Skip to content

Instantly share code, notes, and snippets.

@spencerkclark
Last active January 2, 2018 15:15
Show Gist options
  • Save spencerkclark/16302dfde457df4c1be2b1b28ac953bc to your computer and use it in GitHub Desktop.
Save spencerkclark/16302dfde457df4c1be2b1b28ac953bc to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"trusted": false,
"editable": true,
"deletable": true,
"collapsed": true
},
"cell_type": "code",
"source": "import cartopy.crs as ccrs\nfrom cartopy.mpl.geoaxes import GeoAxes\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom mpl_toolkits.axes_grid1 import AxesGrid\n\n%matplotlib inline",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"editable": true,
"deletable": true
},
"cell_type": "markdown",
"source": "Original\n--------"
},
{
"metadata": {
"trusted": false,
"editable": true,
"deletable": true,
"collapsed": false
},
"cell_type": "code",
"source": "fig = plt.figure()\nprojection = ccrs.PlateCarree()\naxes_class = (GeoAxes,\n dict(map_projection=projection))\n\naxgrid = AxesGrid(fig, 111, axes_class=axes_class,\n nrows_ncols=(2, 2), \n axes_pad=0.3,\n label_mode='')\n\nfor n, ax in enumerate(axgrid):\n ax.set_xticks(np.linspace(-180, 180, 5), crs=projection)\n ax.set_yticks(np.linspace(-90, 90, 5), crs=projection)\n\n# Removing the xticklabels from the upper right corner panel\n# also removes them from the lower right corner panel\naxgrid[1].set_xticklabels([])",
"execution_count": 5,
"outputs": [
{
"execution_count": 5,
"output_type": "execute_result",
"data": {
"text/plain": "[]"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAADVCAYAAABUg0tYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE7BJREFUeJzt3X2sHGXZx/HvzyooJCgUKhXK05pU5C0QUk/wH2gIAkJD\nQa0pRG3E2EggKRrAokb/ML6gJChGYxperImBIOBjfQGEJggxVsHHFk4pL0doS6XSKAaDFeHA9fwx\n90mXk/O6M7M7O/fvk2zO7Ozs3Ndur706O7t73YoIzMys/d7U7wDMzKw3XPDNzDLhgm9mlgkXfDOz\nTLjgm5llwgXfzCwTLvhmZplwwTczy4QLvplZJiop+JLWSBqWtFXS5WndIZLulfRU+ntwFWOZ1cV5\nbG1XuuBLOh74NDAEnAgsk7QYWAtsjIjFwMZ03ayRnMeWgyqO8I8BNkXE3ogYBX4LXAAsB9anbdYD\n51cwllldnMfWelUU/GHgVElzJR0AnAMsAN4ZEbsB0t95FYxlVhfnsbXem8vuICK2SboGuBd4CdgC\njM70/pJWA6vT1XURsW6i7RYuXBg7duwoG67laUdELJxqg17lMTiXrWvT5vF0VHV7ZElfB3YBa4Cl\nEbFb0nzg/og4usR+w62crRuSiAjN8j615HHat3PZZq2bPB6vqm/pzEt/jwI+BNwCbABWpU1WAT+v\nYiyzujiPre0qOcKX9CAwF3gV+FxEbJQ0F7gNOArYCayIiBdKjOGjIuvKTI+MepHHaRznss1aFUf4\nlZ/SqYtfJNatKl4oVXIuWzcac0rHzMyazwXfzCwTLvhmZplwwTczy4QLvplZJlzwzcwy4YJvZpYJ\nF3wzs0y44JuZZaKygi9pjqQ/S/pluv4jSc9I2pwuJ1U1llldnMfWZqXbI3dYA2wDDupYd2VE3F7h\nGGZ1cx5ba1XVLfNI4Fzghir2Z9YPzmNru6pO6XwHuAp4fdz6r0l6RNJ1kvavaCyzujiPrdWqmMR8\nGbAnIv407qargfcC7wMOAT4/yf1XS3o4XVZPtI1Z3ZzHloPS7ZElfQP4OMV0cG+lOPd5Z0R8rGOb\npcAVEbGsxDhuKWtdmUlb2V7lcdqPc9lmrXH98DtfEJLmp2nhBFwHvBwRa0vs2y8S68psXyh15nHa\nv3PZZq2Kgl/lt3TG+4mkwwABm4HP1DiWWV2cx9YanvHKWs8zXlkbeMYrMzObMRd8M7NMuOCbmWXC\nBd/MLBMu+GZmmXDBNzPLhAu+mVkmXPDNzDLhgm9mlonaC76ksyU9IWlEUqkeJGb94jy2Nqi1tYKk\nOcCTwAeAXcBDwIUR8VgX+/LP0a0rZX+SXmUep/05l23WBqG1whAwEhFPR8QrwK3A8prHNKua89ha\noe6CfwTwbMf1XWmd2SBxHlsr1F3wJ3r78Yb3sp4pyAaA89haoc5++FAcCS3ouH4k8FznBhGxDlhX\ncxxmZTiPrRXqPsJ/CFgsaZGk/YCVwIaaxzSrmvPYWqHWI/yIGJV0GXAPMAe4KSK21jmmWdWcx9YW\nnvHKWs8zXlkbDMLXMs3MrCFc8M3MMuGCb2aWCRd8M7NMuOCbmWXCBd/MLBMu+GZmmXDBNzPLhAu+\nmVkmKin4kq6QFJIOTdeXSnpR0uZ0+XIV45jVzblsbVa6l46kBRQzAe0cd9ODEbGs7P7NesW5bG1X\nxRH+dcBVjOsPbjaAnMvWaqUKvqTzgL9GxJYJbn6/pC2S7pJ0XJlxzOrmXLYcTHtKR9J9wOET3PRF\n4AvAmRPc9n/A/0TES5LOAf4XWDzJ/lcDYzMErUsTSZhVrs5cdh7bIOi6PbKkE4CNwN60amwWoKGI\n+Nu4bbcDSyLi710H6pay1qXp2so6l20QVNEeuesPbSPiUWBeRzDbSS8ESYcDz0dESBqiOHX0jzKB\nmtXFuWy5qGvGq48Al0gaBf4DrPQhjQ0o57K1hme8stbzjFfWBp7xyszMZswF38wsEy74ZmaZcME3\nM8uEC76ZWSZc8M3MMuGCb2aWCRd8M7NMlO2WeaKk30t6VNIvJB3UcdvVkkYkPSHprPKhmtXHuWw5\nKHuEfwOwNiJOAH4GXAkg6VhgJXAccDbwA0lzSo5lVifnsrVe2YJ/NPBAWr4X+HBaXg7cGhH/jYhn\ngBFgqORYZnVyLlvrlS34w8B5aXkFsCAtHwE827HdrrTOrKmcy9Z6ZSdAuRi4Pk3svAF4ZexuE2w/\nYbeo2UwcITWm/5UNlh1Qby7PdgIU57J1YUfZHUxb8CPijGk2ORNA0nuAc9O6Xew7QoJ9E0pMtP91\nwLSzAzWp26ENpjpzeaZ5nLZ1LltflP2Wzrz0903Al4Afpps2ACsl7S9pEcWUcH8sM5ZZnZzLloOy\n5/AvlPQk8DjFUc/NABGxFbgNeAy4G7g0Il4rOZZZnZzL1nqDNAHK6iZNDO14JtekWMDxTKVJsUCz\n4mlSLFBNPIP0S9vV02/SU45nck2KBRzPVJoUCzQrnibFAhXEM0gF38zMSnDBNzPLxCAV/MacS0sc\nz+SaFAs4nqk0KRZoVjxNigUqiGdgPrQ1M7NyBukI38zMSmhkwZe0QtJWSa9LWtKx/i2S1qcWttsk\nXd1x29mpfe2IpLU1xtaoNrq9etxTjL9G0nD697o8rTtE0r2Snkp/D65x/Jsk7ZE03LHuJEmbJG2W\n9LCkobRekq5Pz9Ujkk6uKy6zRoqIxl2AYyi6F94PLOlYfxFF50KAA4DtwEJgDvAX4N3AfsAW4Nia\nYnsIOC0tXwx8NS0fm8bdH1iU4plT8/PUs8c9yfjHUzQdO4CiTcd9FL9E/RZFq2GAtcA1NcZwKnAy\nMNyx7jfAB9PyOcD9Hct3UfTHOQX4Q6+eK198acKlkUf4EbEtIp6Y6CbgQElvBt5G0eDqXxTtakci\n4umIeAW4laKtbR2a1Ea3l497IscAmyJib0SMAr8FLkgxrE/brAfOryuAiHgAeGH8amDsndfb2df7\nZjnw4yhsAt4haX5dsZk1TSML/hRuB/4N7AZ2AtdGxAv0toVtk9ro9rt17zBwqqS5kg6gOIJeALwz\nInYDpL/zehgTwOXAtyU9C1wLjJ366/fzZdZX03bLrMtUrWoj4ueT3G0IeA14F3Aw8GDaz4zbMZeN\njQpaQleoH2PuGyhim6RrKN7pvERxSmm0V+NP4RLgsxFxh6SPAjcCZ9Dn58us3/pW8GP6VrUTuQi4\nOyJeBfZI+h2whOKobUbtmCuKrVRL6Ar1Y8w3iIgbKQoqkr6eYnpe0vyI2J1OmezpZUzAKmBNWv4p\nxfSF0IDny6yfBu2Uzk7g9PRtiwMpPnh7nOKD1MWSFknaj2IO0g11BNCwNro9e9yT6Xg+jgI+BNyS\nYliVNlkFTPaOrS7PAael5dOBp9LyBuATKX9OAV4cO/VkloO+HeFPRdIFwPeAw4BfSdocEWcB36do\nWztM8fb85oh4JN3nMuAeim+u3BRFW9s6XCjp0rR8Jx1tdCWNtdEdpQdtdCNitIePezJ3SJoLvErx\nmP8p6ZvAbZI+RfGf9Iq6Bpd0C7AUOFTSLuArwKeB76YP919mX9OpX1N8zjAC7AU+WVdcZk3kX9qa\nmWVi0E7pmJlZl1zwzcwy4YJvZpYJF3wzs0y44JuZZaKSgt/vjolmVXAeW9uVLviSjqf43vMQcCKw\nTNJiii6JGyNiMbAxXTdrJOex5aCKI/y+d0w0q4Dz2FqvioLf1I6JZrPhPLbWK91aoWzHREmr2ffT\n93URMeFEvQsXLowdO3aUDdfytCMiFk61Qa/yGJzL1rVp83g6lbdW6OiYuAZY2tEx8f6IOLrEfsNt\nIKwbkoiIiVojT3WfWvI47du5bLPWTR6PV9W3dJrYMdFsVpzH1naVHOFLehAY65j4uYjYmDoo3gYc\nReqYmGan6nYMHxVZV2Z6ZNSLPE7jOJdt1qo4wh+Ybpl+kVi3qnihVMm5bN1ozCkdMzNrPhd8M7NM\nuOCbmWXCBd/MLBMu+GZmmXDBNzPLhAu+mVkmXPDNzDLhgm9mlonKCr6kOZL+LOmX6fqPJD0jaXO6\nnFTVWGZ1cR5bm5Vuj9xhDbANOKhj3ZURcXuFY5jVzXlsrVVVt8wjgXOBG6rYn1k/OI+t7ao6pfMd\n4Crg9XHrvybpEUnXSdq/orHM6uI8tlarYhLzZcCeiPjTuJuuBt4LvA84BPj8JPdfLenhdFk90TZm\ndXMeWw5Kt0eW9A3g4xTTwb2V4tznnRHxsY5tlgJXRMSyEuO4pax1ZSZtZXuVx2k/zmWbtcb1w+98\nQUian6aFE3Ad8HJErC2xb79IrCuzfaHUmcdp/85lm7UqCn6V39IZ7yeSDgMEbAY+U+NYZnVxHltr\neMYraz3PeGVt4BmvzMxsxlzwzcwy4YJvZpYJF3wzs0y44JuZZcIF38wsEy74ZmaZcME3M8uEC76Z\nWSZqL/iSzpb0hKQRSaV6kJj1i/PY2qDW1gqS5gBPAh8AdgEPARdGxGNd7Ms/R7eulP1JepV5nPbn\nXLZZG4TWCkPASEQ8HRGvALcCy2se06xqzmNrhboL/hHAsx3Xd6V1ZoPEeWytUHfBn+jtxxvey3qm\nIBsAzmNrhTr74UNxJLSg4/qRwHOdG0TEOmBdzXGYleE8tlao+wj/IWCxpEWS9gNWAhtqHtOsas5j\na4Vaj/AjYlTSZcA9wBzgpojYWueYZlVzHltbeMYraz3PeGVtMAhfyzQzs4ZwwTczy4QLvplZJlzw\nzcwy4YJvZpYJF3wzs0y44JuZZcIF38wsEy74ZmaZqKTgS7pCUkg6NF1fKulFSZvT5ctVjGNWN+ey\ntVnpXjqSFlDMBLRz3E0PRsSysvs36xXnsrVdFUf41wFXMa4/uNkAci5bq5Uq+JLOA/4aEVsmuPn9\nkrZIukvScVPswxNHWN+VzWXnsQ2CabtlSroPOHyCm74IfAE4MyJelLQdWBIRf5d0EPB6RLwk6Rzg\nuxGxuFSg7jBoXRrrMuhctkFWRbfMrtsjSzoB2AjsTavGZgEaioi/jdt2O+kF1HWgfpFYl6Z7oTiX\nbRBUUfC7/tA2Ih4F5nUEs519R0WHA89HcVg1RHHq6B9lAjWri3PZclHXjFcfAS6RNAr8B1jpQxob\nUM5law3PeGWt5xmvrA0845WZmc2YC76ZWSZc8M3MMuGCb2aWCRd8M7NMuOCbmWXCBd/MLBMu+GZm\nmSjbLfNESb+X9KikX6RGU2O3XS1pRNITks4qH6pZfZzLloOyR/g3AGsj4gTgZ8CVAJKOBVYCxwFn\nAz+QNKfkWGZ1ci5b65Ut+EcDD6Tle4EPp+XlwK0R8d+IeAYYAYZKjmVWJ+eytV7Zgj8MnJeWVwAL\n0vIRwLMd2+1K68yayrlsrTdtt8xpJo24GLg+Tey8AXhl7G4TbD9ht6g0O9DYDEHrImLdFLFMF67Z\nRHZAvbk8mzxO288scrN9dpTdwbQFPyLOmGaTMwEkvQc4N63bxb4jJNg3ocRE+18HTPniSNv5FWKl\n1JnLM83jtK1z2fqi7Ld05qW/bwK+BPww3bQBWClpf0mLgMXAH8uMZVYn57LloOw5/AslPQk8TnHU\nczNARGwFbgMeA+4GLo2I10qOZVYn57K13iBNgLJ6uvOiveR4JtekWMDxTKVJsUCz4mlSLFBNPIP0\nS9vV02/SU45nck2KBRzPVJoUCzQrnibFAhXEM0gF38zMSnDBNzPLxCAV/MacS0scz+SaFAs4nqk0\nKRZoVjxNigUqiGdgPrQ1M7NyBukI38zMSmhkwZe0QtJWSa9LWtKx/i2S1qcWttskXd1x29mpfe2I\npLU1xtaoNrq9etxTjL9G0nD697o8rTtE0r2Snkp/D65x/Jsk7ZE03LHuJEmbJG2W9LCkobRekq5P\nz9Ujkk6uKy6zRoqIxl2AYyi6F94PLOlYfxFF50KAA4DtwEJgDvAX4N3AfsAW4NiaYnsIOC0tXwx8\nNS0fm8bdH1iU4plT8/PUs8c9yfjHUzQdO4CiTcd9FL9E/RZFq2GAtcA1NcZwKnAyMNyx7jfAB9Py\nOcD9Hct3UfTHOQX4Q6+eK198acKlkUf4EbEtIp6Y6CbgQElvBt5G0eDqXxTtakci4umIeAW4laKt\nbR2a1Ea3l497IscAmyJib0SMAr8FLkgxrE/brAfOryuAiHgAeGH8amDsndfb2df7Zjnw4yhsAt4h\naX5dsZk1TSML/hRuB/4N7AZ2AtdGxAv0toVtk9ro9rt17zBwqqS5kg6gOIJeALwzInYDpL/zehgT\nwOXAtyU9C1wLjJ366/fzZdZX03bLrMtUrWoj4ueT3G0IeA14F3Aw8GDaz4zbMZeNjQpaQleoH2Pu\nGyhim6RrKN7pvERxSmm0V+NP4RLgsxFxh6SPAjcCZ9Dn58us3/pW8GP6VrUTuQi4OyJeBfZI+h2w\nhOKobUbtmCuKrVRL6Ar1Y8w3iIgbKQoqkr6eYnpe0vyI2J1OmezpZUzAKmBNWv4pxfSF0IDny6yf\nBu2Uzk7g9PRtiwMpPnh7nOKD1MWSFknaj2IO0g11BNCwNro9e9yT6Xg+jgI+BNySYliVNlkFTPaO\nrS7PAael5dOBp9LyBuATKX9OAV4cO/VkloO+HeFPRdIFwPeAw4BfSdocEWcB36doWztM8fb85oh4\nJN3nMuAeim+u3BRFW9s6XCjp0rR8Jx1tdCWNtdEdpQdtdCNitIePezJ3SJoLvErxmP8p6ZvAbZI+\nRfGf9Iq6Bpd0C7AUOFTSLuArwKeB76YP919mX9OpX1N8zjAC7AU+WVdcZk3kX9qamWVi0E7pmJlZ\nl1zwzcwy4YJvZpYJF3wzs0y44JuZZcIF38wsEy74ZmaZcME3M8vE/wPES6u/M9deAgAAAABJRU5E\nrkJggg==\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fc6c878ae48>"
},
"metadata": {}
}
]
},
{
"metadata": {
"editable": true,
"deletable": true
},
"cell_type": "markdown",
"source": "Workaround\n----------"
},
{
"metadata": {
"trusted": false,
"editable": true,
"deletable": true,
"collapsed": false
},
"cell_type": "code",
"source": "fig = plt.figure()\nprojection = ccrs.PlateCarree()\naxes_class = (GeoAxes,\n dict(map_projection=projection))\n\naxgrid = AxesGrid(fig, 111, axes_class=axes_class,\n nrows_ncols=(2, 2), \n axes_pad=0.3,\n label_mode='')\n\nfor n, ax in enumerate(axgrid):\n ax.set_xlim(-180, 180)\n ax.set_ylim(-90, 90)\n ax.set_xticks(np.linspace(-180, 180, 5), crs=projection)\n ax.set_yticks(np.linspace(-90, 90, 5), crs=projection)\n\n\n# Make ticklabels on inner axes invisible\naxes = np.reshape(axgrid, axgrid.get_geometry())\nfor ax in axes[:-1, :].flatten():\n ax.xaxis.set_tick_params(which='both', \n labelbottom=False, labeltop=False)\n \nfor ax in axes[:, 1:].flatten():\n ax.yaxis.set_tick_params(which='both', \n labelbottom=False, labeltop=False)",
"execution_count": 9,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAADVCAYAAABaBvdyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEEJJREFUeJzt3X+s3XV9x/HnyzrIcGGDqxUGJbCkEkCC0abRuCBhiqw0\n/FBZijFr4uKNv5IyA6SI4Q8XzNhMEJMZ06DYRQNBF0M1UVdrULKI0sVWWipQpUK1YCwJC8MAlff+\nON+ml67tae/3e849936fj+TmnPM93/P9vDl8mtf5nh+fd6oKSVJ/vWquC5AkzS2DQJJ6ziCQpJ4z\nCCSp5wwCSeo5g0CSeq6TIEiyJsm2JNuTXNtsOznJxiSPNZcndTGWJKlbrYMgyRuBDwHLgQuAlUmW\nAmuBTVW1FNjU3JYkTZguzgjOAR6oquerah/wQ+Aq4ApgfbPPeuDKDsaSJHWsiyDYBlyYZCrJCcAK\nYAnw+qraA9BcLu5gLElSx17d9gBVtSPJrcBG4DlgK7DvaB+fZBqYBpiamnrL3r1725YkHYtfV9WZ\nbQ/iPNYcazWP0/VaQ0k+A+wG1gAXVdWeJKcC91XV2UMeW659pHFKQlWl42M6jzVWbedxV98aWtxc\nngG8B7gL2ACsbnZZDdzbxViSpG51ckaQ5H5gCngJ+ERVbUoyBdwDnAE8AVxdVc8MOY6vpDRWnhFo\nIWg7jzt/a6gN/wFp3AwCLQQT8daQJGn+MggkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6\nziCQpJ4zCCSp5wwCSeq5zoIgyaIkP0vy7eb2V5I8nmRL8/emrsaSJHWndWOaGdYAO4ATZ2y7vqq+\n0eEYkqSOddWP4HTgMuCOLo4nSRqfrt4a+hxwA/DyQdtvSfLzJLclOf5QD0wynWRzks0d1SKNnfNY\n81nrfgRJVgIrquqjSS4CrquqlU17yqeA44B1wC+r6tNDjuU67hor+xFoIZiEfgRvBy5Psgu4G7g4\nyVerak8NvADcCSzvYCxJUsdaB0FV3VhVp1fVmcAq4AdV9YHmjIAkAa4EtrUdS5LUvS6/NXSwryV5\nHRBgC/DhEY4lSZolexar1/yMQAvBJHxGIEmaxwwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrO\nIJCknjMIJKnnDAJJ6rmRB0GSS5M8kmRnkrWjHk+SdGxGutZQkkXAo8C7gN3Ag8A1VfXwYfZ3jRaN\nlWsNaSGY9LWGlgM7q+pXVfUig34FV4x4TEnSMRh1EJwGPDnj9u5mmyRpQoyyHwEMehEc7BXnzEmm\ngekR1yGNlPNY89mog2A3sGTG7dOB387coarWMehpTBLfWNW85DzWfDbqt4YeBJYmOSvJcQxaWW4Y\n8ZiSpGMw0jOCqtqX5OPA94BFwJeravsox5QkHRtbVarX/PqoFoJJ//qoJGnCGQSS1HMGgST1nEEg\nST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPVcJ0GQ5LokleS1ze2LkjybZEvzd3MX\n40iSutd69dEkSxj0JH7ioLvur6qVbY8vSRqtLs4IbgNu4KDOY5Kk+aFVECS5HPhNVW09xN1vS7I1\nyXeSnHeEY0wn2Zxkc5tapLnkPNZ8NrQfQZLvA6cc4q6bgE8Cl1TVs0l2Acuq6vdJTgRerqrnkqwA\nbq+qpUOLcR13jZn9CLQQtJ3Hs25Mk+R8YBPwfLNpfz/i5VX11EH77qIJiSHH9B+Qxsog0ELQdh7P\n+sPiqnoIWDyjkF0cOCM4BXi6qirJcgZvQe2d7ViSpNEZVc/i9wEfSbIP+AOwypdIkjSZ7FmsXvOt\nIS0E9iyWJLViEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HNt\nG9NckOTHSR5K8q2mD8H++25MsjPJI0ne3b5USdIotD0juANYW1XnA98ErgdIci6wCjgPuBT4QpJF\nLceSJI1A2yA4G/hRc30j8N7m+hXA3VX1QlU9DuwElrccS5I0Am37EWwDLgfuBa4GljTbTwMemLHf\n7mbb/5NkGpiecbtlSdIx6aRhkvNYc6zVPB4aBEN6Fn8Q+HySm4ENwIv7H3aI/Q+5QHtVrQPWNWNt\nrqplR1H32E1ybTDZ9U16bV0cZ77MY5js+qxtdtrO46FBUFXvHLLLJU0hbwAua7bt5sDZARzoZyxJ\nmjBtvzW0uLl8FfAp4IvNXRuAVUmOT3IWsBT4aZuxJEmj0fbD4muSPAr8gsEr/jsBqmo7cA/wMPBd\n4GNV9cejON66lvWM0iTXBpNdX99qm+T/Xpjs+qxtdlrVNlE9iyVJ4+cviyWp5wwCSeo5g0CSes4g\nkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ7rJAiSrEmyLcn2JNc2205O\nsjHJY83lSV2MJUnqVusgSPJG4EMMehJfAKxMshRYC2yqqqXApua2JGnCdHFGcA7wQFU9X1X7gB8C\nVzFoYL++2Wc9cGUHY0mSOtZFEGwDLkwyleQEYAWDNpWvr6o9AM3l4g7GkiR1bGjP4mGqakeSW4GN\nwHPAVmDf0T4+yTQwDTA1NfWWvXv3ti1JOha/rqoz2x7Eeaw51moed96hLMlnGDSvXwNcVFV7kpwK\n3FdVZw95bNkxTeOUhKpKx8d0Hmus2s7jrr41tL+J/RnAe4C7GDSwX93sshq4t4uxJEnd6uSMIMn9\nwBTwEvCJqtqUZIpBA/szgCeAq6vqmSHH8ZWUxsozAi0EbefxRDWv9x+Qxs0g0EIwEW8NSZLmL4NA\nknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSe6ywIkixK8rMk325u\nfyXJ40m2NH9v6mosSVJ3WjemmWENsAM4cca266vqGx2OIUnqWFf9CE4HLgPu6OJ4kqTx6eqtoc8B\nNwAvH7T9liQ/T3JbkuMP9cAk00k2J9ncUS3S2DmPNZ+17keQZCWwoqo+muQi4LqqWtm0p3wKOA5Y\nB/yyqj495Fiu466xsh+BFoJJ6EfwduDyJLuAu4GLk3y1qvbUwAvAncDyDsaSJHWsdRBU1Y1VdXpV\nnQmsAn5QVR9ozghIEuBKYFvbsSRJ3evyW0MH+1qS1wEBtgAfHuFYkqRZsmexes3PCLQQTMJnBJKk\necwgkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4beRAkuTTJI0l2Jlk7\n6vEkScdmpGsNJVkEPAq8C9gNPAhcU1UPH2Z/12jRWLnWkBaCSV9raDmws6p+VVUvMuhXcMWIx5Qk\nHYNRB8FpwJMzbu9utkmSJsQo+xHAoBfBwV5xzpxkGpgecR3SSDmPNZ+NOgh2A0tm3D4d+O3MHapq\nHYOexiTxjVXNS85jzWejfmvoQWBpkrOSHMegleWGEY8pSToGIz0jqKp9ST4OfA9YBHy5qraPckxJ\n0rGxVaV6za+PaiGY9K+PSpImnEEgST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWc\nQSBJPWcQSFLPdRIESa5LUkle29y+KMmzSbY0fzd3MY4kqXutVx9NsoRBT+InDrrr/qpa2fb4kqTR\n6uKM4DbgBg7qPCZJmh9aBUGSy4HfVNXWQ9z9tiRbk3wnyXlHOMZ0ks1JNrepRZpLzmPNZ0P7EST5\nPnDKIe66CfgkcElVPZtkF7Csqn6f5ETg5ap6LskK4PaqWjq0GNdx15jZj0ALQdt5POvGNEnOBzYB\nzzeb9vcjXl5VTx207y6akBhyTP8BaawMAi0EbefxrD8srqqHgMUzCtnFgTOCU4Cnq6qSLGfwFtTe\n2Y4lSRqdUfUsfh/wkST7gD8Aq3yJJEmTyZ7F6jXfGtJCYM9iSVIrBoEk9ZxBIEk9ZxBIUs8ZBJLU\ncwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1XNt+BBck+XGSh5J8q1l+ev99NybZmeSRJO9uX6okaRTa\nnhHcAaytqvOBbwLXAyQ5F1gFnAdcCnwhyaKWY0mSRqBtEJwN/Ki5vhF4b3P9CuDuqnqhqh4HdgLL\nW44lSRqBtkGwDbi8uX41sKS5fhrw5Iz9djfbJEkTZmg/giGtKj8IfD7JzcAG4MX9DzvE/odclzfJ\nNDA94/awkqQuddIwyXmsOdZqHg8Ngqp655BdLgFI8gbgsmbbbg6cHcCBNpaHOv46YF1zjM1VtWxY\nTXNhkmuDya5v0mvr4jjzZR7DZNdnbbPTdh63/dbQ4ubyVcCngC82d20AViU5PslZwFLgp23GkiSN\nRtvPCK5J8ijwCwav+O8EqKrtwD3Aw8B3gY9V1R9bjiVJGoFWPYur6nbg9sPcdwtwyzEecl2bekZs\nkmuDya6vb7VN8n8vTHZ91jY7rWqbqJ7FkqTxc4kJSeq5OQuCJFcn2Z7k5STLZmz/kyTrm2UrdiS5\nccZ9lzZLVuxMsnZMdU70Mhpz8ZwMqWdNkm3N/9trm20nJ9mY5LHm8qQx1fLlJL9Lsm3GtjcleSDJ\nliSbkyxvtifJ55vn8edJ3nyUYziPu6nPeXzkekY7l6tqTv6Acxj8Mvk+YNmM7e9n8KtkgBOAXcCZ\nwCLgl8BfAccBW4Fzx1Dng8A7musfBP6puX5uU8PxwFlNbYvG/BzOyXNyhHreyOBHhicw+Pzp+wy+\nMfYvDJYiAVgL3Dqmei4E3gxsm7HtP4G/ba6vAO6bcf07DH4D81bgJ85j5/EkzONxzOU5OyOoqh1V\n9cih7gJek+TVwJ8y+JHa/zBYomJnVf2qql4E7mawlMWoTfIyGnP1nBzOOcADVfV8Ve0Dfghc1dS0\nvtlnPXDlOIqpqh8Bzxy8Gdj/avjPOfD7liuAf6+BB4C/SHLqUYzhPG7PeTzEqOfyJH5G8A3gf4E9\nwBPAZ6vqGeZu2YpJXkZjEmqYaRtwYZKpJCcweGWyBHh9Ve0BaC4Xz2GN1wL/muRJ4LPA/rdsun4u\nncdHbxJqmGk+zGPocC63+vroMDnC8hRVde9hHrYc+CPwl8BJwP3NcY562You66SDZTRGaBJqODBw\n1Y4ktzJ4xfkcg1P8fXNVz2F8BPjHqvqPJH8HfAl4J0d4Lp3HIzcJNRwYeH7MY5jFXD6ckQZBDV+e\n4lDeD3y3ql4Cfpfkv4BlDBLuqJatOFZHUWerZTRGaBJqeIWq+hKDCUmSzzCo8ekkp1bVnuYU9Xdz\nWOJqYE1z/esMllKHIzyXzuORm4QaXmEezGOYxVw+nEl8a+gJ4OLmk+/XMPiw4xcMPuxamuSsJMcx\n6HewYdTFZLKX0ZiT5+RIZjxfZwDvAe5qalrd7LIaONyr6HH4LfCO5vrFwGPN9Q3A3zfz7q3As/vf\nBpgl5/HRcx7PTndzeQ4/mb+KQXK9ADwNfK/Z/mcM0m07gyUqrp/xmBXAowy+YXDTmOpc04z5KPDP\nND/Ca+67qanlEZpP7+fgeRz7czKknvub/29bgb9ptk0Bm5qJugk4eUy13MXgPfqXmrn2D8BfA//d\n1PcT4C3NvgH+rXkeH2LGN4Ccx87juZzH45jL/rJYknpuEt8akiSNkUEgST1nEEhSzxkEktRzBoEk\n9ZxBIEk9ZxBIUs8ZBJLUc/8HIrsSWGUGSDQAAAAASUVORK5CYII=\n",
"text/plain": "<matplotlib.figure.Figure at 0x7fc6c81e8e10>"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": false,
"editable": true,
"deletable": true,
"collapsed": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python2",
"display_name": "Python 2",
"language": "python"
},
"language_info": {
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"name": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12",
"file_extension": ".py",
"codemirror_mode": {
"version": 2,
"name": "ipython"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment