Created
February 28, 2016 14:11
-
-
Save sodabeta7/d3bce586eb5e6932ae19 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "VGG_ILSVRC_16_layers" | |
| input: "data" | |
| input_shape { | |
| dim: 1 | |
| dim: 3 | |
| dim: 224 | |
| dim: 224 | |
| } | |
| input: "im_info" | |
| input_shape { | |
| dim: 1 | |
| dim: 3 | |
| } | |
| layer { | |
| name: "conv1_1" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1_1" | |
| convolution_param { | |
| num_output: 64 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu1_1" | |
| type: "ReLU" | |
| bottom: "conv1_1" | |
| top: "conv1_1" | |
| } | |
| layer { | |
| name: "conv1_2" | |
| type: "Convolution" | |
| bottom: "conv1_1" | |
| top: "conv1_2" | |
| convolution_param { | |
| num_output: 64 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu1_2" | |
| type: "ReLU" | |
| bottom: "conv1_2" | |
| top: "conv1_2" | |
| } | |
| layer { | |
| name: "pool1" | |
| type: "Pooling" | |
| bottom: "conv1_2" | |
| top: "pool1" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv2_1" | |
| type: "Convolution" | |
| bottom: "pool1" | |
| top: "conv2_1" | |
| convolution_param { | |
| num_output: 128 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu2_1" | |
| type: "ReLU" | |
| bottom: "conv2_1" | |
| top: "conv2_1" | |
| } | |
| layer { | |
| name: "conv2_2" | |
| type: "Convolution" | |
| bottom: "conv2_1" | |
| top: "conv2_2" | |
| convolution_param { | |
| num_output: 128 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu2_2" | |
| type: "ReLU" | |
| bottom: "conv2_2" | |
| top: "conv2_2" | |
| } | |
| layer { | |
| name: "pool2" | |
| type: "Pooling" | |
| bottom: "conv2_2" | |
| top: "pool2" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv3_1" | |
| type: "Convolution" | |
| bottom: "pool2" | |
| top: "conv3_1" | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu3_1" | |
| type: "ReLU" | |
| bottom: "conv3_1" | |
| top: "conv3_1" | |
| } | |
| layer { | |
| name: "conv3_2" | |
| type: "Convolution" | |
| bottom: "conv3_1" | |
| top: "conv3_2" | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu3_2" | |
| type: "ReLU" | |
| bottom: "conv3_2" | |
| top: "conv3_2" | |
| } | |
| layer { | |
| name: "conv3_3" | |
| type: "Convolution" | |
| bottom: "conv3_2" | |
| top: "conv3_3" | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu3_3" | |
| type: "ReLU" | |
| bottom: "conv3_3" | |
| top: "conv3_3" | |
| } | |
| layer { | |
| name: "pool3" | |
| type: "Pooling" | |
| bottom: "conv3_3" | |
| top: "pool3" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv4_1" | |
| type: "Convolution" | |
| bottom: "pool3" | |
| top: "conv4_1" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu4_1" | |
| type: "ReLU" | |
| bottom: "conv4_1" | |
| top: "conv4_1" | |
| } | |
| layer { | |
| name: "conv4_2" | |
| type: "Convolution" | |
| bottom: "conv4_1" | |
| top: "conv4_2" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu4_2" | |
| type: "ReLU" | |
| bottom: "conv4_2" | |
| top: "conv4_2" | |
| } | |
| layer { | |
| name: "conv4_3" | |
| type: "Convolution" | |
| bottom: "conv4_2" | |
| top: "conv4_3" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu4_3" | |
| type: "ReLU" | |
| bottom: "conv4_3" | |
| top: "conv4_3" | |
| } | |
| layer { | |
| name: "pool4" | |
| type: "Pooling" | |
| bottom: "conv4_3" | |
| top: "pool4" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv5_1" | |
| type: "Convolution" | |
| bottom: "pool4" | |
| top: "conv5_1" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu5_1" | |
| type: "ReLU" | |
| bottom: "conv5_1" | |
| top: "conv5_1" | |
| } | |
| layer { | |
| name: "conv5_2" | |
| type: "Convolution" | |
| bottom: "conv5_1" | |
| top: "conv5_2" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu5_2" | |
| type: "ReLU" | |
| bottom: "conv5_2" | |
| top: "conv5_2" | |
| } | |
| layer { | |
| name: "conv5_3" | |
| type: "Convolution" | |
| bottom: "conv5_2" | |
| top: "conv5_3" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| name: "relu5_3" | |
| type: "ReLU" | |
| bottom: "conv5_3" | |
| top: "conv5_3" | |
| } | |
| #========= RPN ============ | |
| layer { | |
| name: "rpn_conv/3x3" | |
| type: "Convolution" | |
| bottom: "conv5_3" | |
| top: "rpn/output" | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 pad: 1 stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "rpn_relu/3x3" | |
| type: "ReLU" | |
| bottom: "rpn/output" | |
| top: "rpn/output" | |
| } | |
| layer { | |
| name: "rpn_cls_score" | |
| type: "Convolution" | |
| bottom: "rpn/output" | |
| top: "rpn_cls_score" | |
| convolution_param { | |
| num_output: 18 # 2(bg/fg) * 9(anchors) | |
| kernel_size: 1 pad: 0 stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "rpn_bbox_pred" | |
| type: "Convolution" | |
| bottom: "rpn/output" | |
| top: "rpn_bbox_pred" | |
| convolution_param { | |
| num_output: 36 # 4 * 9(anchors) | |
| kernel_size: 1 pad: 0 stride: 1 | |
| } | |
| } | |
| layer { | |
| bottom: "rpn_cls_score" | |
| top: "rpn_cls_score_reshape" | |
| name: "rpn_cls_score_reshape" | |
| type: "Reshape" | |
| reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } } | |
| } | |
| #========= RoI Proposal ============ | |
| layer { | |
| name: "rpn_cls_prob" | |
| type: "Softmax" | |
| bottom: "rpn_cls_score_reshape" | |
| top: "rpn_cls_prob" | |
| } | |
| layer { | |
| name: 'rpn_cls_prob_reshape' | |
| type: 'Reshape' | |
| bottom: 'rpn_cls_prob' | |
| top: 'rpn_cls_prob_reshape' | |
| reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } } | |
| } | |
| layer { | |
| name: 'proposal' | |
| type: 'Python' | |
| bottom: 'rpn_cls_prob_reshape' | |
| bottom: 'rpn_bbox_pred' | |
| bottom: 'im_info' | |
| top: 'rois' | |
| python_param { | |
| module: 'rpn.proposal_layer' | |
| layer: 'ProposalLayer' | |
| param_str: "'feat_stride': 16" | |
| } | |
| } | |
| #========= RCNN ============ | |
| layer { | |
| name: "roi_pool5" | |
| type: "ROIPooling" | |
| bottom: "conv5_3" | |
| bottom: "rois" | |
| top: "pool5" | |
| roi_pooling_param { | |
| pooled_w: 7 | |
| pooled_h: 7 | |
| spatial_scale: 0.0625 # 1/16 | |
| } | |
| } | |
| layer { | |
| name: "fc6" | |
| type: "InnerProduct" | |
| bottom: "pool5" | |
| top: "fc6" | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| name: "relu6" | |
| type: "ReLU" | |
| bottom: "fc6" | |
| top: "fc6" | |
| } | |
| layer { | |
| name: "fc7" | |
| type: "InnerProduct" | |
| bottom: "fc6" | |
| top: "fc7" | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| name: "relu7" | |
| type: "ReLU" | |
| bottom: "fc7" | |
| top: "fc7" | |
| } | |
| layer { | |
| name: "cls_score" | |
| type: "InnerProduct" | |
| bottom: "fc7" | |
| top: "cls_score" | |
| inner_product_param { | |
| num_output: 21 | |
| } | |
| } | |
| layer { | |
| name: "bbox_pred" | |
| type: "InnerProduct" | |
| bottom: "fc7" | |
| top: "bbox_pred" | |
| inner_product_param { | |
| num_output: 84 | |
| } | |
| } | |
| layer { | |
| name: "cls_prob" | |
| type: "Softmax" | |
| bottom: "cls_score" | |
| top: "cls_prob" | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment