Last active
May 12, 2019 18:59
-
-
Save soerface/460369eb8f7d9d12c03b0472c499b2af to your computer and use it in GitHub Desktop.
Calculates and plots how many profiles were watching simultaneously on each day.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib notebook " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dateparse_en1 = lambda x: pd.datetime.strptime(x, '%m/%d/%y')\n", | |
"dateparse_en2 = lambda x: pd.datetime.strptime(x, '%d/%m/%Y')\n", | |
"dateparse_de = lambda x: pd.datetime.strptime(x, '%d.%m.%y')\n", | |
"\n", | |
"history = {\n", | |
" 'profile1': pd.read_csv('data/NetflixViewingHistoryProfile1.csv', parse_dates=['Date'], date_parser=dateparse_en1),\n", | |
" 'profile2': pd.read_csv('data/NetflixViewingHistoryProfile2.csv', parse_dates=['Date'], date_parser=dateparse_en2),\n", | |
" 'profile3': pd.read_csv('data/NetflixViewingHistoryProfile3.csv', parse_dates=['Date'], date_parser=dateparse_de),\n", | |
" 'profile4': pd.read_csv('data/NetflixViewingHistoryProfile4.csv', parse_dates=['Date'], date_parser=dateparse_de)\n", | |
"}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"for k, v in history.items():\n", | |
" v['Name'] = k" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = pd.DataFrame()\n", | |
"df = df.append(history['profile1'])\n", | |
"df = df.append(history['profile2'])\n", | |
"df = df.append(history['profile3'])\n", | |
"df = df.append(history['profile4'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [], | |
"source": [ | |
"idx = pd.date_range(min(df['Date']), max(df['Date']))\n", | |
"daily = df.groupby(['Date', 'Name']).all().groupby('Date').size()\n", | |
"daily = daily.reindex(idx, fill_value=0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"count = daily.reset_index(name='streams')\n", | |
"for i in range(5):\n", | |
" print(\n", | |
" f'Days, where {i} profile{\"s\" if i != 1 else \" \"} watched: ',\n", | |
" len(count[count['streams'] == i])\n", | |
" )" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"daily.plot()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment