Last active
August 12, 2020 06:21
-
-
Save springcoil/ac468059cf98c8659bf0c44297f79878 to your computer and use it in GitHub Desktop.
Bootstrapped Aalen Additive
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"from lifelines.datasets import load_regression_dataset\n", | |
"regression_dataset = load_regression_dataset()\n", | |
"\n", | |
"\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from lifelines import AalenAdditiveFitter\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"I'll rather crudely label the x axis and the y-axis\n", | |
"The important thing is that R is the predicted cumulative hazard and blue are the bootstrapped estimates. \n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 199 of 199 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 176 of 176 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 199 of 199 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 181 of 181 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 197 of 197 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 177 of 177 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 182 of 182 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 181 of 181 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 181 of 181 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 197 of 197 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" [-----------------100%-----------------] 182 of 182 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 182 of 182 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 175 of 175 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 182 of 182 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 197 of 197 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 179 of 179 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 196 of 196 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 196 of 196 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 196 of 196 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 182 of 182 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 191 of 191 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 188 of 188 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 195 of 195 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 193 of 193 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.3 sec\n", | |
" [-----------------100%-----------------] 194 of 194 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 187 of 187 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 185 of 185 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 196 of 196 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 183 of 183 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 182 of 182 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 184 of 184 complete in 0.4 sec\n", | |
" [-----------------100%-----------------] 186 of 186 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 192 of 192 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 190 of 190 complete in 0.2 sec\n", | |
" [-----------------100%-----------------] 189 of 189 complete in 0.2 sec\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"Text(0.5,0,'time_component')" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAHxCAYAAACrjeCsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmY7PtV1/v3qrGHPZ8pOQnnnExwTRBRTy7oIxciyg3Pw+CAQi6QEJCoV+EyqBARg+KAGlREFIKGMOYhIKARiGFMHJhOomGQIWQ4yRn3vLu6a/oN6/6xvr/dtWtXVVcP1bt61+f1PPup7qrq+n2r6nfOs2rV+q5l7o6IiIiIiMyvdqcXICIiIiJy0iiIFhERERHZJwXRIiIiIiL7pCBaRERERGSfFESLiIiIiOyTgmgRERERkX1SEC0icghm9mEz+1MLPsZDZrZtZvVFHmeZmNmXmNl/u9PrADCzt5jZP5hxu5vZi9PP32lm3zjjvn/bzP7dItYpIsdLQbSIADeDwV4K1q6Z2U+a2cccweM+koKMxpz3vxmQrKrxwNzdP+Lup9y9WMCxvsnMfuCoH3fk8TfTOfVTizrGQSxqXe7+V9z9m9MxPs3Mnhi7/R+5+186ymOKyJ2hIFpERn22u58Cngs8C3z7HV7PbeYNxmVpfB4wAD7DzJ57pxczYlnXJSInhIJoEbmNu/eBHwVeWl1nZmfN7PvM7JKZPW5mf8fMaum2Wvr9cTO7mO53Nv3pu9Pl9ZT5+2Nm9mIze5eZ3TCzy2b2w+lxqvu+L93386tsnpl9nZk9A3yPmZ03s/+c1nIt/fz8kbX+opn9YzP71XSM/2hmF9JtVWb8dWb2lJk9bWZfO/K3NTP7ejP7gJldMbO3VX+bbv/i9DyvmNk3zHodzaxtZm80s4+Y2bPpq/71dNu9ad3Xzeyqmf3XdOzvBx4C3p5eg781ns1Pz+8fmNn/SPd5u5ndY2Y/aGZbZvZrZvbIyDq+zcw+mm57j5l9Srr+lcDfBj4/Pc77Rt7rf59emyfTserptonv3QyvAb4T+HXgC8den+p17pjZ/zazPzvjtfw/zOxn0mv1u2b2F0due4uZfYfFtycdM/sVM3vRIdb1h83svemxfhhYG7v9b6bX5ikz+9Kx296SXq9N4KeBB9Nru21mD9pI5t/M3mFmf33s799nZn9ur+csIneegmgRuY2ZbQCfD/zyyNXfDpwFXgh8KvBq4LXpti9J/16Rbj8F/Ot02/+VLs+lkoRfAr4ZeCdwHnh+emzcvbrvH0r3rQK05wAXgIeB1xH/7/qe9PtDQG/keJVXA18KPAjkwL8au/0VwEuAzwC+3nbLJ74S+DPpOT4IXAO+I70uLwX+LfDF6bZ70vqn+SfAxwKfCLwYeB7wd9NtXws8AdwHPEAEs+7uXwx8hPStgLv/0ymP/QVpHc8DXgT8UnpNLgC/Dbxh5L6/ltZwAfgh4EfMbM3d3wH8I+CH07H+ULr/96bX7MXAH06vUVWCMPG9m8TMHgI+DfjB9O/VY3f5APApxHn194AfsAlZ4RSQ/kxa+/3Aq4B/Y2YvG7nbq9JjnAd+H/iHB1mXmbWAnwC+n3i9fgT48yO3vxL4G8CfJs6fifXw7r4DfCbwVHptT7n7U2N3+6G07uqxX0qc0z8553MWkTtIQbSIjPoJM7sObBFBwj8DSFnIzwde7+4dd/8w8K1EEAeRyfvn7v5Bd98GXg98gU0vvciIYOFBd++7+14byErgDe4+cPeeu19x9//g7l137xAB06eO/c33u/tvpmDmG4G/aLduzPt77r7j7r9BBJ9VMPOXgW9w9yfcfQB8E/B56bl8HvCf3f3d6bZvTGu7jZkZ8OXAV7v71bTOf0QEv9Vr8FzgYXfP3P2/urvv8TqM+h53/4C73yAynh9w959195wI/P5wdUd3/4H0muXu/q1AG/i4Ket+gAj+viq9PheBfzG27nnfu1cDv+7u/xt4K/AyMxtd14+4+1PuXqYPTO8H/s8Jj/NZwIfd/XvSc3gv8B+I96PyY+7+q+n5/yDxoeEg6/pkoAn8y/S+/CjxIaTyF4nXvjq3vmnGcfby48AnmtnD6fcvTM9jMOdzFpE7SEG0iIz6M+5+jgiy/jrwLjN7DnAv0AIeH7nv40QWFCIrO35bg8iwTvK3AAN+1cx+a/wr8QkupRITIDLlZvZdqaxiiygZOTcWJH90bD3N9Dym3f5g+vlh4MdTmcV1IqtbpOfy4OjfpSDqypQ13wdsAO8Zeax3pOshPqD8PvBOM/ugmX39Hq/BuGdHfu5N+P1U9YuZfa2Z/XYqwbhOZH5HX4tRDxOv1dMj6/4uIhsK+3vvXk0EtKQs7LuIMopqXa82s/81cpyPn7Kuh4FPqu6X7vuFxDcUlWdGfu6OPv99rutB4MmxDzSj5/Yt58DYbfuSPlj9JLsfUL6gWhfzPWcRuYMURIvIbdy9cPcfI4LHPwFcZjcDWXkIeDL9/NSE23IisLstu+ruz7j7l7v7g0Tm99/Y7I4c44/xtUQm9ZPc/Qy7JSM2cp/RziIPpfVfnnF79VX7R4HPdPdzI//W3P1J4OnRv0tlL/dMWfNlIph92cjjnE0bN0kZ/a919xcCnw18jZl9+pTne2Cp/vnriAzq+fQh6Qa7r9X4sT5KbLi7d2TdZ9z9ZWndc713ZvbHiXKH15vZMxb17J8EvMrMGin7+t3Eh7V70rp+k1vfw9E1vWvsPTnl7n/1AK/HzHUR7/Hz0jcJlYdGfr7lHBi7bdw87+Nb07H/GLAO/EK6/sies4gshoJoEbmNhc8l6kt/26O12tuAf2hmp1MA9DVA1RrtrcBXm9kLzOwUu3W2OXCJKHl44cjj/wXb3Qh4jQg2qvZtz47ed4rTRIB63WLT3xsm3OeLzOylKdD9+8CP+q0t4r4xZbRfRtR2V/XX35me58Nprfel1wJis+VnmdmfSLWzf58p/x9195IIEv+Fmd2fHut5ZvZ/p58/y2KTnhHlM8U+X4N5nSY+0FwCGmb2d4EzI7c/CzxiaZOouz9N1Dx/q5mdsdjs+CIz+9S07lnv3ajXEDW9LyVKKz6RyDRvEOUim+lvL6XHfW26fZL/DHysxabOZvr3cjP7Awd4PfZa1y8Rr9dXpmD/z3FricnbgC8ZObcmnXuVZ4F7bHeT7SQ/RXwA/fvEfzNVedBRPmcRWQAF0SIy6u1mtk0Edf8QeI27/1a67SuAHeCDwH8jNjy9Od32ZmIj1ruBDwH9dH/cvZse67+nr6U/GXg58CvpWP8J+P/c/UPpsb4J+N5032ndCP4lkbW7TGx+fMeE+3w/8Bbia/41YsPgqHcR5RQ/B7zR3d+Zrv+2tKZ3mlknPf4npefyW8BfS8/9aSKIfILpvi4d45dT2cnPsluL/JL0+zYRuP0bd//FdNs/Bv5Oeg3+xozHn8d/IWqmf48oPehzaznCj6TLK2b23vTzq4nynf9NPMcfJeq3YfZ7B4CZrRGZ729Pmevq34eI9+U1qR75W9Nzfxb4g8B/n/QEUtnDZxDlDk8R7+k/IcqO5jbnuobAnyM2yl4j9gL82Mhafpo4/36eeG9/ftrx3P13iA+YH0zv5YMT7jNIj/+niPPqSJ+ziCyO7W8fi4jI8jOzXwR+wN1vmwxn0frtQ0AzZcpFRET2TZloEREREZF9UhAtIiIiIrJPKucQEREREdknZaJFRERERPZJQbSIiIiIyD5NG8m7VO69915/5JFH7vQyREREROQu9573vOeyu9+31/1ORBD9yCOP8Nhjj93pZYiIiIjIXc7MHp/nfirnEBERERHZJwXRIiIiIiL7pCBaRERERGSfFESLiIiIiOyTgmgRERERkX1SEC0iIiIisk8KokVERERE9klBtIiIiIjIPimIFhERERHZJwXRIiIiIiL7pCBaRERERGSfFESLiIiIiOyTgmgRERERkX1SEC0iIiIisk8KokVERERE9klBtIiIiIjIPimIFhERETki7o673+llyDFYWBBtZm82s4tm9ptj13+Fmf2umf2Wmf3TRR1fRERE5Lj1cnh6G/JSgfTdbpGZ6LcArxy9wsxeAXwu8Anu/jLgjQs8voiIiMix6udx2ajZnV2ILNzCgmh3fzdwdezqvwp8i7sP0n0uLur4IiIiIsetn8Na406vQo7DcddEfyzwKWb2K2b2LjN7+TEfX0RERGQhhoVTuoLoVXHcb3MDOA98MvBy4G1m9kKfUIFvZq8DXgfw0EMPHesiRURERParKuVo1+/sOuR4HHcm+gngxzz8KlAC9066o7u/yd0fdfdH77vvvmNdpIiIiMh+9XNo1aGueuiVcNxB9E8AfxLAzD4WaAGXj3kNIiIiIkeqKJ1hAW2VcqyMhb3VZvZW4NOAe83sCeANwJuBN6e2d0PgNZNKOUREREROkkERl2sq5VgZCwui3f1VU276okUdU0RERORO6OdQsyjnkNWgiYUiIiIihzTIY0OhmeqhV4WCaBEREZFDGBZOodZ2K0dBtIiIiMghDFJrOwXRq0VBtIiIiMgh9HNoqrXdylEQLSIiInJApTuDQl05VpGCaBEREZEDqko51B969SiIFhERETmgqrWdRn2vHgXRIiIiIgfUL9TablUpiBYRERE5gKxwilJdOVaVgmgRERGRA+irHnqlKYgWEREROYB+AY0aNNTabiUpiBYRERHZp9KdQa5SjlWmIFpERERknwZFXCqIXl0KokVERET2qZ+DcXtru6J08tLvyJrkeCmIFhEREdmnQR4bCsdb2/VzeGYbBdIrQEG0iIiIyD7kpZNPaW2XlZGh1mbDu5+CaBEREZF9qFrbTQqi8xIaml64EhREi4iIiOxDP5/e2i4voanoaiXobRYRERGZ06zWdqVHmUdD0dVK0NssIiIiMqdhAc7kKYVFGZcKoleD3mYRERGROU1rbQexqRBUzrEq9DaLiIiIzKmfQ6sBNZtcDz0onKs99YpeBQqiRUREROZQtbZbnzKlMC+hKKBwo64Od3c9BdEiIiIic6ha200q5YAo5yg8bh8fwiJ3HwXRIiIiInMY5FCvQXNKmrmXOSXRpcNd5Rx3OwXRIiIiIntwd/pTWttBlHoMchjm0MsiIy13NwXRIiIiInsYpNZ2a1NKOfISennc51TbNPZ7BSiIFhEREdnDzXroKZnoQe7sDGGjCadbx7cuuXMURIuIiIjsYZDHhsFJre0AtgeRrT7Xnl4zLXcXBdEiIiIiM+Slk5XT66EBrvRiUuH5dQXQq0JBtIiIiMgMg1TKMS2ILsqSq3043YZ2Q0H0qlAQLSIiIjJDP4e6TS/TuNqLjYX3bRzzwuSOUhAtIiIiMoW7Myhml3Jc7EaQfWH9+NYld56CaBEREZEphgWUPr0rRy9ztgdwtg0tbShcKQqiRURERKbo71EPfa3nlB5t7RRDrxYF0SIiIiJT9AtoTWlt18+d7SE067DZBpvS/k7uTgqiRURERCYoSicrYH1KFroz5Gbru7bS0CtnRpm8iIiIyOqaNaVwWDi9oVOvAQaNKePA5e6lIFpERERkgkERdc6TNgx2BpGFbtXBDJr6bn/l6C0XERERGePu9PPJWeiscHo51GtgQLNmNBRRrZyFveVm9mYzu2hmvznhtr9hZm5m9y7q+CIiIiIHlZXR2m5SV47OEMBp1LgZPCuIXj2LfMvfArxy/Eoz+xjgTwMfWeCxRURERA6sV9VDj9U656XTzaryDaNei4z0pO4dcndbWBDt7u8Grk646V8AfwvwRR1bRERE5DAGedQ712u3Bsfbw7isMs81UxZ6VR3r225mnwM86e7vO87jioiIiMyrKJ3hhFHfRensDGGjCVlptBtQlKZNhSvq2LpzmNkG8A3AZ8x5/9cBrwN46KGHFrgyERERkV2DIi7Hg+jtLL5GX6s73cxYbzgDtKlwVR3n2/4i4AXA+8zsw8Dzgfea2XMm3dnd3+Tuj7r7o/fdd98xLlNERERWWT+PMo3RDHPpkYVeb0DhUeKhTYWr7dgy0e7+G8D91e8pkH7U3S8f1xpERERE9tLPIws9OsZ7ZxjdOk634UY/Amwnblc5x2paZIu7twK/BHycmT1hZl+2qGOJiIiIHIVh4ZR+a1cOd2d7GNc1alHusdaAvIyM9fjmQ1kNC8tEu/ur9rj9kUUdW0REROQgqlHfo/XQ3QwKh/PtW2/fGqiUY5XprRcRERFJ+jk0R1rbuTudYVy31rCb9dKtemSiFUSvLr31IiIiIsTmwfHWdr08guXTrd1R4GuN6NJRuOqhV5neehERERFGSjVG6qE7w8g2bzSNYbE7Cjwv43ZloleX3noRERERYkphVaoB0M+drIgsdPwelwqiBRREi4iIiAARJLfru63ttgZQr8WEwtHba2ZkCqJXnt56ERERWXlZ4RS+Ww89yKM++nQrguq8dLIS1lNAnRcRQI/2kpbVoiBaREREVt54a7vOMEo7RrPQo7dnpTYVrjq9/SIiIrLy+nkExfWakRXRheNUK0o3ILp0NGrQqBnurvZ2oiBaREREVlvpfnMKIUQW2oDN5sjt+e7thcelgujVprdfREREVtoglWq0G5CXTjeDzdbuwJXBhFIOiAEssroURIuIiMhK6xeReW7XIwsNu23tIEo5aha3Q2wqBGWiV53efhEREVlp1RTC0mFnGGUcVRZ69PaqE0dWQt1266VlNSmIFhERkZWVFU5RRinHdpWFbu/ePiz85pTCijYVCiiIFhERkRVWta5r1Z2dDNYb0YGj0qvqpUfqn/MSGqqHXnkKokVERGRl9dPQlEFulH5rFhoiyG7Vd8s7ijIy0+oRLToFREREZCVVrevadaczjJKOVn03C52XTlZEdnr3urhUOYfoFBAREZGVNEhdNkqPf2dat94+PqUQFETLLp0CIiIispKi/3MMWmnVod24tdtGP00pbI5kp7My2uGN1k3LalIQLSIiIiupn4M7lG631UKPTymsZNpUKImCaBEREVk5eenkZQTFzRqsj2WhBwU4twfRealNhRJ0GoiIiMjK6ecwyJ2a3d6Ro7q9mmJYKT16SqseWkBBtIiIiKygfh7t7dYadkv3jZu3Z7dOKQQotKlQRug0EBERkZVSutMZODXgVOvWQBliSmHhk+uhQeUcEnQaiIiIyEoZFrCdphNuNG+/fVJrO9gNouuKngQF0SIiIrJiOoMYonJhHWp2e6u68SmFlTxNN5z0N7J6FESLiIjISrnSi+mEp9q3B8NF6QyL27PQEJ05VA8tFZ0KIiIisjJ6WUk3g3Pt6VloYOJmQwXRMkqngoiIiKyMq724vGd98u39PGqeR6cUQvSVdrSpUHbpVBAREZGVkJfOtT5stmBtQjTs7vQnTCmE3U2FykRLRaeCiIiIrIRqQ+G0LPS0KYUQmwpBQbTs0qkgIiIid72idK73Y0PhZnNyd41JUworeQk1u71jh6wuBdEiIiJy19vOItO80YxAepJ+HrdN2nCYaVOhjNHpICIiIne10p2dYWSZN5s2OUgunLyc3JUDIhOtTYUySqeDiIiI3NV2hhEktxqT651h+pRCiFKQ0pWJllvpdBAREZG7lruznbLQzZpNDaJ7OTQnTCmEyEIDNCbUSsvqUhAtIiIid61uBoVHAFy32/s/w+wphbAbRKucQ0bpdBAREZG7krvTGUKj5sD0LPQgta+bVg9d9YieEH/LClMQLSIiInelXh5Z5HYDSp/elaOXRYDcmhIlV5sKbcKGRFldCqJFRETkrhRZ6N1gZ1Im2t0ZzCjlgAiitalQxumUEBERkbtOP4/phKdb0C+MVn1y/+dBEVnqaUG0e7S+06ZCGbewINrM3mxmF83sN0eu+2dm9jtm9utm9uNmdm5RxxcREZHV1RlEiUa7HsH0Xq3tppV6aFOhTLPIU+ItwCvHrvsZ4OPd/ROA3wNev8Dji4iIyAoaFlGicaoFwzKyz7OC6GlTCmF3U6HKOWTcwk4Jd383cHXsune6e/rMxy8Dz1/U8UVERGQ1dQZQM9hsRZBcm7JpMC9nTymM+8SlgmgZdydPiS8FfvoOHl9ERETuMlnh9PIIoI0IoqcOWMnicq9NhfXa9Ey1rK47EkSb2TcAOfCDM+7zOjN7zMweu3Tp0vEtTkRERE6sTppOeKoZpRizNg3286h1bkyYUljJ1JlDpjj208LMXgN8FvCF7u7T7ufub3L3R9390fvuu+/4FigiIiInUl463Syy0PWa7W4anNBZo5yjtR1AXmhToUy2x6lztMzslcDXAZ/q7t3jPLaIiIjc3TrDuDzVist+Dq16BNTjqgB7dimH4ygTLZMtssXdW4FfAj7OzJ4wsy8D/jVwGvgZM/tfZvadizq+iIiIrI6idLpD2GxGeUZROsNieuu63Q2H0x9TmwplloVlot39VROu/veLOp6IiIisru0hOLtZ6EERl5M6b7j7zQ2Hs0Z5q0e0zKLTQkRERE600p2dLALmZmplV2WaJwXAwz2mFFayMh5jUjmIiIJoEREROdF2hhEUn27vXjfIY0PhpEzzPPXQEJsKVcoh0+jUEBERkROrdKczjNrnaqDKsHCKPVrbtet7937O1d5OZtCpISIiIidWN0tZ6NbudYMZmea8dLJy7yx06RGIqx5aptGpISIiIieSu7M9jA4ba43drHIvh+Yere3Wm7MfW505ZC86NURERORE6uUR7I5moUuP1nZrU1rX9fIIjGdNKQTIUncPBdEyjU4NEREROZE6gyi3WG/uBsSzSjlKdwb53qUcoEy07E2nhoiIiJw4vTxqm0+1br1+1hCVWQH2uGpT4aw+0rLaFESLiIjIidMZQL0GG2O1zf1idmu7msXte8lKbSqU2XR6iIiIyIkyyKPu+XTr1mA5K5xiRueN/oze0aPcXe3tZE86PURERORE2RpGRvm2LHQq12hPCKKr3tF7deUA1UPLfHR6iIiIyIkxLGJz4OnW7cNS+nmUYEzqvNGrAuw5SjmqILo5x31ldSmIFhERkROjM4gs9ObYhsLSnUExOQsNEWC3pvSOHqdMtMxDp4eIiIicCHnp9HLYbN6ehR6kvs6T6qGL0skKWJ+jKwfEpsK67T0WXFabgmgRERE5ETqDuBxvaweRaTYml2v099HaDtCmQpmLThERERFZekXp7GRRxjGpJGOQRynHpM4bvTza4TXr82WW8xIaqoeWPSiIFhERkaXXGcbl6QlZ6KyIlnSzphTOW8pRlE7p6hEte9MpIiIiIkutKJ2dYbS0m9R5Y1Y99KAAn3LbJJk2FcqcdIqIiIjIUtvJIhCelIWGKNdoTGltN6tWehJ15pB56RQRERGRpVW6sz2MTPKkmubSnWE+e0rh2pRa6UnyMoLuSQG5yCgF0SIiIrK0uhmUPj0LPZxRrrHXGPBJMm0qlDkpiBYREZGl5O50hjEkpd2YnBmuyjVaEwLf3j5b20FkorWpUOah00RERESWUjeDooQz7en36efQakwejLKfKYUQpSGFekTLnHSaiIiIyNKpstDNOqxNyULnZbS2m9S+riidYbH/LDQoiJb56DQRERGRpdPLI6idVgsNu5MIj2JKIewG0SrnkHnoNBEREZGl0xlGRnjWkJR+am03qWtHP4e6QWvOKYWw2yO6ruhI5qDTRERERJZKP3eyIrLQ01rTeZpE2J4QZLt7tLZr7u+4eRFB+aT6apFxCqJFRERkqXQGkUXemBEEz5pEuN8phZVcmwplH3SqiIiIyNIYFs6ggFMzstCwdz30fqYUQmSvFUTLfuhUERERkaXRGUDNYHPGhkIgSjnq01vbtae0vZum8Mhea1OhzEunioiIiCyFrHB6eQTQswLgvHSyKZMIsyIyyvst5cjU3k72SaeKiIiILIXOMMowTu2xIXAwo33dQVrbQWwqBAXRMj+dKiIiInLH5aXTzSILvdeEwX4ebegmtbbr5TGgpTHnlMLd40cZybzTDUUURIuIiMgdtz2My1N71EK7x8bDtQmbBg8ypbCSaVOh7JNOFxEREbmjitLZGUZLu70yyMMCSp/e2g5mD2iZJi+1qVD2R6eLiIiI3FHbWXTGmDXiu3Kztd2UeujaPqcUQgTxpSsTLfuj00VERETumNIjC73emFzjPK5fQGtCa7ubUwoPmIUGaOyjr7SIgmgRERG5Y3aGUZ5xur33fYsyxoFPKtcYpDKPg5ZygMo5ZH90uoiIiMgdUbqzPYzSjHlKMPYq5Zh2216qHtH7rAKRFacgWkRERO6IbhaTAuephYbU2m5KzfNBphRWqk2Fs8aMi4xbWBBtZm82s4tm9psj110ws58xs/eny/OLOr6IiIgsL09Z6FYd1hp7B69Va7tJmea8jCmFBynliL/XpkLZv0WeMm8BXjl23dcDP+fuLwF+Lv0uIiIiK6aXR/A6bxY6K6e3tjvolEKI4DwvtalQ9m9hQbS7vxu4Onb15wLfm37+XuDPLOr4IiIisrw6g8j+rjfnK6HoVTXPE4LdXhaPtd8phaBNhXJwx33KPODuTwOky/uP+fgiIiJyh/VyJ9tHFhpgkEfpx/hY7jKVeRy0lKPaVKhyDtmvpT1lzOx1ZvaYmT126dKlO70cEREROSKdAdRrMaFwHrPGeR+mlANGekQvbUQky2rqKWdm304MEJrI3b/yAMd71sye6+5Pm9lzgYszHv9NwJsAHn300anrEBERkZNjkEdAfG5t/m4Y1TjvaUF0TCk82HryMgL6g3T1kNU263PXY8B7gDXgjwDvT/8+ESgOeLz/BLwm/fwa4D8e8HFERETkBOoMI+idNwsN08d5j04pPGh7ukydOeSApmai3f17AczsS4BXuHuWfv9O4J17PbCZvRX4NOBeM3sCeAPwLcDbzOzLgI8Af+GQ6xcREZETIisi6D3T3l/md9o471kdO+aVF7C5j9pskco8p92DwGl2O22cStfN5O6vmnLTp8+3NBEREbmbVFnoU/sIWoeFTw2Ue1lcHrwe2nGUiZaDmee0+xbgf5rZL6TfPxX4poWtSERERO46eel0s+jIsd8sNExubdfP4/qD1jNrU6Ecxswg2qLA6GeBnwY+KV399e7+zKIXJiIiIncpiSe9AAAgAElEQVSPziAu95OFhgiUmxNa2+VltMk72z74mtQjWg5jZhDt7m5mP+HufxRtAhQREZEDKEpnJ4va4/FgeJbSo5PH6QmB8mFb20HUVNdsf2sSqczz2euXzezlC1+JiIiI3JU6w7jcz3AVGAmUp5RyNGrQrB88AM4LlXLIwc3z+e0VwF82s8eBHcCIJPUnLHRlIiIicuKV7uwMo6XdfsdyD6b0gC5Ta7v9loaMy0toHyKTLattnlPnMxe+ChEREbkrbQ9jctt+s9Cwu3FwvAf04AhKOUp3Clc9tBzcnqefuz8OYGb3E4NXRERERPZUurM9jGB3v2UXWRFB7qwphZM6dsxLnTnksPY8dczsc8zs/cCHgHcBHya6dYiIiIhM1c1iGMpBs9AwPYielKHejyzNXlYQLQc1z6nzzcAnA7/n7i8ghqX894WuSkRERE40d6czjHrmdmP/wW4/j1KL8c4ZwxkZ6v1QJloOa55TJ3P3K0DNzGru/gvAJy54XSIiInKCdTMoysnt6fZSujMopmeh4WiC6EbtcNlsWW3znILXzewU8G7gB83sIpAvdlkiIiJyknWGkUleP0AWuto4OKlzRi+P7PZheztnpTYVyuHMc/p8LtAFvhp4B/AB4LMXuSgRERE5uXqZkx8wCw3QLyZvHCxKJytg/ZBZaHe/mYkWOah5Tp+vAZ7n7rm7f6+7/yvgzy94XSIiInJCdYYRoB402J22cfAoSzlAQbQczjynz1cA/8XMXjFy3V9Z0HpERETkBOvnaVR362D1xlnhFOX0euj6IacUwm4Q3TxEizyReYLoJ4FXAt9iZn8zXacqfBEREblNZwB1g/Xmwf6+P6UeuppSeNgsNCgTLUdjrtPH3T8CfCrwUjP7EWB9oasSERGRE2dYRFeNUy2oHbDrRb+I4HZ8RPigiMmHh62HhthUWLeDr1EE5guiHwNw9767vxb4ReCQ0+pFRETkbtMZxIbAzQNGCaU7gynZ5n4eX4O3jqAEQ5sK5SjseQq5+5eP/f4d7v7CxS1JRERETpqscHp5BNAHzfAO0hTBaUH0WuNossd5CQ3VQ8sh7fmliJm9BPjHwEuBtXS1u/uLFrkwEREROTk6w8gUnzpgLTREf+hJ2eabmw2P4HvwonRKV49oObx5TqHvAf4tMWDlFcD3AT+wyEWJiIjIyZGXTjeLLPRhhqD089hQOJ5tPqrWdhD10KByDjm8eU6hdXf/OcDc/XF3/ybgTy52WSIiInJSbA/j8tQhMsV5GQNQJgXKvTza0R12SmEcJy4VRMthzfOZrm9mNeD9ZvbXiZZ39y92WSIiInISFKWzM4SN5u0dNfZjWra5KKPv9JkDTj8cl5dRMnKYtYrAfJnorwI2gK8E/ijwxcBrFrkoERERORm2s2g9d/qQ9cr9fHJru6Ms5YAo59CmQjkKe56S7v5r6cdt4LWLXY6IiIicFKVHFnq9cbgpglVru0mt8fp59HRuHXJKYSUvY6S4yGFNDaLN7O3Eh8uJ3P1zFrIiERERORF2hlA6nD5kqcUwDVIZn1LoHsNbjmLACkSwXpTQOEQHEZHKrNPyjenSgO8G/tLilyMiIiIngbuzPYys7mGzxDdHfY9liAdFBOlrRxT0alOhHKWpQbS7v6v62cy2R38XERGR1dbNoHA4fwQb/ma1tjOOrvyiCqLVI1qOwryn0dSyDhEREVkt7k5nGG3n1hqHy0JXre0mlWxMC64PquoRXVcQvdT6udPNlj/0nFUTfWHk17qZnSc+EALg7lcXuTARERFZTr08srr3rB/+saaVcmRFBNeH6T09Li+ilOOognI5eqU71/oRcK43HFvi92pWTfR7iAx0tfr3jtzmwAsXtSgRERFZXp1BBKPrzcMHOIM8MsPj3T2OurUdROCveujltjWAaz3ndBNGcrdLaVZN9AuOcyEiIiKy/Hq5k5Vwfu3wj+Xu9HPYmNLarjmhb/RhjpWXt3cAkeUxyJ1rPefG4E6vZD76PCYiIiJz6wwic7xxBB0zBqm13dpYKUeZWtsdVVcOiE2QjjYVLqvSnas959lulPY8fJalLuUABdEiIiIyp0EeI7hPt44mwBlU9dBj2eGqlOOo+kPD7qZClXMsp84QLu6AOVxYh9IN9+XeXKhTSURERObSGULNjiYLDan7Rn1ya7uaHW3WOC/iUkH08skK5+K2szWEc+1437v5nV7V3uY6lczsT5jZa9PP95mZ6qVFRERWSFZE/fKp1tF0tyjKqK0e3zhY1UmvNY726/y8jMC8fkQ11nI03J1LXeeZHTjVhDNr4BgX1u6Ccg4zewPwdcDr01VN4AcWuSgRERFZLp1h9Eo4qpZz07pvDKsphUe8ATBTZ46ltD2Epzrx3jxwCgo3zrZv79ayjOY5nf4s8DnADoC7PwWcXuSiREREZHnkpdPNYPOIstAQQXTdjqe1HUQmWpsKl0tWOE9uOd0hPLAJYLTqUXv/5FZ5V9REDz2ehQOY2eZilyQiIiLLpDOMy9NHlIX2qvvGhEC5d8RTCiFKR0pXJnrZVGUc59dhswnusNF0ProF13p3enV7m+d0epuZfRdwzsy+HPhZ4LsXuywRERFZBkXp7AwjyDmqeuKqZGO8K8esEeCHkVedOeqz7yfHZ3voPH492hs+ZxOy0jjdcj54Fa4P4luPZbfnaerubzSzPw1sAR8H/F13/5mFr0xERETuuO0qC90+usfsp04Z45noRZZygMo5lkVeOh++Ft9GvPgCZKmd3eM34GIXnnsK7t9c/o2Fe56mZvbVwI8cZeCcHvMvESUivwG81t37R/X4IiIicnilOztZZIaPanIgRLDcmtDarpdHycVRHgt2e0SfgL1qK+HpbefZHXjwDOBwpec0a3ClFwH0PRtwvR+lHcscSM/zmewM8F/M7L+a2V8zswcOc0Azex7wlcCj7v7xQB34gsM8poiIiBy97WGUXRxlFroonWxCPXTpziA/+iw07G4qXOaAbFVsD0o+fC3e56ZF5nm9EX2hz69HacflLgzvhj7R7v733P1lwF8DHgTeZWY/e8jjNoB1M2sAG8BTh3w8EREROUKlO9vDCHZaR5jCnVaysYgphZVc7e2WQlE6v30lNqqeacN2FtMJq/fmOZtwfQjbgxjTvuz2c0pdBJ4BrgD3H/SA7v4k8EbgI8DTwA13f+dBH09ERESOXjdLWegj3uA1KGLoyXhgXk0pbB3x5r/SY7OiNhXuX1465RG1mctL57cuOR+9ARfWYuPgfRtxebUf1+VldOXoDGHrBBT5zjNs5a+a2S8CPwfcC3y5u3/CQQ9oZueBzwVeQGS2N83siybc73Vm9piZPXbp0qWDHk5ERET2yd3pDCOgbTeOLgs9Oo1w3CKmFAIU2lR4YFd7cKV7uMcoSud63/nAFedD16Le+WPviQ9RGw14phPv+6kWXOtDbwjPbMMTnfjbZTbPlyYPA1/l7v/riI75p4APufslADP7MeCPMzYF0d3fBLwJ4NFHH13uV1FEROQu0s0i+Dy3cbSPm5WTpxEOC1/IlMLqmKByjv1yj9r1g7aaK9MHse1BBMNPbce3Gn/wPujmxlrdudqPso0HNqKt3fYwaqRv9GGjGRMyl9nU09XMzrj7FvBP0+8XRm9396sHPOZHgE82sw2gB3w68NgBH0tERESOWGcYmdv1I8xCw27dc3ustKK3oNZ2MNIjWkH0vuRltFDbb3lN6dFXvJM2pa43YqNg4fCxFyB3o2bx+DcGcP9GbCK83ocbKfNd9REvPbpPLKtZp+sPAZ8FvId4HUf/S3LghQc5oLv/ipn9KPBeIAf+JynjLCIiIndWL4sa4gvrR//YVWu78aEt/SwC66OcUljJS6jXFvPYd7Nh6uU9bxmMe4yG30qbAtsNONuGnaHzZCfOp3NrsDWEtUZcd6oFzTo8uw3dITyzE8F33WLjYX3JP/hMDaLd/bPS5QuO+qDu/gbgDUf9uCIiInI4nWFkbY+6S0ZROsPi9nZ5eelkZQRci5CpM8eBZGVkT+d57bqZszWIDyytOpxvw1rDyIqS37kcwfCLz8PW0GjVnCvdeOxz7chA97IIoK+l65sW2ekj2tO4MPNsLPy5ea4TERGRk62fR6B7qnX0G/wGKbM5HpwvakphJS+0qfAghkWcD1vD6ffp586zO87VXgS/96zD/ZvGWioD+v2rsJPBS85BL48yjkER1927Dr0iMtNXezFopfD4RqKTwUduQFEcz3M9qFk10WtED+d7U0eN6r+mM0RXDREREbmLVF+lbzSP/rGrFnbjAW0/TSlsLmCcYF46jjLR+1VtKix8t7vJqGHh3OhHQFyvwfm1tBFw5IPXpZ2SpzrwwCZstGPTYLPmXOxFqYZZZJ47A3h6B3b60GxAVsRY+DMGtuTv26zPfX8Z+CoiYH4Pu0H0FvAdC16XiIiIHKNhERMDz7YXUz88mNDCrppSeNAOEHvRpsKDyUso3KO0YuS1y4oo2+ilD0Tn1mCzefu3FoO85HcvR1b5Befhet9o1pwrvXi802243oNBFvXQ13pQq8UmwssDKIG1OviEAH6ZzKqJ/jbg28zsK9z9249xTSIiInLMOoMIjBYR0A4Lv/lV/ahBEZ0KFlbKoR7RB5KVaVR6PYbU5GUEz90szpEz7Sj5mfRhq3Tn967AsISX3Q/bQ6NGbDocFpGZ7qcNiM9sw6Wd1PawHtc5UCuhILLVy2zP09bdv93MPh54KbA2cv33LXJhIiIicjyywunl0cd3UVlomDDqOwVl48H1UcnKePzxbiAy2zCVctSI7hpRimGcasU5Muv1fLrjPLsDzzsNa3WjM4xShuuDKPsoyhiqstWPntC99A3FoIBBCebgFrXsucMCKouOzJ5BtJm9Afg0Ioj+KeAzgf8GKIgWERG5C1SBzqkFlVX08shq3tbaLo8A+qg3MVbyQqUcB9HPne4wssLDNIr7D9zrnFmb/WJuD0o+eC1KPJ5/Gm4MoW5RxrHeiLZ3N/pRH/30dpR01C3KNrYzwKIjR6sOj1yAdnO5P/zMc2p9HjEQ5Rl3fy3wh4AFNaIRERGR45SX8VX75h4ZxoMqPTp+rI1lm6sSj0WVckCUJCiInl/pTmfgPLMN3TzKYLpZbBps7/E+5aXzgWuRwX7xBdjJDYgsdunRzm6QRwb60nZ04yB9C7E9jOC5VkC9Htnu9TpL3+NunlOr5+4lkJvZGeAiBxy0IiIiIstlO7UwW1QWeloLu0W3tis9gnTVQ+/N3dkZOs9uw5We06hF0NtLLeYeOQftGZ9G3J0nO87lLjx4Kjqt5GWUbmwP47HyMjLP13pwcSd9C1GLYH3ogENZg/VadOd437MwmNFebxnMc+o+ZmbngO8munRsA7+60FWJiIjIwhVljGjeaEJjQXXDg9TJYXx89LTphUdFnTnmMz4o5WwjSnue7kSXjEfugdPt2S/i9b7z+HU4swbPOR0bBPF43M1WvAc3hrubCa/3o7wnL2EnlY2QRoS3GnClH2UejWWe+c18Gwv/3/Tjd5rZO4Az7v7ri12WiIiILNp2FgHM6QVloWFy3XM1vXBRUwoh+g2Dguhp+rlzYxCvU7MWg1LWm8b1PlzsOp0hvOg83Lsx+wXs586Hrkfg/YJzsJMZjrOTNo2ebkVm+UYfLm7D5X503WjX4MqA+MMyAubT7Ri8UqZzw5e7JHrmsJU/Mus2d3/vYpYkIiIii1Z6ZKHXG4sZdALR9WNS3fOiSzlAmehp9hqUcqXrXO1GG7uHz81+rKJ0ntqKjPPHnIa6Gb3C07TDCMyzEm704Eo3RnvnRZxzNwZR7mFlDFU5345JhoM8+kW3G5GNXmazTt9vnXGbA3/yiNciIiIix2Qnbfg6vcBscBUsj29K6+cRwC0qeIfdTYWL6vxx0owOSqlPGZTSy0o+ciPKOj7mLGSlUbjTmvI+Xe46T3Ui4L7/1G5gvJ3BmVZkoreGsYnw2e0450anEkKUjGzU4rIzSJP9avBsB3oZnFriko5Zw1ZecZwLERERkePhHl0T2nWmBkhHoZ86PIzWW5fu9HPYWGAJCUQGVJsK5x+Ukpclv3clsqTPOwVrDeNGPz7s3Ltx++N2Bs6TnZg0+NCZGKpSlE431bq3G/H+X+tFEH2lG2UcDYPraS1lGefguXV4phvNOBq19AGosdhvKo7CPH2iXz3peg1bEREROZm6WbQiO7/ALHTpzqC4vevHcMFTCiE+JORllA2sqqKMuubtkR7g0waluDsfuhbnxYOnYnNfw5zfvx5/c+/GrX8zLJyntuOD2PPPRHA8LJxhGeUaF9bj/Lreh8s78MxWTCDcSFMJSwdKqNUjI36tD3nqJV6k8+NMm5SWXl7znF4vH/l5jegZ/V40bEVEROTEcY/gqlmPbOOiTJ1SmEdstKgphbDa9dBlen+30wjtzWYEpLO6oHx0K/7m/s3IPNcNMLjajfNk/PEv7jiXd2Lz373rsDU0co8BLWfSB7PtQWwSfGYnap3XGlFKUm34dOBsM74x2M6i53KZxn03a3GelCVRIL2k5unO8RWjv5vZWeD7F7YiERERWZheHkHmhfXFHqdfTA6WqzHPixgvXqmC6PEA8G5WbRTtpFr39QacXdu7deHlnZLL3TgfNptGN3PMjO1+lGuUwJWzfvOxrvVirHezFqO9dzIjK5x+ljap1mJ896VuZKGv91JZjUeNMxZ10+v12ND45E6M+m5Y9IuuERsN1xtR8rHMDvJFRxd4yVEvRERERBavM4wM7aJLHfopWB7duJYVTlHC2oLroVcpE+0eEye3BlFC0W5EhnieWvetQclHO1Hq8dBZ48ktZ5BDv3Ce7kQpSJ0Y/V2UMMidS10Y5tEPGmCQunE4sN6MAP7KTtRCP7sTQfhaA66ndnaeatXv2YCL3Whn1zDI0nDCRiMC7OeegvqSt+eYpyb67aQ+2MQHhJcCb1vkokREROTo9XMnK6Kt2SK7VlTBcnssWD6O1nYQJQJ1W2y2exmMD0o5356/RKefl3z4WmzmO78GT29HgJwVMUXwWj8C8o+7B557KrLNl7rO9X7USZ9fi24awyJKd86sxePeGMDVfgxr6ebxYW1nkEozSqAWGwm3h7ulPe4RaLYb8c1FzeBSH4rCaSyw5Oiw5jmN3zjycw487u5PLGg9IiIisiCdQdS8bjQXe5xBqnsdD5Z7afPYoqYUVqr2dner2walbMD6HMGmu0cN8tD5vStRXvH8MzAojNKd9dR+rmWRgT7ThLPr8XdXes7VVJrxwCnoZsagiMz1Ris+tPQLuNyFi50IplsWGw37JTHWG9isAWUE2pBqoYmAtGYRUA9yGGTx8zKbpyb6XQBmdqa6v5ldcPerC16biIiIHJFhEd0yzi04Cw0RLDfGWttVUwoX2Ze6kpdRWnC3GR+UcmE9Mr2z3s8sve+DHHq5szWEa93I1r/gHDzntNGqx0TBy73o0HF+HdiJTX7Xe3Gsq70o6bhvM7LHvSy+1WjUoVWLTPLF7XjsS73o2NGsRTANERDXaxFwX+xG4Ny2mEpYK8EaURvtJXQLePIGDIbQXOL3cZ5yjtcB3wz0iOdsxGv1wsUuTURERI7K1iAyfYvOQpfuDHPYnFLKseha7KJ0Sr+7ekTPMyilUpQRNPfzCJwLj/ekO4wuGHmZhqNswgOn4kUq3XlmG7b6cX6cb8f9jAiqrRd116daMUSlM4yMdVbC2RbUasaVnQjwn9qJ46434nglUcrhBudaaSCLQ5Oony5Sb+hmyn4Pyih7qJfRg3qZzXMq/03gZe5+edGLERERkaOXFTHg5Ex78XXCgyl9oPspAFzkcBeIwA7ujnKO8UEpZ9vx4WT0Paz6cQ9S0Fw9/5pBs+YMs8gy56ljx72bcGHNbk6LLN15djs6bmw0ojSkIAXgZWwOvJfY/HfvOvQLu5mF3mxFxrmXOZe7MZVwqx8lO/08nQupbd3p9OGtl+9mY1OJNK16/MPjuQJkxPGX2TxB9AeIjhwiIiJyAnXSwI3NY/hqfJCCpNZIezlPgd5xDD+5GzpzjA9KOd2KLHC9ZvFa5k4/Bc7DVH9uxJCUs02o15zOAJ7ZjqB6rQHP24Rza3ZLPXrV8/npnbjPvZvQrhsXt52igF4Ro7rv2YB71qE02Bl4lGI0ojzDHZ7ejlroS73IHptHEF0F0O16ZKyf3Nmtf3aDhscY8FYqjL4+3H0N2rb87+E8p/Prgf9hZr8CDKor3f0rF7YqERERORJ5uftV/KI39EEET+2xPtCDIr66P44xzlUZwl79kZfRbYNSUvlE6ZHB7eexka/ab9eqR4DdbsTPeREdNi53o0xiswkfcwbOrtltpR/uzqUd5+JOBLFnNyPYbdSca6njxzCVf2w0Yy2dYfxeOrSa8Ro/sx1lHM90UpcQi+C/TBsJGxYB9LO9yIY3SWUaabR3sx737WZRxsHIc6sveZ/veU7n7wJ+HvgN4vUQERGRE6KTsnunF9ybGSJgz8vbR31X9dDtYwiiszI2u50k44NS2nWn3YC8NC7uREAMkZndaMFaKn+oPhT1spInt+BKL/7+dCs6aJxpT07lujuXu1HCsdaIGuthEUUWRmSfh0XUNG8P4/ZeBt3hbnBes+jyca0LT23DVhblOt1idwMdxKjv7VTa0SBNQyRGftdqcb/CoT/WiaP0GAG+zOY5nXN3/5qFr0RERESOVFFGcLbZPL4sNEyuh170lMJKXi52pPhRqgalXO9HzbpZZGYHhTEoIlBdS72T241bs+ulO51BTBvcGkTgerYND2zCZmt2HcSVbgxTaTdiyEpnCHVzCjfyVErSy6ImuVGDx29E4F6vVe9jbBZ8cgue2ILL22m6YNooOFrGUWtCt5/KTdKyCo8gumlgaez3uPIu2Vj4C6lDx9u5tZxDLe5ERESW2HaVhT6GtnIQwfJ4a7usmJydXoTSY8hLY4nbokEEz9cHzpVu6n5BlEu060arEQHrWoObm/9G5aWzPYQrPWd7EIH32bXotrExR0uSK92Sp1IA/fA5Y61hXO35zSB4axDjujvZblD/wWtRFnJhY7dO+YPXY6DKxbRrrlmLDHaZAugakRG/Noi66RYpwCbqoNdSJnpreGsZx021u6BPNPD/pMvXj1ynFnciIiJLrHRnJ4vNfMdRHxwb3qLcYNRxTSmE5d5UWHVI2Ro4V/oxhKRhMb3v7JpFtrk+vefzII/g+Xo/3te6RZ/oezaMjeZ87++1XpR9tOq7AXReOlnhlCVsDZ3fvQzX+4Cn+uZB1CY3ahEoD/LownG5C1e78TxqngJojwDagHMbkc3OywiorQ6UEZS363GfQQa9CYGyAS++AO32cte1zzNs5QXHsRARERE5OlVQc1xZ6Fmt7Zq14wnkqyB6GXpE52V8qLjZs7mIzHHpMQjmntNwrg31GTULpTu9rKpNjtKPZi06ZZxfnz94BrjeK/nojQhiHz4X193oOzf6zpVevHdPbUVHj3otSjJKoq/zvRtRrnG9HyUeNwZwo7dbb5+xGzwDnGrG3++kLHuzFkG/1+P4tRrkA9iaUvO8Xovph1nmtFrLG0jPM2zl1ZOud/fvO/rliIiIyGFVXR6ia8PxBCE3Nw+O1CNXPYyPY1Mj3Pke0VkRgW4v3w3o3WNSY+lwfg3OrdvUQSmVonS2s/gg1M/95geRe9fhTNvY2OPvx93ol3zoWrSVu6cN1/pGmTLAucd79kwHrg8Ai0x1VsTmwnoez6czjPVfHcQUw0s7EVDXavFc66keulWDdpObgXnVqs6J4LxuUGQRQE/qVtEiHvfiTpSGLLN5vlx5+cjPa8CnA+8FFESLiIgsoW6226XhuAwmtLa7OaXwmGqU8yICtkWPNR9VpBaC3Ww3iG83YK3hafiJsd6M92J8UMq4YRElG90sfs6KyNyeXzfOtNhX8Fym4P1S1/lQ2sX2vDMxXXAt1SS3G9Hj+cPX4CMdaNei/KefvsXISBMF67BZh2t9uNKNADdLmw6HZfSFLtOyNtNUQvfYONhoxGM1iGx2lZ2fVAfdIALtXgntIjYfLrN5yjm+YvR3MzsLfP/CViQiIiIH5ikL3arDWuN4gsm89BgBPRYs9/Nqct6xLIO8PJ4sdFVm0c0iIIR4vc+tQavmdHNje2i3DUqZxN3p5bEJdFhEr+fCI5g80zZOt6eP+B5X1V33CxjmsDN0nuxEpvnF98D5kUmFEK3xfv3pCKQ3W/DQGXjfxdSTOvXbxuOyl0d2+fJ2DGFp1CNjbBYBcVnGY2RlfJipp4x23SKIzg2sgDyH4ZT1N1MADXHMvIh+1MvqIGX+XeAlR70QERERObxeGtd8buP4jjmYsHnQ3W+2tjuOzLB7BPKL6kVdPZ+qXAMiYD/Tjgxxo2Z0M+dyL0olqkEp04LnoowNgjup97J7BM+1GrRrETxvNGdnrsu0mbMKnIuRchbD2RpGCciL7rm9c8e1XsljT8KTHbhvA15wIbptbPV3M+oAdeI5P7sT/Z538t2phHm5WzvdqkV2+/pgd2JljchUO/Gzpwz0pKYba+m+lVYj/i2zeWqi387u860BLwXetshFiYiIyMF0BpHRWz+mLDREEFev3dqSraoDPo6uHLA7kOSos96DfLfOufTIrJ9KpRVVvXlROle6kVFu1aN2eFJ7OohscSeVbADULAacYEartnfZx7CIwLk3MvK7ZpFtXkvTC4e58/vX4roXXbg1gM5L56kt53cuR3u6KoDuDCKIHha7reVqxPs6KOLfVn83UB8UuwF0g9jAup16SzdrcX3uEWzX61EzPTTIJkTQdQDbfQ8h1ZXnUQ6yrOZZ2htHfs6Bx939iQWtR0RERA6ol0U29sL68R3T0+bB9QldOeD4guij3FRYbRDspqy+EXXd683Ito5m1neGfrMG+Gw7AuxJI7b7qWRjUMTjtesedSTwC9IAACAASURBVMelUbPIWk8KnovSb3b46KdAHqJW+nQrXt/WyJp6WcnvXwP81gA6hrPA09vOR67DjSGcX4cLbchyuNaLLPIwj04blRLoDeEa0W0DT8G7RUbaS9hsx/PK8gi840lHC7+oUYeBw2DKRsFmLcpHRrVrJ3jYipm9GHjA3d81dv2nmFnb3T+w8NWJiIjI3DrDyByOB7SLNC3j3M/TxLpj2uSXp8jvoEH0zQ2CeXSmgMjqnm1PnraYl861XgSP7XoEpONt/Kpx3lWGtl6DzWaUbfTzCJ5PtyMYrh6/6ubRT4FzNpJtXmvsTjCcVCbSz0refzUC+pdcgI00InBnGK3srvXh4nYMODnbiox5SbS1e6oTPaFHs8FG1DoPSyj6EQw7u+O68wLWUs1ydxiPVbco7TDAUleOvIznMamjXYtby0cqg3w3672sZv1n9i+Bvz3h+l667bMXsiIRERHZt34ewde5tePtTnGztd1IRFFtNDy3dmzLiKEetr/x5rM2CK43Jj+We3TQ2ErTAs+vweZYL+OsiBZ13WEEka06nGrH+7OT3b7hMC+dXuapn/RutrlVj5rrtTlaFVYBdDkSQA/yyJL3c79ZrnGxGxsVz7YjG709gGd2YJiCYCcuq6N18yhDWLMImDOHWgnDtOGwZhGUF0AT2GjEYJWaR3DsRFA/nFDGUUvHmxRcb5cw6MP6MZ5D+zUriH7E3X99/Ep3f8zMHlnYikRERGTfOsMIaDaOuZtBv7g943zcpRyw23JtL9M2CFZdMGYNhcmKyOYOi3hu59ZuvX9RRtBa1TtvNKtWd8aNQQTPp1pVNtropD7QVU/p6luEdmNy9nuaQV7y/muRRX7xeWg3jEs7JVuDyOhe70cHjs4A1lsxPKXZgEEv2tFB/M5wN3h2bm1D10y9o80jkC49gvx+HkFyO2XK640Isgdl+jDg0c1jkgbRRm+a5jG2aDyIWaf3rNj/GKutREREZJZqs9nZ9vGVT0AEjVkRxx3VyyMwPY4phZW8nF3GMsidbh6jqKdtEJymahu4NYi/u7DObdMCq9roqj/3WiNa3V3txf3WGk6zFjXQF3fsZseGdiOC97XG9M2Iswzzkt+9EsHy807D5R7cuBaBeeERJG/14j05twYPn41A+eJOZKCLNMhlu9gd212ps/t7VkTmvUxBdMvitagGrrTqVVeQKP/IPTYTZuXkTHODlKWe8ryaRBu9ZTYriP41M/tyd//u0SvN7MuA9yx2WSIiIjKvTgruNo85czcp41y1XTt1jGspytikN56J3s8GwWmGRdQ+Z2UE3Gfbt5Z5VNnpfuY0UvlF6cazO3FbvRbr6udGn/h5M3XROEjNeOl+c5pgN3PefzUC6Ps2olSD9DpYHXa60B1EichaHU61o/65k8VGwkYNzq7FhsJBGRnlGruTBEcD3CLdlqfBKWuNVMtskYVu11NpRhFBdsNSf+kJUbIRgfekWuhKqx4TFpfZrCD6q4AfN7MvZDdofpSoAf+zhzmomZ0D/h3w8cRr/qXu/kuHeUwREZFVlBXRWu30HtPwFqGfx0ay0QzqpJ7Ri1aVQ8QAkP1tEJymdGdrAJ1BFP+ebkKrYXQzKNzJinR7FsHnqWZMA7zSdbaHTqO22z96baREYz/Z+ar39TAFzVmxG3hmRQxSyUp4YDPKLcpUZnFjEEFyL4uOIDWL86Mz2O3ZvNkELO47LCLr7H57Z47Rnz3VQW+24kNJVkQWu9WIxzKHbhq00gSuTRpLCKynbhzTstCQXs+TGkS7+7PAHzezVxDBLsBPuvvPH8Fxvw14h7t/npm1gGNsCS8iInL32E51rMeZ+YXd1naTunJUfYuPy7CIDYI3+pCn+dN7bRCECJTLNDSkSDW8uUdW+Wo/gsRWPV7b7cxuFvBWvaMhgvNz7fggMUj1zRfW4VTLbmab58l4u8ffDosoh6iC5kotTQBca0JZOh/YiiD5bDs+MJBFtvj/Z+9NoyzLzurAfe70pphyrKzKGlJSSSVVliwhCYSqMAhLYLctpJZXQ9sGq93dLKkZ3csNNn9Y0G7ast3DcrPAuDF2L2jotg0LuwQyQ4PBBpUGCwuhKk1oqCkrx5hevOGO5/SP/X3v3HgZkRE5Z0advVbUm+6799zhVe6z7/72tyUJG3XNRi7qk29Awmu46KwpT+2AhQR4ccoYut2Ire5BP+EyZcP0jSQmgTdgoaJzJNXjYmcbR8/weF8peCMCz118t0bcKZxzvwfg927UBo0xSwC+EcDfkPWX2L0DZEBAQEBAQMAuqKXr3eAKnfFuFiq7e7TdrehS2C4QvDjh40LGAsF+QgLWWI4zrx1qx7g2fWycT8FQWEdyXNYkhycGQC8zSCQTGeKNBgwWMsbaqZ96M3eY1gaDlCR6r/NRNZerzLPOdtIqfTED4sjJ/hqUDbAxpYVjq6AVg4kkPkYuNbwbcGHK91SBH6Qk55tTFoOOSvFjJ+xEWO6hDNcAerG05q4ldUQKIY3xnRe7MX3W0x3WEYPL7EX6Mvi7C3cybkcfmFcCuAjg/zLGvAG0ivxN59z4NowlICAgICDgrsVI2MjibUgxmO5g2ygbZiDfTCtHUdMuMaqYU+xA8tiJaZWYVoxt24kQxkKGk4gEMDGehGonwYXMYGGB3uZ2dvNWCWwVfL3SJSk1xsA6eqanNd/bKWKwtm5GlMvGT0AAKrhpzIlQElEKdjCorHTts35d08rh2U0gr4D7FritwvI4bOVshrIxBdbEI3+sBxwesN32SyMmuJQ1iWzeAEe6HM8o35u0RpBuiJaEOjXiK4+BouD60ojnYW2XyI002t7ae8dlwPVfmrJ5S3wHFxfeDhKdAHgTgB9wzn3cGPN/APgRAD/aXsgY834A7weABx988JYPMiAgICAg4E5GY9nIo79HLNvNQiEtrtseYyXW12rlcI4kvBGlWB9JnC/3OXdjbmtcUjl2IFHrJiTMcbT9cSd13MfSGSQR49/aaR157bCR+/QP2gx8u+9LU8wSShY7zHyumu2kua14pzELG1PjfNqFNShqYNQizLEQ/UEKODiMJOe5qIHjA36+NmUjl9Up7RO5BaYFkKbAvYvs+rc2YapI0ZAIZ9IApR+TpF7MSa53SaGboRPx+1P1wac85lUNDCuOZzkD1ifbo/Fm3ze0euxHYLbgdX0nE2jg9pDoFwG86Jz7uLz+FZBEb4Nz7mcB/CwAvOUtb7nSHYaAgICAgICXHcYVydDtUKEbUVaX5qLtciHWO1kZrHPbyLH6j+ctFu1tFA1Jo0bS9VKqq1RtDeIIMHAwxmCxAyx3rm4yMalIkK2jDWSp1bK7nfmcRMCRPtBLvDI9qRzOj0muFzJgUhsMC7dNAVdCn0YOkdF9pi1j3Pixtv3OWUyiG0cGVWOxNgUuTYCvbHCy0I3B5I+akwq1URg5nocHwPEeYA0tH5uiyicRt2PBZfOGxHsi7LkdZ7cTYgBFxcSMJGLEXWMlGQa8DsfFzjaOTPZxugeD7sgYYvB8zNtt7jTcchLtnDtnjHnBGPOIc+4LAN4B4LO3ehwBAQEBAQG3Ck4K2LaprC3iqM+N4V8Eko5IX5vtr+FI/nZr/3yzod391LbRiPo6KpmqsFns7T8GxEohSnGWAMYwvq0QmwYbmhj0090LBFWZTq+iCK2xPH7Tmsrwse72hJFRyeSNxrpZHF5ZG0xK+pj188h4+wYL+BhpFwGAoRWjbIBpZXb0O6exWDhgUFsS8mkFDBuHYcFtDEWBHpUk2REAW3PseSOKfMRj1jM8ThdzYFp6n3UsOc4xqChvSXpJ7eiJdoB4vXdHKddnIiQaRooHnajGBljdhYUbSeO4EnqGCrZz9F534mtv4X6rcDuUaAD4AQC/JMkcXwHwX9+mcQQEBAQEBFwz1H5g9yDHzS6Kmnp0Y0MS6eBjymrrn89/fSLRZYe6wEtbAODErnA54b4SIY8ky3e3IsAdyb8FVqdMw0gig8ZSfdUxxYae37b/uNOyVUTGq6KRMdsKBHMhm9pBsL+PBiQa+bYT4XLOzdpO6+OodNjM+VqbrUwrYFhwn9Zyvo5A0josIT5lHuOiZge+TkwLRxLxHBcWKLB9rOp37qVudvyNEOai4d0EOxeGXItNZ1jQF3xhxGUHQuarhgTYOWAxAZKEqSRlw+M7knbk1nLbC9pe3JAIr024vhhAJ+NE5cJ4bztHA5JGtcaUUoyYxbwOL2zt7ENP4dt/74YM0iHRMf6u2+HdhjtciL49JNo598dg5nRAQEBAQMAdhz3J8RXUVeBychy1SGQs6mu0i0d3t/EoobbO4eyI3t3DPUOfafsPEnHWIuF77SPA9Tunn3nvKkm2b5BR1CxsG0hyRDcxiA0JTy8B7l00u/qPAY7fORbJTSUqrpH84W6i9gd+t2joSdaMYiXC7TGOChb9xYaD1c/n97tuHDYKieADrSFbpT+f00p8w4a2jsFMKaZyHBkuH8fA8Q4V6MgY+N10264LfZtq9PZjEUtRYy/Rzo48H6sTTorODIFJyUlJ44B+xu2PS9/IZKXP6/GlLSGzBkAkySQJ9+FIj/aLtSkbqqxPSbYB7lMacRtFi0FH2LmToAW320k4lkmJmYd8NxtHLOvZK84uEqW6Ax73SIovb3Hs+VXjdinRAQEBAQEBdwRU+Svtla0HQIsciyc00oSHayTH+4UxJKYxpIhOyEs32Z2otpXjyjKDuBZyotYBB/EnQ0ipdKCbX6u6KCY5v58YrvvSmAqtARXcbgxMagfjACNJE6a1vsaRsFUtn3NHFNYsJuEc7WIrmJF5Vc/ldeNIdrNYCa2bTSBqx7i1UUVl1xjaTXoZ9yGNaCHIS5LilQ5j6+Jou6zdWIfVKVt3H+kBvdTM4vOqRidVc0RZvcOxJ8qJXDtGjkVZ07JxZgt4bpMFgmUt+ciOhXv92B//JAGWU9od1nLaPBqxZCzJ+BdEwR+XwHNDEv+64Xory3X3UvquLYAy98QZ4DW2U7hGCqr2nYTFgxByX9TApV3OWYydiwzb6IAEOgbHbhwj917cBKoKiDt7rOA2IpDogICAgICXJcrGYavwiRJp7BMRZoT4JpPj3aBqLYBtdoTGOlwY8/W4Yjc9JcWNI1nSScC8ajtTk+esHknStndcvn9OspO3Sqqayx0Sqfb4ioav0xgzZdw1fgxlTbuDtt7OYsy6+M0ymGVt7UnJbJIinuP22A2435PKF8zVDdC0Ei5q62h9AHBigcpsN2UKh3XAek5/8XKPloQsNtJWm8eVCrXDxQm3NZCukHrN6N2FbuIJchqpbYXr0glLKWMtGodhyUi6tQktG1tiGelnwJEOj5V6rmND0hyJGg4HPLtB33lkOJk6uQQc6tB6cmlC5bloKc5WJhW9lJ0X+xnvJkxrqtZR48/nbrYOVYyHBfclTXgeL052Xr5rxBO/y/oA2jiUsC9IGkch67e4u9t+BwQEBAQEHCg4xxbZo5K3tbUdsqY9XOl7DuwUN++xvSGP+nz2PpuDaDKFplno2Bcy3p5XKLlMTKuILPJqKJ+bbdaM/TxaSajoJEziONyjR5mf++O1njsc7gL3Lfrs5GlF0jitHVwmGcJCnA3MNv+3Wkn0+cyOspeMCRLGfgLYTIrRUiA29FlPKxYmrnSBfmpm53JYsLBQi+JSA2zmjKdr+9c1Wi+JSML7KRNBVFXWSUdjPVkeV6r2824AwDsBI5mwFRVJ4kZOGwTA47qYcRJwdkQltpcASym94ZUUEU4bzNbTTYGHloBDfX7vS2vsGNg0VLBXOjzm6wXJaF/SR3rSojuSbowQy8g+DrV0c+T1tNIBxvnO30vBdJD6CqbmCDLxAdX2TiKTFsfPjvSurlj0diCQ6ICAgICAlwWsc3huwyFvSC77qbcQrOfbi9AAT2ivN2ZLi/ewA0nVYkAKjIx0K2sSfAd+3kk8Gd7IqZjeM6DX2ivmZkcV+XowqRw2Cnquj/bZhGQ35BXQiR3y2mBSkcA6cMzLXbOvAsGdoF7wnQg3Jx8kqkf6Zja+snFYnxoUjUMnBgaZQ2MN1qcO48phPffNWRYznn/rpACy5VHOa277xKLBkR4nWbWlQl3UwLhlk2lfI1T7uVxeiddaCi2doyd7PadSnCZUh6uaPugtaZW90gHuX+Q+DktaM2qxjzhHy8l9C7x+V0XNdlasKl0girndjYLXUz/jvmqKRmR4DIbiEbfYO+LOgXYeYzihchbY3OELerdjP81bGogPOgUgSr1zTBs53geia7hmbiUCiQ4ICAgIeFlgqyCBWsqAfmZmdoA2sZ1ZBa5Crb3y45VJQNWQcOY1UEjxWRpTfdQiOyXHSuoOdYHBFQjt9aId/6bJC1ciwFuFxUbOZXNR9/sZiVF2nSRIveC7YVo56VjoMMxZODjMSQoHKY/dRk5FfVx78nxiwGM4rygDgLUWl6YkmEkEJMZhdWpQN9szoDVlpDezcpDQb5WYNWAxIDHPAKyOgTMjb93IYsbQXZpSPQZ43O5bBB5cAi5OgZeGJOJG7ipYA2QZLTV5Q0tH46jaDlJv0aiEeFvQ692TxiiT0nufN3Le1XAygaj2IL01/P4upsDzw52XS4148a+wLiXQEYB+lzaOUU7lOgVweAE4MuAk6k6uLgwkOiAgICDgwMM5h7WcJODBFXPd5O56xsHECf6pWqe5wV3xme5EvrcKr6DfLLSbjyx3aBvZaSxVQ6/xpCJpndaiVnekFfQNJD5OfcXi+a6dL4zcKkgEa42LA8es/ubY8HhPKmAxY0OWxWy7X3laeUW5bJiQUVke525i6P+NGAeXbisQ9FaOSQVsFlThRwXPY18mFS9uAi9KgZ+DxLlF4keOpaAx48TpxAKP/afPkVwbaEdKYFyTTx7q8C5EkvAzA6raFyWmriMWiDTi8lXDcQDSujulR7q0/m5BWe8dJ+dknYe6wIXJ7sWHwN7WEKlfRS/heLXoMQKw2AVefQh4zZHLCzzvNAQSHRAQEBBw4DGR2+qL2fWro1eLxrbVZn/rv5OQ8LEo7cpjKhuSweXOzSlu3I/63Fj6ycfVXOvtBFjuAscG10542kRZUy9qKeybtwWoAtyJgUK93zFwNKWtQxNLysZhIzeYVsx3HmQO1hmsTnCZ9xlg58OtghaLe3vAUsdcplK3UUpzma3Ck/FRybGvTfl3YUxF2EHuLEizlIUUuGcROLXMda1O2Dr7E2dYqFdZ3jE53Geh67Cg0nykS7IdG5LyccnkEet4bS9nwPmR2EVqAIbKcJbwGKUxXyeZNJoxtHzsRIjnYcBt5xWwtQNLlv4rV/RB63ocONkapJwATWqq7IMIeMUKcP8yUDbMEL9VxbzXgkCiAwICAgIONJxzMxVw6SrbQl8rqoaEM699Lm9sqLxpKsXVeJi3JIlhcBNafF9JfW43QmmnmCx3vCJe1GZf6rjmUlctclxdgShrgWQvlTi6WNMwvL3l3BZJ2YqMxzpgM7dYz0k8rZNGI4nBuGoR8ERU5Vhi7hqHtdxgqUtrRGeH6MDaulmiy6Z4iXUykTe0I1SW718YkRgCQm7FUrHYIRE+ucTXX1kHnr4AXBxxHTVIsF95mJ5gA8bYdVLgsKSilJbq/5ZYMQYZVe9RCXzqHBVrQI6dEueIhHWmalf8bCKFgvux/WcRSffZnQKhITYOXLmGQI9qChaDOvDaagCkDrhvCXjkKPfpUO/WpeFcKwKJDggICAg40JjWTFnoSALAzYCds2loKkMWswiLNo1rIwRKyBc7V0e898KVWl+XjcNY1HvrSF4XxOfcVqjHJRlTT46rEmW1W8z/Kagw+oi4dsFbErVJvCd4VQOUABprMSxIBDcKKrbjiiQ5lzQNgMdLbR3aMGWntuHj0mE9N7PsbQOup2o80c+lKcy09jGCkRQKDnOS6kIUWu3aeHQAnFygCtwT6wUzqJkL/Sfn+Vhbf508sAQ8sMLrZWMC/Ok6z0E/xcyWsp777oEOwPkxMCmY6OEc93NBEmdiUFnvi2/byXFMI6CKgI3p/lRogJ0EN3dRrdsdB/dCBO5PJD7sBkDkgKOLwBvvBbqSPX1m6PCKFYfoDrZ0BBIdEBAQEHCgsSWKZDcx6MQ3br1126YhnlIDuW0vNo2dSNvVoKgdtkoHA4OF6/BCzyePTCSlQm0AAyFp6znJs04COrFEwEUAjGF6QuXQWJLM1QkwaahmVs6haVq5wHJAoohkTpuM+K6NhgVojVfr90Jeu5kC2xVyuNhhW+2xkNd7FoAjvb1973VjsTolMYzF4nBhbGZKqnVulq4xKqkUt/O3ixqzDohKTp0DTvSBh49Q5bbSda8Tc/nPX2IKx1lp5d2JWUh4tAss9liwN62Ar2wAZzZ5Hg73SLCnlZD1Gpcp+tZRKe7HLDzMJFM6FW+2NqWxYDHjpGJjl/EOtozdUNbAaIf3tSvhfgi0Afc5i+HTOMA7Ca8/RrtLYoBzU/Gu38EEGggkOiAgICDgAGNaM2osEyJxLTFrCue4rmklt/KFLSYRVb9uQoJwLbegG+tmDUuUpDXO4cyQ2zo2cBiW9IgCl+dMb3sP/M/85wCJ4VZJIpaIYrk2Zeto3Z808pYTI41FJs6hsg6lEN5GNrSec9lSsokzsQukMclQIse73WUQreftboaz5zt8bp1YTiLg3gUqzMYYnB85dBJgWlFJPiwpFe1z0FjfkKaSjo1F7bA25bHtCBmn/YOTg0nl22Fr0xIdSwLu/6QigVzqAIkjiVzucV3a7CQy2iSHk7n1KbOeYzCi7uQSrxlNYtko6KNem/L1yQUS8XNjUaClGDAyUiQok8LaSiMW473J2tAGIAEe1/7OgoV0jJTrZY9gDgA7E2jo8TB+grYbIlCx7qqNQ5Tzfkz7ytEBOy+uTqn437fI83GjoxtvJAKJDggICAg4sNgqfAvl7BpUaOu82pzXraJA8QV3rzH/WElzIcWGO2Xqlg3JVJaQFE2rPcioDKMds9d+XUiL6dQAC10el7KhUrzcJfnrZ0Aq6rl19ABrQWQa0RqhpE+J7fEFg94u7cdvBMalw2ZBhfhQz3u216YWa1OOfTEDFjMHC9o6itoib7W6bhzJqBLaYUHSO5B0i7HYNPKaucyVFOVlEYmddlFMIp4HTcropNzGxPI8lRbYHJHQLmR8nJTAJSn0iyPg/j4JoloasojbPTtioWBeMicZDvjCGt9rrO+GyMkJj01e+QlMKraYNObrWLY9Fe+2hc8eTwGM5drZD4HeDQlox9hLhY7gk0FiSQxpxHpy3xLwykMc+7QG1gpOlE4s3Pjs8xuNQKIDAgICAg4k8prK6WLmsFWaffuht2c3873IeLWwnd28X8xIsxBnJc2RIbkfpL6pCkCCtpkzy/fBZeBo/9pvayvZHWsji9S30T7U2Z7nXG4riDSzMTLuze97IbaKJLqxFpnGulnHwrLxanFsSPCHJS0kRcNOipNK8pZrh5e2uK+NE8U48hMJB6q/ZU1LhAOJdyJRc8OCNodKMpMz8RBnYj1IYx6HrZzeYzaXkeYnhkR+ucvXhzrASo/jPDPkcU8McHhAYq1EEiBBvliyoLCQlt1K4p3YX9LI2xy0SDAxwGpOVVsj99LYK8xFDQxlcuYcx9iVyU8a+aLEfbpodoSe9r1IuP5SaG+ShjOinB8b0PrSlWPy/IiWllesmOu6a3SrEEh0QEBAQMCBhOYqK5G6EtkrGxaOXW12827YL2lOo93XOyqdWC6unUyMSotzIxK5Tiwd7VIzI8UOHN96yYmDxr5l0vClN1cQSULO4r1xCRzp7z2haBNjbWGuFot2lJ16fBtLK8VWRXW4k5AgupafIDJUhOOIx1iV4liadTjD79qZv4Xe7Ymo+V2JjdsquYwxTMs4mvGxL3F0vYSq6VbpLRXW8tgUQmCP94HDXR7Hac3j8twmt5VEwElRnXPxQDsLrJcc/7Smej0qOZ5GOlXquUqj7Qp0BarLw4KEP21dT3EEGMf1qXdbifOgA/QjxshtShOZCtdHovdjBdE7JRnkHDmq9gCwEAP3L3HysZABL2xyfa85gllM4Z2OQKIDAgICAg4cNFd5MXMYlYYK3i7KVtk4XBz7LN/9Zje3cSNIcxvWkaiqEno1sM5hUjmcHwlhMkydWO4a9BISrLym6tlW2tve3J0KIqc1Fe3GAqlxnFiAk4+6cSh3SeRot+vWQjgl6zMXgJA+NjwhUc0STdfwHuAo4mPtgDXnW6qXFtvYnOZIazHjpPKeb2uZohFJGsdih+pnmvA6ySI3+875sdgxpp60DzIS9L54lh1YCLgmXQqtYwOR+xY4yZgIsc4b4IWJJHw4LluL1aKCL7o71POFnrU0RVErUW0l/xk8Nkf72qJc/NIyQUhbqTApaD8ZVsyULvUa3YNBJ9i9acqsmPDKq2AXULDAMY25zVlb7yWS6KUOj924Al53lFnX+PCHga98BfiBH9hjC7cXgUQHBAQEBBw4aK5yJSTuWHfn5RrrsDoloTre33+axm6k2YBk+WpJ8zy0gO9Ib//Wkbx2mFbARk6rAwAc6/MPxiCv2chDx6qFhd2ExNGBvuPKApPaopYivLKhAjsuJH1ECN64EsJjfLEj2gVm8mhaBW9K1rXgDvBEt2hIMLsxOx/2RClX8lhbIWHguizoV17ucp1quYADamcYidc4XJwwhg4QO0RMIryQMQ86i9na2xiHyhpsFlR6JxUtHsOCY+un3rebxNzm59c4GaksVeF+ysi9TkKi/OwGLTnD3CvtVo3IshM2AjqGHvtDfbFiFNzfWDskSpOWkajb/YzHaSzNXRLJcO6kJPBZSmKt5LQ9eXGgXWQvFXo3gqz+5v3YOAy8NSY2wNTx8UgfeNUhnufGspjy3nodJ3/u54Gf/mkS6IcfBr7ne9ia8Q7FnTuygICAgICAa4DmKndih7w2WMx2VqGd3BMbSgAAIABJREFUI4G2lt7MKxFoJc2q4lUt0pzdANI8j2lFb+/SLuRf0W6/XTVu1h1vuUOFr7bAuRHj56z4UCMhNJUkRnjF2LH4rFUkptnXcLQ59KTIsbYka72UJHk+mUGTQaJ2wSMwy4bW2LsoMqgt/dWNJSkeZFxOEydiQyWzEwNZYhi3B4fBmCpyEhk/TjB6UJvEnB8LMU9oj1iU/GSvUjuU1mDSGFSNw6jiRERj5FZzEveFDnfq0hQkvmDSxqjkjnVjIBKP9HoJ1FMS3HHp00wiw/lGknB/YOh7jmNgMQHSlHcOaivNUTISfkCKTCck5p2E3u6yIZkdpIxUTAyP4bgGLooqDsdjrUJ9Y4GyAop9xNHtBANfTHglEq5Wj0w83L2E47KOk4z7ltjuvBcD5z72GTz2f/807vk3vwRMJsA3fAPwwQ8C733vHU2ggUCiAwICAgIOGLZKAI5FhUlEorUT1nMSkcO9yxuhNBLnVuxCmpdvMGmex1BsGPOpF845FNJQZFiQIKrKOJJ23JHhX7vATgvSdKi6TLsoLQJgIo2U82r+UkYSlERAYVlcV0myhUbdRREJRRR54ksV1Wx7HRvAwc3GvFU4DKU5ykqXynBkOFYdcxoDxjnkjSR1yKShaCQhIwEi47jPMtHZyBmVBlCJPyypHkruKmtQ1iTccJx0jcSnXDZ8vpbTv5wmVPCnBSdcRU1/dQ2eo04sDUNEtc+b7S3eDZjA0Uv5GCccZ9EAJqYKHUumdDcW3mj0WHF7azmPdTelFSIWu0ovoYWjELtGIYQ9kcZCETimac5zVzmepzjyWeBXgxjc3nzL9Hno3YJY0k10opbFwLFF4N5ejXt+60l0/sk/xgMf/X24bhfmO78T+P7vB974xqsf2G1CINEBAQEBAQcGtXWzBg6AwaHuznaIrYLLLXaAfmrYcbC+faS5DSd+6G4KnBs5Zl2L1WFSiv8X3rqQW3bLi4zsT0bi0pNb/uonNkJk1XtcNy1vrthemooEdSxt6bSw0kRUEouaqud9XWCQGWmawvVGc88B73FWW0jVAA5m1j4boGJ+pEeVOYKbfT6ugDUZT7sZSyLK5mKHvuTG+YSNSSXts2umZJxcpMUB8Opy0QBN41A5turerNjxb1LxOGr6hjEko80Ysy6MlXi71eveFUW7qIANWb9rFTP2E+5fJ6ESXNvtxYODDFjscnkrxZUGXLcDyfz6lOtdTHyhrJN9Hlc+wi+GXKMJC/jGObChxFqPHbwifS0w2JtAa45MlgALkjc+nHDs9xcX8Wd/8edw8pf+CdKXXsT05ENY/x//AQ59338LHDlybYO6jQgkOiAgICDgwGAsqqYqrJ0dqvzzmp7hXgIsd4zkELdUQyHNWtR3s0nzPAqJ5uvEzA7WojtIgsRSJN3wHInfAMDKMgvSIuOJcSWKaru4TwmQKtFqrUgM/6aWvt6jAxaudWIhvKUnhMvdy/N7a+lgWDRAVfrUDYWq3r2UNgtnaTlZ7NDSMa0dLk1omakbN8sdVkK50KGK24nUAsJtnhsDk5KWlsiQiKriGUXA80MScG3frbnRRe2bqcyasDhPLlPjE0DUh21BAtvXLo6GEXPjksfcWpJXI9vuxpyEIOI60pjnr0k4hkHKY1w7mRw1eoyke+SUFg5Vw6cNYCzHoBMoC5m4yDWyKYpz2VzuWU7gCa40DLwqqJV7rzQOgOdqIWMnwnNj4N4vfBJPPPlTeOR3/iXiqsT4m96Bz//YT8K961147IQcsLsQgUQHBAQEBBwYlEJWnDNssjKHSrKH0whY7LDorKhJupY7t4c0z2MsSvqkAjambDzhQDXRObErFFSkE1GfxzUw3uL3jVG/MUlZN9lujcgi+r/VXmHgMKkNhgVV7JUu1fnGahYzi+8Oid1C0z+0+FFJuiKJfOOPCG7WGWZUOpzdksYtMZBZSPdEN9s3tQAkkVe06wYocu5v3TAjOq+l450wOrVDVI3/PiAeYCH3pcTJldY3XnGQdTifjpEaEkVNCdFmPTrZsOC4q8YXR0aiWnPiRvLYSzzJ7WckuqsFT6R+vpbzPEcyibEOODvc3k48EZuK7lPkgFruLjQyfteaIIkVepaMkUDuSCS++LNupKHMVUCvwb2WScB9OxaXOP6hX8a3/vJP4/7PfRxVfwGrf+27MfnA9+Kl+1+HyABvOHbnt/a+EgKJDggICAg4EHDig+5nVBDn6wStFBI659BJgYtjLrDSvb4s5muBdfQFa3ZyUbuZz/fZDWB9AmyWvimHZgUD4r8FcLQnPuJ4O0lOhSBTbb7yfrGhiUElCvRyhwR7UkmbbUeSvpA6FI3B6oT+YUAagYi6GsEndJSWVgMtkisb4NKEFhXId2JRjZVkqoSpVgUnnzkhtw5UiivxgFvwjkEmXm61fDjQkrIpVhW1gagXWkmejVrkExKWISR2JHYQKztpdB7gJIhECG8n4Rg6MlE5vgAc63G589L2WxM7piUTKIqGZHsi/vUGnPAYg5llR1VkB8m8dnrNcDkrO+MAmIbjUQJtAGTGF5DqHRm9E6CWpKYBJsPr61a4EwyAoxsv4Zt+6//Ea3/1n6K/dh6r978aH/kf/hHwvvdh+cQyG8CUwKlDQC+9ewk0EEh0QEBAQMABQS3qYmocxs5cRqK3Clo5YgOMSoNuQhJ6NXnQe6HdWKRRn7E8bzcbcbKsNuiYtWZ2jEwra5LNRw4D9y9T2Str+n2zGDjUM9fVkMI6tgAflSToR/osYmysw8WxnamjGqN2YeTTO2J4b/VmIWq0FLQ16rF20nyk5a/WxiCN9cprHPuCQ30vEU9vbbm/k8r71GeFkeC6L5XSabDlYddIvQR+4lHIGCvLsbXj+JzaZSxJrX4/lu8nEX3VswYsrc6AztB/nkVsDvOZSxxrZLi/zgEvyPm1Ttbl0LoLIAp7zfNbOxYspvDEV0m70Ug8mQ00jnF51kmr78gX/jl5L5Ox9VOeS+t8cegNJdDO4dQzH8E3PvlTeN0f/GtEtsGXvv4v4hPv/T6sPvEteNXRCPcucJ83Sqbh3DO4vXd8bgQCiQ4ICAgIOBBQ1XF227v1b3TVOAwLxpctd83MsrAfOGklbVtkuBEP7PzzndD2H8fGwRrJIK68B3elS4+sWgY2CiZKfO1JM8tprh0j75Y72xVm59wsUg7wFoOdCL2VgrT13HcD7CXA2Yre4qHYFNT/qvumlgbrPLGdtZS2XjltHH271vBzVav7kl+spFmbpNSN7yyoBYhjScnQgjlVolUp1n10QoiNEMZYCKcRr3BeA6WQZLVvzCL+gFlGc+wAtNTaRGVrKeLLxFrSOE4aVqVhSCzvX3IkwJqokUWSigGgqX3qxkIHONKlmr5eME1F912vL4BKstpx1Jqj++uctBp30o5dihNN5CcbxrVIv6j1TQOcV4uI3V6oeT1Iiim+5t/9P3j8yX+Mk1/+Y+SLK/jiX/sB/OG7vgdnj78KvYjFnZyk0QYzSIFTy7ffNnUjEEh0QEBAQMCBQCnxbpr33CbR62JNGKTYk0CvTiwujjEjRXGkbaW3f2eWd2yo+EVm95SKSUl7xJYUkBlIO+YeUy66koN8cewwlf14YAl4dtNhY0oyNUhJcNenniBre2cltO3ugPPE2jqf7hEZ5iZPa+BCTXVwKlnNaq+IlWyCJC9veYutqMLiJoCBP05q1cgkZq0bgcV1lhnFVOE9ua+dFCQKwXNCsPUYzsZvxQes9gbZZioDaO+rsyTsfTkGRsbW7ozYyLqtkO7aAVXlFdokpiI8keXVD6LxcTqxMOJ57qUktdbINhqgkCi5bizNVzZ9LGEEXj/OcWccxNohpH42cdBzK+NKIx7bnkThjaVdvZOxLWdSsGl4rtcmjORzlsdB7wZcDw6dexZv+7Wfwdf+xj/HYGsN5049ht/+2z+Dtfd+J9ajAS5NOZk4NGDnxk7ic7/vXwI6OtO9yxFIdEBAQEDAgYAWFaqipwR2VIpXOgWKxlyxjfZWYfHCUGwFcSv6zQCpc8gSEqJOwiK73awgbNvtsD71xDk2tAPc0wUWOmZba3HrmExxccouc0d6JGHPXPJtwyfS9ASAV0rlUdthazMTJfgGXn2eFNKsQ9I9RiXj3CbiVVZ7Sxb5nOlcMpknEt+WGGBRMpd7qbZHZ0ZyLkrttCQRjoXYVg6wlbdAzFRnR4V01u3RsWGJ7p6q50rStdNfIp7qNAa6BlSRwW1WElNYOV+IiAiIamCitg3j/dgz0t66ZqLIdz+sLJfXCcFAG85EPpN7oUNLhzbiKaToUSP39BzMogkharO0wbaWFg5V3I0Qa2PEeiKnPJF0kkw6ORa1TxTpxSTOy13pOCnEuqw9eU1kUqLe66uGc3j4U7+LJ/7NT+F1H/t1OBPhmSfeg4++5/uw+dZvwrEeLVRrI45vIQPu6VMVX0x5d2WlCxwbHAwCDQQSHRAQEBBwAGCdQ2X5j3WbRDeW3t9ODCSxkRbJnrhqvFlpgaJyeHGL33/wkMbjuVm75MZ6gjKpuQ4DN2slncA37dgqfZe6QQocHwBLHRJ4tWJoykVes4nIpAQ+c46q+VJGAj0qgVeskMBpa+ck9kotzHbFXZtaaCazdiXU1tCL8q++2iT6CXC0y3g842gxGFeY+aVrkZqzGDjSAQYdEkAjBFNV1UnFbOXGUSmNjfeoW82jrhnTpt7kRiYAkIfIsFBOnycyCVC1H5BmMC0inrcKCDX7GoYEOTG+ILARS4pz21XYRNNKDNc9K8iUMfRSnr97FoATA+7PhTH3V7GZA+eH0l4bnriq9z2S85SAxJltyb2ir8MxABVo54m0NnPpdSRhQ/ehAcZiU0nkWJWWkYhl3dpPuT6cY5fCSu0z+/hNJWWOv/r3vhMLGxfx5Td+M17/H34F97zweYyWj+L3/sqP4GPv+gCGxx/AcsZrKMuAlzZ958nDPWZgH+7yeKUR764cJAQSHRAQEBBw10M9nplEnQEkD5owsZA5nB0BowLIK+9xjlok9NKEROhYn+2dDdysbbV6eHXZpnGSqkHCPBQfrwMJ2XKHxFS9zklMQr9Vs6X3pCIBLRqSTws+rkl+9eEe8MLQt02u1UbhfEMPcQHAadFiizTFxjdTMXJcIiPd60QtNSD5GpbsyFc1LDprJCauk1DZXJQ4NoBjWM9JspUoVo0n5WnCdTi3PZu5cfQHu1ZMm3Y3VN+vhaiyYl2wjW9Mon9o7TsM12NVwoU/V1pz2Tguk4o9wsln3YhKaTfz+wGICm2471qMBwOc3QL+5BwV5pmPWcbb9mnLsADwGGZ6N0De0+1YsYfIKZvlN6snuydtyjsJj40WWVYVj68+VxuNMTIO45V7E/tJRGl98aU6U66EqK7wXf/Td+DRj30YF0++Gu/8pZ/Ai69+M/7lD/9zfPrt/yXqjP3oBzGzw/sJsDH28YXLPV7/R3rcn7EDTq0cHBuHIpDogICAgIC7HpWS6Ij+T4B5wpsFicuXc+D8iLfCjdz+1+gvA9oQ8pr5vQZUYbXuSUkJAEDsCaV0i9M4sliIV0c4Qt4AL2wyrk7VbgtPAJ3znl+1YIxLeoaPdtiyen1KIvf8JtepPmfAF5bpADXpASAJHUv3Pdsil3A+Bk4LGCOJetMMOOZnk2D2MxK4Sny1W6W0FhcrgAWf6/idAcaiepeqxLYIZiy2iUjGbN32RjBOVwrMWKUSzLZP2Bm//SSS8+l8IV5iuG1jaDeJDc+ZAZufrMi+FQ2P80QmJ84yf9mJmq93H0pVzf2wZmNT7ziw3QsPeM+0njuAk4JZkWprPUreF1IgS3ncG0geeO3bq1dChp1OmCJ/caYxJ2uQ67OuabHZizDPwzQN/urf/+t49GMfxq/+4E/hY+/67zDYvITx8lH/owDQAZXmQcoxbUoHyuWUBPpwnzGMZ8ecTB7uHSwCDQQSHRAQEBBwAKDd3uLIoHEOVePwlTWqrH1pPXx8ADy4DCx3+Y857RwOF8ZAWvPzIz2q0ClIwCpLcj2txEMsXe6UtCfR5QVwEbxirJ3srD7CJztodFmakCSuTWV7DXBpnUS4FqKpCrOq4bOINkt11wlpLaQBCqSwL5boMy3gS8XbG4E+3KbxanxXlNck4j5v5ZyQ5LUUHbrWdoWcGSWdzu+zsjYlkRrPpvTLwRfL6QQgnVvGwPuqZ+qtrFvzjx045o5kRXcSr2QnYFTeuCRJjkGiPSyA1Qnfy2tPbtHarmlNSGYTpJjr1Pg421oma10DkfGFi4XG/jV+/A7bJ0OpfK+X8twYkAAXjS++1GJIVb7VBaMFhuoHL2pe79dTM2isxbf/b9+NN/z7X8avv/9/wce+7XsAAOOVY9uWS0ACvSSE/5y0Rh+kwILYg04tARfzg2njUAQSHRAQEBBw16NsNAHA4cLI4YUhydA9A+DeRf5DvlkY9FP/HQNgWBjU1kmjEYNBBry05TCu6HWdNCSQhdzCjyC32XtCUtWOIIRR84xLveVvSX4a64vjEngrQ92QoE+FcA0y4HCH6znaY5fAWMhVLQSxblpkDrRJVNaPMTFA2hE101I9Vu+siagoq0KcGpJNAxLODesL5MqWagrAN0JpKcftZigqimoGMmR7Fp5cRrJ8HPtsaLVpmBYRVQXcqsIMFhHGkS8+rBuq7dPKRwzqRKUdPQgIsWxbYOQaiCEkXuwrvVisEbKcERKb6+TEecuIqt9Wzo2t/XlxVlI6xKM9I+bOp3Bomgs7bPoW4w280qwTJZ18RaLmG7H45M3eXQT3Defwnp/6Qbzl//sF/Pb7fgz/4dv/1o6LxaBnfyFl0eD6lGp9GrHI8nAfeOWKHLMaeNUhIN2pfegBQCDRAQEBAQF3NfKaHucsBi6MHc6NSL5OLQOvOMQEjY2ctEktmc45XJrQ7lE0Sg4dntsEnrmAWbMKja9b6bJoURXDJBaS6kg+R1WroMx5EgZDcpkmvlCusfS1jgopzAOzirOICt5GxfV1E+BSvr3ALjWefNYNCZUSQk0NMUJMK2kbnRnmISu5NOD4I4gPuvCFbtWcDUM9toBsD56EqiqupFknFJFpEVDA+5iNt0U0DXOUnZJReFLeyLJqV4mENE5kXdvsH8YTXfVUqxiuxB7wxXcaP5eK77if8NzEhsr0qKLXuBJCXLcK/yLD82REBa8dCyEBzBq0tD3bRoiwjqtN3pUj6ySr7a2eHVe0GvbAb3O2ghsJ5/AXf+5H8Piv/Qx+/zt+CL/zXT+666K9hF7yfsZrRq1Pg5TqNO/2AF/dYD603vk5iAgkOiAgICDgrkVeO6xOREmMHTZzkunlLnB8gQS6aizWpySMF8ZA7Ry2JH0iMSTRSjy3hFQf7QGPHCFpzmJ/i76URiMbBSPjSlU7hV0qmYrgb89rkxAlTOrp7af0H3daXfvSGHhxSFvJPQtcZqVLNbK0tHhMJLrMOCrl2gzFOK9k5qUQQCGZTsakfuRK7AJOi/9axNSIguxa3ue2sVY90InhCiP5rNbJSLuYzl3O91SRVYV22+qdV6wVtaOiq+Q0kjEkkVeblVyqN1x971nk00wKOVY6OaotuwyWcm3U8CRfx2jkuCUAYpmgKLk1kSf0lY4R/g87PIeOX143QsRn+6WTPDknDbYd+puGd/7iT+Dt/+p/xVPf9j34t9/997d5n9vogHdLFlNeV6tTuYMSA4Mu8MAi8PAh4Mvr/N3cv3gLBn8bEUh0QEBAQMBdCSXQSQQc7QOTyqCSJiR5A2zmDuOSPtgzW1J0KJFs05pK71hykmNQUT6zyddFB3hu2CJJrcg49ckqmXMtxbFN8IzzZKzduKRuPGFWS4h6lUvpBJgYFvO9WHuvs3qS65Y6CSHQankoZXkLb43QpIqZ8ulIOrVwTj+LRRXWoj+0eZTuj/HebAfvh1Z/8ywpw83cCLO4OM2y1nU5y/ztbQTdiWrufEScE6I+63Qo41LVH6DFowOxieij7EduaU9R+bdufAGhTmxauznbhvrdjXjOrRQc5s6rym112bT+dF0Ofv1tPVbtGduOUeTTRirceLF5N3zjL//v+NZf+HH8x2/9r/Dk9//krgQ6BiMOBxknresFj2sWA90OIwDfcAI4P+bv5DWHgTg6uCo0EEh0QEBAQMBdiHkCHUcGG7nFllgkupDmFDHly0M94OQCrRmrY74e5sC5CWYRcBtTYFOzfivgYi2KLRi3pgqzM55cA9uVWSV6lRDlJCYxVJ9x7Xz2L0TZrECf8rgELo7YAEWLB9V+odYGtTwYcF+ShLYBTcOwTjrtCWl1kLGKfUK9w0rcNL3C6X61PlfrhJJK03quSrIVcjsjg/PWDnhPeIPtam2Dlh1F1HIr49V1zSLwZBuzSYQQ7E6MWQMcowS08bnRVdOyQOgBFChJbffe0Y6BsWwrrz1Rdric2Op3TXs9en1gO8luK9ERtmdSO0ju9dwYbza+/td+Bu/62R/Gp7/p2/Erf+ufwl2B9HZAy0Y35iR1XPIcdRLeOXnDCemombNId6FzsAk0EEh0QEBAQMBdhp0I9NrU4sKY7y1kbPBw32KEzdwhjR0Op8xufmFLPMwlbRMAlbVRSR9sAqqas9SHyDftcCBJcPAJEdr9Ty0E2kHQwCc0jAqSvp4UY2WxdLWrgAs5C8ryhsR9XHFDsRT7qVVDSe5MMTa+scesqQfE8+3ECqAeZuc9ygZU5LPYf6b7pBKqAwD16EZeXW+ncjROyKaQ9dhh1gjEWaCaU7MjVZWd9wfPJ2OolJ8YX7SnhLSyLTuHo9KcgpMIWGAoxNm2lOX51Uvk83yK3mwC0MDbJ/K2hNyCTj70cWZJETW+bX1pE+j2d/X7taWF5Hbhzb/98/jLP/n9+OzX/yX8i7/zC3DxFVp5AuhL9CEcVWjr+BtZyoBHjwLHBsDnL3Fidt/izmr2QUMg0QEBAQEBdw3mCXRkgPXczQj0oR6bpsAAl8YW58ckqY0DXtoCzo3EC1uQ4BzpktC2Y9Nqy7zjJpHkBbUnCGlOxT4BSDMPK1FyoD2hbHwTkqKRIraUNoLNXAi79UV8cGL/SLmNpYwFWZNKUjr6sryoq9OW0hqDpF9JsarXmqqhpC6S5WZqrniAa9m+qthtpTUCCWtjhQS77aosIBy53v6d2fvyZCdvtH6uarX6sFWZtcY3NXFzbNhFLf+12lx2uV4MPNFx2Jm0XindYpvdAn4yBfiJiZ3b/k6Ktb6vRP12Ia5K3PelT+GRT/423vmLfxdffNM78Is/+q/QpNlly845bbDY5YRufeojJfsZ8MojwGuPAc9t8lw8vIJZV86DjkCiAwICAgLuCswTaICd9sqGJLWj8WSOjR+GJYv/HHwL5NqSHKx0gXsHPrEiikhwNwoquIWlBcKAylpXLAOazKF2CQMS5WkFbLZi7YpasogbKtyzhAbnfcXaoEUftfPf0T4ARwW7tECUyxjB7y5kJJCJ3ErvxJ48W8fvWMfINWP4ftEA4xwoQItCo/YPbCfFEbxiC2AWr1a7nYnhntiF3SohVXLd7LJ+JXJKzq38p53m0V52fpMOtMtcDWZjaz2qNaNl+d62jTsVva11PPTZj+KhZ57CK57+CB74wieQljkA4Itveid+/sd/ddZ9cB7z+9WJeU2PK7ECRcC9C8DXnGBn0GHB1/304Ns4FIFEBwQEBATc8Zgn0LVlcxLr2CJ7WjHGbnMKrE9IAOKIXs3KUQ2+MCZx7CRsErFVkux2RHHeyCXazDGd44Fl+cz5grxGVNxpA1SSgAEAEKI6KkVBtmJ3UI8wwDbMwi8SI5YEVbZjqt+wJORbFScCSmQyaYLi5HMAs8YgtVg3tDGLFR930whBxZUJsKq1mmyhdo15gn09mCe4+yXkuy2/m9J7tWgXAba10xu577cMzuHwua/i1NMfwalnnsJDzzyFe599GgDQxAnOPPw1+Ni7PoCvPvYEnnv0cWwdufeqVm/AOoLa0RJ0ZEAC3YkZZzdIgRMLLw8FWhFIdEBAQEDAHY15Aj2tSXiTCDjeB9KYnug18RfH0vp4sQNslmz3Pa28dSFNWEToHBXsRorm1HPbS4F7Fvl9TZ0oa6Aoxb9sgWnhUx+mQpo1UzhxkiNtPBk1jo0p+gm9pZnxqQ+N+JK1c2DjJKKu8Qr0qGQb5xZnR43rJ3lKApKISvlOqRBqadBtzft89zOG201G5ZLYRpbbBP12WiyuFVFT474v/bGozH+IU888haW1swCAaX8Jz51+Gz799u/Ac6cfx/OPfB2q3mD/65Y/tb9koNJc1LwLs9IFHjnGTOgvbXCZh5YB8zKxcShuG4k2xsQAPgngjHPuXbdrHAEBAQEBdy7aBPpwz2GzMJhII5LDPS6zkXMZOFodKsuW1YW0dR4XmHWSy8Xi0M+AY33pCBjROrFW0H7RB3B+i3F3pd2e9tBAHiWtwynjND5xwTgfIZdIEV8akTRPG2A6biVUaMScFs1FQJ6zNbXaEPKr9SPsgrbqqo/q3y3sdqLb9v/OF8i1cTPIsXqQZf6yI1Fvf7afLGUlybcqNu5moDMe4qHPfnSmMj/0+Y8hyycAgLV7HsKX3/h2fPWxJ/Ds6Sdw/qHTexYK7oadvhWBd0eMYYHsQ0vAnzkOXJyyUPf+JaD7MrJxKG6nEv03AXwOwAHtqB4QEBAQcD1oE+iVrsNablA1VIiXOwZ5ZXFp6slyHFGxXZtQNTsxkOI0AxzqkPwOMuCVh9gOvGyAS1NgkkvRXiUFgRG90dZKEw31DjufbhFpx0KQLKsVQj3KgwRIUwCGbbk1LUPbdlcN161NXmpLhV1bgO+HnCrRjHBloqvLqddZieeVuPntJJtagPdyx8qF52nNEHvGiWc/g8ha2CjC2Ve+AZ/4C/8Nnjv9OJ49/QQ2j91/Q7Y5n2WtqAFENSef9y0CbxAnyNktYDEDjvVfXgq04raQaGPM/QDxIc4SAAAgAElEQVT+EoD/GcDOzdkDAgICAu5q1NZhWGgkm5tl/kbGzHKW9/pLjEMvYbJG4xwWMpLmL44cRiXtD0sdEq9JTc/muOR3BylJcj8BTq1QSVsfk2CvTalYx4Yqcd0wtmsqRFrTB2L4wr8k8h7nQhI4kojb6Usr5BQkgEXt84wBWaeo2hrZVsp28oZWDbWDzJPhCJITLR/M2yr0O0qAYrSynUWBN6KMV3Pf3a8dI+DmwjQN7v3qn+DU00/h1DMfwalnPoKViy8CAIreAp573VvxO9/1o3j29ON44bVvRdG/8a0AU4jCL/amNAbGMpupAfQN7VSvOQqcWDT4wqpDFNHS8XKzcShulxL9jwD8bQAHvCFkQEBAwMsX61OHl7YujwADnC+4i7Y3KQFa2cYOGFngpRGXXZY4upEwwaM94HDfN/cotpgcMCrpaz43oZf5viUS1Ysj2iSOOPo6DZhnXFmS77ymytyRCDuNjYMU79nGR6rFRuLuDIsRL5ZAM/b2DBgpRhTF2TpJ57C+EFAL/uaTIOYR8ZDNlp3vsGfmXjv4LoJ7FcddLYFOyhwPf+rf4ZFP/AZcFOHi/Y/g4gOvwcX7H8Hw6MkrNusI8MimIzz4uY+TMD/9ETz4+Y+jO9kCAGwcPYlnxZbx7GNP4NwrXg8b31y6lmF7I6E0uvzaWMyAB1eAR48BZ0cO04oEupO8fM/5LSfRxph3AbjgnPsjY8zbr7Dc+wG8HwAefPDBWzS6gICAgIAbAescNgqqWScWpEhJs5Otf141LNBr/4MdR77RiQO9y0d6JMKTyuBwl3nQXelnvTqxuDQBvrRGAq25x+e2AEQkyKsT3npW9TiJPVGOpXAwAu0e4xpIG6rPWvhXVCTbmsbRVnojLSQUBqsJHhZ+eQtJ+Wg8EY7g24fHktaRizWlnWesanLbvgFcntesivSNtmL0ttbx2o9/GKef+hAe+eRvoTMdoeiySK2Tj2fLld0+Lt336hmpnj3e/xoUg5e3c3Pp0hkhzFSa7/3ypxHbBtYYnHvF6/Gf3vGdM+K8cfxB7NZ6+2ahAW1PpnWdla3ZWgbgvhXgjffw/fMjTmqP9l++BBoAjJtPMb/ZGzTmgwD+Ovj/iC7oif5V59x37fadt7zlLe6Tn/zkLRphQEBAQMD1YqtweGHo0Fj6jxtn0Mz9cxNLgxMjVLCd/ds4Wj4WMhYRrolvuZ8yGcA5Rslt5g4XJkzbeH5ItVhTM4xjEdS08g1OegnHk4pBuGq4ng0pREwiPg4yEmNtVw3nPc+pDNaIulyqz9n5xiIzsutabbThm7REhu2qOzHQj2kFKUrg/JgqcntioT7medW67XGu4Um0FuZdySe9F1bOP4fTT30Ijz71IbzyT/49YttgePgEPvu2d+OZx9+NL73xz6FJMyytvoRjL3wBx178Iv/k+aHzzyKyns4PD5/YTqzlcf3EqZuust5KRE2NzniIlYsv4KHPPoVTz/Dv8LlnAQBlp4fnX/f1ePb043j29ON4/tG3IR8s39IxJpC7MDpm+PSSGPxd1s7/FmsAiwnw3keB1x01+Pwlh8YBrz0KZPHBJNHGmD9yzr1lz+VuNYnetnEq0T+0VzpHINEBAQEBdxcuTRxeHPLfl/sWDRLJQ04i7y3eq6uZc/Q9bxYknbMkDclitvJ5L6FV4+kLJLKNkFtjgJUOZtF3kNcrXSrEZUN/9ETi77RhSd0Ayz3aTACmaqRiO7EQNb2mp7kRe4amayisvdxK0Vatk4hEPtbCQscUjrzZW0neqanIdcM53PvlT+Oxp57Eo099CCe//McAgPMPvg7PPP4ePPP4u/HiI1+7b7tGXBY4cvbLnmC3iPZguDpbrk5SrN77qsvV6wcewWTpyC1XZOOqRHe0gd54A93xJnqjjdbr4dzrTfRGm9teqyVDMTx8goT5sW/As6cfx0uveiNskt7SfYpA21E3FstUBOQFMG19Hos1qZ/Q71/U0oXTsNbgngHwvV/LSd7FCYtzV7oHk0AD+yfRB2f6FxAQEBBwx6CWwrnFFDg+uDoi5JxDXrMZStkAndghi4FhYVBZEoFBptnKBksdh89dBDZK71Ue1VSxFzr0SXdjtYNIg5KG71eNV8TLhu+bVps86wBjgan4mZtWsaAx9FB3JfO5Eb90aUmUrSrQksKhHnDNJa4q325bLR77sWLcKPIc1RVe8Zk/wOmnnsSjH/01HD7/HKwxeO7Rx/Hr7/+H+Ozb3o1L97/6mtbdZB1ceOhRXHjo0cs+6w9XSaqFWB8Vcv3a//ibSKpyttxk8dDMDnLxAXm8/zVYPfnwzl32nENaTD35HW+gN9qQ55uz9/3rjRYJ5uusmF6+3vZ+RTHywTLyhRVMF1YwHazg0smHZ6/zwQqmg2WMV47h+de9FWsnXnFLJwJ6F0KLSztybVeQSd8ObdKziMW53YS/j6rhBG+hQ1J9cQKcXGRqzMUJoyUPMoG+GtxWJXq/CEp0QEBAwN2FFzYtXhgyDuvUyv7+wW2sw6Ri4WBjAQeHWCr7rKQFLKRAN3HYKoCzIyGyMfCR54AzW7R7dAywUbERSxzTE92JqWgXDVXlSpTnNJJ4OyfE37ERShaTXMSGcXZWZGVnthfyVUK8KytZ1MKCY0PrRiTEmfvHR71NrlDVupnzQt8MdCZbeM0nfwunn3oSr/34v0V/tIEq6+JP3/ROPP3Ee/C5t74L40PHb/IodoZpGhw6/yyOv/AFHD3zp9tU7OXVl2bL2SjC+vGHsHH8QWT5mOR4TIU4qa8cql2nGaaDFU96+0t8nL1eltfyOFjetnzZHdxydXwvmLk/9evD+aLetjVIPfiF4+9iMQOWpBZgI+e1udjhb3chBZ6+CLzlXuCkuE5eewRIDqiNQxGU6ICAgICA24LGOhSi6Pb3cee6bGjLmFaMsVNlNjKAg0EvBbqxQ2mB9RzYzIFLEwAGONJtdQYUq8RUmqNo1F3jqGqPKtoukPhCwKJmO+4egLIiUTegAmdAcl3Vrdbfjfcat5t8RKBVo11waCIfIacd4LRNN5wozy3v880i0Atr53D6o/Q3v/pTv4ukKjFeOkJ/8xPvwRff9C1X1c3uZsHFMdbuexXW7nvVZZ91JluXE+tLZzBePopLJx+eEd58sILpgijFAyHBSpAXVnZWsO9StJNZlBy3MwudXI/aPTOJfeMf55innsa0Q01q1hVYCyz1GAn5xAPAf3pJJoLgb+rhQwefQF8NAokOCAgICLihaBxTJmIAvWRn1c45h2lNf3NRO1TaAVAIAPOkSbCHBdenZLNoaNU4KSGp45pKsBbb1da3256Kd7myACwJxD0DkudxRc/nICXBuFD7POe8Jsl2LTUP2K7oxaDSHUnknYlk3JBkEUeluhGFu5EcaDu3rpuBY89/HqefehKnn/oQHvrcxwAAq/e+Ek+9+3vxzOPvwXOnH7+rCvqK/iLOvPpNOPPqN93uodxWzBPnRH4nbau6kXzzRFJushQYxGw7b0Bb0zAXW5S8t1nwLspyF3jlYeDNmsIxkWvWMCVnKdg4tuHu+QUFBAQEBNwV0KK9TqJE1M1yn2vrsFmwoG8sbbbrlnc4jvkPvxHbRGyolh3u0bNZ1WyKYsAip0bUtqLmc03iqBumXTSQzoJCql0EXJjwcyeFVJFhI5ay8SS3HU+n2NbMBBI91/oObCvVALissPBmwjQNHvz8x2fE+diLXwQAvPCat+A3/8bfxWcffzfOnXrsjrMiHHRogkp78nQ1UH+z/h4MaC9K4CduzpBMJ5L4kora3JO7LXUDDCv+btTGZC1/a1UNrNVcJouBQYff+9MNEu1JRaX66AA4sRCunXkEEh0QEBAQcENRiz0jAnBm6GAMye244j/KmoWsSR29hMpyP+VrGN9S2zn+5VLUdGHC9S52pL12yn/8NS1jXHgyvFWRNBu1YgAwDRusaBZ1J2ER4ub0ym2wNX4PaC03z5BvcYlRUkzx6k/9Lk5/5Em87mO/jsWNC2jiBF964zfjD9/7g/js277thrWDDrgy5hVivRSupX15AiHDbdHXyR0PyTdvhAQn8Eq03r1pGuaar4qtqXZ+0qcE2xhgmrOZkW7zngHwZ+5hV8ItSa1Z6frf28u4p8quCCQ6ICAgIOCGorC8PZxEQK+QSDhpd90RVXkhZcJGLwGcMShrJnIUUqRXCftw8IV7Gmf3wBJJdwQShI2cBNo2QAnvVW4cEEvUnW29F9W8PV3W9Fjvx4t8oxuYXCv6w1U2PvnIk3jkj34bWT7BtL+EL3zdX8Azj78HX/i6/+yW5w7fzbieuMD2xOp67jzEILHtp5zUGed/B41ttW+PeI1H6nlupEGKSt1yt0XrAyJZb1djJY3PMS9kUplIh85XHQHecQo4vhjhpaHFC5u+UVLeSI1AuItxGQKJDggICAi4ocgr/vVSEoJEFONOysQLjX+bVCTbjXWw8C3A+wkQpRLFJXaNqgEOd6mSGWOQ1w4bpdxyrn1TCCXQEUjUy8YTBoDL1NfKdm4TDp39Kk5/9EM4/ZEncerpP0RsG2wcPYlPfsv78Mzj78FX3vB2NGl2u4d5R2OeLKtavN/LYCeV+VonVupl7iW0KMWiHucSu9hYfw3P/M3wirP+pcb79hu522IgvzlZxhn+NZIeAwCN4foTWfeDh4BveBBY6hl8Zc3iMxf4u3loRQh5AWS71Da83BFIdEBAQEDADcWwYBqGAfOVVzokzpAM5VxaXycRiXY3MfRBgwWGUykUhKNVo7RM1uglXPe0pl0kr0lABqkv2gO8d3RS0XoxT3bUpwp4IrWfBidtAqbfv5kK9cL6ebzvx/8LnPrsUwCAs6cew+//lb+DZx5/D158zZuDv/kqcDXOG7PD5/OFpdeCFMwr70Sc1BUNsF5xYqfr1YLANCLB7sStqEQhzRFInIuav4HSbY9W1Jb2qQFSJenWT0o7DqgkE3qpA7zqEJ9/+pzDFy9xuQeWqURHlr+vbdaSgBkCiQ4ICAgIuKG4MKYH+nAXWO5IVJ3zmcmpdgCUOLlR6XBhRPJcN3y/k1CtG1f0Z8KwGOqCeKs14zmJgbIgoVBo/NxOflQzt8x+4eae32whe3H1LN7/w+/EysUX8Ovv/4d4+on/fMfot4Abjxt5bhPwmjdy0UwaYDx34aWGhHkhY3OiTiLXp6TKlI2QZgs0UgCrHTZNzFzzNCXhTlqdNYsaGEmNQKOpN9IPvhG1+t5F/ibODIHnNrjdh1aAYwNRqhPeGQp+6J0RSHRAQEBAwA3DqLS4MOY/8lnMx0jaB2u87LQG1lqFhgA/66dMB0glX9mK33mr8N9rxOuZxXyvspIGss/xXS15vh1YuvQSPvDD78DSpTP4Z3/vw3j29X/2dg8poIVZSkbrT5vwWJksAuLFt96eoUjB63ehAyynjKCrHfPNtypgrfBeaG3w44T4Ns5nqHdEZdbkjrLh5LWWaEUrG9WEG80wT1Pe1TneA153D7f1+Uscz2PHSaKz2CA2XOfFSSDRuyGQ6ICAgICAG4KycbiwxSYnBlTWjvV9zJbmL+cSPZfFtHpk8g98LjaOkeRCbxTSQQ28zd1Jefu5l3ifdN5cHkV3N2Pp0hl84IfegaW1s/i5D/4Gnnvsids9pG2YNY0ByZmTSL/5RAqLm6/W3who3rc+j8BJXwRRkCEkVYr2jJHccCHG1rK4T9ehKRmQvHEr652pxUbW73jdXiiAWrKYXStFwxhv0dA4xsSwpiCNfXqHEnf9fen2FjOS7EFCS0c/pS3jyAA41OXrhYzFtZ94ieP+2hPAgysGUcsmVAsTDyR6ZwQSHRAQEBBw3XDOYXXCW86ldCtMIxYYTqSxybQSwmuk8AnsPqhpHEqKS1HRrKNneqXDIsFElO1hwaSOSSnqXX679/7GYPnii/jAD70DCxvnSaBPP367h8SGMmIRiCDedohFxzAtQgmgFsM5eDVW3wfEty7nVXOTbybRNnOPceszJauAb8NupEivllsVptWdsj3O+fVC1OFZILQQbWOk+E/+4ICpGPCVhKuqnERC2mN+3limcSQRLVEDIcFpwu9Wjtd/BUnsiPg7We5wornclQjHFFhKgZWeFOy2urIMc4tPnOUdntcfu5xAA36CGgf7/Y4IJDogICAg4LpRiO8yr/iPexQBLwyBr274RidxJP/oSJKGEmct7NNiw07sfZjOsUjxwpgKt/o7Dfg4KaUI8Qajt7WOtJgirgokVYG4LpHI86Tc/l48e7/c5f3t35+9X5WIK//+8qUXYZoGP/fB38Tzj379jd+pfUCV2VSa3qQy2Yljvm/hfbqRkY54BkgSSYOA/ClhFquB5n03wkpr+DbqswY1zkewtYnrtcTHifV39n20Xuvn+sGMH85dR23yrepwHLXsGvDXrTbbmRFy40m6RizC+YSNJJEiw1Zus3bajGQC2omAXsbltYHRVLpqAiTUSylwqAPcs0DirMQ8ic2MeEdC6msHNJWT343DZy5wYnv6GHDqkCfQznGZ2vJ3nUQh3m43BBIdEBAQEHDNsM6htsDqxOH8CPjKGlXnLAFeGvF2ci8DjBCmQsiVKnC9jLeoDWgDqBsWRG3k/EfcOt4yd6LWpQnQc9xGXpGcJNGNtXS84xd/An/+53/sutdTJymatIM67aBJMtQZn9ft99IOiv4i6qyDs698Pf7gL//3OPOaN9+Avdgf1N8bC3HrJb4JTSaEsXK012hqStNitaUDJgBQCUGEV1UhNohIfBIOUtjm6AtOIsCJPKwkzzl20XPgcm0lWydbbXW4Te1M6w8Qa4bxhFatGUpmAf+ZLhtHrXbure2oil5DVGTn7ReQ4+eMjEkeNSlDi/26CZuWDKQIsDG0NuVyzcex+KXFqpFFnIRYcFK5kHGMWcw7NMsdZq3DkezmNT9LEyAxDtPaYFxCCLHDRLp56l2hsgFedRg4PuDdndrytzz/Wxqk13BhvUwQSHRAQEBAwK4YlY5qWWxQW0bQqf1iWLhZosbZEf9RPidFhWikqxpIyAD5x19aesPw81zaeNduez5uFlOpS0WZTmKgrIDVCXAuJ7FTUnUjLQGLq2fx5/7fD+ILb/4WPP0N7yXZTTN5nCPB8n77s9mySQbXunV+JyKGeGwlUzgWMllYYFr4JjczIuvEchBRfY6Mt3JU8OfPyUlRwqre4jQRgmp8BJsqs227gHbZqxsfXag2kKZFrC18C3YlwJp9bCK/HbVuxHLd6eeQfaqtkOOaE7nSAlXlVWYnkwHnPEFPJKZOVxOBSRZx7NtvZxEnkcvSXCiNGNU4zNl5cyr7l0hR7UIKLGX8rhJq9WDnYi1JZZ1JzEnNWCYvmjc9raXtvWPn0GnFOzh54yc/2q3z3gVaQDYLsy05p5f4iRC7igYVejcEEh0QEBAQcBmqxmGrdDg3IsnoJg69VteyoqayFRkWJ01rKs2T0qt0MPwHfWa/QEtZls8jKZiKYxKBRMh1LeqatgmvGt9I5Wbim//FP0BUV/jXP/jTBzZSTi0bqrSW1pNEwHuW1eurBDSS89T28CaRV6Cd8Z5itSboo3XAtPTKrpJPbVUNeS/W6yESMpkCsfiVNSNZ5eZIrqEYUtAHXjcz60Kz/bFNxNVW4mRdMxVbLRfiZ1bWbIxX0du5zUo6u5J4oQRUi/8aS9//i1v8LRRKhg3j7A51gUM9yG+L4ysl2m5Y87cSRRKBl3C804pRdzNriSNR1v0rxSZVOzmeEXC4z2LD5Q4f08QgMRwn86cDUb4WBBIdEBAQELANjXU4N3Z4acjbvPcs+DbcERyGBbA2BSCe2NUpsDYh2S2sFJ2B5NpEgC23202VRFnri7lmBAdgYRVufavtpUtn8NYP/yz+6Fvfd+AIdASfWayxaFHrQ2tJfm17eVlAyVqkpFImOJDzO0vsUHItDUXUBqEkurGSZuFoZbBSYKd3Ewwwm1hFuv7W9mNQgVXil4qNR2MO29vS4j6HVvqG8Z77TL3J+ij7qrFwunxkqCh3pLvgYsa/nlgyjNhdipIFtJOKx2YtZ8rMtObYjCjvh7rMTz++wPWp17mBJ/vF/9/ee4dJdpd3vp/3hEqdJydJM0oogJBAARAYsEnWei0cMDasMdhY19fmGoy9Fwzr8Kyv1wHb12G5tjHI9u6yBMsGAxIiCkSUkISENEgoSzOa3LmrK51zfveP93eqqnu6e6a7Z7p7Zt7P85ynqk6d8KvTNTXfeuv7+74tfU1hoOfJHEw3VIx320SCrCOS86q7oLaPcqRWj56CPi6ER08aNJaPiWjDMAxjBtPeLwn6c/FITf8znq6pD7mWqNWiEsPYNOybUCGU5BVnpwLaAWGmgioXX7lnNPE/92epF1N0fqKHmeJnpXKdX/6RPybIUr70hveu0BlPLgGdSYJBXm0NVHxJ4CcJpvo3cE7TIEJmVprzLnn53y7F23TEC+BUrRB5E49GBmHS2S+OoOKrynHo276LP47rimbziRNJnszixXX3JNJ8+1rSEdx59TxPwChEM4VyseCb+0hngl8uvPE2jlzBR12CtOC94ZH3OucifaQG+6td1d48SQM/pvwLh1NL0lBZ85fX+5b1cajv/WmfLtPwaTTTrc6kwbaodzCBF9MRDMX677ASqwDPJww2s86XjUokvgsoJppXABPRhmEYRhvntKV2I1H/8aGqCuZSCOvL0Ii9sACeHofxJlSK6tOc9pP9aq5Tbc4FXHeiQe6HbiUzLRq5EPF6+7j8zrlMWK7NY+DQHq757Ae569VvZnTrrmUebXXIq82VWJc47OQe5xcoz+rOBaDkFV6fBhFGKgCDoDOJr9ueAfr3L4YQxXPE2+Vfjvwf02VQR/3sQdKV/OE9w/2l3Hfrhb4/VuI6jUry6nKSW3pyy0PamQSZH0P8mJuJbtNM9T2ZomNpTzCkI1aDoNNVMLd7NJowkZ8bX9XusinlXTd7/MTYUuwn9QWdLx2FsDMfoJnBnkn9d9VIOpaS/MtBMfS2EP9aCr5T4EBJI+tKkRCKTvyrJ9JuPCSoj9qE8+pgItowDMNoM92CVqYTBqtN73duwYYeGK1pBa8cqcCuJ/offeZ0wlTNt+ju6sBNmnbEWL7MRy6e8/uwcDV6KQK6d/Qgg4f2UKqOUZ4cpVwdozw5xoV3fwGc40tveM8ijra65AX+SPRLTm9RBZ2Triqyr742fQJEPenEDfYU1GdbLqqAzFMl8mizZqp/vzDUbUsh9JZ84opXD/lE01rLt6XOugS3/4P6InWncYnfr5nCVDIzW1p8RTj3WbfbVDPzV4qSF5ktby2pJR1LULfPOvLWhzyiLww675fcgpLbj9rV5Nyv7zo2jMgnYpR8+kX+xdC5zkTbpn/tzVanQt0twHMfddG/qfOuhT1egOfe856CxtOV/DVu+E6EtUTayTa5aDbhvLqYiDYMwzDaTDVVkDQT9Xi2HIzWoTilFeeBooqxXEzXExirQcNbOFpdxzqWaJ6L3F8LHfvAfCxGPG979Lu87GN/ymW330SQHT2qNIz44n/6HcY2n7OIo648MZ0Ytsj/QpA36Qi9JSPPHG74pZV0RGwp6sQO5iI1F84t12ncEQoMek/tYFmXvlgrrjjI/FcY51y7o1/qJ7XlE0KnGvp4stXxW+cZx47OBMK8KpxXecm63juuY1Uo0BH6mZ98WghBfPU8rypDV+Rc1/4h/jrR+cLm8nN40R7lv5zkXu8AjWf045lOIPHZ5N0e8vaXPm8BKfqYusj7w6Ogs1HsJwrmYxW0xXaloII6FE3TGK37Lz2uk8BRjvTYJpzXBiaiDcMwDADqiaOWOKoN/3N/qpXNbf36k/GWPhhvwMFp/Wm8UIKJpoqvQDS6aznM9kUvB0lTzn7w21x8xy1cdOctbHv8e9Qq/dz+0+/kiWe/mFrvILXeIeq9g0z3DtEqVWCNCpOYjg0m8haNSLQiGocqJEMvyNpCNul4l3sKWvEseXHcyjqWiaaf9Bk4H6vmU1LySmjFWwUivx8tfdwbOcJAxXRefQ7yJIlYbQhZr2tXZPMc44b/ZaOVdYRwXqkNwy4vtrdX5K+plXbi7TL8tsysOudCOJ9kF0mnkUleGc+rx851Jljmlec8WcTl5/SvK7eoQCc9JA47gjZvxR0HnXzpUDpf8prelxSHM+0kglCMNNquEDqamTDRmEM4+0mMJpzXHiaiDcMwDECr0ON1nUxYjlUE9Bd0QlQjgcdG1NJRbemEqUMTsK/a+Ql/eqXjNOYhSFr88rtfw3n3fYU0CHny2S/m07/y53znNW+h3jOw2sNbFDGdfOWCr0TmDTti3wa9kXQadrQyFZ89XT/3F0J9Lrd15M00BM3tDkJvWejyB+cTAfMulIkX5AIcnvbnEYjFUfBxbgV/nLxzoaDryCPa4o5PuenH2kg7Xuc06/irnfO+46ir2o73RnvxnSQdwR2HHU80fv/cS50nbrQnFHoRnfuuc193LqTzdt09+ZeUPLYu6Mqiltx+MlPYOuf0i6A/NqKV6IzcruGrzjGUY0eaqb95tC5HCedSePTxjbWFiWjDMAwD5xwjNcdUQ4VPIdCKWJLCo8Od7oENP5nr4JTG2uWT05Lk2OdYKX70Q+/hvPu+osL51W+m3ju44mOQBe53e7m7n0tmbVf2vuX1FdjSq9FoocCk7+g4lbdB95XlStSJYiuGtFt0t9JOBbQUa0U66mo3Lejj3rgT35Z3zRPpeKm7W04XIxWcjVTbsmeNjhjN7Rm5Jzv3Z8+wbPjnYlGLRZZ4Ydvlqc5cR7jHohaUYqy2kp4I4nInsaOVaQ51I28G5K0pmXQyobt9zCKdqLxC2KlaR12CPBfMjo5nPMfhj5uXyz0Bndfmgs5EySjQqnM5cgjQSIXDVWl7wctRd2yeCedTBRPRhmEYBtWmY/+kCopNPfD0qOY/59nAgyXdrp5oNHISU+4AACAASURBVNdEs+MnraczvdCryTU3f4CX3vQXfOP6X+NrP/WOFTtvlytgxmM42jfbPUFOZj2X0xdpGsqmHjhrAMaa8NREV7XZbxcLlAr+i4/3+zb9RM/uNI1K3EmxANqZyX3+l4bBkoq8Qugbo/gmN3Wv7Mux/vow12S2vPV7M3XtCYONpNN5MPPCmC4hLd7HXY69z9lbNhqpdvJrtbRq3Y6AS7WzJbl32YvdzPnulVnHztGO6POWj7zzZW65yFMz8kSPvMrd/XdrL25mgxdZ6I/m/7bitLKuTYSESuQIA0czFcbrHeGs1WgTzqcyJqINwzDOYDLnGG/A/kkVXRsrKngeGVMhJIFWIKerHS9uzUfgJSk0Wbkc54WIGjVe+9//L66+9R95+Hmv4DM3vO+knatbIOe4eW5nb3M8kyGLaMU4QSMEJ490tbiWTjJGEHSEc9uq4Su4kahVI/fsunwCn2hk2qaKVrjLsSB+35qvcOd2j9iL7NwSMp/QC0S8iD/a2pBXllvdt2nXFwzn2pXrXADnExUTp2PKs8kbvplJbl1JveWj4n85yavnuU+8042v01Gx3Y68i9x2IXQq851c7YXFbXufWfsLzvutHdWWtJukVHwjFBPOpwcmog3DMM5Q6oljtA61lqPeUgEdh7D7AByc9E00Mhiuqm+2GPpJYr46uZh0jJPNyz/2p1x96z/yxTe+ly/8/O/hwvDYOy2R7tctXUv+eL7rIsxMHskFV1t4eytET6ljychFYRT4iXV02qQH+OYjTv8ugm7fW/L+XVHhKKhw3tgDm3ugGAVkzmmySlcCBOg5e0t5XvHyRJ6IaPU3hPKs55LMeUEtR4nsnEC0295giXZGcrvS7W0bBW9NCefwJwddwrZ9cWeL6K6fEALmYp6/pujEwLaHm86ERc2a1pPkEztLJpxPS0xEG4ZhnGGkmVafp1sAjmaioqy/CI8Mw8NjnZ/xc4GQp3Xkv2ZHgVbwmqv1ImZx6Tc+yePP+SE+/+b/esKOOVtUzZY/3Y+zrtvZwjro2j4Itcoa+HBk8b7jXMzFvlLcE2slNvQT2pBOvnCW+XbSqRfOoVaMewsdD2/gxdv6sn45KseikwQTmJh27S9C+US2lc4cjgJRa8ksFZLm4joX1e2qc2dcQQC94Xy1/hxpT/DTroay8M8Ex2BGlbnL1pE/zjOnuyvZpQiKkYnm0xkT0YZhGGcQ0y3HWF3FRU/sGK2pB3VLDzw1Cg8dgcl6pzIJKgwjfGUaFQyNbGUr0VGjxtDBpxg6+CTrDjzB0IGn9PbgU6w7+CS9Y4f5zA1/esLOV/I/vbctBqjgDbpSIvIc49A/l3tsi5FPqaDTLdCJb2/uUyPyznv+EFrF9JXYYqBRgsUIYi+MW843v/EV50Kgmd39RRXXYeD/pgVN7xgqqRDPnFBPYLLaqfJGgQru8jFsGqtBGEg7rq+b3HedN3dJMvET+2bbKGaKXeiIXGY9171N/jeee5u1c32MtYWJaMMwjDOE0bqj2tTKZX/keGYKDk3pxKvdh+HBQ3BoWn+C7ib1Sy5EWixOQIetJoV6lUJtikK9StHfFupT7fXFWvWobYq1SQYP7WHo4JP0jxyYccwkLjC66RxGtuzkgfNfy/C287njul9e9DXJX+rs19NX1DQIwU88k87kNeh4ePNEh9xSkP+8j+uaUCg+nSLyiRSBiu447LTcDgK1VozVVEAL0Bv6yrEX38VQxfFgUXOfIz9JLwp0gtpgPmYH9VQ4PD3TpjFQ9JnPy7RprAYd3/Vqj8QwOpiINgzDOEOoNqEYOSKBBw7B0+O+6YaPKRupqwArxjp5azaLjYF+zu038bo/fyul6cnj3icLAhqlXpplXcY27OChq69jZMtORrfsZGTzTka37GJy3RZcMEfJcpHM9WWghLY5L4adPOHUi+LcVZBHlzUyf62atBV5Ow4tr4B2adbM+2PaCR1dA2h1dffrjTXKrhSrJWN9Wb3BeSKFcyooewoabScCzUwYremxVsumYRhnEiaiDcMwzgCcczRTR60Fw9Pw4JFO2+VqQruzXBiomFtu35Rzdn+Tn/3jN3Fg13PY/aLraZZ7aJZ0aZR79b6/bXjB3Cz1kMTFo+MTThJdc8rybtMEaHvzmo9oyzVuIFo1znOLJegcQ2YdNBfKTnxWsbdgpPlEQtexcEiXoE69J3pDL1y4Hrb3es+0fy5xnXSOvEuhc8KUzxfMbRo2ic0wVgYT0YZhGKc5aeYYrTsOV7U19/5JjQ0rxzBR8xF2ea6w05zh5VCqjvOGP3wD4xt38KH/djPTAxtOyOs4ERTRuDeX5U0wtJJbT7TjYoR+iRiu5q2WUd9tHhHnVXc+eS+/BdqtudsNN/xt9wRDEf3ykregbnuuvae5FMGVW7W5ykhNfyEIvAUklk6r6tQJaapieqCo+8WzfTiGYZxUTEQbhmGchmjlWa0GozXHRB0eHdEmGkkK1QYcqUHqO96RN5xwy69C/9jf/SYDw8/w/r/8+poR0IKK2hQV0AGdBiW5KBZUrGZoRXeg6CvQQec2b2sdBr4ynWcRS2dd4Bt9BK7Tljrv2Ned3pCPK5/E1vTdIPtL2lo7F9C5WI8DIfApHXmTjvAU9DcbxumCiWjDMIzTAOc0GqyRqHBuJlBLHFU/CzBvWFGMVECPNDThIY4g9DaBWhPqyxzHRXfczNW3/iNf/tl3sefia07ES1sWEZ3osbz6HIt6i4sR5F3oYh8NV4pUAL9oB5zlu4V3p2jkd/L7x5vg0G4i0nU/r0znyRDTLcdUE6YaMJ3QbtDRU5C2t9lsGoaxdjARbRiGcYrSSh0Nn6PbSPMJZ47UeXtG5jOGHUymalMYraqABo1wq3vvL275mc/P/9w/8dr3v539O5/NF37+95Z5tOUTo0I59D5lhyZk9PuUisCnaTQSn7DhM/y29MKV2yGeK2ttFplz7QYb3bnE+WOXT0h0aqtJff5x5rwP3TdKSfN4u9D/LTMVzesqwlDJRLNhrEVMRBuGYZxijNZ1gmAeXxYF2tGtlcKUzxLOo8+SVAX1wSrsm9Q0iZzheldFdRnjkTTlx/7+t3jJJ/6axy57KR991z+TForLOOIyxkInim+wpGK5keiXhbCgjUf6YvUgt1rqgy5E2iJ7xGmF+vItxyeg08xpXvSsJZ1jnS4zr3IU+P+Evfc6c9r4pp7mqRzCgAlow1izmIg2DMM4hUgyzXqOAqf+3QxG6zBeV7GYOLVpgIrnahMOVGF4loCGmQJ6qXMJi9OT/NwfvZFLvn0zX/uJX+cz/8efndSW28difQHGmlr9TVIYzwAfB7ehR33Ooahdopp2WkuL0/02V7TxzNNjGRlaIc4rybNFcRs3825uHwlmWza6JhIGMtPKgW8hXU9V+G8oC31FE9CGsZYxEW0YhnEK0UgcT46p8KqnMNlQO0bm/b5JBtWWVl5Tb+GoJ1BbYLbgUgX0wKE9vOV3rmfLk/fzibf9Dd+6/leXeKQTx0Sr01nRiVZ7e2JYX4FK7K+bt79UIq1WFyI4Mq1fPrYNwMFprSZ3T/oLgk5KRtgliNuRd90TBr32bXci9GNre6tdJ286F+POt7uuxLChIvQWTEAbxlrHRLRhGMYpxGMjsPtQp0lKXhV1eG9td1XUQdblB14OPaOHeNZdt7L1iQfYuOchNj39EOsOPEGz1MON/8+nefiq1yzzDIuju3qep26AVuIByoF2YixF0FPU6zLZ0C8ZzdR3C4xgvAlJXb9sDJbgko3aNTAKVXwjMlP80iWOux/786fdDxYYfC6R82o0qH+7r6ATCQ3DWPuYiDYMwzgFmG5lPDYC39mnrbrLkSZr5FXQED+JzvtrG4l6o1vJTGG9KJzjBZ/5ey6/7aPs3P0NgiyjFRc5suNCnjn/Cu59+c/x3R95A4fPetYJeY3SteTkWcuzhWlumcjv17yKztD/2IqBTpzsLfi23QGkid5WQt/lz0fSFSIV3Oeu08i46cQxFKmHuT2erozm/HF3BXrG/a5b6Fg22uOdsY0JZsM4VVlxES0iZwH/A9iCft59wDn3Vys9DsMwjFOFeivjO3vh6QmdOJhmPifYR7T5AA4cmgNd88kcuVWgtcTzXvqNT/KTf/1r7N/5bL70xv/C7hf9OPt3XbYoz3ORmYI3r7o6L4zbba/94xTagjnrepzREdcOzWB27ugJkTGwrqxLX1G/VOQavFyE/oKuHyipwO6JIQqEMBDSzPHUuCMKYF1ZrCJsGMaCrEYlOgF+0zl3j4j0AXeLyBecc99fhbEYhmGsefZOwGNjmiqRT3QT6cSiJalWnZt+YmGWQhSpuG6lxzr6/Lz4k/+d0U1n85d/d8+SJwu28NVk79meq6qcda2ar2ge0GkCEzCzYi2o2C4Au4ZUJPcVYX1Zv2hUYhXLfUXt6lcIIZijAjzV1ImYgyXdxzAMYyFWXEQ75/YD+/39SRF5ENgOmIg2DMOYRSvViYSJb6RSbWjKxkgVglBFNE4biSCdDnoZnbi1pbDzga9z3n1f4ea3/vGy0jYydHxt7dx1f7aMzR93h8vl94Ogs4+IVqJF1JKBUwG9qVdF9Poe2DUIpUiIgrkF81HjdI6xukMEBktiNgvDMI7JqnqiRWQncAVwx2qOwzAMY63RTB3VpmPfBByY0sSN0emO9zeONZbNecFM6Bt4+DbeCUtv371u/+P85F/9KmMbd/DN639tya8hAAo+2cJ1ifm88tztEZ6xX5fPOI+DiwKfjBGogA5CFdCRaHxdKVARvakXLly/cM6zc25GcoZzGnk31cwn9i35JRuGcQaxaiJaRHqBfwXe4ZybmOP5G4AbAM4+++wVHp1hGMbqMFLLmGiooDswpfaC8QbUvdXANxdkzDdKWapQngvJMl74qb/lug+9mzSI+PB/+QitUuW4949Q8Q4qgGMvcOOoM/kxQIVwFGgCRiSdyZCBn7wXh/oi820CdEeXqSCPRY9Z9G2wQ6/CowDOHZpbQDdTx3RLs7OzOarzeeOUwZIcV+XaMAxjVUS0iMSogP6wc+7f5trGOfcB4AMAV1555XLTmQzDMNYkaeZopppbPNFwPDGq96eaKkRzT3OtNbMt9zKszkfRf+QZnvuVj/O8L/4vtj92Lz+48lXc9BsfYHzTWcd9DKEjoEM07WJ9L2wt64S+EC+IpcvK0XXfte/MrBA7b9uIfVxd2YvnSFSMhwHEge5YiqCVCfW6tj7vbq8NWoEOfUUb0Up+fs4GncmGhmEYx8NqpHMI8CHgQefcX6z0+Q3DMNYK0y3HaC1P1XAcrsJkUwXiQEGF40QDyKB+gksJ5YkRLvvaTVx+28fY9b2vEjjH3guez8f+843c/co3dbwWx0k+vAgYLMKzN8OO/o5nGejEwjHLzuHFbNC9oAK57CcFliKZFRE3c3zjDc2BzqNIwgBCOgHZSZa31pY5K9GCT/MIrAptGMbxsRqV6GuBnwfuF5F7/br3OOduWYWxGIZhrDjOOca9ZSMS7VQ3WoPhafXmFkKooZ31sky76Z0otj9yDy/69/dz+Zc/QtxqcOisZ/HFn/897n356zmy48IlHzcE+ovqSX7JDugrQeqESux9zMxsdZ37njvrlide6/66rS+rEB5vOKYa0tbv5VitH3kV2zKbDcNYLquRzvF1jp5HYhiGcVpzeNrhnAq53L7RTByH6vDMpHp1nVN/b+7oDQVGm1A9QcbnN/7B63nu7TfRLFW469Vv5s7r3soz519xXFXn7mQ6b1lu51NXItg5CBdt1FSMOBQmm9pquxzNfezMzzR0vuNims2a7AczugK2OzN2dWhsP0YnUw74SnIjcUw21PpR8Xna5nM2DONEYx0LDcMwTjJJ5hitqWistXRSYLXlxXSiVdRQVPCN1VVgJ6m27K7WTswYNux9hOfefhPf/g83cMtb/4h67+Bx71vIG7p4JS0+LaPkO/3tHNJ22UNloRI7hmtQjhxpJhyccu2Yu1z4LpXuyrV0WT5EIPCC2TnHaF3XD5VNPBuGcfIwEW0YhnEScc6xZ9zx0GEVkUnaSYgQH/1Wa2me8+FpqCXasjoOod6AieSYpzgm1/3Du3jRv7+fNIz4ys/81qIEdIi2zxYAB8VYu/71l6AoKqzPGtBJg9WWY98kZDiGSvpaCqG+nm7bRN5lcW5LxdG3nbbZukPm3MzJh+j1m2zql5Ik0yq4CWjDME4mJqINwzBOIuN1x2MjsGcS+iIf0RZDwadEBMAjdd88xIFkmgV9pHZiEjg2PfUgL/v4n/HAtdfz5Z97DyPbzjvufSPg4g1aca6nvnV2pGPP9Wkl1vXDNY2gK0Swruij7QJHwds5Zts0Un9LlxgGZlStZ2c55/nOC1EMYag0v43EMAzjRGEi2jAM4ySQOcfwtOOhYW3bnWZQ9okb5Uirs6mDJ8Zg3Fs2WunMGLtjIVlGz9ghBo48w8CRvQwc2Ud/1/2BI3sZPLyHNIz417f/HdWhTcd13BCdfFcuqNWkmUIpVsFcCDSjOfaxc1GgVfVCAJWypmiAdlJsZTpR8qhxc3QVer773faN9jpmVaz9uniedt6GYRgnAxPRhmEYyyTJVDCP1VU4Jpk2RhmuwVgNJupaec1SaDkYmYaplto4JurtVLbjImw1+Zn3vYWdu79J//A+wnSmSk2DkIn125jYsJ0DOy/lB1e+miee85JjCui8sXfeJCWOYLCgVo4tPTBYVv9z3hglF7CFAHqL0BPPjqCb776JXMMwTg9MRBuGYSySzDmqTa3StjIYnnYcmIJmomK5lcJ0Uz3BEw29nwnUW/pckqmYXopd46pbb+SK2z7K917ykxzZfiHjG7YzsWEb4xt2ML5hO1ODm3BhuOAxBK3cRr5ZSShaec5SFfR9RTh7QHOet/XCYEU0NWSOeDrLVTYM40zFRLRhGMZxkovnyaZWn+st2D8FT45pRVkEEqfZzlmmKRv1xHfNA5YV9+wcV916Iz/6wd/miUuv5X/9zscX3RAlJ4K2KBaftpE5INTq88Xr4fz1ao+IA2GgaELZMAxjNiaiDcMwjkEzzRiehuG6VpOdbyX98LB2yssrzAASgkt94gYnrj33Sz/+Z/yHD76bxy57KR//zzcuWUAH+IYjIZR8JToKVTD3RHDeOjh/HfQVhZGabmsYhmEcjX08GoZhzCLJHGN1x+Fp9TSP1qCRQZaoDSNx0GzBSF29w41Uc58DQLx4PkH9UQDY8YO7+NEP/Tb3vfR1/O/3/G9cEBx7p1kEQAHY1APrejRxIw6hp6B5yhsrMOBTLaJAqCWO1Ol2hmEYxtHYx6NhGGcszrn2RMAkg2bqOFzV9tt7J7XC3PBNURK8LSPrdMxLU6g2YDrzjUROwhgly/iPf/tOqgMbuek3PrAoAR2i4jkFNpYgiuCcQdgxoN39BkpCOXLEobRtKNMtSJ2jkWiVumz/SxiGYcyJfTwahnFa0N2Ao7sddHfraJi5fqrpmGr6lIwGjNc1OWM60XXgxbVTi0beqS8MVKCOJCqul9GEb26cY/DwHs75/re46rMfYtfub/Dx3/wgjZ7+ozYN/BKLiuRQOuORAPCif0c/1B1s7IH+ouY51xKoJUfbQgLR4wyULE3DMAxjPkxEG4ZxypJmjumWWimSY5SBnXMkTjsGOgeIWjXG6nBgEqaaWoVtZprfnHYJ8XzyHQ6aTU2wOBlV52J1gv/4d+/kojs/S//IAQAm1m3hMzf8KXe9+s0ztt1UVC8z+Kq4v6OJGdrIJfJxdM0EghD6Q7Vz9JU0bSP02wb+y0Eunk04G4ZhHBsT0YZhnJKkmeNg1Tf6CKESubboTTK9TVMVw7llo5VqpbmaqGDuzmt2AF4sF0KYanghzYmbHDgf/Uf2ce0n/4Zrbv4AlakxHrj2eh654hXsuehq9p33XLIonrF9hEbmNZ0XzEA51hznYtTJeQ4DfU21BC5YDzv6YEPP4v3UhmEYxtGYiDYM45SkkaqAXld2HJnWxiZpxoyW0aA+31YKo3U4XFVBmTrdttqc6WV2DpJEhfUJt2jMw4a9D/Nrv34t5eoYD1z7E3z1db/JnouvmXf7SqhieVOv+pXLUVcV2bcRDwNtLx759tzFEJ6zCcIlTEg0DMMw5sZEtGEYa540c2TeYpE5neg33YKphuPRI7BvEmqp2i5a3gOceutGPYVGookaoCLTdVWYM3dyrBmzKVXHGTz4FMXaFH0j+9n6xANseeJ+dt3/NVwY8hcfuI9D51yy4DGGijBU0g6CW/s7/uzYC+Z8mb2uHJuANgzDONGYiDYMY81RSxwTDa0ip178ZpkmabQyFcVHqnDPPq0mN7snDjLz/mojWcb53/0S/+kPXk+5Ot5en4kwvP0CHr/spXz5Db99TAEdAGf1wbM3qzWjEGq3wMD8y4ZhGKuCiWjDMNYMaeaYbOokvyiAOHCIU3/y4WmNnBuehr3jMNKA+kqUkI8X5+gdO0Tv6EH6Rg8ycHgP5997Gxfc/UX6xg5xZNv53PQbf0+j0k91YAOHzr6YVqlyXIcWYGsPvPgcOGdQbOKfYRjGGsBEtGEYq04zdYzW9HayoZ7kqYZ6mfPW2WN1jZ4br6lF42RP9lsMF91xM9f9w7vZ8tT3Z6yfGtzIw89/JQ8//5V8/0XXU+8ZOK7jBUBRoBhrQ5RyBD9kAtowDGNNYSLaMIyTQpo5mhm0UkeadZqUJFlnYl/7FhXNR6owUlO7Bk67A04nMN1UIZ261RXPkqaUquOUp0apTI5y0Z23cP53b+Pc+29neOu5fPpX/pyxjTuYHNrM1NAWhredt6jmKDGarjFUgt6ipmyUCrBrEC7aYNFzhmEYawkT0YZhLIm8uUk+iS/NtMtdtakRcjUfHVdP/cQ9pxP/nKD+BN/lzzkVyfsmVTA7L6wb3vucsnre5oFDe7jqc//Is+68lU1PP0h5euKobZ5+1lV859Vv5uZf/hOmBzYs6TwxsK1Pm5usK8PmXugtaMvtviL0FoRCaALaMAxjLWEi2jCMY1JPMsbqqNWiqTFxjURTMlp+afpJf6AaORDaFeg8vzmvOrt8Pb4joBffefe/1RDNhdoUg4f2sO2xexk68CTnPPhtLrrzFnCOpy9+AXe/6k3U+tZR6x30yxCHzr6IIzsuPO5z5N0FEYhEuwZWIk3b2NYPW3qhtyiUvXg24WwYhrF2MRFtGAbQiZHLq8MOmKg7Hh+FpyfUTpG3055BVzJG6oVxPYVmywvjrBMh52Oc10R6hqQpOx65m133f41rbv4HNj7zyIznxzZs57bXv4s7r3sro1t2Lvk8AdoivBJru+1SpFXmoQoMFKGnADi97SkI5Rj6C2bdMAzDWOuYiDYMg+HpjJGaVpInmzDhq85jDfUq4xt2CNq8o5H4KjPanKSVaVW6ma1M5nIb5+gf3s+WJ77H5qcfolCbImrWiZt1omadqFUnbtQoVccpVScoV8f8/XFK05Ptw+y94Hl89hf/kLGNOziw6zkc3nEhSbG86OEUREWz+Hzm/lhtGtsHvEWjCJEIQaDXMw4cUy2h2oSNFShGJpwNwzBOFUxEG8YZzng948FD8PQ4TDTUl9xIfSc/37Ak9ylnrK5HGSBIE86976vs3P1Nrrr1RoYOPT3j+SwIaBXKJIUSrUKJpFCi3jNArWeQw9svoN4zQL13kHrPAFODm3jwmusY23S2fjtYAgU0RWNXv1oyeopada7Eas8ox5rlnGQ6wTKfXFltQTMRHFqFNgFtGIZxamEi2jDOQDKn1o3JuuNrT8PDw9oBMEMry7lQXgsxzFGjxpYnd/Psr/8bOx6+ix2P3ENlcpRMhD0XXcPtP/1O9p97GQd2Xkq9d5AsPPEfawXUvxyH2uSkEkIphsEibOlT4bypR60ahRCcExXLDsbr0MoczVmxIlEAlYJWpMv2SWwYhnHKYR/dhnGG0Eodk03HkWm1aEy1YM8YPDoC1TUQujxweC+bnn6QjXseZsMzD7Nxzw/YuPdhBg89TeAcSRRzYNdlPHDta3nkea/gB1e9hnrv4AkdQ9B1K8BgAZ61Ac7fAOsrEEqXn7vLP54BSSZMNec4pqhg7iuqYA5EjxMGVnk2DMM4lTERbRinGWmW0UhnpWdkMFqDhw7DwSrU/PpGor7mE45zlKrjbHvsXrY8sZuoVZ/pVW7WiVqN9rq+0YPseuDr7d3rlT6ObL+Qpy59EXe9+i0c3nEBjzzvFUuOkFuIAM1j7inAYAmGitBXgoGC2jPCAIJAtOU4HV+4eP9zGOj+hRCiUAVy0F5MKBuGYZyumIg2jFOcNHNMNByHpmC0rvFzrVQTMqoN9d5WGzDZgonW0s4haUplYphibZLK5Cibnv4+PePDlKdGKU+OUq6OUZ4cpTIxQt/oAfpGDhC3GkcdJxMhKZZpxepV7vYtf/GN7+XRK36YwzuexeS6LYv2KOfxcYIK2W6xG4oK3ChQ0VsI1JpRCmF9WSf+ravoegk6dozMqbe5r6D76TFNGBuGYRgmog1jzZNmjlbGjK5/eYOTVuo4OAVPjulSbWrmckInTm6xBEmL9fseY/DwHjbueZjz7v0y5997G+Xq+FHbZiLUfWZyrXeQ6b4hjux4CZPrtjC5bivDW3fx9EXX0Cr10CqU1K98gkRoAPRHcO4QVPxkvnLkxW5eKfbV4mKok/8KXjgHgbStGPk1Bb1eASq28wSNSmyi2TAMwzgaE9GGsQZJMqcd/7wloxvBkaRwZBq+fwgeH1ump9k5Lrzr81z5+X9i6+P3s+GZRwjTjsljZPM53P+Sn2LfeZdT7+mjUenn0FkXMbl+K41y36LaWi+VAG1KMlTUSXwbyrC+R33GfQUVvfNViHPrcV6ZzvQlkzdOLEc6SVD9yiaYDcMwjOPDRLRhrDJ5k5PEV5ynm/D0mHYGrKdqx5ioqad5qqWV07zSvBR6xg7TaPZbnAAAE1NJREFUO3qQ3vHDDB58iud98cNccO+XmRzazFOXvIAHrn0th86+iNHN5zC2+RzGNp51wqrHxyJCxWxPrO2v15ehvwy9sVaSK7E+VwwhDkX9ytLxIYOvQmO2C8MwDOPkYiLaME4imXOkmWt3+UscDE9rFnMr1cdpBg1fda63YHgSHhg7MecvT46yft9jrN//GOv2Pc4l3/o05zx0x4xtpgY28Jkb3sc3Xvs20riw7HN2e5MDdMJewU+4k0C794VhZ2JebrvYVIHNfSqYe4oQBULQ5W3uK2jmsmEYhmGsBUxEG8YSybOWx+qOyYZ6lJNMxXHuWQZtVgIqmFsJPDGm3QAbvqo81dLUhyU3MHGOzU99n6tuvZEdD99D3+gB7cg3NXbU5L4D51zCLb/03xjeei7VwY1MDm3hyI4Lj8uSEQORr/qWYp2YFwZ+nc9PLkdaKS5EHR/yulKnOgwd0ZyL6Px+MVThHHovsjUfMQzDMNYyJqKNM4bMOe3E5zqT8zKf9UtX5u+MW3+fWc+lmaOewFgd9k/CkSq0nEbG1Zo+HcNHop0wnKM4PUncrBE3agwdfJKLv30zl3zr02x85hHSIGTPRVfzzPmXtzv0VQc3Mrz1XIa3n8/wlnNplXuOeZoQbS4Sh9oMZEsfnDOoFeVIVDgX/fzAkK4JfKLNRuJ2zJu0BXI7KQOzWRiGYRinByaijTMC57TJyHjN0chU6E4nmmbRSCD1WcotX0FOfbvrLNMKctNvk/htsgzqJ2+wXHXrjZz90J30jB2id+ww/SP76R/eR9Sa2c0jiQs8evnL+dpPvZ3vv/B6JjZsW9IpS2hDkZ1D2mCkt6QVZe2o17FVQC6aTQgbhmEYZzYmoo3TEucc+yccz0yqWJ6YhgeHYbShLa1Xk/LkKANH9hI3asSNafqHVSCXp8YoTY2x7sATXHznZ0mimMNnXcTUwEaeuuSFjG3YQXVwE81SmVahzPTABh6/7KU0Kn3Hfe4SMFTxqRY+/7i3DOcPwbb+k5+yYRiGYRinCyaijVOKWitj75jPTEZvM9SWkSRqt5huwVPj8ODIyoypZ+ww2x67l0K9SqFepVSdYODwHgYP72Hw0F56xg4RtRqESZMoaVKZGCbIjs7WyIKAWs8g9d5B7vjRX+ITv/5+sihe1FhKge+c573KhUgTLdaXtfve1l7fVCQUaz1tGIZhGMvARLSxpnDO4YAkdTQSGK7C4RocmIR9k/DkxPIryZJlxI1pCrWptvAt5vf9bZg0CbKMIE0IWyp+w1aTMNElajXY/sh32fHwXRTr1aPOkYYR4xu2M77xLA7uvJRWoUQaF0niAtP9G9i/69nagKRYptq/ntEtu2iUexcdJVcEegsqjM8ehHMGoLeoE/PCwHfqC9SrHK5AnrNhGIZhnCmYiDYWRZ5pPN1yPDWmsWxZ5oWtU/8w+El4fiJe1rVuynfUS5k5wa+ZqNe4meqkvFaqbaqXmoUMsG7/42x97D7iZo3KxCiXfOvf2bn7mxQatWVdgySKSaMCw9vO5zuveQtTg5t55oIrmFy3hWaph0a5j6nBTbgwXNZ5NpegXIA40IpyybeqjkOIIygGKp7XV7T5SCk2kWwYhmEYK4WJaAPQ5IqmT65IfXRb5jpCN81g3zjsq8KBCVRAr+D4gjRh8xMPsOuBr3Pu924najUI0hZhkmi1OGnp4zQhSFpESZONex+ecYzRjWdx78t/jvGNO7zY7aFZypdemuUeGqVeWqUekkIRh5B6wZzGBb2N4mU3HiminuQ4UoFcCqG/qEtvUTvzre+BjRXazURExBIuDMMwDGMNsSoiWkReA/wVmpD1QefcH6/GOM40cqtELpRHprXxx0QDvvEoHFpk2TdsNSnWJglbTYI0QVDVLVnWvq/eX7/OOSoTRyhNTyBZRpClSJYRpi3iepVCfdovarGoTAxz7v230zN+hGJtqn3eiXVbmFy3lTSMyMKYLIxoFctkYa+KXr/unh95Iw9dcx2Nci+tQpmJ9duWXR0GFbEh0BPA5n7YUNEIuN6iT7SIVRyHYaeTnlkpDMMwDOP0YsVFtIiEwPuBVwJ7ge+IyKecc99f6bGsFJlzMzKGs24xm2mcWuYj1fKGHUnmM4d9Z7vUx6plXfu4zO+DrmumgINmpudqJZClKpKnmjC+0CCdY93+x4mbdYKkRZi2fHW3U+XtGz1I79hhKuNHWL//MS6687PLtkbMeb1EaBUrNEs9PH3xNQxvO496zwDD287jqUteyMiWXUuqBq8L4NKNcN5m6C/4hiFe23YagMw8br4+F8NzbWMYhmEYxpnHalSirwYedc49DiAiHwWuB9aUiP7nr2fsPkFBwJJlSJZq5TXVW63Cpu1qbPfjIO1+7ni3yY7aJ/bbVPy60vRkO0atPDVGqTpGeWqc8tQog4f3UJkcPa7Xk8QFJoe2cPcr38TBcy4hCyOyMMKJ4CTAiXbYyO9rNzzBiVDrHWS6f70+FwRkQUgWRl22ih6SQmlBkTwQaNU3CFUExwJR3j0v0K55GyuwYwC2DXRsEJZtbBiGYRjGiWI1RPR2YE/X473ANaswjgVJv3ozb/+n31tQ/AZpiriFBfJcUWarTa3ST713kFrvILXeIUa27GTfeZdz6OyLGdm6U+0Q3hahnuCYLIyZ7l/P5Lotc6ZIBPjudX7JH5OvC/S2GKnIjaTTNjoOoextEEXfLroUqzje1At9ZRXHcWiWCMMwDMMw1garIaLnKge6ozYSuQG4AeDss88+2WM6ilaxwviG7WRBgAtCsiDU27DrfhC2q6nL2caJzLHP7G2ChbeRYJ5zd9Y1Kv3UK/1H+YJjYCiE89fD2b0qXosFX+H1Vd5SDFsHIDJvr2EYhmEYBuLcUfr15J5Q5IXA7zvnXu0f/zaAc+6P5tvnyiuvdHfdddcKjdAwDMMwDMM4UxGRu51zVx5ru9UoK34HuEBEdolIAfhZ4FOrMA7DMAzDMAzDWBIrbudwziUi8jbgc6ht9kbn3O6VHodhGIZhGIZhLJVVyYl2zt0C3LIa5zYMwzAMwzCM5WKzxAzDMAzDMAxjkZiINgzDMAzDMIxFYiLaMAzDMAzDMBaJiWjDMAzDMAzDWCQmog3DMAzDMAxjkZiINgzDMAzDMIxFYiLaMAzDMAzDMBaJiWjDMAzDMAzDWCQmog3DMAzDMAxjkZiINgzDMAzDMIxFYiLaMAzDMAzDMBaJiWjDMAzDMAzDWCQmog3DMAzDMAxjkZiINgzDMAzDMIxFYiLaMAzDMAzDMBaJOOdWewzHREQOA0+t4Ck3AEdW8HynE3btloZdt6Vj125p2HVbOnbtlo5du6Vh123pLOXaneOc23isjU4JEb3SiMhdzrkrV3scpyJ27ZaGXbelY9duadh1Wzp27ZaOXbulYddt6ZzMa2d2DsMwDMMwDMNYJCaiDcMwDMMwDGORmIiemw+s9gBOYezaLQ27bkvHrt3SsOu2dOzaLR27dkvDrtvSOWnXzjzRhmEYhmEYhrFIrBJtGIZhGIZhGIvkjBXRInKWiNwmIg+KyG4Refsc27xMRMZF5F6//O5qjHWtISJPisj9/prcNcfzIiJ/LSKPisj3ROR5qzHOtYaIPKvrvXSviEyIyDtmbWPvOY+I3Cgih0Tkga5160TkCyLyiL8dmmffX/DbPCIiv7Byo1595rlu7xORh/y/x0+IyOA8+y74b/t0Z55r9/si8kzXv8nr5tn3NSLyA/+59+6VG/XqM891+1jXNXtSRO6dZ98z/T03pxaxz7qFWeC6rexnnXPujFyArcDz/P0+4GHgklnbvAz4zGqPda0twJPAhgWevw74LCDAC4A7VnvMa20BQuAAmkXZvd7ec51r8UPA84AHutb9KfBuf//dwJ/Msd864HF/O+TvD63261nl6/YqIPL3/2Su6+afW/Df9um+zHPtfh/4rWPsFwKPAecCBeC+2f+fnM7LXNdt1vN/DvzuPM+d6e+5ObWIfdYt+bqt6GfdGVuJds7td87d4+9PAg8C21d3VKcN1wP/wynfBgZFZOtqD2qN8SPAY865lWwidErhnLsdGJm1+nrgn/39fwZeO8eurwa+4Jwbcc6NAl8AXnPSBrrGmOu6Oec+75xL/MNvAztWfGCnAPO8546Hq4FHnXOPO+eawEfR9+oZwULXTUQE+BngIys6qFOEBbSIfdYtwHzXbaU/685YEd2NiOwErgDumOPpF4rIfSLyWRG5dEUHtnZxwOdF5G4RuWGO57cDe7oe78W+oMzmZ5n/PxV7z83PZufcftAPUWDTHNvY+29hfhH9pWgujvVv+0zlbf7n4Rvn+Vnd3nPz8xLgoHPukXmet/ecZ5YWsc+642QBDXfSP+uipe54uiAivcC/Au9wzk3Mevoe9Of2Ke+D+yRwwUqPcQ1yrXNun4hsAr4gIg/5SkSOzLGPxcB4RKQA/Djw23M8be+55WPvv3kQkfcCCfDheTY51r/tM5G/Bf4AfQ/9AWpN+MVZ29h7bn5+joWr0Pae42gtogX8Y+82x7oz6n03n4Zbqc+6M7oSLSIxevE/7Jz7t9nPO+cmnHNT/v4tQCwiG1Z4mGsO59w+f3sI+AT6U2Y3e4Gzuh7vAPatzOhOCX4UuMc5d3D2E/aeOyYHc2uQvz00xzb2/psDP+nox4A3Om8KnM1x/Ns+43DOHXTOpc65DPgH5r4m9p6bAxGJgJ8EPjbfNvaem1eL2GfdMZhPw63kZ90ZK6K9T+tDwIPOub+YZ5stfjtE5Gr0eg2v3CjXHiLSIyJ9+X3UxP/ArM0+BbxJlBcA4/nPUgawQGXG3nPH5FNAPgP9F4B/n2ObzwGvEpEh/9P7q/y6MxYReQ3wLuDHnXPT82xzPP+2zzhmzef4Cea+Jt8BLhCRXf6Xpp9F36tnOq8AHnLO7Z3rSXvPLahF7LNuAea7biv+WXeyZ1Cu1QV4Mfqzx/eAe/1yHfArwK/4bd4G7EZnWn8beNFqj3u1F3T2+X1+2Q2816/vvm4CvB+drX4/cOVqj3utLEAFFcUDXevsPTf3tfoIsB9ooRWXXwLWA18CHvG36/y2VwIf7Nr3F4FH/fKW1X4ta+C6PYp6J/PPur/z224DbvH35/y3fSYt81y7/+k/x76HCputs6+df3wdmhDw2Jl27ea6bn79P+WfbV3b2ntu5vWYT4vYZ93SrtuKftZZx0LDMAzDMAzDWCRnrJ3DMAzDMAzDMJaKiWjDMAzDMAzDWCQmog3DMAzDMAxjkZiINgzDMAzDMIxFYiLaMAzDMAzDMBaJiWjDMAzDMAzDWCQmog3DMBaJiAyKyK/6+9tE5KbVHtOpgohc7lvaG4ZhnNKYiDYMw1g8g8CvgraPdc799CqP51TicrQpgmEYximNiWjDMIzF88fAeSJyr4j8i4g8ACAibxaRT4rIp0XkCRF5m4i8U0S+KyLfFpF1frvzRORWEblbRL4mIhfNdyIR2SwinxCR+/zyIr/+nSLygF/e4dftFJGHROSDfv2HReQVIvINEXnEt5JHRH5fRP6niHzZr/9lv15E5H1+3/tF5PV+/ctE5CsicpM//oe72tM/X0S+6l/L5/I22X77PxGRO0XkYRF5iW+J/V+B1/tr9/qT9PcxDMM46USrPQDDMIxTkHcDz3bOXS4iO4HPdD33bOAKoIS2oH2Xc+4KEfl/gTcBfwl8AG2H/IiIXAP8f8APz3Ouvwa+6pz7CREJgV4ReT7wFuAaQIA7ROSrwChwPvA64AbgO8Ab0Ba5Pw68B3itP+5lwAuAHuC7InIz8EK0UvxcYAPwHRG53W9/BXApsA/4BnCtiNwB/A1wvXPusBfFf4i2IgaInHNXe/vG7znnXiEivwtc6Zx723FdacMwjDWKiWjDMIwTy23OuUlgUkTGgU/79fcDl4lIL/Ai4F98MReguMDxfhgV3zjnUmBcRF4MfMI5VwUQkX8DXgJ8CnjCOXe/X78b+JJzzonI/cDOruP+u3OuBtRE5DbgalRsf8Sf56AX5lcBE8Cdzrm9/rj3+mONoV8avuBfSwjs7zrHv/nbu2ed2zAM45THRLRhGMaJpdF1P+t6nKGfuQEw5py7fBnnkAWeO9b5c9ys/dwijpv6Ywmw2zn3wmPsk29vGIZx2mCeaMMwjMUzCfQtZUfn3ATwhIi8Dto+5OcusMuXgP/TbxuKSD9wO/BaEamISA/wE8DXFjmU60WkJCLrgZeh1o/bUb9yKCIbgR8C7lzgGD8ANorIC/34YhG59BjnXfK1MwzDWEuYiDYMw1gkzrlh4Bt+QuH7lnCINwK/JCL3AbuB6xfY9u3Ay70d427gUufcPcA/oQL3DuCDzrnvLnIMdwI3A98G/sA5tw/4BPA94D7gy8D/7Zw7MN8BnHNN4KeBP/Gv5V7UqrIQtwGX2MRCwzBOdcS52b/oGYZhGKczIvL7wJRz7s9WeyyGYRinKlaJNgzDMAzDMIxFYpVowzCMNYCIvBeNpuvmX5xzf7ga4zEMwzAWxkS0YRiGYRiGYSwSs3MYhmEYhmEYxiIxEW0YhmEYhmEYi8REtGEYhmEYhmEsEhPRhmEYhmEYhrFITEQbhmEYhmEYxiL5/wH1oYOc2AHh7AAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1a13ae6710>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.figure(figsize=(12,8))\n", | |
"\n", | |
"aaf2 = AalenAdditiveFitter(fit_intercept=False)\n", | |
"aaf2.fit(regression_dataset, 'T', event_col='E')\n", | |
"for i in range(0, 500):\n", | |
" sample_index = np.random.choice(range(0, len(regression_dataset)), len(regression_dataset))\n", | |
" \n", | |
" regression_samples = regression_dataset.iloc[sample_index].reset_index()\n", | |
" \n", | |
" aaf2.fit(regression_samples, 'T', event_col='E')\n", | |
" aaf2.predict_cumulative_hazard(regression_samples)\n", | |
" \n", | |
" plt.plot(aaf2.predict_cumulative_hazard(regression_samples).mean(axis=1), color='xkcd:sky blue', alpha=0.2, zorder=1)\n", | |
"\n", | |
"\n", | |
"\n", | |
"aaf2.fit(regression_dataset, 'T', event_col='E')\n", | |
"plt.plot(aaf2.predict_cumulative_hazard(regression_dataset).mean(axis=1), color='red', zorder=5)\n", | |
"plt.title('Bootstrapped estimates Aalen Additive')\n", | |
"plt.ylabel('Cumulative Hazard')\n", | |
"plt.xlabel('time_component')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment