Skip to content

Instantly share code, notes, and snippets.

in_a = tf.placeholder(dtype=tf.float32, shape=(2))
in_b = tf.placeholder(dtype=tf.float32, shape=(2))
def forward(x):
with tf.variable_scope("matmul", reuse=tf.AUTO_REUSE):
W = tf.get_variable("W", initializer=tf.ones(shape=(2,2)),
regularizer=tf.contrib.layers.l2_regularizer(0.04))
b = tf.get_variable("b", initializer=tf.zeros(shape=(2)))
return W * x + b
# TensorFlow 1.X
outputs = session.run(f(placeholder), feed_dict={placeholder: input})
# TensorFlow 2.0
outputs = f(input)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import imgaug as ia
import imgaug.augmenters as iaa
# draw single image
def drawImage(figureName, image):
plt.figure(num=figureName)
plt.imshow(image / 255) # 0-1 float normalize
"""
Cartpole Policy Gradient Example using TensorFlow 2.0
Reference : https://github.com/awjuliani/DeepRL-Agents/blob/master/Vanilla-Policy.ipynb
Author : solaris33
Project URL : http://solarisailab.com/archives/2652
"""
import tensorflow as tf
# -*- coding: utf-8 -*-
# Convolutional Neural Networks(CNN)을 이용한 MNIST 분류기(Classifier) - Keras API를 이용한 구현
import tensorflow as tf
# MNIST 데이터를 다운로드 합니다.
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 이미지들을 float32 데이터 타입으로 변경합니다.
x_train, x_test = x_train.astype('float32'), x_test.astype('float32')
# 28*28 형태의 이미지를 784차원으로 flattening 합니다.
#######################################################################
# Copyright (C) #
# 2016-2018 Shangtong Zhang([email protected]) #
# 2016 Kenta Shimada([email protected]) #
# Permission given to modify the code as long as you keep this #
# declaration at the top #
#######################################################################
# Refactoring : solaris33
import matplotlib
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import functools
from PIL import Image
"""
TensorFlow Data Augmentation Example
Reference : https://github.com/tensorflow/models/blob/master/research/object_detection/core/preprocessor.py
# reference : https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
'''Trains a simple deep NN on the MNIST dataset.
Gets to 98.40% test accuracy after 20 epochs
(there is *a lot* of margin for parameter tuning).
2 seconds per epoch on a K520 GPU.
'''
from __future__ import print_function
#-*- coding: utf-8 -*-
"""
TFRecords Example
Reference : https://www.tensorflow.org/tutorials/load_data/tf_records
Author : solaris33
Project URL : http://solarisailab.com/archives/2603
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
i = tf.constant(1)
j = tf.constant(1)
k = tf.constant(1)
def cond(i, j, k):
return tf.less(i, 10)
def body(i, j, k):