Created
October 12, 2018 13:07
-
-
Save stabgan/f316b0354391df72a7a13d7f54681b22 to your computer and use it in GitHub Desktop.
pca
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "pca", | |
"version": "0.3.2", | |
"provenance": [], | |
"collapsed_sections": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"accelerator": "TPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"[View in Colaboratory](https://colab.research.google.com/gist/stabgan/f316b0354391df72a7a13d7f54681b22/pca.ipynb)" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "DXz9KJGNRBUR", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"# **PRINCIPLE COMPONENT ANALYSIS :** \n", | |
"\n", | |
"*PringData | Author : Kaustabh Ganguly*\n", | |
"\n", | |
"**Input : A Datasheet**\n", | |
"\n", | |
"**Output : A Datasheet of 'k' columns with highest covariance**\n" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "elH7UGagSWkO", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"------------\n", | |
"\n" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "4qBvQSaMQwGk", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"**Importing PyTorch in Google Colaboratory (skip this step for other OS/Environment)**" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "UFGm8gOy0o-3", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"from os.path import exists\n", | |
"from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag\n", | |
"platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag())\n", | |
"cuda_output = !ldconfig -p|grep cudart.so|sed -e 's/.*\\.\\([0-9]*\\)\\.\\([0-9]*\\)$/cu\\1\\2/'\n", | |
"accelerator = cuda_output[0] if exists('/dev/nvidia0') else 'cpu'\n", | |
"\n", | |
"!pip install -q http://download.pytorch.org/whl/{accelerator}/torch-0.4.1-{platform}-linux_x86_64.whl torchvision\n", | |
"import torch" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "__bFspWiRxRb", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"**Importing LabelEncoder for encoding categorical variables at once before PCA tansformation**" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "g30Bnm3-3Pw3", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"from sklearn.preprocessing import LabelEncoder" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "jWp4JxINWhsg", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"# PCA FUNCTION" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "kHTRROC60r97", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"def PCA(dataset, k=10):\n", | |
" ''' \n", | |
" Note : 'k' is the amount of principle components user wants\n", | |
" \n", | |
" Preprocessing Steps :\n", | |
" \n", | |
" 1. Extracting all the columns which have non numeric value into the dataframe 'categorical' .\n", | |
" 2. Deleting the categorical variables from the main dataframe .\n", | |
" 3. Running a loop and encoding categorical variables into numerical variables and storing it in 'encoded' .\n", | |
" 4. Concatenating the new encoded dataframe and the previous dataframe thus creating a dataframe with numeric digits .\n", | |
" \n", | |
" PCA Steps :\n", | |
" \n", | |
" 1. Converting numpy array to torch tensors .\n", | |
" 2. Taking out mean - column wise of every column and storing it in X_mean .\n", | |
" 3. Taking deviation from the original value and mean of the column in every column and storing it in 'X' .\n", | |
" 4. Using Single Value Decomposition function from pyTorch to find out the U,S,V value of the transpose of X .\n", | |
" \n", | |
" Here , U and V are orthogonal Matrix and S is the diagonal Matrix . \n", | |
" Dot product of S and it's transpose is the eigen value of the covariance of the matrix .\n", | |
" V is the eigen vectors representing the direction of variance in which it is maximum .\n", | |
" So , function returns U[all_rows , columns_upto_k] which is sorted in decreasing order to get the k principal components .\n", | |
" \n", | |
" 5. We are converting the torch tensor to the dataframe before returning so we get a similar file format as input .\n", | |
" \n", | |
" '''\n", | |
" \n", | |
" if k >= len(list(dataset)) :\n", | |
" return dataset\n", | |
" \n", | |
" # Preprocessing\n", | |
" categorical = dataset.loc[: , dataset.dtypes == 'object']\n", | |
" dataset.drop(list(categorical) , axis = 1, inplace=True)\n", | |
" c = categorical.values\n", | |
" encoded = []\n", | |
" for i in c :\n", | |
" label_encoder = LabelEncoder()\n", | |
" encoded.append(label_encoder.fit_transform(i))\n", | |
" encoded = np.array(encoded)\n", | |
" X = np.column_stack((dataset.values , encoded))\n", | |
" \n", | |
" #PCA\n", | |
"\n", | |
" X = torch.from_numpy(X)\n", | |
" X_mean = torch.mean(X,0) #all means of individual columns\n", | |
" X = X - X_mean.expand_as(X) #deviation from the mean of each individual column element\n", | |
"\n", | |
" # svd\n", | |
" U,S,V = torch.svd(torch.t(X)) \n", | |
"\n", | |
" return pd.DataFrame(torch.mm(X,U[:,:k]).numpy())" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "HFlLeDHBWe97", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"# TESTING" | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "G1gkDL-X1Yav", | |
"colab_type": "code", | |
"colab": { | |
"resources": { | |
"http://localhost:8080/nbextensions/google.colab/files.js": { | |
"data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", | |
"ok": true, | |
"headers": [ | |
[ | |
"content-type", | |
"application/javascript" | |
] | |
], | |
"status": 200, | |
"status_text": "OK" | |
} | |
}, | |
"base_uri": "https://localhost:8080/", | |
"height": 35 | |
}, | |
"outputId": "c302e825-0f1e-494e-b6c8-9933c04e8c82" | |
}, | |
"cell_type": "code", | |
"source": [ | |
"from google.colab import files\n", | |
"uploaded = files.upload()" | |
], | |
"execution_count": 35, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"\n", | |
" <input type=\"file\" id=\"files-77aec95f-ef6a-4ac9-8ae6-22aa3dee31f9\" name=\"files[]\" multiple disabled />\n", | |
" <output id=\"result-77aec95f-ef6a-4ac9-8ae6-22aa3dee31f9\">\n", | |
" Upload widget is only available when the cell has been executed in the\n", | |
" current browser session. Please rerun this cell to enable.\n", | |
" </output>\n", | |
" <script src=\"/nbextensions/google.colab/files.js\"></script> " | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "gRFyF7ef1ugy", | |
"colab_type": "code", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 217 | |
}, | |
"outputId": "7b669fad-9330-4d8b-c1e0-fbbe5f100ade" | |
}, | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd\n", | |
"import io\n", | |
"\n", | |
"df = pd.read_csv(io.StringIO(uploaded['consolidatedata.csv'].decode('utf-8')))\n", | |
"df" | |
], | |
"execution_count": 36, | |
"outputs": [ | |
{ | |
"output_type": "error", | |
"ename": "KeyError", | |
"evalue": "ignored", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-36-2ccb3e709167>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mio\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mStringIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0muploaded\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'consolidatedata.csv'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'utf-8'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mKeyError\u001b[0m: 'consolidatedata.csv'" | |
] | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "a-yCd7AQWuO7", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"### **Imported a dataset having 300+ columns which contains all type of variable except time **\n", | |
"\n", | |
"For timeseries data , to preserve the time column we must drop the time column before feeding to the PCA as Timestamp or time shouldn't be used in a PCA generally ." | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "JK8PyDeVWtLS", | |
"colab_type": "code", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
}, | |
"outputId": "0cfd285c-61e2-4494-bdf7-fcbca97c1c25" | |
}, | |
"cell_type": "code", | |
"source": [ | |
"#Size of the dataframe :\n", | |
"\n", | |
"df.shape" | |
], | |
"execution_count": 29, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(1527, 246)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 29 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "3iHRm6KwXd8m", | |
"colab_type": "text" | |
}, | |
"cell_type": "markdown", | |
"source": [ | |
"# Calling the pca function with k < length of columns " | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "8Eazczbx0-KT", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"new_df = PCA(df , k =200)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "XQdvjX9lXViT", | |
"colab_type": "code", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
}, | |
"outputId": "13bd58ec-83c9-448a-990c-bbe877123d32" | |
}, | |
"cell_type": "code", | |
"source": [ | |
"#Size of dataframe after PCA :\n", | |
"\n", | |
"new_df.shape" | |
], | |
"execution_count": 31, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(1527, 200)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 31 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "BiVyb_AFXbTR", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment