(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
I have moved this over to the Tech Interview Cheat Sheet Repo and has been expanded and even has code challenges you can run and practice against!
\
I wanted to be really able to explain to a fair amount of detail how does the program :command:`ls` actually work right from the moment you type the command name and hit ENTER. What goes on in user space and and in kernel space? This is my attempt and what I have learned so far on Linux (Fedora 19, 3.x kernel).
How does the shell find the location of 'ls' ?
ror, scala, jetty, erlang, thrift, mongrel, comet server, my-sql, memchached, varnish, kestrel(mq), starling, gizzard, cassandra, hadoop, vertica, munin, nagios, awstats
Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
#include <stdio.h> | |
#include <stdlib.h> | |
#include <assert.h> | |
typedef unsigned int u32; | |
typedef unsigned long long u64; | |
//------------------------------------------------------------------------- | |
// WorkArea | |
//------------------------------------------------------------------------- |
Latency Comparison Numbers (~2012) | |
---------------------------------- | |
L1 cache reference 0.5 ns | |
Branch mispredict 5 ns | |
L2 cache reference 7 ns 14x L1 cache | |
Mutex lock/unlock 25 ns | |
Main memory reference 100 ns 20x L2 cache, 200x L1 cache | |
Compress 1K bytes with Zippy 3,000 ns 3 us | |
Send 1K bytes over 1 Gbps network 10,000 ns 10 us | |
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD |
{-# LANGUAGE GADTs #-} | |
{-# LANGUAGE RankNTypes #-} | |
{-# LANGUAGE StandaloneDeriving #-} | |
module RedBlackTree where | |
data Zero | |
data Succ n | |
type One = Succ Zero | |
data Black |