Skip to content

Instantly share code, notes, and snippets.

View sofianhamiti's full-sized avatar

Sofian Hamiti sofianhamiti

View GitHub Profile
FROM public.ecr.aws/lambda/python:3.8
# Install dependencies
COPY requirements.txt /tmp/
RUN pip3 install -r /tmp/requirements.txt --no-cache
# Copy inference code
COPY predict.py ${LAMBDA_TASK_ROOT}/
CMD [ "predict.handler" ]
import os
import boto3
import joblib
import pandas as pd
# download model file from S3 into /tmp folder
s3 = boto3.client('s3')
bucket = os.environ['BUCKET']
key = os.environ['KEY']
s3.download_file(bucket, key, '/tmp/model.pkl')
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
{
"length": -0.158164,
"diameter": -0.280982,
"height": -0.227545,
"whole_weight": -0.352298,
"shucked_weight": -0.596421,
"viscera_weight": -0.019102,
"shell_weight": -0.135293,
"sex_M": 0.0,
"sex_F": 0.0,
import os
import json
import boto3
import logging
import argparse
import requests
logger = logging.getLogger(__name__)
api_client = boto3.client('apigatewayv2')
version: 0.2
phases:
install:
runtime-versions:
python: 3.8
commands:
- npm install -g [email protected]
- pip install --upgrade --force-reinstall botocore boto3 awscli
import os
import json
import xgboost
import pandas as pd
import pickle as pkl
from utils import extract_model
# download model file from S3 into /tmp folder
extract_model(os.environ['MODEL_S3_URI'], '/tmp')
# LOAD MODEL
FROM public.ecr.aws/lambda/python:3.8
# Install dependencies
COPY requirements.txt /tmp/
RUN pip3 install -r /tmp/requirements.txt --no-cache
# Copy inference code
COPY predict.py utils.py ${LAMBDA_TASK_ROOT}/
from locust.contrib.fasthttp import FastHttpUser
from locust import between, task
class ApiUser(FastHttpUser):
wait_time = between(1, 3)
@task()
def predict_lambda(self):
payload = {
import invokust
from load_test.api_user import ApiUser
def run_load_test(host):
settings = invokust.create_settings(
classes=[ApiUser],
host=host,
num_users=1000,
spawn_rate=100,
run_time='1m'