/ToHAp1D++KJ3p9ArzPYDDgp+yjCvJqC\nF93WxvLnL4A+pqlEnq0NeHKODQIRTXxw3Zh2KqWk5uJfWmjLSjpbd53GgSPb8dkP29GU1HNYSWcg\nSWW2bxVc68+tTceyIwgIAg6PgNNJWh4+fBgtSlw/yko3mkwmJCQkwIcIarNmzRwe/LoeYF1KWi5e\nvBijL70Ujz36aDlSX9fjrqv2WJOe3+JUZYGBgdi6ZQuio6OrqibHBAENgdyibDy5+iYEuIfg0rgb\n0S10wDmRJGNiItKHXwKQ5KzP++/BbdBArW3JCAJ1hUB6Zj5WrD+mlHQ27EgCR/9mC/T3QL8evNA2\nGr06R8DTw+nm8uoKImlHEKhXBETSsgZwBwcHw8PDAyzrl5OTQ7LQXtpZer0eHTp00PYl07gQGD9+\nPDLS02HRbJ+/YAHuvPNOPDRjhgo+xWi4MLEq81aicaEkV3uuCOQb89A2sBu2JK/AZzufQ4R37DmR\ne0PTpvB56w1k3T8dWXdNhvcbr8P9skvPdRhSXxCoEgF/ik57+bAWKmXnFGI1+d+v3HQMaynQ1aJl\nB1XiiLbdO4Ypgt+f5DJloW2VkMpBQcDpEHC6R3Ym87fcfDM++vhjFTX0vXff1UBnkt//4otxJc3W\n/vD991q5ZBoPAt7epWoQAf7+6sL9AwIQQElMEKgNAgHuwZjU6UmcyDqE3w59XSty7zZ6NHy8fZA1\n5R5k3/d/KCZXQY9rrq7NcOQcQaBaBLy9XDFiQKxKRUYTtickK6lMlsxct/WkSq9/ugEtyQ+f9fDZ\nVadN86Bq25UKgoAg4NgIOB2pz83NxfYdOxSqq1evRjdSYilrKSkpZYtkXxAQBASB80Ig0idOkfvj\nitx/ha3JK0tm7ptREKtraWHt4HK++NYdug0cAN8vPkfWpDuR89jjKKa3Sp533WldRfKCQJ0j4GIw\nz87zDP1/bu2BI8czFMFnJR0OdrX/SBq++HEnIpp4YxD54LOSTsc2IefkYlbng5YGBQFBoFYIOB2p\n56iaa9asqdXFykmVI8BRS9evX4/i4mJV6d9//1Xb5bRdvny5yrN7U3d6iLKeDa+8RTkiCFyYCEQR\nub+z01Ngcv/74W+w9fQKfLHrZaTmJWNk7LVVXrRrzx7w/e4bZN5yK3JffkURe68ZD1Z5jhwUBOoS\ngWZRfmgW1R7Xj2uPjKx8ctM5ofzw15Eu/ve/7lYpOMADA2n2fggR/K7tm0hE27q8AdKWIGBHBJyO\n1LM/9LXXXIM+pMDyn2nTbKBhzfrbb78d7cWv3gaXmuxcTZguWrSoXNVVq1Zh6LBhWvmUu+/Gu1Yu\nT9oByQgCjQwBJveTOj4BVsZZcnQO+kWOskHAVGyscObehVS7/H74AZnkRpj34UcozsyE13+fkZlR\nG/Rkpz4Q8PNxx6hBcSrl5hVh7ZYTSklnDc3iL/hzn0p+FNGWg10N7h2DHp3C4e5mqwxVH+OUPgQB\nQaBmCDgdqQ8NDcU333xT4dW5u7tXeqzCE6RQQyA5OVnl7/+//wPPyC8mScsdJW5O0x94AKdOncLX\nhPtRUvIQEwQEgVIEwr1jcFM729l2JvqztjyM0XE3YEDU5aWVS3KGuFj4zfkBGTffivxvviVinwXv\nV1+GjhZyiwkCDYEAq+IM6RujUkGhERto5v4f0sJfsfGYttDWw92gFHR4kW3/HlEICvBsiKFKn4KA\nIFAJAk77C8Ka9NOnT8enn32mLi0sLAwfvP8+xo0bV8mlSnFNEHjllVcUqR9eRtLSQupr0obUEQQa\nOwJHM/chpyhTueRUhoU+IgJ+33+LzNtuR8HPP6vFsz7vzoKOJifEBIGGRMDN1aAW0PIiWl5ou4Wi\n2P5LcpmriOCv2GBOPL52LYNJSYcIPtVrFRvYkEOWvgUBQYAQcEpSn5GRgcAg25X6TDonTJyIq6+6\nCt99953cXEFAEBAEGgyBi8KHoV1Qdxh0rjZjWHPyT7QP6gl/UtRh05NEr983XyNz0l0oXLYMmbfe\nTlr270JP8RTEBAFHQIAX2rK+Pafpk3ph/+FUkso8rgj+rn1nVETbT77fTvKYXujXnQl+FMlmipuO\nI9w7GUPjQ8ApSX1sXJx2p6becw+iKJDQm2++CXYhmTN3LqZMmYKBAyXAiwaSZAQBQaDeEfB1syXm\n7JLzdcLrcCGiz6R/eLOrKUptNHQk0+v7xWxkTfsPCv/+Bxljx8HnvXfh0rlzvY9ZOhQEqkOgJc3I\nc7p1YkecTcvFGtLBX0kz+OvJXWfBYvLDp+RGfvc9SG2HST4HvgoPtY1YXl0fclwQEARqh4DTkfqC\nggKkkxQc26aNG9G1a1eVf/ihh9C8RQscOXIEQ4YORdlos6qS/HPBIsBqPRs3bbK5vgUUfIqNH/jc\n3NxsjrVo3lxctWwQkR17IxDoEYorW03B0qPzsPrkH+BZ+66hF2NEs2vQzK81fD76ELmvv4G8jz5G\nxjXXwevJJ+Bx/XX2Hpa0LwjUGgH2qb9saAuV2A9/885TKujV6s3HFdlnwv/6p0BstB/6MsGn1Lld\nKHj2X0wQEATqHgGnI/UnTpzQULAQekvBn3/8gbakLDF48GBLkWwbCQK//PIL3iDyXpFx3IIZFFXW\n2i6//HIh9daASN7uCLgbPDGk6RUYGDUGG04tw5Ijc1QgK45U2yawq9K6b/vQDLh064Zs+rzmPPkU\nirZsgfezM6GjKNpigoAjI8B++H26Rar0AHqRHn46VhOp58i22xJO4/DPCfiOEgfG6kUqOn26RyqX\nnvDQ0oCBjnx9MjZBwBkQcDpS36RJEw1X1k8fNGiQtj94yBCV37lzp1YmmcaBwA033IAePXvW+GKj\nIiNrXFcqCgJ1iYBB74I+EZegd/gI7EhZi8VHf8Ce1K0qNfVthXHdb0PrhQuRdc9UFMxfAGP8LvKz\nfw+G2GZ1OQxpSxCwKwLNovxJD98f141ph+zcQmzcnqQIPstm/rMuUSUeQHS4L3p1CVcEn112fLxt\n36radZDSuCBwgSHgdKTey8sLTZs2RSJJK7J++lBytWnTujU++PBD7dbM//FHLS+Zc0OAZ7QtkpZ8\n5gsvvggOTMULkR3Z+K1N2Tc3jjxeGZsgoNPp0Dm0r0r703Zi8ZHvEX9mPTIL04nA94Tf/HnIfuJJ\nFCxYiIzx40ny8lW4jRguwAkCToeAt6crBlEwK05sew+dxfqtJ7F++0nsoKi2Fk18vV6Hti2C1Ex+\nry4R6Ng6BK70BkBMEBAEaoaAjiKImkOI1qy+Q9TiIFNe3hW/snvi8cfx3//+1yHGWd+DMJRoXNdm\nPcE1116LefPmVTvkv0mhQxYhVwuTVBAEaoXAiazDtHi2KQx6M5Hhr+dFPz+KDi8tgv/pPHjcdSc8\nH5wOnUGITq0AlpMcDoH8AqNyz+GZfCb5+w6lamNkXfzObZtQ0KswWngbjjbNg2jSSacdl4wg4MgI\n9O3XD+vXr0dP8iJYt3ZtvQzVKUk9I1NUVIT3SJf+AQqMxMY+0s88/TS6kT9qY7XzIfW8+Hj79u2w\nPOMtoeBTPEt/8cUX49mZMxWkvqTS0ZjxbayfK7nuhkNge/IafLTjacS4NMXkx/fDRGuKXPr0hs87\ns6AvI+vbcKOUngWBukMgLSMPm3acwgYi+BuI6CclZ2uN+5JrTtf2TPLDlbpO85gA7ZhkBAFHQ0BI\nvaPdEScbz/mQ+rKXurhM8Kmyx2VfEBAE7I9AvpEkA08uRrBHE3QwtEX2/Q/AmHgMxXM+RUBQDNiF\nR0wQuJAROH4qU5H8TTuTlLrO2bQ87XID/T1IEz8MPYnk9+4aQVr5Fb/B106QjCBQjwg0BKl3Op96\nvh88m8zSlmWtsLAQH3/yCZqTjv148kEVEwQEAUHAmRFgxZzB0aVRsn3+9xlMFI/juX2PwmgqQv/I\n0egbOQp+ZTTxnfmaZeyCgDUCUWG+4DR2eEtVfCgxHUzwN+1IwpZdp/HXqiMq8cGWzQJUdFuOcsvR\nbuWh1xpJyTcGBJyC1B86dAhdya3mhuuvx6xZs/DmW2/hkUceqfT+sKSlkPpK4ZEDgoAg4KQI6PR6\n5Ad5ISalJbaeXoWfD87Gr4e+RKeQPhgQeRnaBvUQIuOk91aGXTME4pr6g9OVo9vAZCrGPopwu5EI\n/qqNx7FjTzL2H0nDFz/uBM/ic+Cri3tGK2UdTw+noDs1A0FqCQKVIOAUn/KwsDBkZWXho48/Vj70\nVRH6Sq5TigUBQUAQuCAQ8HL1xW0dHkNWq3SsTVqCVSd+w7bkVSoFe4TL7P0FcZflImqCAC+a5cWz\nnG4Y1x4ZWflgycyVRPDX0XbRsoMqubrolZtOvx5R6NKuCVqQL74suK0JwlLH2RBwClLPoN49eTK6\n9+gBlrSMiIhAbm4uXnjhBRu8uWz69Olo3aqVTXlj23n1tdcqvWSW/xw7dqzN8dWrV2MVJWvjhbJs\n3Jafv7/1IYwYPlzkI20QkR1BoP4R8HHzx/CYK1Xam7qNyP0ibElaoc3ed28ykMj/o/U/MOlREGgg\nBPx83HHJgDiViowmparDM/ic1pGEJic2L5q1b9cqGJ3ahKrE0pmij99AN82Ju00mV8jPv/ii0itg\n5Zv6NqdVv6lvoJyhP8tC2arGOmHCBMydM8emCkuAznz2WZuyqnbeeecd3DNlSlVV5JggIAjUMwJG\nclM8ceUYbLnYD5svj0azyK5qRt8yDF6LJD7GFjRk29gQOHI8A+u3kS4+uejspHQqJccGAnbpYZLf\nsU0IyWiGommEn81x2REEyiKwdevWGgW9FEnLssjJfo0QsJD67777rtL6TaOj0bdvX5vj8fHxiN+1\ny6asqp0e3bujRYsWVVWRY4KAINAACOR99TVyXnwJoFgexWMvQeAzL0Bf8qbt+z3vIDnnOCa2uhuR\nPrENMDrpUhBwHASSz+YQuU9RJJ+J/l7Sxy8qMmkDbBLshZ6dOdKtOdot++iLCQLWCKSlpWFxiVeD\ndbklf91116nsBUnq9+7di927d6N3795gH3mxukfAQuprE3yq7kcjLQoCgkBDIGA8cABZLH0Zvws6\n0rL3fOB+uF9zNWZtewT7Urfjuf5fI8A9pCGGJn0KAg6LAAfB2nPwDJH8FGwlVZ2t8aeQk1ekjbcF\nKev0IulMJvrdOoTBw91pvJe1a5BM/SLQEJKW9eZ+8+xzz+GZZ57BwgULMGbMmPpFtpH0JqS+kdxo\nuUxBoBoEikneN/f9D5D34Ucg/V8Y2reH19NPIr1DFEI8I7SzT+Ucw+fxL6FvxEj0CBsEb1dxOdDA\nkUyjRoBn7eP3pYAj3XIQrF2UN5LaDpsLLbxlP3wOgsXbDpS8PV0bNV5y8eURaBSkni/bx8en/NVX\nUcLKN9YmM9HWaJTmhdSXYiE5QUAQAIzHjiHnhZdQ+OefCg63yy+D58MPwxBpJvYrjv+K7/fMUscM\nOhd0DO6N3hHD1dagl5lI+QwJAhYEsnMLsYVm75ngbyDffPbRtxjHgOPotuaFtyHklx+K6HBfy2HZ\nNlIEGoLUN8i3dmRkZI1uMS/s2rdvX7m6vOI4NDS0XLkUCAKCgCAgCJQiYKA1NL7vv4vCNWuRQ4vh\nC35dhIKlf8Fz8l3woDQg6nK0I2379Ul/UVqKbSkkjUnJ28WXZu6HKIIf69e2tEHJCQKNFAGeiWfN\ne05s7JO/LeG0ctfhhbf7yCf/AGnkL1xs5iwBfu42C2/btgiGm6uhkaInl11fCDis+80uWrh55113\nYe3atRoWHTp0wP8++wy86ECsPAIyU18eEykRBAQBMwLFRiPyv/0OuW++heL0dOhpcsXrsUfgNnq0\nBtHBtHisI3K/6fRy5BaZ35CGeTXFZXE3K/ccraJkBAFBwAaB/PwiJBww++Tv2E0KO3tTkJ6Zr9Vh\nrXwm9p3bhaILqevwrL6fr7t2XDIXHgINMVNfb6R+2bJlYO3zW265BW3bVj7zk0+qDc8//zyeL6NB\n/+KLL+KB++8nX7YGebngFJ82IfVOcZtkkIJAgyJgIsUGJvZM8CkkJ1x6XwSvJ5+AS7t22rgKTQXY\nkbIW604uxa6zG3BTuwdxUfgw7XhuUTY8Xby1fckIAoJAeQSOnsgwq+sQyd+WkAzet7bYaD+Sz2xC\nAbFC1TYy7Nxck63bkrzjIXBBk/qawL18+XLcdvvtOHLkiFZ9OAU6+uD999G8eXOtTDIVIyCkvmJc\npFQQEATKI1C0Zw9yZj6LorXr1EE3Ckrn+cD/wdC0qU3lzII0eBi84GpwU+XsFvn4quvh5xaIB3q8\nATeDSP3ZACY7gkAlCKRl5Cl3ne3ktrOdiP7ug2dtZDT9fNzQOs4cIbd1XCBaU6TcphG+El+iEjwd\nvbghSL1DTHunpqbioYcewv9mz9bukV6vx//+9z/cdOONWplkBAFBQBAQBOoGAZc2beD3zdcoWLwE\nOa++hoKff0bB77/D/bpr4Tl1KvQhwaojX7cAmw6zCtMR6hWJAmOeDaHPLEhFWv4ZNPVtaVNfdgQB\nQcCMQICfBwb0ilaJS1hGM2H/GSL4Zt/8PeS+s3FHkkoWzDj6bSsi+K2I7DPRb0tEv1m0P1wMeksV\n2QoCGgJ2c7/JzMyEt7c3mJxXZd//8ANup9l5druxGBP5119/HcHB5h8VS7lsq0ZAZuqrxkeOCgKC\nQMUIsL99wfz5yHlrFoqTkgAvL3jccTs8J90BXSVqZUZTEawVcpYcmYOFBz5FsEc4Oof0RaeQPmgZ\n0MmmTsW9S6kgIAhYEDiTmkuBsM5iDy283Ucz+Xsof/J0tuWw2rq5GdCSdPPZR59JfhtKsRQRV4i+\nDUwNvtMQM/V2IfUbNmzAyFGj0I58NJf/80+FfvDsYjN12jT8TjNDFmNVnM9ptn7YsFLfTcsx2VaP\ngJD66jGSGoKAIFA5AsU0uZL35VfI++BDtZhWFxgIz3umwP2G66Fzr3pRX/yZDVhx/BcknN2EIlOh\n6oTddtoH91QEv0PwRaKDXzn0ckQQqBSBzOwCRfT3EsnnyLe7D5xF4skMkCecZhaizwS/bXMi+y2E\n6GvgNFDmgiH1c+bOhSU87tw5czBhwgQNUiPNCL09axZmzJihlXHmIdp/6qmn4OnpaVMuOzVHQEh9\nzbGSmoKAIFA5AiZ605r30cfIm/05kJenSL33zP9WfoLVkXxjLnaf3aIW2safWYcMcsth00GP5v7t\nMTRmArqGXmx1hmQFAUHgXBFg3fx9NIvPBH8Pkf3d5Lpz9ESmTTOsuMORcNlPX/no07ZlbCDcaaZf\nzP4INASpt4tPvW/J69rY2FgMGDBAQ27Lli2YdOed2Lp1q1bWo0cPfPrJJ+jcubNWVlkmjVQb7po8\nWUla8kOAmCAgCAgCgkDdI6D39YXXg9PhccvNyH3nPXjcdkuNO3E3eKJLaD+VeFHt0cy9iuCzms6B\n9J3oVTDUpq1T2YkI8gyDq968ENfmoOwIAoJAhQiwbn7X9mEqWSqUJfpM9s2E/6ylCrlE69Asyk9b\nkNumudlfXyLiahA5dcYu7jeMCBNwg8EAX/pxYMuj2Z42JGV5jCIcWuzNN9/ENF6QVY3fvaX+yZMn\nEU3KDGPGjMHCBQssxbItQUBm6uWjIAgIAo6MQGpeMjxcvGzkMJ9ecwsy8lPxdN/ZCHCXdVSOfP9k\nbM6HQG5eEfYfSYXFdYd99A8lptuo7nBE3KYRfsplR7nvkOsOz+570YODWO0RuGBm6hmCgABbxYRX\nX3vNhtBznenTp6vE+ZqYiTSVxQQBQUAQEAQcB4HCTZth3L8f7uPGQudRtbxloIdtJHDWw+eItkk0\nW29N6NPyU/B34kJ0JD/85v4daLGtuAs4zh2XkTgTAp6knsOBrjhZrLDQqIg9++czyWfXnf2HU5WO\n/uIVh1W1skSfFXhio/wRHCgu0hYcHXFrF/eb6i60S5cu1VWp8DjP1J8+fbrCY1IoCAgCgoAgUP8I\n5H34EQopuGDuSy/D/aorlf+9oVmzGg2EXW6ubXNvubrsqrP06ByVeLFtq8DOaEvkv21gN4R7x5Sr\nLwWCgCBQcwRcXQ1KA5918C9HC3VikdGEwzSDz+46HBmXt2WJPlf08XJFLElqmpOfkteMo/3wUG/R\n06/5LbBbzXon9ew2w+4ztTGL+01tzpVzBAFBQBAQBOoeAa/HH0N+bDPkz/sReZ/9TyWOUut+xRVw\nGz2qUknMqkbSM2yIUsqJP7MeCWc2aT75fE6Ae6gi922CuhHR766CYFXVlhwTBASB6hFgOUxeRMvp\nsqHlif7Bo2k4fDxDzfDv3JsCTtbGi29jyFefCX4cyWsy6W/eNAAcJZf9+MXqBwG7+dSXHX5KSgpO\nnTqFZjSD41OJ7nHZc8ruFxUVYQ9FQfTz80PTMlEPy9ZtjPviU98Y77pcsyDgGAgU5+Yi/+dfkP/d\ndzDu2GkeFLnjuF0yAm5E8F3794OO1lnVxpKyjyqpTFbV2Ze2Dayww9YmsCvu7faK1qSp2AS9rurY\nKFplyQgCgkCtEGA//SPH03H4WIbaso8+7x9PyoLRZKWzSa2z1GazSCL7JUSft42F7DeET329kfpa\nfXLkpHNCQEj9OcEllQUBQcBOCLCPff6Chchf+JM5mBX1o2vSBO5jx8BtwhXgaLa1NaPJiMMZCdid\nugVNPKPQK7xUTWfB/k+wLXkVrmk9De1IH19MEBAE6g8B9tVPPJmpZvMPJaap7UEi/MeTMsuTfVc9\nmhLZZz/9ZtHmGX6e3W8a4Qt2D7oQTEj9hXAXG/AahNQ3IPjStSAgCJRDoJjEDYrWrCWCvwAFfy4G\ncnJUHQMpobldMR5uo0bCEB1d7rzaFszZ8y5Wn/wD/9f9NcT6tdWa+Xb3W/AnZR3WyW/m2wZerj7a\nMckIAoKAfRGwkP2DJUSfffcPHUvHMSb7RtuZfXbViSKXHSb4LL0ZTSSfXXi4rEmwt1O58gipt+/n\n6oJvXUj9BX+L5QIFAadFoJgIfcHixcifvxBFq1fDEg7T0KE9kftRZoLfvPl5X5/RVEQL9vSaG05u\nUTYe/PcKm3ZDPf3n3AoAAEAASURBVCPR1LcVYkoS54Xo20AkO4KA3RHgxbk8i89uPEzyj1A6zFvy\n3c8vMJbr34WCaYWFeBHB91Ukn8m+IvzhRPyb+MCbFvE6kgmpd6S74YRjEVLvhDdNhiwINEIETElJ\nKPj9DxT88SeKNm3SCL6+ZUtF7t1GXgKX9u3rDJnUvNM4mJ5AKZ6CYe3DscwDKDDl2bTPRP+uTk8j\n0ifOplx2BAFBoH4R4KB1ScnZitwz6T9xKgvHKZ04TYm27NNfkfn6uClyH9HE27xl0k9kP0Ilb7jV\ns1uPkPqK7pKU1RgBIfU1hkoqCgKCgIMgYCIRhYLFS5R7TtGaNaD38Wpk+pgYMLlXBL9btzodLS+o\nPZWTiKMZ+1TEWwvRf67/10p1hztj3/3n1t9J7jqtcWuHR+q0f2lMEBAEao9AanqemeSfMhN+Jvsn\nT2Ur0n/6TA5MZRbrWnoKCfJUJF+b4bea8beH/r6Qegvysq0VAkLqawWbnCQICAIOgoApPR2FS/8i\ngv8nClesBAoKYOjcGf4LfrT7CMsq5yTnnMCLG6YgwrsZZvScpfW/L3U7Fh/5gdx3WqoU6R2LUK9I\ncve5MBb3aRcqGUHACRFgl55TKdkayT/Js/uK9Jtn+9My8iu8Kpbk1Hz3Q7wRQkG2+CFAbSnPpD/A\nr+rgemUbbghSX+869WUvWvYFAUFAEBAEBAFGQO/vD/eJE1Qqzs5Gwd//QOdSNVkuLiyEzvX8fWnL\nSmEyUX994EJkF2Xa3JwjmXux6+wGlSwHXHSuaOIVTa47zRDu1QwRtI30jqOyKEsV2QoCgkA9IMB6\n+2afe98Ke2PXnRM0w8/uPMqlh916OE9uPhblngpPpEJX8ukPCmCi74HQIC8VcCvCysUnktx+3N0b\nllaLpGVld88Jy2Wm3glvmgxZEBAEzguBjBtvQvHZs3Dp2RMG8sN36dABhjatoXNzO692qzqZffSP\nZu7H8ayDOJl9mNIRcuc5BlNx6eI+JvWP9/5IayYl96Ty52f1nWDPMK1cMoKAIOAYCLDbTvLZHLAL\nT0pqLs5QSjlbsk3NoWPmfEZWQaUDDvT3IBcfbzDZX/L7j9i1dTHaxPli3dq1lZ5Tlwca9pGiLq9E\n2hIEBAFBQBBolAgY9x+Acc/e0mt3cYGBFt0aOnYwk3wm++3bQeflVVrnPHKBHk3AqUtoP60VVt05\nnXtcEXwm+V4utrKZO1PWYe6+93FJs2sxrsXt2nk7U9YjpyiDZvhjaGa/KTxcPLVjkhEEBIH6Q4Dl\nNMPI9YZTVVZAevxM9k8ml/ryW7v5xO87A046357wD02kpo5V1VydHpOZ+jqFs2Ebk5n6hsVfehcE\nBIGGQYBddYp27YIxfheK4uPVlgNgWRbdqlHpdNDHxcGFiL6hY0e15Vl9XS0jnJ/rlSbSzH78mfVo\nGdCZUkft9He3Pqqi5VoKfFwDEOIZTinCnDzM23DvGPi6BViqyVYQEAQcFAGW40wiwn/tjZOxfctK\ndGwbXW8z9ULq6+FDkU0/OPfeey8+/+ILdCMVh3j60Rk4cCB+nDcPPnX4gyKkvh5upnQhCAgCToFA\ncX6+mr1XJJ8If9FOIvt79gBUbm2K6Hfq2CBEn8exN3WbcstJotn90znHwW466QVnrIeo8sOaTsSE\nVpO18nUnl+AEuf70jRgJJvwWKzDmw83gbtmVrSAgCDQQArJQtoGAt2e3b739NqZPn651sWXLFpVf\nunQp/AMC8Mknn+D2227TjktGEBAEBAFB4PwR0Lm7w6VzJ5UsrRWTXCbP4Bt37CSST4m2xoQEFBw6\nBPz8i6Ua9LHNYGjWDProptDHNIVr795wIeJvD2sd2AWcrK3QWIAzeUmK4DPJ59QmyFbWc1vKamxL\nXoV2QT1sSP0L6ycjLf8M/NwCEeQRVjrjb5n9p5l/Hzd/6+4kLwgIAhcIAjJTb8cbuXnzZvS66CKt\nh7eJ4E+bOhU///wzrpgwQStfQlEWhw4dqu3XNiMz9bVFTs4TBASBxoqADdHfscM8o797N5BXGpzK\n87574XnvfyqFiN8C6LwphH10VJ0o8VTakdUBJvpncpNUZFzraLgfbHsKyeTbn07EPs+YY3VGadbD\n4IVr29yHXuFDtEKW6mRr5tdGZvo1VCQjCNQegYaYqRdSX/v7VeWZefSD4G3lWpOXmwtXK9m1HAqZ\n7uvnp7Wxm2aLWrVqpe3XJiOkvjaoyTmCgCAgCNgiwBEtiykoljGRFG2OJZKaThu4UKrM0kaMhOng\nQYD99iPCoW9KM/xNY2CgWX6Vj46Gvkko9KGh4DcI9WU5hVlIyTPP9Ftm/C3b69rci3bBPbWhPL9u\nMrnzHMLMvl+SOk+4Kmft/re3zIAv+fnzzL+Xq6850SJgLxfO85YSlfu6BsKgr1p+VOtMMoJAI0Cg\nIUi9qN/Y6YO1aNEireVlf/1lQ+j5gBepMCyYP1+bsWc3nFdeeUU7RzKCgCAgCAgCDYOAjsi5jgg4\nk3B0t3V7qWhE7mMuN7v1HE2E6ehRFK1bD3CqwHS+vtA1aVJC8s1b1Zci/SXldJzrna8x6Y5xbYUY\n3+onjAZGj0Ey+fT7uQdp3WYXZmB/2g5tv6rMfd1eITeirlqVj7f/F4WmfNzZ6Wlt5p/9/dcn/VXy\nMFD6UODt6gd+e8C4iwkCgkDtERBSX3vsqjxz1apV2vF+/Uplz7RCyowaNUrbTeDXvWKCgCAgCAgC\nTodAWdccU2amIvemxEQYmeifPAnT6WQUJ5+GKTkFpuPHYTpwoOrr9PQ0E/8mYWprIKUez8l3VX3O\neRwdEHV5ubNZbeetQb8io+AspVSS3swEz/6Xbi35TAS40wOQle1J3YJ8I72h1pfGC+B2vtvzllWt\n0iy944Cni7dG+G/r8KhN8K5lifPhpvfAxVGXaicZTUbkFmXReT7ylkBDRTKNGQEh9Xa6+ytWrlQt\nh4eHl5ult3TpRsFRmPCvXr0a1g8BluOyFQQEAUFAEHA+BPQ0y64nEg5OlVgxE//kZEX2TaeZ7BPp\n560lnTKXmY4cVS24kDtQVaQ+94MPkffV1xSV1w86cu3U+flDx3mK0qvnfdqaE+cDzPW4jI9V4RLk\nanBT7jgWl5xKLqdc8SsDfkSuMdtm9p1ddq4jX/4cIuJMxvkBgSP25hRSUvuZ4LcD7CJkHeGX3aHm\n7/sI7gZPG1LPgb9e3DBF9a3XGYj0u6uHCB6zqyVPDxUulO7o+LgmCcpBwubu/UAtGL4s7iZt7Pzg\nwvEE1LkGV3NbVu24kqoQP6Rw8nEl7OTNgoadZBwDASH1drgP7C/Pi2TZevXqVWUPF/fvr0h9eno6\nCgoKwERfTBAQBAQBQeDCRoDdawycmjev8kKL6feEZ/lBs9JVmsmkdPmNh4+AfkyqrFrhQfrtUeSe\nCL629fCgPP0mcRnleev10EMwkDpQRVZcWIiCn34G/ZCp+m5Uv1CdS+sIaOtOqa9HN1pUzO2Zy3RW\na80sbbIvvw2pRzGR8idQRAG+rM1F74r2QT3VAwG79hSZClDAifL8cFBIeW6rrBWQutC/x3+mtwsh\nsCb1SdlH8c3uN8pWr3D/1QHz1VsFPsgPJ8+suQVhJC06vcebWv2jGXvx08HZcNG5kguS+eGCHzx4\n3Cw7yg8bbpR4Oyh6LF2zeU0Cj/tA2k61VsHadYrLC4x5IOcwrY+KMzptbBUfl9ILFQEh9Xa4s6xD\nb7GWLVpYshVue5NUmsUS6VVti2rqW+pWtT1x4kRVh6s9FhgYCE969SsmCAgCgoAg0LAIcBTcyki0\n9cg8p94DTmzFJNRQnJGBYposMqXTNiOd8uZ9VVZyTJVxPp+Ufki/n7X9i/MLwMG8is+eNWv688OC\nlRVPm2q1Z5vltw/ZDz9iW1jdnl6vPTRoRN/d/AChHiQoyieb5Zc0A5/BhVTlvEiRiPX5p3Z9oVwP\n+aQwV7Rxk3o4Mbq7wujpBsOBucjjdslM9N99rqNVPu/AV2rL//jrczDRszeKdEYU6ooo8dZYsm/O\nF8J8zPTdPJjGjoeepKmNxUUUCZjUj3R0LSXGD2PJf8zD7pBNlqIqtwNciAuULDROK0jGO/seQZRH\nDB5p8bx23o6MDfgscZa2X1mGHw7eGfK7OsyuYMmpB/HqwafR3KsV7m72oHba7qydWJxMD2HVGL+Z\nmGJ1XmrhWfyRvBCR7tEYFHyJOlsXEoJTecexm9yuyhl9hoqzsrRid3qw6RM4SNtPL0zD1oz1CHZr\ngo6+pesyjuUdwYFsii1RjXnQG5zeAQNAxEW9lUrNSwZLvoZ6RqJDcOnEamLSdiSm7aaHLH7bQm9i\n6GFLvXkps+WHMI9iL5w5a44XUUT3N9eUTfXd4KEv5Ub5pjwUFNvGvVBDDSDJWLqXZ3JOwdXT/KBW\nzSXU2WEh9XUGZWlDhTRbYbHqZt55wazFiopsZyEs5ee6bRoTc66n2NT//PPPcdONN9qUyY4gIAgI\nAoKAcyDAZFgRYlpwe76Uoph/l5js84MCEX59aEilIOiIVHnNfIbqEtEpeUhgaVB+WDC3YX5wQEHJ\nlo9RXXXcUo/In4nPt/odLdshuxFVZUVr1iJ/zlybKvTYYmOWq7AW/XSlGqWU0qZ6uZ0CrIJHn/6K\n1PPag5n9vrSpww9VzR6bjcc89Chy1aHITYdCF/OW9wu5jLdUbqTyjHWlJDffS4+BI/3hnXEGaX9d\nXNpuKw+0vNQfxVYT9byY29C2bWkdyhlKZvy5MOe5F5C+YiE87g1HceJqpH1Y2t6Jfj7Yd5vtWgib\nhkp2PLONSLuu9LzjsW5Y/XgUWsTnoMtbM1Ut/yV/Yp/7LnJreq+iJmzKfNKL0PbBx7WyIy3dMe/h\nSLTZloPod09p5duH++H3a4K1/coyASmFaPPoo3AbOwY+b76BUzmJahzdQgfYkPqtC17HH21OVtaM\nVh56ogD3Pn0c5kdAYHdnT3zzn3B0XZ2JibNTtHqrxgbgnzGB2r6WSTXnRrzRAhu/pge9XdoRu2eE\n1Nsd4vrvYMyYMefVaVOSXxMTBAQBQUAQEAR0LkQTKLEOf3XGpN7jhhuqq1aj48X8hoAfBsq8KVAn\n85iqMF647H7dtVYPC/T2gdtityTyz68rY/nSykxHM/i+pGinNIyMReUfXkoeYrQHmhGl18qPLJdm\nlLQ8rLSHVpRttbN0n3Mu5OLr2XWSbaHVnkuH9ohIPYuHl5UUWrXXS1eMbnNJvtXqIcHqVC1L1eA6\nrKW2H20w4T9/FMLVqKPyDqqcPx+tfbrg5nYztHqWjIke1PLnlj5kuRXp6Ty+GrOFuxtx1docBOS4\naO3xkXa+BfBZS7hUY+6F3F5rFRWaq0Z4x6pxcPA1a2vv1xUeGwtQqC+mB6xiFPHWQFsXkyorojzv\n++X6oqBPNOIpEjXbWaMLInbmkxucDlv81B1V5dnpBlWudqz+SfT0oDc8epw6lYS0o3RdqP7BxOr0\n88qKTv15wVfxyXv37kW79u3VwTsnTcKHH35YcUUq/eTTT3H33Xer48fI/SYiIqLSutUdEJ366hAC\nfv/9d/zyyy+YMmUKOnXqVP0JUsMuCOzZswccjG3kyJEYN26cXfqQRqtHgN8O3nvvvWhJMTIeuP/+\n6k+QGnZD4KWXXwb/Brz77rt260Marh6BOUQ+//n7b8yYMQNxcXHVnyA17ILApk2b8Nlnn2HixIkY\nNszqScQuvdmn0YbQqS91ALPPNTXKVjmIlMFgfum5m8hLVbbaSvryfAh9VX3IsVIENtIXxUcff4zD\nhw+XFkqu3hE4duyYug/r1q2r976lw1IEmNTz38NPP/1UWii5BkFg3rx5+PCjjxqkb+m0FIFVpFzH\nfxOnTpW6gZQelVx9IbBv/351H7Zt315fXV4Q/Qipt8NtZJmr0aNHq5ZXrFhRZQ/LaEaArUuXLlXW\nk4OCgCAgCAgCgoAgIAgIAoJAZQgIqa8MmfMstw44lZpasmqiTJs8E8Azlmwdq9AzLnOa7AoCgoAg\nIAgIAoKAICAICAI2CAipt4Gj7naGW/mA8au8iox9ii3Wo2dPS1a2goAgIAgIAoKAICAICAKCwDkh\nIKT+nOCqeeUePXpg4MCB6oTHH38crEFvbQkJCXiZVsaztW7dGlNKFsta15G8ICAICAKCgCAgCAgC\ngoAgUBMEhNTXBKVa1vnu22+1M2NpFT2r03xASjiRUVHoaKW88tuiRRJJVkNKMoKAICAICAKCgCAg\nCAgC54qAkPpzRewc6oeHh2PB/Pk2Z0ybNs1mVf0fJLEoslk2EMmOICAICAKCgCAgCAgCgsA5IlB1\nBIdzbEyql0dg7NixMJJs3IEDB/Dd998jLCwM6RS6e9jQoejWrVv5E6REEBAEBAFBQBAQBAQBQUAQ\nOEcEZKb+HAGrbfUWLVrgCfKt52BUD06f7pSE/lMKBNE0JsaumtataH3BJRSQyFnNaDQqjK6YMMFu\nl7BlyxbVx9NPP223Pq6//nrVRxZFAnRWG0tBrfjzak+La94cl152md26eP2NN9Q1/PPPP3brw94N\nP/vcc+oa1q9fb5euzp49q9q/9dZb7dI+N7p8+XLVB98PZ7XffvtNXQO7gNrLhtBkVYeOHe3VPHJy\nctQ1XHvttXbrw94NJycnq2u444477NYVB87i7z4O8mcP4zgv3D4HrnNmG0DrHjvbUU7c8p23cePG\neoNJZurrDWrn7ygzMxMnTpxATm6u3S6GJT69vLzs1r69Gy6mEOSM0enTp+3WVT6FO+c+0tLS7NZH\nckqK6sNUUYh2u/Vatw3zPWCc+J5w7Ah7GH9eg4KC7NG0ajOD3urxNeRRSHlntXT6nPI18OfWHsYP\n0tx+ypkz9mhetcn4cx98P5zVmBDzNfD3uL0sKSkJJ0+etFfz4O8jvgb+fnJWq4/PKz/oMk6FhYV2\ngYmD1nH7Z+z4N2eXgZdplD+r9vwdLdNdvezKTH29wCydCAKCgCAgCAgCgoAgIAgIAvZDQEi9/bCV\nlgUBQUAQEAQEAUFAEBAEBIF6QUBIfb3ALJ0IAoKAICAICAKCgCAgCAgC9kNASL39sJWWBQFBQBAQ\nBAQBQUAQEAQEgXpBQEh9vcAsnQgCgoAgIAgIAoKAICAICAL2Q0BIvf2wlZYFAUFAEBAEBAFBQBAQ\nBASBekFAR3JvxfXSk3SiEFixYgU++eQTvPvuu/Dz86tTVAwuolBap4BKY4KAICAICAKCgCAgCJwn\nAhyEtD5MZurrA+WSPjiAyeAhQ/DNt99i6dKl9dizdCUICAKCgCAgCAgCgoAgcCEjIFO79XR3mdAP\nHTZM682eL0h2xcdr/dRlht8wvPnWW3jhhRcwnqJ12sPad+iAyIgIuz30vEXj/5iu423ajhgxos4v\ngQOLdOrcGS1btsTPP/1U5+1zg5s3b8aNN92EiRMn4tmZM+3SxzUUsXHHjh1Yv24dfHx86ryPlStX\n4q7Jk3HTjTfi0UcfrfP2ucHLL78cBw8dQvzOnXYLPsWf16ZNm+LPP/6wyzW8+tprmD17Nt577z0M\nGTy4zvvggFDdundH27ZtMf/HH+u8fW5wJn1Gv//hB3UdvS+6qM774AA4HBmyZ48e+PLLL+u8fW7w\nH/r+vueee3DbbbdhxoMP2qWPUaNH4+jRo7DX9/eiRYsw46GHMG3aNNwzZYpdrmHgoEFIocBQ9rqG\n7Oxs9KLPUEf6u5szZ45druHJp57Cj/S38PVXX6E7/W3UtXFE2UH0t3wRXcfn9LdtD3uAotb/Qd9J\nC+bPR5s2beq8C44oy5G0h9Ak5XvkdWAP++nnn9Vvw//ddx/uuusue3SBfv37I50CyvFvhD2Mfx/q\n24TU2xlxjkT47LPPoj7Di9vjj5hhioqOVmjFUHhoe/Xh5uaGoOBgu7UfGRWlrqFZs2Z26YMj7bGF\nhITYpX1uOzU1lTeICA+3Wx+hoaGqj1atWtW5mxg3zJFY2SIjI+12DcF0D5jU82fVXhFl9Xo9gu34\neY0ifNhi7fR5tUSqtefnNYIe0tniYmPtcq+ZJLGFNmlil/a5bSYxbHw/7PXdx5+jxMREu7XPD+nq\nGug70F7XwNGV+UHRXu1nZWWpawih7yd79cHfq2xxcXF26cPf31+138SOn9fwsDDVR/Pmze1yDQaD\nQbUfZsdrYJ7BxrzDXvc6MDBQ/TbYq311AfX8j76e+2t03fGHf8HCheAPDz/VigkCgoAgIAgIAoKA\nICAICAJ1jYCQ+rpGtEx7rq6umDd3LnYnJGDMmDFljsquICAICAKCgCAgCAgCgoAgcP4IiPvN+WNY\nbQvt27evto5UEAQEAUFAEBAEBAFBQBAQBGqLgMzU1xY5OU8QEAQEAUFAEBAEBAFBQBBwEARkpt5B\nbkRdDoNXc5+PeXl5gd2GxAQBQUAQEAQEAWdAoDg3F8V1oAXuXlgIX50O+pwcmDIzy1263te3XJml\noJjUz4rpvCqNFvty+55Ut6L2qzy35KCOBCV07u6VVnWltrkPHakF1bYPS+OmYiMKTYXgrcUKMlMQ\n5E300dWE3KJsGHQGuBk8LIdRRPULCnNhyCuCq76USxSY8mE0Va/XbtC7wIVERvgaXGnhdX76WWqz\ngNpyg4t1e8Z8mFz1VWLB90NfrIObvhQvvh5uz4emtXk0FowKqD1jsXl8JpMJ2VnZ2jVZZww6V5vr\nUvj4uFGZO2FRSqtdPPQwGYthKqy/cFClvVuPWPJOjQCrx5yPff7550pqsGwbrM7A0nf+dRw0y7qf\ndu3aIZZUMpzVWGWFMWKlD3sZP3RxH2ElKg326KcZKQ9wHxaVA3v0Ye82+R5k0o+yvZRvePzsWscK\nE/YyVnTh+2APWVF7jblsu/w55Wvw9vYue6hO9l0o6B63H0PSovYyxp/74PvBVkw/+MWsxFJQyDvV\nd8tkLy8fxURQSB4GxQUlW94vKR9N264+vsj75hutPQMpN7n27Kntl83kL1gI4969pe0SEUJ+gdpX\nfVmNreeZs/g9rjli/liMjO1mJZyy7VW27/XBu8hxM8KFCIuXaympZRKUfTABOa++qk59O9Adhb5R\nOHjP9SgyFFMi0kRbttjTbmrL/6R7GZHQNB+BWQa0OV5Ktk4GFuJIE8LU2oxFKCai7UJSwcWExdBJ\n3REbFWJdA2dyT2H9rGkIWLMHbXbkascSunphZw9vFLnpUORKyaAD6P+yFphciPFfnVHFj9C/1w9p\ng78SnkbS3FxcvLh0kmxzPx/E3zcUuhL1l7LtFNP3TdGOnQhJKsSYb83tcZ1DrT3wz+UBaLs1B32X\nZeBgTCywazeW3DsIO3tW/3cRdqwAl845q3V3ZPp4rOirQ9fQARgYPUYr/+fYT9ievApN+yfiyV59\n8MfGBylph7VM5JF8jPzRrKLGhTtoDP9e6o8eKzLR5+/SB5n5t4ZgS//S+601QJmrFwykf8/gwX+v\nQKeQPri780zt8HIax/z9H2PowlQMWZSmlc+dFIrtvauXSO64IQvXfJxsxumTz/Db8XlYekUQLpl3\nFgP+LL0f305pgoTu1ePXdXUmJs5O0cbx17gAuh+BeGGgH/osA9K6mqVLv7w3DPs6eWn1Ksv0/DcD\n40o+L1xn6cRArBwVgOVv7kbC7ye008a80g0nd6Zh45eHtDJ7Z4TU2xvhBmh/mJUefm26Z534iuxm\n0kbnZE/bvGmTPZu3e9tMgu2leWsZfGf6cbN3H59++qmlO6fdfvfdd3Yf+7atW+3ax7SpU8HJmY11\n3e2l7c64sLJYVX8PTAhBZLeYyS6RaSZexfQ2szg9w7zNSIfJkuct7XMd388+ha5kVrY/6Vlb92Hc\nlYCMcePr9Lbcz60FBSPnqWe0dnU3X4u8dqHIKcxETlGWtrXMmuYfmAfjoX3Q0yQqk0WL5XjpiYz5\nwDfdiM7rzbONHL88pJU7lg/MJpJ7QJHcQia6lCxbRXxp3z2vGP/3xDFLcziSvgdv7HkcbQO74z/d\nXtLK155cjB8S3wGutRSZpXB/QymB4iN+Z4sw4+FESyUkt/LAT9dEoO2WbLSYe1or3zvCD3/0q2xS\nin4bDm9C66sDEOJZ+iDAJ5/KScSvvdLROTgWHXwDtfZSOmdhe49SkqodKJMJC/eFS782qnTv3j3Y\n5J6Og+08EeASBJesDlrttO6Z2JuxQ9uvMEPn5Yf6ae1xnZy4XGovDaG6YJqBNktacvnZbkTw21U8\nG8zHLWYMovaOtbXsIjPSD3tSVyDSO04r48yp7EQqp++kFiw56WlzzHpHT7KaLifbaUWFrXNwOiod\nOe1pfPmlJD7EIxNNT+fD1UhvLiqYbDbQJBxI1jfap4XWFmeCPMLQ2r0NQgJPEQ6l44gw0Gf4BD3I\nVmMR+nCcaeGHnaQfz7LKwYGhaHkiByHBzW3ai9TRQ1SBH/QlEp4VNWs8dBhhBh8U92oByyUEeuei\n+bE8+AU1h6lX6WcpojALxmOFqp7JSG8h8vgBsexTIP29pLhhmxc9WNIkHltumiuyj/ihWdwVCLqM\nHzgJf3p7YcqOhykvET17VvaZVqfX6T9C6usUTsdobPGffzrGQGQUgoAgIAjUMQIFi5fQbOiOElKe\npoi5KYOIW26O7Ww4z1oXFNC79RrMpFcwRn5tbyH1ZQ8XB/ghZ3gfGD1cEJRd6l6Q6WHE4dA8FKpZ\n6mJtW0RVitz0KKSkiLOLDlcf6wy9GxEKcqPI9CrG88bvkXs0E++057lis22NycKX6+607Jbf8gRj\n92CiEAaM/L8vofMgFwhqL7c4GX/sexhxPm0wqN0L2nn7Uv7B9kPvaPuWDFE25U7A7g2u5Frg4eKH\nwK0/Ww7D5JKFjsG90dS3pVbGmWDPMCqngGJFpa4ZeiIz7HLhomN3BE6u8Ini9iZq57oUpuOGtI0I\nahOKwLs6a+U9co8iOGuftq9IE8+K09sYa/NwsZ1NjfJpjlsJt5AeEfCbVEpWhxWko09RJrlesNuG\nreuGdXt6nR7uE83k8ysKdvTeB+9j2WMfoO+kfnCdXPqGYRy5bFxGrhvVmWrv6lIy289kRE9THlwG\nkdvGPaXtXUntja9Be8q95bpS95b+5MLSy/SAjSsKj2lCy7swtsVt1Q3P7C5zY2l7w+kMTuZ/Sk+v\n7WNrtyYDwAn9zW0VFhrppZYJFxcU4SLK5xeYKBVR4nJKamtSW1UWYsSneZvw7bE5uKTbaHRr2ZPI\nsRH/RhixJJjPL1Lt5WfQdrm5bUt7ljZ5ayTXF6D086VdWQLlKM3XCkoya8sWVLFvfgY0VzhLm0Ul\ndUu/DnBmWzRO7/kJ4d5Hq2iobg/Z/qXUbdvSmiAgCAgCgoAgYIMAu4WYKGCU6XQyik+fLsnTlveT\nT8OFonh6Tqv87UQBTVoULPzJpk21Y/EzJmKrI3cZHbkL6jzczf62RHQV4SUSrfP1gZ5cCHU0W8nJ\n6O+NTF8DMn2KkelZhHTXfGTq85CTNge5KTRDXphNs+SZuK/bq+Q3bJ7Vy23igxevOYVQz0g80/dj\nbSxHz2zAN9se1/arytx49X1wNZgJXn7+GRStmo8Mkzvcr7pKOy0ycz96J6bAy8VHub3w1pOSQc8z\nsaXGRNqlSemMclBRIG53ewy+bhRcx8oHvLPnUDwV1k0juewDzMS7bHulLZtzIfDFlC7Pli1GByL0\nnM7V/Ki9fkHR5U6L9KWI4lbXUa5CJQX+7kHoFT603FEfN39wOlcrNhXDTeeh3R/L+eaHlFJSbimv\nbsv4euq9y1WrfXsu1F55+safJ1ec+/isB2aia2dCrBFnJtC0n5NbhMzsAi1lcT6LUo55m5VdqPI5\nueRPr84vIexE5rnN2lhM+yux+xgoMQuv3AzkVuXuSn79bga4U/L1dtPyblxOictdXPSVN1JyhCff\nXQx67RxLm5Y2LPvW/WnHSsZg2b/00pE4lrAa4T17VNtvXVUo/6moq5alHUFAEBAEBIFGg0BxcbEi\n6cbjJ1B8KkmRdBOTdk6nTivCroh7WlrVmBiq/lnyuP02uI8fZyblvkzOKTFJp9lcdkvJoYV7ufQa\nPcijCZFVc1s8tqVH59JxE0bGar4iOJi+C69v+j/yi6ch0WS/SpWMjt1fLKSeyTX7EYd42LoqhnvF\nYHyLO9SssIUwK6JFxJkJHM8WVzRrHOAejHWPpGLrFnKduKN0ADwzfnP7GaUFNcx5unijR9jgcrW5\nnJPYhYlALi1MVcQ7ix5MmWSXEO+sEuKdQfsWMs5lGUTKmaybCTwTecvsdu3wMehpATC9vWLi6+3l\nikBXD0Wm3d24jN6G8JYWtvKWSTbnLQSYz+G8hTRv2rges2a9+f/snQd8FFUTwCe9Bwik0EmA0HsP\nVUGKgI0uSlVQQRSwgb2hICBg/0AERQREBEREmvTee+8dQk1v9828ZDd7d7uXu+TucmXG37lv33v7\nyn+P3OzbeTMwaGB/6NOre0793HLldaSEO6To6K1O/h5o8jsf038989sqX8cEmAATYAIuRyALFfKs\ni5cg69JFyBRHTF/MSV++nG3uojVrXEn3DA8Hr5ho8AiPQDtY/ODGU88SJcCDjhHhWB4BHmG5NtGG\nTZHnjCtlfeBWuA5uJR/Fz1W4df4KxKdchwdpdyE1k2xgs+XdJjPwtXc5cUKbpZednQ2k3Lcv30ve\nPF3EtzhUCMXN/3gsgoo1rfhSOhSPQbghNNA7RCjBpMRLDwjUIHngUG4MzO4x2xzlEWw/X2Lf3/58\nDZEvsi0B+n4mJuUo4zmr4mIFXG9FPGe1nPKwDinm0gp6RoZlpma0ch2Myre0ui0UbVSusxXunGPO\neYC/D4TiCngwfmglPAS9vYQE+Yi0lBcYoLA9KSCqBzd2wZ2reyCqWB+oVyOygK25z+Ws1LvPveaZ\nMgEmwATyTYDc9d1t3BTQUNW4DTR58SpfDjzLlMVPafCMikQlnT7hqLBnHz2LFjW+zkQObcK8mngB\nHosZKJuHPEi/C+N3DTe6yt8rEJXxMGGiQivRpIwrXd/RBc/VfAdXy/1w3UyHW9+yN7iRTfjrDacZ\ntccZTCC/BMjUhFbBhTKeszJOK+RkqnKfVtAVSnh2XnYZKeZ0Her1FgmtjJOSXR73LQhlG9OhIahw\nB2Yr3pLCLZWJc1LISZn3YxXQIthOUJnvqBPcJB4iE2ACTMCWBEqhh5jUpX+BdzV0Y4reJtSE3Pj5\ndu4s7NQ9y5LyXga8ytERPyWKq11ilEcrkffS4uFmEq2uX0NXhNfgljheha6ovFculrupbc2FhXAl\n8Ry0LN0ZvZ1km7nQKnqLUp2FaQ3llUCb9hIBUbiqHmrUl2FGrRLNDLP4nAnkSSATvaDcvpcC8XeS\n4RZ9btMnCeLvpsDd+ymy8i6tltNKuyWCL5FwtZxWvX2hZERQ9gq4pkKOK+PBfqJuqFgpR5MuM+zE\nLRkP13VuAqzU2+H+rV69Gq6jXencuXPl3uaiu70U3DBWoXx5IHdpLEyACTABexAg/+oZ+/dDxu49\nkLprF5wqWw6KXLsBiSNHQcArIyBAQ6mnsQV/OcniIS46+QNcS7qApjKoxKMCT4Fp1ORm8mU9pf5J\n9ORBZjOhuNlTEjrvU/UV6ZSPTCDfBMgjCynmpKzH38UPHfFz7k4FqNJ0JEz++SKkzLgMd+7jxu48\nNnqSLTmtgBcN9YOyJUOyV8xR6RbKOh7JbCXbXEX/GIoKehCarHji9SxMwBoEWKm3BsU82vjk009h\n48aNerUWL14M9OnVsycr9XpkbHsS16wZvDZ6NFSqVMm2HXHrJgmUx4dZug+tWrUyWY8LC04g8/x5\nyNizFz97hCJPwYqU7/g9A4PgEq68V36sK/gU4H78c/ZX2H5tFW7sfANiilSXB37g1la4mXxFbBSl\njaXZK+zSMQqK+0fhynsUulHMdQFIF1cvrh10SW7chRL9+vWDR9q1c6EZFe5U7j1IhSvXE+Dy9Qdw\n+VqCSF+7mSgUeFpxJ9MXdYmAYlERcOVmGoQV8YfKFYqhn/QA9LmOn7CcI6YprxiW0wq7NW3J1cfk\nfrnVMNgb/UY0MhF8zf2o5D1jD3wdaqEFV96Ncg19AgsXLoRLtIlMRarExkKnTp1USizP8srx5Ztp\nhVDZlvfOVzABJuAIBDLPnYf0zZvwsxUycCVeFx+fOyw0ofGqXg2869UTriO9G9QHr1KlcstNpO6k\n3IQLD07CJXSzeAE/scXqQNtyub7HaUV+w+VlwltL/Yjch7WrieeFS0baiMrCBKxFgPybk5J+9Ua2\nwn4ZFXhS4sUH87TMYHzQXEVS0sOK+stpyhOfojkKO666ezmqVxVrQeR2bEqgWVwc7NixA4NPNYTt\n2yxxgp//YbFSn392DnelpNQ3adJEc2wPP/QQfPLJJ5rlXMAEmIBzEci6fRsV+C3ik7FlC2QpFhA8\ncHOqUOBRefeuj4o8RiP2CNBfEVeb7Z2UG0KBJyX+wv0TQolPwE2qSqkb3gKer/WenJWSkSxcPlLg\nHRYmUFACZPJyE23XJSX9KinsN3KUeFTaybZdTcgUJqJEIJSODIFSkcF4DBZHSpfC+AKhIbkRRNWu\n5zwmYC6BkydPQv8BAzSrb9++XZTZU6ln8xvN2+G8BdIXSW0GpUuXVsvmPCbABJyEAAVvysDVn/RN\nm4Uin3n0aO7IUWH3adMafJrHgTfu1fGuogx7mFtNmUrHqJbkQ12SP05+D2svLpJOxTHYpygGGWqE\n4eArQbmQylAmpKK8eVWqaGg+I+XzkQloEaBARbkr7Ggmk7PSTuYy124lgpaLRrJdr165OJQMDxab\nS4XCnqO8R5YIEsGDtPrkfCZgLQKJiYlgSt+yVj+WtMNKvSW0nKRuGv7oawltNGNhAkzA+Qik08bW\nBb9D+r8rQPcgIXsCnp64El9XKPBCkUezGg8f83xFn7t/DKYf/BgqFqkBg2qOlYGUC6kC1cMaQbnQ\nyqjAxwolvph/uFzOCSZgLgFSykk5l0xkruJK+xVcZZfO7+ImVDUhN43lSoXKq+wlcYW9FHqGoSN9\nqJyFCRQ2gbp164IpfYvMb3bv3m3XYfK/DLvitk9nXmg3y8IEmIBrEUj75x9Iw/05HmFh4Nf3afBp\n2RJ8mjYBj5AQzYkmpN+Hs/cOi8iplxPOwIu1P5EDLxXzC4cUjL6qXKWnhhpFPSQ+mo1yARMwIEDu\nHI+fvg3HzsTD+Uv3ZcX9JprIqHmOobUlsl+vUy1CVtyl1fYyUSFiA6pBF3zKBBySgCl9y1SZrSbD\nSr2tyHK7TIAJMAErEvDv2xd8WrTAT3PwyNkUb9h8li4TFfijcPDWNjgcvx2DN53Xq0JeaCICs03w\naOPqF60WAdvA6yHikzwIKBX442duC2WezGYMhVw4xkYXEyvrZMtOPthJcaeV9qjwIPD14cUnQ2Z8\nzgQKSoCV+oIS5OuZABNgAgUkQHbytBLv27UrUJAnNfGKrgD0MZTMrAzYd3MzHIpHRf7WDkjMeCCq\neHp4CdOaaDSvIReT9Anx1Y/qygq9IU0+lwiQ6cyFK/fh/OX7cO7SPThz8a6qAu/v5wW1q4ZDlZgw\nqFoxDGLKFRWbVIMwYikLE2AC9iXASr19eXNvTIAJMAGZQBYGpUuZ8yuk/jYPdOjFxiMgEHw7tJfL\nzUt4wNxjX0JKZpKIrNo4qi1Q9NRqYQ0gwDvIvCa4ltsSSE7JQMX9HirupMDTMftDm1UzDYIuGSrw\nVWKKQ/nSoRw8yW2/PTxxRyPASr2j3REeDxNgAi5PgCK6psyaDWnL/wF08QEQFAR+/fsJH/KmJr/j\n2hpYdX4+dIkZAHXC40RVL08v6F1lBAZwioBoXI3n1XdTBN27LBG9zZxAk5lj9DkdL1beaeNqZqZ+\nuBpfXy+IKV8UKpQuAhXKhEL5MkUgpmwRjJbKCrx7f4N49o5OgJV6R79DPD4mwARcgoAOlfe0f1YI\nZT5z3z4xJ89y5cC/37Pg172b6obXe6nxoAzalJqZDNeSLsDNJP1gdo2iHnYJRjwJ6xFQU+AvXs02\nzZJ6IeWdIqZWRAU+GhV3Ut5JkSebd0/0987CBJiAcxFgpd657hePlgkwAScjoEtIgJRf5oiP7vp1\nMXrvuGbgP6A/+GAwOA90SylJli4LTt89hDbym4SdvI+nD3zQbJZUDI0i2wJFaw3yCZXzOMEEiMDF\nq/fh4LFbcOjETTh4/BacRRt4Zbx4UuBrxpYQtu9V0Pa9KtrAV0AlnqOm8veHCbgOAVbqXede8kyY\nABNwIAK69HRhK5/81dfCXh78/MCvV080s+mPQaFi9UZ6LfECbLr8N+y6/h88yInc6uvpLwI+UaRW\nKbBT9jHviLB6jfOJyxFITcuEo6fi4dBxUuBvoiJ/C5Q+3728PITyXqMyKvGswLvc/ecJMQEtAqzU\na5Fx4vw6GBBBSx5p1w4mTpyoVcz5TIAJWIFA2ooVkPTFRMg6hy4lUZn3f2Eo+D83GDyLFZNbT89M\ng703Nwhl/jT6kifx9woUq/F1I5qLAFC+XhzSXgbmxon09Eyx+r7rwFXYdfCasIlX2sFThNUWDUtD\nzSrhUKtKCahWsTh+7fjn3Y2/Mjx1OxA4fvw49OzVS7OnQ4cOaZbZqoD/1duKbCG2S180LalRvbpW\nEeczASZQQAIU9TX5s88gYy/azGOEHV+0lQ8c+Sp4RkXptUxuKN/f2h/upcWL/Bh0O9mi1KNQD01r\nWJHXQ+WWJzq0mzl1/i6QEr/zwDXYd+QG0Oq8JNG4abWWUOBRia9aQmxglcr4yASYgH0IpKIrYlP6\nln1God8LK/X6PFziLCU52SXmwZNgAs5CIPPsWUia8AWkr1wlhuzTsgUEvPUmeFetKs7Ts9IgNTMF\ngnNs4b08vaFuOAaR8vCE5qjMlwqu4CxT5XHaiMC1m4moxF+DnQdxNR6PSnMaCtzUqHZJaFgrChrW\njoIiIfwGx0a3gZtlAmYTqF27NpjSt5rFxcGOHTvMbs8aFVmptwZFboMJMAG3JJB1Kx6Sp30FqfPm\nAfoFRJeU1SHwrTfAp3lzmcfR27vhp0PjxCp8n6qvyPk9qwyX05xwPwJ37qXAbjSl2X3oujgqo7JS\nNNY2TctmK/KoxJeJCnE/QDxjJsAELCbASr3FyPgCJsAEmABA6oIFkPjJOIDERPAsVRICRo0C3yce\nx9V3fVeApYIqiBX5QB9WzNz5e5OQmAZ7Dmcr8KTIn714T8ZBnmmkVXg6UnRWdikp4+EEE2ACZhJg\npd5MUFyNCTABJkAEsjDya+KYsZC+eg1AYCAEvPkG+GPgKA/cEHvs9l5Ye3EhdK/8EkQElhbAyM/8\nuOa/AZncsLgPgSyMxnoEPdRs3nUJduy/CifO3gHKIyHvNGQT36BWpFDma6CrSV8fL/eBwzNlAkzA\nJgT4V8YmWLlRJsAEXJGALisL7vfpC1mnToEXepkKnoyepMqWgZ031sGaCwvhUsJpMe2YIuuhY4Wn\nZQSs0MsoXDqRhBFbaWPrJlTkt+y+LNvF08ub2OgwaFAzEhX5KKhTLQIC/Pnn16W/DDw5JlAIBPiv\nSiFA5y6ZABNwTgIUKCrw1RGQeeIkeL44GNZd+wfWbh0Ld1NvignVKN4Y2pXrAbHF6jjnBHnUFhOg\nDa60Gr9p12XYi+Y16RlZoo3gQB9o16I8tGhQBprULQmhvLnVYrZ8ARNgApYRYKXeMl5cmwkwATcn\n4FW5MnhERsGFpLNwOH6HrNCXCCgpgkVVCK3i5oTcZ/o345Ng657LsHXvFdh39Ias0AcGeEOjOiWh\nWb1S0JgVevf5QvBMmUAhE2ClvpBvAHfPBJiAcxG4HuUFSxL/hEN7tomBRxepDu3Kdofa4XHgiS4q\nWVybwKWrD2DdtgvwH36Onb4tT7Z0ZDDENSiNQaDKQN3qEeDtzd8FGQ4nmAATsAsBVurtgpk7YQJM\nwBUIXEk4C+N2vAA6/K9cSCw8XnEwVA2r5wpT4zmYIHDmwl2hxK/bdhEoTUJ28rTZtUWjbEW+Qpki\nJlrgIibABJiA7QmwUm97xtwDE2ACTkYg49gxOXCUcuilgqOhWckOUK14Q6iP0V9ZXJfAUfRcQyvy\n67dfhIu4Ok/i5ekhPNa0aVoOWjUuCyWKBbguAJ4ZE2ACTkeAlXqnu2V5D7h2He1Neu0feQQmTkSP\nHSxMgAkYESDvNsmfj4eUmT+B79yZsD78LIT5RwhFXqrct9ooKclHFyNAvuP/WX8GVm86D9dvJYrZ\n+aAZTbP6peAhVORbNCrD0Vxd7J7zdJhAfgkcP34cevTsqXn54cOHNctsVcBKva3IFmK7p9DdnpbU\nrlVLq4jzmYBbE9BhEKmEV0dB+tq14FmmDFwKuA/Lz/4CkYFl9ZR6t4bkgpOnyK6rNp2DFevPwvEz\n2TbyfhgMqk2TshjVtZywkw9CTzYsTIAJMAElgdTUVDClbynr2ivNSr29SNuxnyRUTliYABMwn0Dm\nlSuQ8NwQyMSVF++GDSD4u2+haFgY9L3iAXXDW5jfENd0CgJp6ZmwccclWLHhLGxHzzWZGBSKbOTr\nox/5Tq1jUJkvC4EBrMg7xc3kQTKBQiJQu3ZtMKVvNYuLgx07dth1dKzU2xU3d8YEmICjEUjfsxdu\nvvoirGwDULpTS2g39Hvw8PUVw4wr1cnRhsvjKQCBA8duwD/rzsLaLechISldtFS+dCh0bB0NHVpF\nQ2SJoAK0zpcyASbABAqXACv1hcufe2cCTKAQCaQuWQKbFn0M/44qAomhXnAt2B/a+fAKbSHeEqt3\nfftuMtrJn4Vla07BhSvZG16LYCCobh1joVObGKhWqbjV++QGmQATYAKFQYCV+sKgzn0yASZQqAR0\nOh2c++ZjWOi1Cs71DwMvnRd0qtAbOpTvg2YYaIfB4tQEMjOzYBua1fy15jRs2X1ZmNeQ55qWuNG1\n88MVRVAo9iPv1LeYB88EmIAKAVbqVaBwFhNgAq5LIDXhLiz9eShsiL0NWd4BEOsbC73rv4UbYsu4\n7qTdZGaXrj3AFfnTaGJzBm7dSRazLlcqBLq0rYS28tEQVpRdULrJV4GnyQTckoBDKPVzf/sNdu3c\nCa+88gr4+flp3ojdu3fD5s2boXfv3kAbFFiYABNgApYQOHhyBcw7/CXcraqDkERP6BY9DBpVfsyS\nJriugxFIx02vFN116epTsPfwDTE6fz8veBRNa7q2qwi1q0Y42Ih5OEyACTAB2xBwCKV+9uzZsHr1\napg6bZpZs6xStSor9WaR4kpMgAlIBDYdmQe/XZsJHsE6iDsdBk8+/T0EBhWTivnoZATIFeWfK0/C\nn/+egNt3U8Toq1cuDl3QvKZdiwoQxN5rnOyO8nCZABMoKAGHUOoLOgm+ngkwASZgikDWrXiIef1H\niO6cAl2zWkHssE/Ydt4UMAcuO4G+5BcsPyYCRKVnZAGtyj/ZvjI8hRtfY8oVdeCR89CYABNgArYl\n4BBKfb26dcVK/fTp0yEoSNul2F9Ll8J/69ZByago21Lh1pkAE3AJAulZaeCVkAIPBgwE/2Pn4MXG\nz0LQ+++5xNzcaRK08XUD+pVf8PcxOHDsppg6uZ/s3ikWTWwqQUhQtgtSd2LCc2UCTIAJGBLwQC8Q\nOsNMPndOAl7e2c9oo0aO1JxALdyL0O/ZZzXLuYAJuAKBlIxkmHd8GiSm3oVnPjsFmXv2ge+TT0DQ\nFxN4hd6JbvD9hFRhK79oxQm4fitJjLxOtQjo2bmK8GTj5eXpRLPhoTIBJuBKBK5g0MIvv/xSc0qT\nc8oaNmwI27dt06xnzQKHWKnPysoCerbw8vIyOTeqQ3U9PT35h9kEKemLpFblqaeeYqVeDQznuRSB\nLF0GnLp7APyu3oH7J05D0UfaQdD4z/nvhpPc5SvXE2D+sqOwbO1pSEnNBB9vT7HxtQcq87HRYU4y\nCx4mE2ACrkzgxo0bYErfKoy5O4RS3+nRR4X5zRNPPAFFixTR5DALN9SSzJw5E/r366dZLz8FO9H7\nzq1bt8SDRb169SA8PDw/zRhdQ+3evJn9utiw8P6DBxASHAydO3c2LCrQ+X9r12peb615aXbABUzA\nAQgEeAbCoCVBELRkJwQ0bgrBU6eARx6LBg4wbLcfwpGTt2Du0qOwfvtFXMDRQdFQP+j7RA1hM1+s\niL/b82EATIAJOA6BypUrgyl966GHH7b7YB1CqZdmvXjxYilpl2NGRga888478MXEiUb9lS1bFjZu\n2AB0zK/8vnChcL+Z1/WZOA5rSqtWrazZHLfFBByeQEL6fdhwaSkGkOorxpo49m0o+sd/4IX7dUK+\n/w48TLjKdfjJufgA6Q3sxp2XYN5fR2H/0ewFkHKlQqF316rQsXUM+PmafoPr4nh4ekyACTgoAdoD\nakrfaty4MezYscOuo3copd6uM8fOHm7bVvi9l/rt1bMnzF+wQJxevHgRKkRHw4Xz56F06dJSFYuO\nn3/+eZ71ydaKhQkwgfwTuJJwDr4/8B7Ep1yD4v5RUHPGNkhb+Ad4VYmFkJkzwMPE5vv898pXFpRA\nalqmCBJFZjYXrjwQzdWtHgFPP1YN4hqUZlOpggLm65kAE3A7Ag6h1E+bOhXu3bsHDRo0kO3qy5Yr\nJ+znL1+6JN8Usl86d+4cxMTEyHn5Tfzxxx+yQj9wwAD44YcfRN9z584V+a1atxZN16xVCy5euADB\naCZjiaSlpcHhw4fFJePGjZMv9fX1hfpo3kNPcAEBHN1QBsMJJpAPAodu7YCfDo+DlMwkaFu2G9RY\ncBhSZ80Gz/LlIGT2LPA0Yc6Xj+74EisQSEnNEF5s5i87Bnfvp+IeKQ9oG1ce+qAyX61ScSv0wE0w\nASbABNyTgMN6v1FT6q11i1JSUiAoR0mPjIyEK5cvGzU948cfYejQoSL/BTx+8803RnVMZezduxca\nNmokNqX+9NNPpqparUzyfmNtcx6rDZAbYgJWJLDmwkL489R08PTwgj5VXoEmAY3hXoeOAD6+ELpg\nHnjl8w2bFYfITSkIZKBbSor6Ouv3gxCPwaIC/L2ha9uK0KtLVYgKt2zRRNEsJ5kAE2ACDkmgWVyc\nML9xO+839r4bShunH2fMUO1+8KBBMGrUKEhMTIQNGzeq1jGVuXffPlFcF1flWZgAE7AegcysDPgN\n3VVuvboCgnxCYUit96FS0Vqig9D58wBf8bFCbz3cBW6JbObXbD4P/5u3Hy5fSxCebHqjIt+vW00o\nEuJX4Pa5ASbABJgAE8gm4BDmN999/z0sW7YM3n/vPdkkhfx/khw8eDB7pPj/TZs3wyZUsF999VVo\nhKvg+ZXNW7bIl1avXl1OKxMeHh7Qrl07WLJkCRw5ckR2pamsYyq9D1fqScjU5vbt2/DHokVw9epV\nkZeSnAzdu3eH+vXri3P+HxNgAuYRoA2x0w9+iO4qD0LJoPLwQu2PoERASfliL9wHw+I4BLbvuwLf\n/7oPTpy9I8xsHn0oBp7rVRsocBQLE2ACTIAJWJeAQyj15PVm9erVsGLFCqPZqa10t+/QoUBK/RaF\nUl8Obfe1JA5fnZBST3IeN8xGW6AwSCv1n6I9/bp16yA9PV2vm/ETJojzQ/jQUq1aNb0yPmECTMCY\nwI2ky/D1vjFiQ2yN4o1hUI2x4O8daFyRcwqdALmm/G7OPthz+LoYS8tGZWDo03Uhuqy2y+JCHzQP\ngAkwASbg5AQcQqm3N8MN6KqSpBZugqUVeS1p0by5XHT8+HGzlXoKkCU9OKxatUps7O2HfvXr1qkj\n2huCNvq06ZeENuIuxQcHa/uqF43z/5iACxEI9ikC3p4+8DBuiH2y0vNoS8/RRB3t9p67dA/+99t+\n4WeexkbebF58ph7UjC3haEPl8TABJsAEXI6AQyj1rdHTzMmTJ2HqlCkQGKi98kYKMtm3R1eokO8b\nkZqaCgkJCeL6iIgIk+1UqlRJLr99546czitx5swZuQqFEB7x8svyOSWudu0qzIp6S+t0AABAAElE\nQVSktxCPPf44LMG3FV26dNGrl9+TF198Mb+XiusGoDegJk2aFKgNvpgJWJtAoE8wvNHwa1ydZ69R\n1mZb0PYuXXsAMxccgJUbz2F0cIDKFYrhynwdaFY/f+6ACzoevp4JMAEmUBAC5Glx/PjxBWnC7j7q\nabBWV+q3bt0KJ1BBfwwV12LFipkFZOyYMUCfvKQt+pUvLKHNXuYK+bV/GCOJPfXUU/DiCy+oXkZv\nCXZhtFnykEPy8y+/WE2p/9/06ap9mpsZh28oWKk3lxbXsxUB+je349pqaBTVVl6VlxT6jP37waN4\ncfAqU8ZW3XO7ZhC4fisRfkJvNsv/OwOZGAG2XKkQGNyzNrRtXt7kW1AzmuYqTIAJMIFCI0DWFAXV\npQpj8FZX6sl9448zZ8Ke3bvNVurtOXFPz9xX9hRR1pTQqr4kXhaEmCf/86tWrpQu1TzWw020pPyv\nXbsWyG++tWRnASOYVSjAmxBrzYHbYQKLT/8Iqy8sgBvJl6FrzAAZSNbNm/BgCD4sZ2ZCkbWrwTM0\nVC7jhH0IxN9Jhp8XHYIlq05BekYWlIwIgoE9akHHVtEY7yP3b6x9RsO9MAEmYAmBaV99BX1694bw\n8HBLLnObuhRj6NixY1BQXYpcWualZ1obqtWVeuUASSn+5ttvoUL58mLVWlmmlt6JK9cbN20Sq/xK\n0xe1uvnN8/HxgdjYWDhx4oS4aabaofFIUt7EhlqpTn6Offv2FUo9XUuve6yhULNXnfzcCb7GXgQy\nURlPSkrKs7saQU3hmM9+aFy8vVxXh9cmjHgVdLduQcArI1ihl8nYJ3HvQSrM+fMw/LHiBFBE2BJh\nATAAXVN2bVsJvL1ZmbfPXeBemED+CbzzzjvwGUa7X4kLj8v++iv/DbnolaSEP/Hkk3D27FmgRepn\nn3km3zMlXUzpQj3fDVlwoU2Vevrhfv3119GVmSekY4TVvOSDDz8UHnDoIcBWSj2NoTk+PZFSf/36\ndaFcaNnxS5td6ZoqVarQwWwhV5xTcI9A//79oVWrVprXlYyKksuUbwbkTE4wARcj8M8//8DjTzxh\n9qxO9U+CHzEYHEnypMmQgW+ifFq1BP+Xh5vdBlcsGIHklAz4dfFhoCiwSZguGuonvNk80b4y+Pl6\nFaxxvpoJMAG7ECB34F99/bXo66tp0+zSp7N14u3tDbNnzYKWqLfR/sIIfJvRAT0uOovYZWmFvMG8\n8sor+LY8U5UL2c5++NFHqi4tVS8oYGbzFi3kFmiDrpZI/uzJ9CYsLEyrmlE+PSzQa5dZs2dDx06d\nRAAro0o5Gdu2bZOLLOlDvogTTMDJCJQoUQIeeughvY9yCoZl1XJiSaStXgMpP/wPPEuVhKDJk9hm\nWwnNhumtey5D31eXwU8LDwnTGtoAu/DbJ0QkWFbobQg+j6bJXXIrdDJBnw4dOwJFSs9LkjFGyq9z\n58rXjRgxIq9LClR+E03l2j3yCFCEeBpnLzT5IBfWkovnCV98Icx1C9QJX2wWgfv378sK/eTJk016\n8yNnH++//z48hObB0neM/g7Xql0bLl26ZFZ/tKj7xhtvAEW6pzaK4h7L5557DmgclsqDBw9gyJAh\nwvW5pddK9ffjPiyyjLh8+bKUpXkkd+YtW7YU5Y927oyb/83fU6nZqL0KcLBWleeff17n6eWl27dv\nnw6DLok0ndOn62OP6dDzjF5/d+/e1TVt1kyvHtqX69Wx9gmu0sv9ffvdd6rNX7t2Ta6DT2yqdbQy\ncbOwfG1slSpoMZCpWhVX5nW+fn6ibnRMjGodSzIlzpZcw3WZgCMQmPbdFPHvoM3o6rqDN7cbDSnj\n/Hnd7Tr1dPFVqunS9+83KucM6xOIv5Oke3fSRl1ctzm6Fj1+1U2ZuVP3ICHV+h25eYv0mzh/wQId\nKkA6fLOtQ6cJOlSI8qSCbpLl3xn62x8QGKhLS0szeR0qZnrXoLJlsn5+C+m3DRUovb6k3yc6RkRG\n6tCuWy7Pbz98nfkEHm7bNk/e9F1EJVaup7xnyvQj7dvrUNHW7BwDipps4+NPPtG81rAAHwB1tevU\nEe01btLEsNis871798rjoe+dOUIspDlPnDTJnEuM6ki6bX7HbdSgGRn0BGJVUVPqGzVurKM/HgSo\nQcOGOowWK/o8cOCADE2CR0dbK/XUeVTJknLf9+7dM2LQu3dvufynWbOMyimDHkjUFPbExERdmbJl\nhcK+fv161WspU2JFc37vvfc065lbIDE0tz7XYwKOQCA++bqu61tx4t/boA+76zKzMvSGlZWSorvb\nuasuPqaSLhkVHhbbE1i6+qSuQ78FQqHvP/pvHQaTsn2nbtgDBibUhRYpIv/WSH/DI6OidOhAwSQR\nUnZwdV7vWjRtM3mN1D4dp06bludDgMnGNApJoccAkXrj+vPPP8VY0aRVN3ToUF1gUJBeuUZTnG0l\nAkqlFh2ZaLaKFhXivmD8HN33P/yAW5duiftG37P//vtP755pPRDiJlO9emiFIdr4+ptv9PI3btyo\nOQ5lgVJPogcOS4UWmJXfe9znaXYTzz77rHwtMbBUXE6pp3/c02fM0NEfGgIiPbmXK19erEooQY8d\nO1ZHXzyqjxsULGVncX3DLx7deBL6Qzls2DD5Rvbq1Uu1beUXZfbPPxvV+W3ePNEG/ePAaLl6Ky/0\nMKB8asZXWkZvMIwaNCND4mlGVa7CBByCwNWE87qxm/roaIWevr//+9//jMb14M0xQqF/8OpIozLO\nsC6B85fv6Ya9t1Io8236/Kb75c9DuvQM9TeN1u3Z/VojhT4oOFj+rZH+fktHH19f3bz58/MEI9Wn\nIynMWrJr1y69vkhps4W8/PLLcj9NmjbV++2T+kOzU7kOjZvFNAH0xKL7+++/dfHx8aYrqpSi+bOu\ncmyszBs3gqrU0un27Nmj8/bx0VWIjtbUR0g/QlMvuS3DRUvqixZupe/keXzDqhR0EymX0dsaU2+W\nTp06pdcXtYl7sZTNmUzTPD8fP14XHBIi90ltWKLU0wK0NBfci2CyP7VCl1Pq1Sb51ltvyZAkWIsW\nLVKravM8etUpjUHrqPWK6YMPPpCvxc2wqmPFHdRyHT9/f13pMmXER9kXvTEwNElSbcyMTKldM6py\nFSZQ6AQu3D+pe2NDd91Lax7RDR83UPxbQb/AeuNKXb5cKPR32nfUZeEbMBbbEEhPz9Rh8Chd615z\nhUL/yoerdZeu3bdNZ9yqbvv27SYVeulvOSkkp0+fNkksJDRU/p2htNrbY2rA8LfXFko9KYbS2Olt\ntSkzIgySKNc1OUEulO9dXm9v1FDh3j6ZMym5WtITFzDp3tFbFFOr6EpFl+6hUpYuXSr3NXr0aGWR\nnKYxSN8RLSsIqoxeY3Roj68j82epviVKPT1g4P5JXbGwMF2nRx+V27BEqadxlCxVSlxL5m2WrtYX\nhlJvl42y0v4A2mDxx6JF0qk4Dh82DJ5E90GFIRMmTIA5c+YAubkkKVmypDyMF4YOhXh0mxccHCzn\nKROvvfYavDx8OLRp0wY+RK89ajJ/3jygDwWgIjeahvI5upU6j24sg4KCDIv4nAm4NIEL90/AlD2v\nQUL6PehW+QWoHR5nNN+su3ch8X38t4X/PoOnTQUPE9GmjS7mDLMJHDx+Ewa8vhxmzD8AgQE+8O7L\nzWDKe22hdGSI2W1wRcsIUKRx2rSal9BmQ3KrZ66g6ScovbYpr1toxVgoynaVaXzTJp/OwCCIFLNF\nS3BFX6uI861IYBZ6cpHkucGDpaTR0TdHD0LFFfCtgFG5lEF6UpEiRcQpWh1I2eKIb5/k88cee0xO\nKxOPK/L379unLNJLN8LAnJs2boQN69cDBfS0VDw8PIQXm2NHjwLuP7H0crn+4EGDRBotTwq0UVdu\n0MYJm7q0xFcr8AsqzWXwhpDijJsrjKaDdlbg5+cnwvGSG8idu3ZBO4wcWx7dWtpDKAADfSwVUsTJ\nZaUp8fX1he7du4uPqXrWLkP7Rc0m6R9H48aNNcu5gAnYmsD1pEvwzf63ISUzCfpWHQlxpTrBaZhh\n1G3Sp+MA3zeD/4iXwbuK8UOx0QWcYRGB++hz/rtf98HS1afEdR1bR8OIAQ2gSIifRe1wZcsIkBe4\nZSaUJsPWlixdCh9//LFhtuY5/f1vofDwRhVxBR3Io4klgqYeMGDgQFi+fDl6PfLCOATeIqAkrvjD\nSy++KPIM28MNvyKrHHq7ycsNYLVq1URd6ahsix5MyGsOKVIk5NKW/IWjaS6MxgW1NWvWAHnVozHR\notn48eOVl8tpmjeaugJ5TyE9g4S8b7377rtACi4pflpC7ZP+MihHqaPryT13F/SG8gV67SlbtqzR\npbghEnCvoPDuU7duXdi4YYPQfSbjQxx5nKFxkFRHTzKL8CGLONla8K2Q6KJhw4ZQHKNwa8nEiRNh\nH3qIQSch8NJLL2lVE95vcB+iKDf02Cd5DKRCLT1D6R78OLoWNyVNmzY1VZxnWcWKFfOsk1cF5b8l\n+l52xvsvCXGg4KFaYm8f9WIc9HrBmiJtalDzfiO9QnnzzTfFK8IjR47oYipWFK82uvfooXv//fdF\n2h4bZa05Z0dpS+Jr6kicWZhAYRGgV6Kfbh8qTG5Wn18oD4PMbuh7K5nfpG3YkGt2g3tzWKxHgO7B\nsrWndJ0G/C5MbXoOW6LbsT/beYH1euGWtAjQK3xTf6MNy8iMxZSQyQ15tQmPiBDtkq2yoUimN0rP\nJqbMb8gswnActPfLPyBA5KPLZt3Vq1f1ulF6jBv32Wd6ZVonZHpKdtqGsnv3bh31pxzD22+/LfeP\nLjJ1RYoWlcsNTSrIVpu87Smvr1ipkmhT8jhHZhlaQnNTXktpGk+p0qXlfFTUjS7v1r27jkxtpWvJ\nBLd+gwbinPZPKOdEaXNFun+Wmt/cuXNHHsvIkXnvSaK/DWqOQ6Rxkm0/maFI89u8ebNUJEytpHz6\nfpiSxx5/XG7DVD2pjO43tW2J+Y10LR2lPY7UhuF3RVlPLU08pHm1btNGr4pyA7JUR+1oT+83Nl2p\nV3t6+fXXX6F3r16iiJ7Qt+KTDwWiQbt68VG7hvMsI/DJJ59oXlDVwiBamg1xARPIBwFaGetX7XU4\nHL8D2pbrptoC/jpA4tvvAi6jQfDn48AD33ixWIfAmQt3YeL0HbD/6E3w9fGEwb1qwzNPVMe0l3U6\n4FbyJECr3vQWl95kmyPmmmf2e/ZZ+BLfHqPHEkBlA+rVqyc3//vChWKlumvXrnnGg0HHDzBYYaah\n/M0mE9rhaDbzF0YipVVpikhaG32Xk1C/kjTCVWFzRGtuFInzAK4ao102TJk6VTRFUVD9/f3Fqn1/\nNKcgn+cUC4aE6kqCDwmASqOImCrlkZlHzZo1xSlFbkcFH2iVFffGiY9Uj44UZwb3v8lZtDI777ff\ngIJU0uo9rWKjQw8gE9yHMd5GnTp15LoLf/9dBLaUYmugjbko69atG3z91Vdw4cIFwM3DIg+ddYjY\nPfR9sJUcP35cbrp58+ZyWitBf59DQ0ONiskMDBdjAV2Ay2VkhUD+3CXBjdhSEuKaNZPTagkay7Jl\ny0QRmfvQfXVUIR61atUCsiTBvQbiLYxksl2qVCkwpW9R9F57i92Uevri7sDXQPRKSikRERGwFl+l\n9R8wAHCFXlnE6XwSGIOvR1mYgKMSKBNSEehDQn/Q0VWa/AO8YsUKCFn7H9TFH7+ygweBt0IxcdT5\nOMO4KCIsboQVEWEzs3TQuE5JGP18IygTxXbz9r5/ZDLS7amnAFcPzepaWgTLq3KPHj2EUk/1yARH\nUurJBIXMVsjGOSTE9P3GlV3Z3ITauYvnymvKoLL79NNPC6Wegvi8jsGF/sV/s4ZiyqzFsK4l53+h\nkvwwBkQiQY8u4kh2+xRUSJKZuAdh5cqV4pQeDtavWycUcqm8QoUKMAwVc1yxBfSXDhRltWjRolKx\nCJgknSxHMymlGRGZ33z//fdCqac6caicJiYkSNVVj8/g2GhfBF1Lex6KYRAm4kzmP7ZU6GkwZ/EB\nRhItcxipXO1I5kJP4neV/kYrZR5+d3ugUq8UjEskn+IbDTmtllDayBMTR1bqafxN0GSZlHoSelCS\nHhBJfzWlb9FDnb1NcOym1F/BPwBky6Ym9I+SNpTiayvNqLNq13EeE2ACjk8gS5cJJ+7sh6ph9fUG\ne/HiRXgKV7BI6ZCEok0uxpMI3IOztmsXyLa6lUr5mB8CG3ZchCkzd8H1W0lQolgAvDKwATwcZ589\nS/kZrztcQzbdf+FKJZqfmJwuKdToYcRkHamwCa6ck2MHanMOvhH/CKO0k/yOq8cktLKalygfNGiD\nolKhl65V2q/bWimV+qQjKVKSQk/nb+HKcVOcc3R0tN4ePOXG4sX4cEMr7IbSAqOFklJPsgjrDMK9\nAyQSO0r3xIckpUJPeZKMxAcBeitCixK04l6jRg2pyOj49ddfC4WeCmis+/AtCgbA1JsLldHGadpH\noCZS5HkqV7Mzr4NvS77NmY/yenTrKJ9qvRWRKygS9EYCzbPAcDMzzZu+u9JGWcUlLp1UsjP3DVth\nAbGpUk8rEvR6hp5ytBR6aeL0ZE//GOkpOK+60jV8ZAJMwPEJzD/+NWy68jf0r/4GNI5qJwZMr3PR\nPhHQj7HqBG7gK/T2uLK4a+dOiIyMVK3DmaYJXL2RAJN/3AVbdl9GpcIDenauAs/1rgNB6OGGpXAJ\n0GbBn9F0pEfPniYXsj777DOLvv/Po0kKKZv074oUR/K6JpnePIamN0vRXMaU/PLLL3Kx1sruV9Om\nwcsjRggzjSm4AVRN0PBYLVvk7cR/0y+oPKiQh5JXsF0tIVMXQyHvc0qhVVRqXxIyw1ET3PMnZ5Ni\nLonSO98CMqU5eVIq0jsqr8/Li5HhgxG97aCPodAGakl5NyxTnqvVobcA1hLaKEsm0Upzmt/Q/IhW\n5k29gVFuwqVFXFNCZlySaHkYlMr5aBkBmyr19GWm3d/mSl98rUcfFibABFyHQGyxunDu/jGoUTzX\n6xKt9mkp9NLM0R+yUHro9bmpHxOpPh9zCaxYfwZt53cCmd3UqFwcXhvSGGKjw3IrcKrQCTyOCuc6\nNGsgBZdWe5VCnkomooeVlriibInQajwp9SS0At0eV3bNNb2ha46i+z8SshOX7IZFhuJ/tFC3W2E/\nLRWFh4dLSdiBinW7dtkP8HJmToLMLchDDK0GS0JK6XVUJk2JlotE5TXofEN5KvrRyzA4IbOPegqT\n4KMWXk9e+kx56rPk/pFym6p4wFAOdcyYMUAedFb88w88pPJwo/X3UZlPDw15CSn05C2IHo7o+zkV\nv0tqXn7U2mnQoIGcvWnzZjmtlsANtnK25JVIznDAhPKNhzUfoGwxVasr9QPQNp7szOzhqskWQLhN\nJsAErEugQWRrqBfREjw9sleTaGWMXNmaI/THn+xjtV6Dm9OGO9VJSk4Xyvy/G86Cn6+XsJt/sn1l\nfihy0C8BKci0yZOUUXLnTCvctXFTHtmC50fINIOUcdosOnfuXLiX40fcHNMb6k9SApVKjLnjIPti\nyV6c/NWPRUVUTWh1PR03CY/AVXnJBIbO8xJzTD6UChe5AdUag1ZfyuvpgcsSpVytzcq4IdcSIesG\nNZHy6Sil1eoZ5pXGjZyS7MfvmdaDllSnX//+QqGnOD1kNiR9H6RyU0cyoybf8vSmhD70BkMtTgF9\nxyU/+M7yd51cfUpiDTeZUlu2OFrvnU3O6OiP1AD8YtA/bhYmwATck0ByRqLexCWFnjLJg4Bh0BK9\nygYnS5YsMcjhUzUCJ87chkFv/AOk0FcsXxRmTugET3WIteiHWa1dzrM9AfJbTh5d6Lczvwq9NEoK\n6EhCq/+0ak8roWR6Y45IHlLo2rzs/dXakzZP0n6Zf3BV2d5C+wokof05lgrpL5Ls2r1bSjrtUekT\nXulDXm1CFMeA/P/TinteCj29bSGzLskHvtRecwU/rQ2i6BZTqg5VcjY7yxkOmCAbeunNAr3BMjSn\ncrQhW12pd7QJ8niYABOwL4Fjt/fCu1ueRbeVubatyhFIAWWUeabSltY31Zarlv3+9zEYMvZfuHgV\nvVXgyvz0zzpChTJFXHW6PC8TBJSr8rRiT6uh5ioiysibpoLqkCmHUjmThjMUV3glGYz2/bR3RkvO\naeyn0apvTn5UVBR06tRJVEVf98K1p9Z1ZGpi+LelY8eOcvUFOYG05AyDhKGpj0GxQ5xS9FdJJMVU\nOjc8zs5xD0rcyKUpOTGQgmUZ1iW3oL0xaOc03F+hFKVpkNZijHJfR10n8G5GPCRRPrRIeY52ZKXe\n0e4Ij4cJODGBKwnnYPrBDyEVo8UCqG+WU7ozM2eqapvKzLnOHercw6iwb36+Dqb8tFuY23z6Wkth\nP0+mNyzuSYBMcJRmE0olPy8ij+PmdEnIleFJlY2i9+/fF37gm2PUWtqMqxRyWf3y8OEii/y902Z4\nNcV+69atsgmG8nprpIc8/7zcTEM0B1Hbu0PuOFu1bi0UV3rwkYRMW8irDgmtNH+Y40FIKpeOGJwL\nMKgUfGRBpF/pWnsfJVt3WoVXztVwHPPmz5ezKFYBKeVF0eKiUuXKYqWa9kDQ599//4XaOb75k9DE\nRink01960zQVFX5S/pVy48YNGDt2rMgic62n+/RRFjtkWvmGA4NqOeQYlYNSN+BS1uC00xEgd2Za\nUh7DUhfUTlCrbc53bwIP0u7C9wfegxRU6PtWHaW3MVZJhvxn02tMsvHMS0g5oX06LMYE9h25Dh9M\n2Qw3bydDzSol4MNXm0NUeLBxRc5xSQIUsv4M+p8nUwja2Eh/92uh20f6t/XqK6/IG2bJ9IZW1sld\nJdnZS0JBpWLQxeIjuJlWEjLVoXgyFFiKpCoGiCT54IMPgB7GyfHF38uXQ3x8PLRGpVjNU90XuMGX\nvMaQ8kfuajHirTDpIBt6UrDX4cZ3+piSmzdvwr+4l0b5W0bjJXtsSUnVup421L6HbhclhRuj1otg\nX2TnT77UN+AcVq1aJbh1QSXUcEMwRrYH8nxD5ijkFpQ+NNdBgwbBKZwXzV/MCx2BNFRsDqXxkK24\n0uyExk8bT/vgqnZhSUd8UyOtNlPApyeffFJ1KLQh9tSpU7AUlfkbyJ+Ce5HQRmt6AFIT8vevFPp7\nTV6dauK+EBIK8kV8p0+fLoJX0YOeJH+g+Y4he6mMjrT3amFO7CJ6CCOhoGfSd6J1q1Z5buIlU8/z\nGPNkvuKBhb5HFFAqCr2q5bXHgPqkhyFJHjHY/E3xBuj7oCXK74JWHavn4z8SFhchoBae2DCve48e\nLjJbnoYjEUjPTNNN2vWq7qU1j+j+OPlDnkPDHz859Lbhd1R5/smnn+bZlrtVyMToUTPm79e16PGr\nrnn3Obrv5uzVpWdkuhsGt58vmsoY/Rt6++23BRd0eyjKOnTsKM5R8TeqS//OUFlT5YhKoGp9uqZY\nWJhu1KhROrQ1Vr2WMqkMlWDNNnD1V9enTx9Rjsq+UTuoeKteO3LkSKO6WhkTJ01SbYPmEBkVpcMH\nFa1LdWiWo0Nf9qrXe3l7i7JDhw4ZXV+rdm2ja/wDAozqWZqB+xN0GNFVd/r0aUsv1eH+JXlMGM1W\n8/r/TZ8u+qC5S4IKrXyt8u8ypen+acmMH3/UvI6uHT9hgtalcj6aR5lsY9GiRXJdrQS6jNVsAx+2\ntC6T8/FhWL4eTcvkfCmBkZvlckM+ynN8SJYusfnRg3qw+pMCN1goBPCPjej3Sw3fwVRIu/Elm8NC\nGSR36pIEfj7yBWy/tgpqFm8KQ2t/IHu6MTXZIUOGwI8zZ2pW6YU+vGlVRWlKoFnZTQpu3k4Sq/P7\njtyAsKL+8P6I5tCwdpSbzJ6nqSRAq81HFZsOqawRusJs1qyZsppIkzebb7/7ziifvKN0Q9tpLaEV\nc/o9KYn16N9hXXwLQO2bG3SKzDVo9Xov+oWnqK20st8SzXbycpNI7mylVVrl2Mj9pKVvmmmVmiLs\nRuDKLAURaobmSbQx2RyhNxw0jiO4cbg4jp1MRtrhyrvaGwpqby76c79165Ze02TS85KKX369SjY+\nmTJ1KowePVr0chpX4ytgVF1LhDY9n8TrJKkYEwNkapOX0BsNVL4F+1v4XWrfvj20wPtvjpD3nOkz\nZmhWpbcsMTgOU2I4bmXdshgrQOuthVSPIpx37tJFnJK7U4r7oBS613TPtQQfQkURuajdvm2bVjWr\n5rNSb1WchduYpNRnKqLIFe6IuHd3ILDy/HxYcvpHKBUUDaMbTAF/7wCzpz1p8mSYNGkSKF/Lkuu6\nJzH4yQ8Y0dAS921md+qkFbfuuQwff7UVyI6+cZ2S8N6IOChWxN9JZ8PDZgJMwF4EyINLQE5kXVJM\nDf3x22scztaPpFPRQ1xecRTU5kY2+GSCY0+lnjfKqt0JzmMCTMAsAvtvboGlp2dCiE9ReLHOxxYp\n9NTB6FGjgKIPTpw4UfRHAXduo73ujz/+yAp9zh3IyMyCb37eA6+NWwcJiWnwYt+6MPmdh1ihz+HD\nBybABEwT8PX1hb/Rnp6ENjcrI+KavtJ9S2mjryRbcf+Kswgr9c5yp3icTMDBCCSlP4Cfj0wALw9v\nGIImN2H+EWaPkDYwKV2sSaHCg3HzmSS0qc2UeY5Uz5WP124mwEvvrIS5S49CZIlA+ObjR+CZJ2uw\nSZIr33SeGxOwAQFy10kbRElo8y5tRGVRJ0BvjnHfiCgcimaieZn5qLdSOLns/aZwuHOvTMDpCQT6\nhMDAGmOEt5uYIubZqEqTbpMT6jwD3clp2cyHo/0qCXn0aNy4sXSp2xzXb78In327DR7g6nzLRmVg\n7LCmEBrs5zbz54kyASZgXQL0VrQregf6D6PlUvTYBQqvMNbtyXlbo/0n7dFjEMlz6K//22+/darJ\nsFLvVLeLB8sEHItAzRLZru/MHVX6pk3grVDQaSNSXhu3zd3UZu4YHL1eWnomfD17D/yx4gSaIHnC\nKwMbQM/OVR192Dw+JsAEHJxAQEAA/LV0KTyL0YvJ9JHFmADt4yJf+pvwbbJhcC3j2o6Xw0q9490T\nHhETcGgC15MuQWRgGYvHmHn6NDwYOBi8mzYBMrehMPTf4CqImlKvjFYpmeZY3KETXnDp2gN4d9JG\nOHH2DpSODIaPRrWAqhWLO+FMeMhMgAk4IgFS7BeiH34WbQLkeY0+zihsU++Md43HzAQKicA/Z3+F\ncTuGwqFbOyweQfKUqYAhCcGvRw8YPmyYuJ5cjqnJlClT1LJdOu+/bRdg4OvLhULfNq48/PTFo6zQ\nu/Qd58kxASbABKxLgJV66/Lk1piASxPQgQ6CvEOgTEiMRfPMOHoU0pb/A15VYsG3axcYOHCgyesl\n/8T98TWxO8jM3w/COxM3QkZGFrw+pLFYoQ8K9HGHqfMcmQATYAJMwEoE2PzGSiAdqZkbN25oDsff\n31/eAa9ZiQuYgAaBR6OfgYfKPgkB3kEaNdSzkydnr7wHYPh62hhbCYOgSWLq+zosZ0Vfqutqx9S0\nTPj0m62wZvN5KFEsAD5/szVUq8TmNq52n3k+TIAJuB4B2lRLXtq0xNRvm9Y1Bc1npb6gBB3weor+\npyVPPfUU/L5ggVYx5zOBPAlYqtBnYDTJ9LVrwatWTfDt0N6o/T8XLwZPz9yXhlevXpXr1MUIkq4q\nt+4kw1vj18PRU/FQJSYMxr/VGsLDAl11ujwvJsAEmIBLETh06BA0wGixjiSs1DvS3bDSWB599FHN\nlho0aKBZxgVMQI3AlisroHxoLJQOtszkRmoradKXIhmQEzJbyq9WrRocRbOcb775Bl5++WUpGxZh\nSHdJzA1HL9V3luOJM7fhjc/Xwc3byfBQs3Lw7vBm4OfHf46d5f7xOJkAE2ACFP3clL61fPlyu0Pi\nXxG7I7d9h+SyioUJWIPAhfsn4LfjUyHUNww+ajYbvDwt+5ORvn07ZGA0Pu+GDcC3dSu9IZFpzfDh\nw+Hw4cN6+ZMmTRLn9erV08t3lRPaEPvxtC1ApjeDetSCQT1rafrqd5U58zyYABNgAq5GIDo6WrgI\n1ZpXs7g42LFjh1axTfIt+4W2yRC4USbABByRQFpmKsw6Mh6ydJnQu8pwixV6mlPy5JxV+lEjjabY\n9uGH5bzU1FQ5ff78eZFWrt7LhU6emLXwIEyfdwB8fb3gw5HNoV3zCk4+Ix4+E2ACTIAJOAoBVuod\n5U7wOJiAgxFYfGo6XE+6CM1LdYJaJZpZPLq09RsgY9du8MbVCp8mxkGqKleuLLe5Z/dukVZuLGrV\nsqVc7uwJWpUf9+1WWL2JN8Q6+73k8TMBJsAEHJUAK/WOemd4XEygEAkcid8F6y8vhRIBJaFb5Rfy\nNZLkL7NX6QNHG6/SU4PkBUeSZX//LZIbMYqfJPRq0xXk9t1keBM3xB45GQ+x0cVgwlttILw4b4h1\nhXvLc2ACTIAJOBKBXJcTjjQqHgsTYAKFRiAx/T7MOToRPMAT+ld/E/y8AiweS9rKVZB58BD4PPQQ\neJvwYNOxY0fRdnx8vDiuWrVKHJUKv8WdO9AF5y/fg+fH/CsU+jZNy8J3n7Rnhd6B7g8PhQkwASbg\nSgRYqXelu8lzYQJWIPDb8WlwL+02dKjQG2KKVLe4RR1GjU3OiQgboLFKLzXaA6PLqsmr6M/e2WXP\noeswdOxKuHYzEfo+Xh0+Gd0S/NnDjbPfVh4/E2ACTMBhCbD5jcPeGh4YE7A9gT59+sD9Bw/kju6m\n3ILLiWcgwCsIzhb5Hb73WCiXkXvJpUuWyOdaibRlf0Pm8RPg26kTeKPbSlNSX8PDTZs2bUxd5vBl\n/244izb02yArSycixD7RPnf/gMMPngfIBJgAE2ACTkmAlXqnvG08aCZgHQKrVq+GO3fuqDR2G07A\nRb18c0xidAkJkPwlRo/FYFIBI/Neba9eXf1NQKNGjfT6dqYTycNNgL83fDyqBTSrX9qZhs9jZQJM\ngAkwASclwEq9k944HjYTsAaBE8eP42pyltzUmXtHYXDvF+DI3uNw8MABiIiIkMvMUeoT334Hsi5c\nAL9nnwGvihXla7US3t7qf4IiIyO1LnHY/IzMLPjihx2wbO1pKF7UHyaOfQhiMVIsCxNgAkyACTAB\nexBQ/0W1R8/ch80I1KtfX7PtR9q1gwkTJmiWc4F7EQgLy1U6yfPMLnQtmXwn22f87J9/BvIl3759\ne7OgpPz6K5DpjVeN6hA45i2zrqFK/fv1A+pLknb4HXU2SUxOh3cmboAd+69BdNkiMOnthyCyRJCz\nTYPHywSYABNgAmYSOI6LYr3RhFVLDuDCmL2FlXp7E7dDf0eOHNHspVrVqpplXOCeBJIzEuHbaT/A\nG2+8oQdg4sSJQJ/evXrB9OnTITBQ2w1jxqHDkPTJOPAICYbgr78CDz8/vbZMnTRp2lRPqX9YEZTK\n1HWOUnYjPgleG/cfnD5/FxrUioRxr7WC4CBfRxkej4MJMAEmwARsQICCJprSt2zQZZ5NslKfJyLr\nVNi7dy+89/77EIsBd+7duwfdunWDTriR0BaSmpJii2a5TRckcDnhLLwwoQ8sH7dLc3bz5s8XPuXn\nzJmjWicLN9omDH8ZIC0Ngr6cDF7lyqnW08o03Czb2Ins6U+euyMU+lu3k6FTm2h464Wm4O3NTsW0\n7jXnMwEmwARchUDt2rXBlL7VDAMv7tixw67T5V8fG+PeuXMneKHdcENUVJYvXw5Tpk6Fn2bNgi5d\nu4r8gwcP2ngE3LySwKJFi6B3796wZ88eZbbbprfs3QD/TsybxW/z5oEyMJQSWOKbb0HWxYvgN6A/\n+HbsoCzSTB86dEjcB2qX/jAqpUGDBspTh01v2XMZXnpnJZBCP6hnLXhneJzTKfTp6eniPnz44YcO\ny9ldBjZ27Fh4+umn3WW6DjvPWbNni38Tp06dctgxusPAtmzZIu7D3zmBCd1hztaYIyv11qCo0QaF\nvG/arJlcWqJECVj577/QuHFjOa8uuvS7gBsLWexD4DCaJv2+cCFcvnzZPh06eC8rZm2AzLTcjbKm\nhjt12jSj4pSZP0H6vyvBq04dCHzrTaNyrYzr16+L+0Cbcf0MTHVCQ0O1LnOY/Hl/HYU3P18PaRlZ\n8PawZjC4p/6DicMMNI+BZGZmivuw9r//8qjJxbYmsBIDry34/Xdbd8Pt50FgLy740G/ErVu38qjJ\nxbYkcAEXiug+HD9xwpbduFzbbH5jw1vavEULufXz585BmTJlxHnbtm2BVgGq5Ni308bWs2fOgDMo\nM/KEOOG0BNIyU8DXy1+M/298e2SuLFu2TK9qxr59kDR+AnigEh781VTw8PHRK3fFkwxU4r/4X7aH\nmyIhfjDu9VZQt3qEK06V58QEmAATYAJORoBX6m10w/7Dla8zqKiTzJgxQ1bope4qVaoEkydPFqd3\n796FaV99JRXxkQnYjMCx23vh3S3Pwqm7h0QfGRkZZvdlWDdtzVoAvD5o4gTwKl0wX+ySyU3z5s3N\nHo+9K957kAqvfLRGuKwkDzczPu/ICr29bwL3xwSYABNgApoEWKnXRFOwgvXr18sN9OzRQ04rEwMH\nDJBP2bZeRsEJGxE4HL8DvjvwDiRlPID7abdFL6UtUMalN03S8AJHj4LQJYvBF988FVQ2b9oEv/32\nG6xds6agTdnk+rMX78Fzb66AfUduYDCpUvDDuA5QKjLYJn1xo0yACTABJsAE8kOAlfr8UDPjms24\nyYPEEyNrBgWp+6smc5tq1aqJeuQdh4UJ2IrA/pub4YcDH4BOp4Pnar4H9SNaia6eeuops7vsplLX\nu2YNs683VdEHTXfo4VcrGJWpa21dthU3xA4ZuwKu3EiA3l2rwYS32kBQgOubGtmaK7fPBJgAE2AC\n1iXASr11eYrWaPPZ2rVomoCSl8/t1q2ylavTp08LhUtcxP9jAlYksPv6Ophx6GPw9PCEobU/hDrh\ncXLrL734ovxgKWeqJOgBdPjw4Solrp1FG2LfoA2x6Vkw5sWm8HL/+vig7uHak+bZMQEmwASYgFMS\nYKXeBrdNGYyA/NKbkjiFDfGlS5dMVeUyJmAxge1XV8FPhz8Hbw9feLH2x1CjeCO9NsLDw2HN6tUm\nFXsKOjUXo8VGR0frXevKJ7Qh9vPvtsFXs/dACAaSmvpeW+jStqIrT5nnxgSYABNgAk5OgL3f2OAG\nPsBgPJKEhIRISdVjOLq5lCQpKUlKFuhYOTa2QNdP/OILePzxx1XbmP7V83A24izE/ZUClfflbrJc\n0S8Arpf3Ur1GmVl9Wxo0WpUmZ23v6AvHGvlCyz9TIOZQbntfj6oK6SUS5HrKhAfooFjyPZFVa1Ma\n1P8vt70tXfzgZD0faPN7MpQ/lilf9tfzAXA7ygt0lXXwxq+tYUvSFNg6f6pcLiXqrkuFOhvTxenx\nsIrw59Olwa/UGXiw+2FIv5W7GbRIi6UQ4nsN/DNSpUtVjw1Wp0LNrdntUYV13f3hfDVvaP9LMpQ8\nlzu+P14OhISi6s/Y9/xCINMzm23i0UaQeiE3KnCRuqsgPPQYdPopCSIuZcljmD8qEBJDPSEhzBN8\nk3Xw2A/xAGdehONyDf3EDxm+MDIgGHYn6zOv6hcA4yOjIe3zX6HnslzO+ldbfpaUnAx1H5kA288W\ng57DlljegI2voE2xCUnpQBtiydyG7edtDJybZwJMgAk4EIED6G65W/fuBRqR5CylQI1YeDEr9RYC\nc4bq8fGowBVAUjEyqJp89fXXcPX8aUiJ9gQvSIPAtGS5WqavL6QE5a3Ug1c6XpcoXwcYfTMFV0K9\nIRXzU2QTpExPVJZ9tCLj6iAlR//1MGhP5+2F7fmAj47ay1W40/39MZ+6NW064eGZOz6vlCRI16WA\nH44jEaP0JqOiJ0mIZwpkBGRASq4eLRXpHT09iVPuw1qWjzeOwxt8s5IxP1fZTwsIyBmf3uXiROdF\n/WZPOCU9FW7fTYKEhAT07+4LQciN5uWblWLQXiCko9fKsGsZ0GXWXSh1Lrcv4x4AymHmHyXLwiUM\nRjTk+kU4guxmRpSBh4PpoTQLDiALUnStJbQS7u0TDOmZXlZtVzk+YpSBpnBFixRRZpuV9vDwgIfj\nysFbaHJjyn4+FNuuVasW0EZfW8jHn3wCn332GSxZvBgeeeQRW3Rh8zbHjBkDFONgNfphj8MIi9YW\n8idernx5EaH7D/RrbQtZjW+zHsOFDprLu++8Y4subN7mn3/+CX2feQY+/fRTGPnqqzbpj9wzX7t2\nDa5euWKT9hMTEyE8IgLatGkDy500KBHF6IiOiYEuXbrAAozWbQt5Ec0qZ//8M+zC4JfVq1e3ehek\nrNbEv3u9evaEn376yert26tBmsO9e/fgokqsIPL2VlBdSprHrl27pKTNj6zU2wAxmStIktfq+x10\nZymJPyqe1pDbBVTqtcZAX/LxUzbAnIZzoNOc3nrVRumdmTjpgmUTc8v7YZI+QPkoAcguFt807B/w\nW3ZGXv+n66bkVhokJXPak07H5CRISfrggw9gMf7AdcWovkaiuK4sFnaWKnSSEtKxp5TQOxIjP7yP\nTZs2zVb0FO1RxRel2gb5H0j5eR1xHNu2bQOKgTB82DCY+vz07CsM2vtE2c7TyhPTaZpzhccegyPo\nv37QjUtw59htET9Bj4XpJswqXYNebtp36AdvvvEGjBs3zqxrLK1Egd/oRy0DH1RISbeFJOMbhxR8\n4LOV0NhTU1OB9uk4q1DUWlvOgTZ/U/v0sZUQf2qf7oezijQHuh+2Evq3QP8mbCX2uNe2GrvUrj3m\nkIYLc/R9zcrKY9VJGpSFR2qX2qd+nFlMfV/r4wNqQXUpL2/7q9g5653OfFscb+w1auR6BDlx8qTJ\nAW7N8ZJDlcqWJdWJhQkwASbABJgAE2ACTIAJWEaAlXrLeJlVm9zztcrxarNhwwaT12zYuFGUlytX\nTri/NFmZC5kAE2ACTIAJMAEmwASYgAoBVupVoFgjq3mO7Si9itR6HUk2v/v37xfdSRE1rdE3t8EE\nzCWwHM1s6BXhnj17NC85deqUqPPr3LmadbiACTABJsAEmAATKFwCrNTbiH/Lli3llpdpbOiZp9gk\nU1NhsiNfyAkmYGMC77z7rujhmWef1exp1OjRouyll17SrMMFTIAJMAEmwASYQOESYKXeRvzJUwUF\n7CHp3bu30S7qK+gdYOjQoXLvw3DTIwsTsDeBESNGiC6PHz+u2fXfOQ+lFKiKhQkwASbABJgAE3BM\nAqzU2+i+eHp6woEc0xrqIiIyElq1bg3k+7R///5QFm3oJTl86BBQECAWJmBvAr179ZK7JK8MpmTI\nkCGmirmMCTABJsAEmAATKEQCHvhDbvqXvBAH5wpdr0LfzB07GflDlKe2Yf16aK6IKisX5CNRGO6T\n8jFMvoQJMAEmwASYABNgAm5DIBPdXdtDeKXexpTJDIdu5qI//gDye/pM374iiMzXGMiJ8q2l0NM0\n6tWrZ+PZcPNMgAkwASbABJgAE2AC5hJYi3FZ7CW8Um8v0twPE3BQAiNHjoRpX30lRkcPml0x+BR5\nxaGokO07dICDBw9C1apVgczEWJgAE2ACTIAJMAHHJMAr9Y55X3hUTMBuBAYOHKjZFyn0JMOHD9es\nwwVMgAkwASbABJhA4RNgpb7w7wGPgAkUKoGaNWvK/Su94GQobAA7dewo1+EEE2ACTIAJMAEm4HgE\nWKl3vHvCI2ICdiVAnpok+XPxYikpB0ajjAoVKsj5nGACTIAJMAEmwAQcj0Dur7njjY1HxASYgJ0I\ntEZ3qySTJk2Se1yyZImc5gQTYAJMgAkwASbg2ARYqXfs+8OjYwJ2IfD888+Lfm7fvi33N33GDJFu\n3769nMcJJsAEmAATYAJMwDEJsFLvmPeFR8UE7EqgaZMmcn+nT5+W05R45pln9M75hAkwASbABJgA\nE3A8AuzS0vHuCY+ICRQKAa3gZUcOH4YqVaoUypi4UybABJgAE2ACTMA8AqzUm8eJazEBlydQvEQJ\nuHv3rtE8M9LTwcPDwyifM5gAE2ACTIAJMAHHIcDmN45zL3gkTKBQCbwwdKhq/6zQq2LhTCbABJgA\nE2ACDkWAlXqHuh08GCZQeASaNWtm1PnAAQOM8jiDCTABJsAEmAATcDwCrNQ73j3hETGBQiHQqFEj\no35btGxplMcZTIAJMAEmwASYgOMR8Ha8IfGImAATKAwCkZGRRt3Wr1fPKM9aGTqdDrKyskRzXl5e\n1mqW27GAAPGn+0BCQcjY1MoCeHauKv174X8rdgZv0F1mZqacw/9mZBSccBACvFLvIDeCh2FfAqmp\nqfDhhx/CpUuX7Nuxg/fWpUsXvRFWr15d77ygJ6RE/vXXX0Cedrx9fMDXz098SpUuDTN+/FFWMAva\nD1+vTeDOnTswatQocQ98fH3le0D3g+7Lz7/8Aum4OZrFugT+++8/KI+Rmef+9pvZDaelpcHMn37S\n+/dC96hc+fJw8OBBs9vhirkE6G9+7Tp1YPTo0bmZeaTOnDkj6pMzAelvFh2lfzOHDh3KowUuNiRA\nTKtUrQqfff65YZHF59TG0aNH5UUiixtwpQvw6Z+FCbgdgVdeeUXn6eUlPm43eRMT/nz8eJkL8bGm\noDKpqxwbq9d+k6ZNdfTxDwgQ+cOGDbNml9yWAQH8IdXjT/e4WVyc+Ej/HuhYq3ZtHT6AGVzNp/kl\nsGrVKpl7nz59zGomMTFR/nch3ZvwiAi5Hcr78KOPzGqLK2UTuHjxoh4/c7h8+913OlTexXXFwsLk\nfy8NGjbUa+vTcePMaY7rIAEMciizi4iMLBCT2T//LLd169atArXlChfTyhgLE3ArAn///bf8RwBX\nXtxq7nlNds2aNTKbJ596Kq/qZpffu3dPV7FSJbltUk5u3LghX0/KZtFixYQSEx8fL+dzwroEcIVe\nvgeUViruDx480OEKsFz+77//WrdzN21t9erVMlNSxM19cB05cqR8XfMWLXSk5JNs375dzqf2cJXY\nTclaNm36G6NcVKhXv36eDSxdulSwDiteXPe/6dN1SUlJetecO3dO714sXLhQr5xPjAncv39f17pN\nG5lbo8aNjSuZmXPq1Cm5Hfq3wEq9TsfmN6702oXnkieB69evw6DBg+V6ISEhcpoTAA0bNpQx1K1b\nV04XNPE5vh49e/asaObpPn3g2tWrEB4eLjc7b/58wD/2QOYGq9eskfM5YV0CU6ZOFQ02wQjCkyZN\n0rOhDw4OhgP798sdLl++XE5zIn8E8I0gtO/QweKLDxw4AFOnTRPXde7cGTZt3AiBgYHivHHjxnD1\nyhW5zcHPPcdmazIN9cSs2bOhZq1aYBgtW712dm5ycjKMwPtHMgtNoJ5HzgEBAdmFOf8vj2ZQZ9GM\nRJJ33n1XSvJRhcCOHTugeo0asBG/zwWVjIwM6MvRzo0wslJvhIQzXJUAPvwLhf7mzZuuOsUCzys0\nNFRuo07t2nK6IAmyzx4/YYJoIjo6GmbNmiU2ZSrbnJqjbFJecFCQsojTNiDQSPHwpmy+SJEi8ik9\nYLEUjECZsmVFNOYvv/zSooa+++47uf7YMWPktJSIiIiAwYMGidOdO3fC7t27pSI+qhCoXKmSeCj6\n9ttvgR5ezRHaA3HhwgVRlRaCTpw4oXpZuXLlYMxbb4kyqoNvvFTrcSZAxYoVgTYaj8Y9PTVr1iwQ\nkg8++ADou8+iT4CVen0efObCBGjla8WKFdAS3TSWxo2ZLOoEXsXVqfr160OHfKwwqrW4ZcsWOXvi\nF1+AmveO3+bOFX0OGjgQOnbsKNfnhG0I0EZxFtsTGPnqq7B/3z54+KGHLOrsCG76k4RW5tWkbbt2\ncvbRY8fkNCeMCTRv3hzOnzsHQ4cMMS7UyImNjQUf3DxOgjbgkJKSolETxMZlqZA3mUskjI/FixeH\nUydPwgRc5DF862FcWztn/fr1gPu/xO9469attSu6YQkr9W54091xyvvRrGAMrngVLVoUfvn5Z6OV\nYndkojVnMsvYia9J/f39tapYlI+bBOX6TZs2FWl6a7Jr1y7YvHkzoK0wPIRKD/U5ffp0vjcyLesn\naqEJAsn0GTMA7U+NOli5cqWcFx0TI6c5kT8C3uipRlIMLWlh06ZNojo9WJPbRDVpHhcnZx9npV5m\noZWQzJe0yg3zK+Hq/uI//4Q66Clnzpw5UFvjzSV59FK+aVS+7TJsk89BNiPLLwvy3vVsv37i8p/R\nrCosLCy/Tbnkdep/LVxyqjwpdyVAtpFP9+0r7LX/98MPUBZfibPYj8DKHKWeVujp1et7770HMfga\nFr3eQCtcZQlFk4+WrVoBm0XZ/p68lWMmQD1FRkXBSy+9JN5e0Rss9OwBnR59VB5Ev2efldOcsB+B\nu3fvyp3FKRR3OTMnUaZMGTlLubIvZ3KiwAToreEeNG3q07u3alv0YFypcmU4lvNQNWrkSNU3kaoX\nc2a+CAwZOhQuX74Mb7z+OrRp0yZfbbjyRazUu/Ld5bkJAuSPmP7okmlHt27dmIodCdADlWTvW6xY\nMajfoAGg6zdAzzfQo3t3eSRkohNVsiSgNwk5jxPWJ9DVIA7BD//7H3TGPPrQRmVJ6MdSLRiZVM5H\n2xFQbubMa1+L9PeMNzXb7n6otUwmNu+//754MD5//ryoQiv6Y8eOVavOeVYiQG8YFy1aBBT9/KOP\nPrJSq67VDCv1rnU/eTYGBJYsWQKkuFTG1ZQpU6YYlPKprQkobbdpVYs+777zDlzBlZZ58+ZBJnow\n+GPhQnkY6PYSrqJnHBbbEHjttdeMGn7n7beBPkpZt24d/PPPP8osTtuJgHKDchS+TTElxdCckITt\nuE1Rsl7ZtWvXROAqjKsBn3z6qdzwLxiwjVb0aeGCxTYEjh8/DujmFYLQkcKvaA5Fpm0sxgRYqTdm\nwjkuQuAKun177vnnhU3r3F9/FX8MXGRqTjsNWl0hrwVKu9MnnnhCuOyTJjVx4kQpyUcrEti7dy+g\nr23RIq3Ep+LGP3qoosjK9KH0pYsX5R67dO1qcnOgXJETViXg4eEht0d7T0xJXuWmruUy8wmQ3fw3\n6DmnNJo8HT58WL7wNXwLfP/ePSA3vSy2I0APuuS+kt78fvXVV8KLju16c+6WWal37vvHo9cgQD92\n/QcMEF4LPv74Y+FZRaMqZ9uRAHkDUZNmzZoB+U4nIV/qtHmWxboE3kNzAUmm49srtZWukmgC9c03\n30jVxFsu+YQTdiGgjN+Ql6381m3bxJgK6h7QLhNz0k5IkezYqROMGDFCjuuwFmNp0EPwePTAQivH\nLLYl8Da+SaRFiV49e0L/nE2ytu3ReVvn9xfOe+945CYITEQPLmvXrhU1aOVr0uTJerUxXLg4Jz/E\nyrIB/fsDud1isQ0BUx4ouqBdN0bLFB3TveuKK8Us1iMg2f6SiUCMCc82Sh/2F3Lsha03Cm4pLwIV\nKlSQq2xB71D0N0lNyLTtyJEjoigOH4pZrE+A3Fh2fewxIJ/15KHrp5kz2dGC9TGbbBEjMsPknDgP\nZEar/L2mC/9ED0WSTMbfeYz+K0474Sbn6tWrS0Vuc2Sl3m1utXtN9Pfff5cn/Oabb8pptcQbb7wh\nZ3dEF3Ks1Ms4Cpzw8/OT22iFHm5MidKUQMuNn6nruYwJuAIB8hJFQXpow+wGE5E3ySWsJLFVqkhJ\nPlqRAO3HIoW+HcYEWLJ4sdXc/FpxiC7f1B9//CHPUbmPQc5UJMh3vSQlSpRgpV6CwUcm4OwEluIG\n2fUbNmhO4+mnn5bL5mLgI0nY3aVEwjpHCjBCP4i02rIB7wfZRvr6+qo2TpszJaFVMRbbECC3oqZE\n+XBlqh6X2Y4A+UQnpf4kBuqJj49XXWjYrAjqVpWVepvcjNnoB53e9P6IXlfyittBvylr8QHgGAYO\no3goLNYhQHFT2rZtC5m4r0FNlL/lZG8vLco131I1iQAACC1JREFU0QjaptaGK+XxSr0r3U2ei0yA\nvEaQ/Z2W0Oo9meBQiG9T9bSu53zzCfRDG0hS6kn++usvVbei169fl82lyNzAlJmO+T1zTSWBatWq\niU1+5LqSNvvVqFFDWSynlavDVfEaFvsToCiZklnBvPnzYRjGEzCUL3NMEiifXPyxWJfAoUOHgIIW\nklA8DTJfe/zxx2Hmjz+qKu3zFywQdWlTLYv1CNBvQXeF+2PDlumtvPRvhX7LJaXesJ67nPNGWXe5\n0zxPJlBIBJ568km55569ehm5Srx06RKUKl1arjN8+HA5zQnrEfj0k0/kxtqjmZnSL71UQMr+6xjU\nhYR+HCm2A4v9CbyAAXZCQkJEx7RBk9z5KWX8hAki1gPlTcA0mRqwWJfAqVOn5Aal/SjkIrk4mXXg\nA/FiNMehvT9Lly6FhoqHKqVnL7kBTjABexHAV60sTMBtCOCPo27w4ME6Ty8v+UPnuBrmNgwKY6L4\noyjzltgb3gfK//vvvwtjeG7TJwbM0bsPQcHB4t+D2r3AgGBuw8VWE0XFT/DF6Ml63In3qFGjTHZL\n/KV/K9LxqW7d9PK8vL11GRkZJtvhQp0OH1ZVv+d0H+iDwfCMMGGQI8F6wIABouzXuXP12Ev3RHl8\n5plnjNrhjFwCuLnb5H2w5G+O1JaS/xNPPqlDu/rcDt0wBW44Z56yGxNYv3696h9mDGrhxlTsM3Vc\nkddFx8So8qc/zGhzb5+BuHEvGKRI98GHH2reA+kHkhQaloITMHyIkvjSESMo59kBmhZo3qu45s11\nZ8+ezbMNrqDTrVy5UpMj3QtclTfChCaBOgzApsO9DXplaOqh2laHjh11t2/f1qvLJ/oEEhISVNlJ\n/y5m//yz/gUmztDtsWpbLVu1MnGV6xd50BTt9VaA+2EChU0gKSlJbEAzHAe9viYf3Sz2IXDixAkg\nl3zk5YbclGltnrXPaNyzFzK/oX0lkg0w3Quyu2fPQ9b7PuAKMNB+ETXx8fGBqlWrqhUZ5dHm5mPH\njol7RZsweUO/ESKTGahMAj4AadapghuNLfkbRP9myCQK35KINmkTLf0dYzFNgNRN2qugJfS9NneT\nsVZbFDfAlMterb5dJZ+Vele5kzwPJsAEmAATYAJMgAkwAbclwBtl3fbW88SZABNgAkyACTABJsAE\nXIUAK/Wucid5HkyACTABJsAEmAATYAJuS4CVere99TxxJsAEmAATYAJMgAkwAVchwEq9q9xJngcT\nYAJMgAkwASbABJiA2xJgpd5tbz1PnAkwASbABJgAE2ACTMBVCLBS7yp3kufBBJgAE2ACTIAJMAEm\n4LYEWKl321vPE2cCTIAJMAEmwASYABNwFQKs1LvKneR5MAEmwASYABNgAkyACbgtAVbq3fbW88SZ\nABNgAkyACTABJsAEXIUAK/Wucid5HkyACTABJsAEmAATYAJuS4CVere99TxxJsAEmAATYAJMgAkw\nAVch4O0qE+F5MAEmwASYgPMRWLRoERw/ccLkwNPT0yEmJgae6dvXZD0uZAJMgAm4MwEPHYo7A+C5\nMwEmwASYQOEQuHDhAkSjsm6uXLt6FcLDw82tzvWYABNgAm5FgFfq3ep282SZABNgAo5DIDU1VR7M\nt99+CxEGCvvWrVth0uTJch1asWdhAkyACTABdQK8Uq/OhXOZABNgAkzAxgROnjwJVatVE71kZmTo\n9Xbjxg0oWaqUnLdxwwaIi4uTzznBBJgAE2AC+gR4o6w+Dz5jAkyACTABOxHQsv7MzMyERzt3lkfx\n/fffs0Iv0+AEE2ACTECdACv16lw4lwkwASbABGxMIDY2FubMmQMnjh/X62nMmDGwd+9ekffc4MHw\n/HPP6ZXzCRNgAkyACRgTYPMbYyacwwSYABNgAoVE4M8//4TuPXqI3qtWrQr7ULn38fEppNFwt0yA\nCTAB5yHASr3z3CseKRNgAkzApQmcQNeW1apXl+d45fJliIyMlM85wQSYABNgAtoE2PxGmw2XMAEm\nwASYgJ0IJCUl6Sn029DzDSv0doLP3TABJuASBFipd4nbyJNgAkyACTg3gR49e8oTmDlzJjRq1Eg+\nP3v2LHh5e8PkL7+U8zjBBJgAE2AC+gRYqdfnwWdMgAkwASZgZwJTp02DFStWiF5pU2z/fv30RjA5\nx1f966+/rpfPJ0yACTABJpBLgG3qc1lwigkwASbABOxMgAJMtWjZUvRavnx54QnHG1fllUJRZyn6\nbJMmTWDL5s3KIk4zASbABJhADgH9v5yMhQkwASbABJiAHQlICj11efPmTaiMbi6VQj7rL+OGWZL/\nt2/HKAwCQRRArbfbU+Qo8czmZNuFpBB/LhA+vkLYwQXHNxYf0cfPues+awIECNxdwOc3d38C3D8B\nAgT+KPA6jvPqY4zt88Ps9VhrbXPO757nvp97LQgQIEAgBXx+kx4qAgQIECBAgAABAnUC3tTXjUzD\nBAgQIECAAAECBFJAqE8PFQECBAgQIECAAIE6AaG+bmQaJkCAAAECBAgQIJACQn16qAgQIECAAAEC\nBAjUCQj1dSPTMAECBAgQIECAAIEUEOrTQ0WAAAECBAgQIECgTkCorxuZhgkQIECAAAECBAikgFCf\nHioCBAgQIECAAAECdQJCfd3INEyAAAECBAgQIEAgBYT69FARIECAAAECBAgQqBMQ6utGpmECBAgQ\nIECAAAECKSDUp4eKAAECBAgQIECAQJ2AUF83Mg0TIECAAAECBAgQSAGhPj1UBAgQIECAAAECBOoE\nhPq6kWmYAAECBAgQIECAQAq8ARe6C41MiM6nAAAAAElFTkSuQmCC\n", | |
"text/plain": "<IPython.core.display.Image object>" | |
}, | |
"metadata": {}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"collapsed": true, | |
"run_control": { | |
"marked": false, | |
"old_gutter_background": "rgb(0, 255, 0)" | |
}, | |
"hide_output": false | |
}, | |
"cell_type": "markdown", | |
"source": "First try to calculate this just at z=5 to check the methodology:" | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "params = meraxes.read_input_params(fname)\nHII_eff_factor = params[\"TOCF_HII_eff_factor\"]\nvolume = params[\"Volume\"] * U.Unit('Mpc^3')\nsnaps, zlist, lbt = meraxes.read_snaplist(fname)\n\n# we've already read in the galaxies\nredshift = 5\ngals = model[\"gals\"][str(redshift)]\ntot_gross = gals[\"GrossStellarMass\"].sum() * U.Unit('1e10 Msun')\n\n# calculate the hubble time\ntiamat_cosmo = cosmology.FlatLambdaCDM(params[\"Hubble_h\"]*100., params[\"OmegaM\"],\n Ob0=params[\"OmegaM\"]*params[\"BaryonFrac\"])\ndt = (1./tiamat_cosmo.H(redshift))\n#dt = (lbt[-2] - lbt[-1]) / 1000. #Gyr\n\n# total matter\nmtot = (tiamat_cosmo.Om(redshift) * tiamat_cosmo.critical_density(redshift)) * volume / (1+redshift)**3\n\n# calculate the result\nres = (tot_gross / mtot) * HII_eff_factor / dt\n\nclear_output()\nprint \"Volume =\", volume\nprint \"t_H =\", dt.to('Gyr')\nprint \"Mtot = 10^%.1f\" % np.log10(mtot / U.Msun)\nprint \"Mstellar = 10^%.1f\" % np.log10(tot_gross/ U.Msun)\ndisplay(Latex(r'$\\xi = %d$' % int(HII_eff_factor)))\ndisplay(Latex('$\\dot N = $ ' + res.to('1/Gyr')._repr_latex_()))\n# display(Latex(r'$\\Rightarrow N = $ '+res.decompose()._repr_latex_()))", | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "Volume = 1000000.0 Mpc3\nt_H = 1.75746965822 Gyr\nMtot = 10^16.6\nMstellar = 10^13.5\n", | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Latex object>", | |
"text/latex": "$\\xi = 5841$" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.Latex object>", | |
"text/latex": "$\\dot N = $ $2.5552889 \\; \\mathrm{\\frac{1}{Gyr}}$" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "Looks good! Now let's calculate it for every redshift and plot..." | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "def ndot(ii):\n snap, redshift = snaps[ii], zlist[ii]\n try:\n tot_gross = meraxes.read_gals(fname, snap, props=(\"GrossStellarMass\",), quiet=True)[\"GrossStellarMass\"].sum() * U.Unit('1e10 Msun')\n except IndexError:\n return 0.0\n dt = (1./tiamat_cosmo.H(redshift))\n mtot = (tiamat_cosmo.Om(redshift) * tiamat_cosmo.critical_density(redshift)) * volume / (1+redshift)**3\n return ((tot_gross / mtot) * HII_eff_factor / dt).to(1/U.Gyr).value\n\nwith ProgressBar(snaps.size, ipython_widget=True) as bar:\n vals = np.zeros(snaps.size)\n for ii in xrange(snaps.size):\n vals[ii] = ndot(ii)\n bar.update()", | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# # obs data\n# obs_data = \"\"\"\n# McQuinn:\t\tBolton:\t\n# x\ty\tx\ty\n# 3.610\t1.310\t3.782\t2.322\n# 4.500\t1.686\t4.677\t2.205\n# 5.398\t2.090\t5.588\t2.069\n# 6.306\t2.355\t\t\n# \"\"\"\n# fd = StringIO(obs_data)\n# obs = {}\n# kwargs = dict(header=0, skiprows=2, names=[\"z\", \"N\"])\n# obs[\"McQuinn\"] = pd.read_table(fd, usecols=[0,1], **kwargs)\n# fd.seek(0)\n# obs[\"Bolton\"] = pd.read_table(fd, usecols=[2,3], **kwargs).dropna()\n# fd.close()", | |
"execution_count": 9, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# obs data\nobs_data = \"\"\"\nBolton:\nx\ty\n3.099\t2.330\n3.099\t2.655\n3.099\t2.024\n5.105\t2.052\n5.105\t2.396\n5.105\t1.736\n4.101\t2.196\n4.101\t2.521\n4.101\t1.917\n\nMcQuinn:\nx\ty\n2.902\t1.312\n2.902\t1.609\n2.902\t1.014\n3.897\t1.683\n3.897\t2.092\n3.897\t1.279\n4.895\t2.087\n4.895\t2.440\n4.895\t1.725\n5.915\t2.351\n5.915\t2.732\n5.915\t1.961\n\"\"\"\n\ndef reorder_obs(raw_data):\n obsvals = raw_data[::3].copy()\n obsvals['high'] = raw_data[1::3].N.values.copy()\n obsvals['low'] = raw_data[2::3].N.values.copy()\n obsvals['dhigh'] = obsvals.high - obsvals.N\n obsvals['dlow'] = obsvals.N - obsvals.low\n return obsvals\n\nfd = StringIO(obs_data)\nobs = {}\nkwargs = dict(header=0, names=[\"z\", \"N\"])\ntemp = pd.read_table(fd, skiprows=14, nrows=12, **kwargs)\nobs[\"McQuinn\"] = reorder_obs(temp)\nfd.seek(0)\ntemp = pd.read_table(fd, skiprows=2, nrows=9, **kwargs).dropna()\nobs[\"Bolton\"] = reorder_obs(temp)\nfd.close()", | |
"execution_count": 10, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"collapsed": false, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "fig, ax = plt.subplots(1, 1)\nax.plot(zlist, vals, lw=4, **model[\"plot_args\"])\nobsvals = obs[\"Bolton\"]\nax.errorbar(obsvals.z, obsvals.N, yerr=(obsvals.dlow, obsvals.dhigh), marker='^', ms=16, ls='None', label='Bolton & Haenhelt (2007)', color='0.5')\nobsvals = obs[\"McQuinn\"]\nax.errorbar(obsvals.z, obsvals.N, yerr=(obsvals.dlow, obsvals.dhigh), marker='s', ms=16, ls='None', label='McQuinn et al. (2011)', color='0.5')\nax.set_xlabel(\"redshift\")\nax.set_ylabel(r\"$\\frac{dN}{dt}$ [photons per baryon Gyr$^{-1}$]\")\nax.set_xlim(2.5, 15)\nplt.legend(loc=1, markerfirst=False)\nplt.tight_layout()\nplt.setp(ax.get_xticklines(), visible=False)\nplt.setp(ax.get_yticklines(), visible=False)\nplt.show()", | |
"execution_count": 11, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('<div/>');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n this.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n 'ui-helper-clearfix\"/>');\n var titletext = $(\n '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n 'text-align: center; padding: 3px;\"/>');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('<div/>');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('<canvas/>');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var rubberband = $('<canvas/>');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width);\n canvas.attr('height', height);\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('<button/>');\n button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n 'ui-button-icon-only');\n button.attr('role', 'button');\n button.attr('aria-disabled', 'false');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n\n var icon_img = $('<span/>');\n icon_img.addClass('ui-button-icon-primary ui-icon');\n icon_img.addClass(image);\n icon_img.addClass('ui-corner-all');\n\n var tooltip_span = $('<span/>');\n tooltip_span.addClass('ui-button-text');\n tooltip_span.html(tooltip);\n\n button.append(icon_img);\n button.append(tooltip_span);\n\n nav_element.append(button);\n }\n\n var fmt_picker_span = $('<span/>');\n\n var fmt_picker = $('<select/>');\n fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n fmt_picker_span.append(fmt_picker);\n nav_element.append(fmt_picker_span);\n this.format_dropdown = fmt_picker[0];\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = $(\n '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n fmt_picker.append(option)\n }\n\n // Add hover states to the ui-buttons\n $( \".ui-button\" ).hover(\n function() { $(this).addClass(\"ui-state-hover\");},\n function() { $(this).removeClass(\"ui-state-hover\");}\n );\n\n var status_bar = $('<span class=\"mpl-message\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n}\n\nmpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n}\n\nmpl.figure.prototype.send_message = function(type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n}\n\nmpl.figure.prototype.send_draw_message = function() {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n }\n}\n\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n}\n\n\nmpl.figure.prototype.handle_resize = function(fig, msg) {\n var size = msg['size'];\n if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n fig._resize_canvas(size[0], size[1]);\n fig.send_message(\"refresh\", {});\n };\n}\n\nmpl.figure.prototype.handle_rubberband = function(fig, msg) {\n var x0 = msg['x0'];\n var y0 = fig.canvas.height - msg['y0'];\n var x1 = msg['x1'];\n var y1 = fig.canvas.height - msg['y1'];\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0, 0, fig.canvas.width, fig.canvas.height);\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n}\n\nmpl.figure.prototype.handle_figure_label = function(fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n}\n\nmpl.figure.prototype.handle_cursor = function(fig, msg) {\n var cursor = msg['cursor'];\n switch(cursor)\n {\n case 0:\n cursor = 'pointer';\n break;\n case 1:\n cursor = 'default';\n break;\n case 2:\n cursor = 'crosshair';\n break;\n case 3:\n cursor = 'move';\n break;\n }\n fig.rubberband_canvas.style.cursor = cursor;\n}\n\nmpl.figure.prototype.handle_message = function(fig, msg) {\n fig.message.textContent = msg['message'];\n}\n\nmpl.figure.prototype.handle_draw = function(fig, msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n}\n\nmpl.figure.prototype.handle_image_mode = function(fig, msg) {\n fig.image_mode = msg['mode'];\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Called whenever the canvas gets updated.\n this.send_message(\"ack\", {});\n}\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function(fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n evt.data.type = \"image/png\";\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src);\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n evt.data);\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig[\"handle_\" + msg_type];\n } catch (e) {\n console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n }\n }\n };\n}\n\n// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function(e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e)\n e = window.event;\n if (e.target)\n targ = e.target;\n else if (e.srcElement)\n targ = e.srcElement;\n if (targ.nodeType == 3) // defeat Safari bug\n targ = targ.parentNode;\n\n // jQuery normalizes the pageX and pageY\n // pageX,Y are the mouse positions relative to the document\n // offset() returns the position of the element relative to the document\n var x = e.pageX - $(targ).offset().left;\n var y = e.pageY - $(targ).offset().top;\n\n return {\"x\": x, \"y\": y};\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * http://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys (original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object')\n obj[key] = original[key]\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function(event, name) {\n var canvas_pos = mpl.findpos(event)\n\n if (name === 'button_press')\n {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x;\n var y = canvas_pos.y;\n\n this.send_message(name, {x: x, y: y, button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event)});\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n // Handle any extra behaviour associated with a key event\n}\n\nmpl.figure.prototype.key_event = function(event, name) {\n\n // Prevent repeat events\n if (name == 'key_press')\n {\n if (event.which === this._key)\n return;\n else\n this._key = event.which;\n }\n if (name == 'key_release')\n this._key = null;\n\n var value = '';\n if (event.ctrlKey && event.which != 17)\n value += \"ctrl+\";\n if (event.altKey && event.which != 18)\n value += \"alt+\";\n if (event.shiftKey && event.which != 16)\n value += \"shift+\";\n\n value += 'k';\n value += event.which.toString();\n\n this._key_event_extra(event, name);\n\n this.send_message(name, {key: value,\n guiEvent: simpleKeys(event)});\n return false;\n}\n\nmpl.figure.prototype.toolbar_button_onclick = function(name) {\n if (name == 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message(\"toolbar_button\", {name: name});\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n this.message.textContent = tooltip;\n};\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n\nmpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.close = function() {\n comm.close()\n };\n ws.send = function(m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function(msg) {\n //console.log('receiving', msg['content']['data'], msg);\n // Pass the mpl event to the overriden (by mpl) onmessage function.\n ws.onmessage(msg['content']['data'])\n });\n return ws;\n}\n\nmpl.mpl_figure_comm = function(comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = $(\"#\" + id);\n var ws_proxy = comm_websocket_adapter(comm)\n\n function ondownload(figure, format) {\n window.open(figure.imageObj.src);\n }\n\n var fig = new mpl.figure(id, ws_proxy,\n ondownload,\n element.get(0));\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element.get(0);\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error(\"Failed to find cell for figure\", id, fig);\n return;\n }\n\n var output_index = fig.cell_info[2]\n var cell = fig.cell_info[0];\n\n};\n\nmpl.figure.prototype.handle_close = function(fig, msg) {\n fig.root.unbind('remove')\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable()\n $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n fig.close_ws(fig, msg);\n}\n\nmpl.figure.prototype.close_ws = function(fig, msg){\n fig.send_message('closing', msg);\n // fig.ws.close()\n}\n\nmpl.figure.prototype.push_to_output = function(remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n}\n\nmpl.figure.prototype.updated_canvas_event = function() {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message(\"ack\", {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () { fig.push_to_output() }, 1000);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('<div/>')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items){\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) { continue; };\n\n var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i<ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code'){\n for (var j=0; j<cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", | |
"text/plain": "<IPython.core.display.Javascript object>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "<IPython.core.display.HTML object>", | |
"text/html": "<img src=\"\">" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "We show a reasonable agreement with the data, however, there is no visible sign of a turn-over. This agrees with the above plot that shows our low redshift ionising sources are reasonably biased. According to the Mesinger et al. plot, a high source bias corresponds to a rapidly increasing emissivity at low redshift due to the increase in the ionising emissivity required to obtain a reasonable neutral fraction evolution." | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python2", | |
"display_name": "Python 2", | |
"language": "python" | |
}, | |
"language_info": { | |
"mimetype": "text/x-python", | |
"nbconvert_exporter": "python", | |
"name": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.2", | |
"file_extension": ".py", | |
"codemirror_mode": { | |
"version": 2, | |
"name": "ipython" | |
} | |
}, | |
"gist_id": "6e9ca4cff50b715916b5" | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment