Last active
November 17, 2016 21:31
-
-
Save stefan2904/2b596483092e2a50d1997caa0d8390ef to your computer and use it in GitHub Desktop.
Demo analysis of KONECT's Internet topology network dataset ... (dataset from 2015, updated by me, IPv4 only!) http://irl.cs.ucla.edu/topology/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:e4b424e84ca7fbc8d9558f35c885ee5d2f01c7cb29b17448ae510566491da90b" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"from scipy import stats, integrate\n", | |
"import matplotlib.pyplot as plt\n", | |
"from operator import mul\n", | |
"import requests\n", | |
"import re\n", | |
"\n", | |
"from graph_tool.all import *" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Load Dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"NETWORK_NAME = 'topology' # arenas-pgp, topology, as20000102" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# g = graph_tool.collection.konect_data[NETWORK_NAME] \n", | |
"g = graph_tool.collection.load_koblenz_dir('topology2') \n", | |
"# print g.gp.readme" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"g" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"<Graph object, undirected, with 49448 vertices and 212543 edges at 0x7f448dbc71d0>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"r = requests.get('http://konect.uni-koblenz.de/networks/' + NETWORK_NAME).text\n", | |
"print re.search('description\">(.*)</div></div>', r).group(1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"This is the network of connections between autonomous systems of the Internet. The nodes are autonomous systems (AS), i.e. collections of connected IP routing prefixes controlled by independent network operators. Edges are connections between autonomous systems. Multiple edges may connect two nodes, each representing an individual connection in time. Edges are annotated with the timepoint of the connection.\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Helper Functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def plot_hist(data, xlog=False, ylog=True, label=''):\n", | |
" plt.bar(range(len(data[0])), data[0], log=ylog)\n", | |
" if xlog:\n", | |
" plt.xscale('log')\n", | |
" plt.title(label + ' Histogram')\n", | |
" plt.xlabel(label)\n", | |
" plt.ylabel('Frequency')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 37 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def avg_from_hist(data):\n", | |
" ammount = data[0]\n", | |
" label = data[1][:-1]\n", | |
" return sum(map(mul, ammount, label)) / sum(ammount)\n", | |
"\n", | |
"# for degrees, this is equal to vertex_average(g, 'total')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 38 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Shortest-distance\n", | |
"the shortest-distance for each vertex pair in the graph." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"distance_hist = distance_histogram(g)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 39 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(distance_hist, label='Shortest Distance')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXXV97vHPQ5A7gnBEKURBbkJFRZQolRoFZaweQwuW\nBpGbglVBe1O8tDKenqNgT9ECpbZCOKA1QYUqtNBIkWAUlYtcoiQYLNGEaMALCCgI5Dl/rN+Qncme\nyZrJ7Fmzdp736zWv7LX23t/13Xsm+7t/l7V+sk1ERMT6bNJ0AhER0Q4pGBERUUsKRkRE1JKCERER\ntaRgRERELSkYERFRSwpG1CLpBEkLm86jVyQ9R9JDktR0Lr0i6SpJb206j2ivFIx4iqRXSrpB0gOS\nfi7pG5Je2qNjDUr67ATFWi3peaPcf4KkJ0tBeEjSf0uaI2mvocfY/rHtbb2eE5OmauGUtEDS24bt\nmylp+dC27T+wvd73fH3vZ2y8UjACAElPB/4d+AfgGcAuwEeBx3pwrE0nOiawvpbBN21vCzwdOAz4\nDXCLpN/tQS5NcPmZKD1paUma1ou4MTlSMGLI3oBtX+rKo7avsb2o80GS/k7SL8q39IGO/b8j6YrS\nMlkq6e0d9w1K+pKkz0p6EHgH8EHg6PKN/9byuO0kXShppaQVkv5W0iblvj0lXV9aP/dLmlv2f70c\n5vYS680jvD5RXqDt/7b9buB6YLDE2a18sx463gmSfijpV+W1HiPp+cCngVeUY/2iPPYNkm6V9KCk\nH0s6o+O1D8U9TtKPSu4f6rh/E0kfknR3OdbNknYt9z1f0jXlPV0yymurpbMVMtb3U9LJ5ff6c0lf\nkbRzR9zXSbqrxPrHEnfoOCdI+qaksyX9DDhD0vMkfU3Sz8qxPydpu454yyT9laQ7Sg4XSnqWpKvL\ne3yNpO035L2IcbKdn/wAbAv8DPh/wADwjGH3nwD8Fngb1YfvnwL3dtz/deA8YDPgRcB9wKvLfYPl\nuW8q21sAZwCXDDvGvwH/BGwJPBP4DnBKuW8u8MFyezPg4I7nrQaeN8prOwFY2GX/icBPy+3dSpxN\ngK2BB4G9yn3PAvYrt48fHgt4FfC75fb+wE+BWcPi/jOwOfBC4FFgn3L/+4A7Oo61P7BDyWF5Od4m\nwIuB+4F9R3iN1wFvG7ZvJrB82GNOGuv7CbymHPvF5bHnANeX+/5Hea+OKHm+p/yuT+p47x8H3l3u\n3wLYAzgUeFp5/vXAJzuOdw9wQ/kb+B1gFfBdqr+rzYFrgY80/X9mY/xJCyMAsP0Q8Eqqbo3PAPeV\nb5I7dTzsR7YvdPW/+hJgZ0k7SZoOHAycbvu3tm8HLgCO63juDbavKMd6lKroPNXtIelZwOuBP7f9\nG9v3A58C/qQ85LfAbpJ2Kce4YQJe9k+oPpy7WQ3sL2lL26ts3zmU6vAH2r7e9vfL7UXAPKoi0umj\nth+zfQdwO9WHH8DbgQ/bXjr0fNu/AN4I3GP7Yturbd8GXA6M1oI6R9Ivh36AKxm5m2os7+dbgAtt\n32b7t1Stw1dIei7wB8D3bH+55HkOVcHstNL2P5b7H7X9Q9vX2n7c9s+AT3Z5v861fb/tlcBC4Fu2\nb7f9GNUXiwNGyTd6JAUjnmJ7ie0TbU8HXkD17e5THQ/5acdjf11ublMe9wvbj3Q89sdU4yBDVqzn\n8M+l+sb5k44PvE9TfcsEeD/Vh+KNkr4n6cSxvbqudgF+MXxneR1HU7WiVkr6d0n7jBRE0gxJ10m6\nT9IDVF1uOw57WOeH6K+p3jeAXYEfdgn7XGDGsAJwDFVrpxsDp9l+xtAPVdEZaSxiLO/nzsCPnjpQ\n9f78nOr925l1f7fDt5d3bpTupXml2/FB4LOs+36t6rj9m2Hbj7Lm/YtJlIIRXdm+C7iYqnCsz0pg\nB0md/4mfw9ofHMO/6a4etr2caoB9x44Pve1s71/yWWX7FNu7UH0gn68Nn8nzh1Rdaeuw/VXbrwOe\nDSyhanV1ex0Anwe+DOxqe3uqQlf3/9ZyYM8u+39M1e3zjI6fbV2NvdQ14sD1GN/PlVRda1VQaWuq\nD/gVVK20XTvuU+f20OGGbX8MeBJ4ge3tgLey/verb6c7t0kKRgAgaR9JfyFpl7I9HZgNfGt9z7W9\nnKrP+eOSNpf0QuAk4HOjPG0VVZfI0GD0T4CvAmdL2rYMBu8h6fdLPm8eGgwGHqD6EFrdEWuPmq9z\nmqTdJZ0L/D7VTLDhj9lJ0qzywfg48AjVB9zQsXaV9LSOp2wD/NL2byUdRNUSqDtj6QLgb8sgtCS9\nUNIOVDPW9pZ0rKSnlZ+XqRp4H/Hl1TzmWN/PucCJkl4kaXOqD/xv2/4xcBVV190sVbPf3k1VZEez\nDdV7+qvy9/a+unlHs6ZUwSj/kS+Q9MWOfVtLuljSv0g6psn8+txDwAzgO5IepioUdwB/We7vNm2z\nc3s21bfQlVR97R+x/bVRnjv0O/65pJvL7eOoBlXvpOoq+iJrPnxeCnxb0kPAV4D32F5W7hsELi5d\nN0d1eW2mzGyiGqC9jupD62VDYw/DXs8mwJ8D91J1vRwCvLPcdy3wfeCnku4r+94F/C9JvwL+Bri0\ny/FHcjbwBapi+SBVS2YL2w8Dr6Maw7mX6pv8x8v7M5Juxxnp2LXfT9vXltd1GdXvd/eSF2UM4s3A\nJ6gmTewL3Mya6djdfvcfBV5SXu+VJe76CqyH3c5CPg1QNX45tUj6ou2h6Xxvpeof/w9J82z/yXqe\nHhENUTUteTlwjO3rm84nJtaUamGMYBfWDJo9OdoDI2LyqToPY/vSXTV0jsm3m8wpeqPnBUPVJRhW\nSRp+AtiAqpORlko6fZQQK4Dp5XYbClzExuYVwN1U52q8ATiiTH+NPtPzLilJhwAPU52ktX/ZNw24\ni+oSDfcCN1H1ga+iGlA7FLjA9lmStqI6IexRqhOm5vY04YiI6GpSxjAk7QZc2VEwXgGcYXugbH8A\nwPaZPU8mIiLGpRcXgaujc1wCqm6nGeMNJmnqjdxHRLSA7drTsZsaE5jwD/jJvJ7KRP+cccYZjeeQ\n/JvPI/m376fNudtj/xhuqmDcy5qBbMrt9V06YlSDg4MsWLBgQ0JERGwUFixYwODg4Jif11TBuBnY\nS9Wlnzejum7PFRsScHBwkJkzZ05EbhERfW3mzJlTs2Cous7+DVSXOVgu6UTbTwCnAvOpzuq91Pbi\nXucyVbW90CX/ZiX/5rQ59/GYkmd6j5Ukn3HGGcycOXOj+wVGRIzVggULWLBgAR/96EfxGAa9+6Zg\n9MPriIiYTJLGVDBy5nRERNTSNwUjs6QiIuoZ7yypdElFRGyk0iUVERE9kYIRERG1pGBEREQtKRgR\nEVFLCkZERNTSNwUj02ojIurp22m1kvYDzgB+Dlxr+7Iuj8m02oiIMerHabUDwLm23wUc13QyEREb\nqza0MJ5J1cL4NXCw7Vd2eUxaGBERY9SKFoakOZJWSVo0bP+ApCWSlko6HcD2/bZPBT4I/KyJfCMi\noqEWhqRDgIeBS2zvX/ZNA+4CDqNake8mYDZVy+JDwNbA+bZv6BIvLYyIiDEaawtj014mMxLbCyXt\nNmz3QcDdtpcBSJoHzLJ9JvCOSU0wxkSq/fdWS4p/xNTUSMEYwS7A8o7tFcCMuk/unCKWhZSaMFEf\n8hNbfCJijaGFk8arsUHv0sK4sqNL6khgwPbJZftYYIbt02rESpfUKHrdAqjiT1zByO8yYnK0oktq\nBPcC0zu2p1O1MmoZHBxMy2JUaQFERGW8LY2p1MLYlGrQ+1BgJXAjMNv24hqx0sIYRa9bAGlhRLRT\nW6bVzgVuAPaWtFzSibafAE4F5gN3ApfWKRYRETE5mpolNXuE/VcDV48nZrqkIiLqaV2X1ERKl9To\n0iUVEd20oksqIiLaJwUjIiJq6ZuCkfUwIiLq6dv1MOrIGMboMoYREd20+cS9iK5yraqIqSEFI1oi\nZ6pHNK1vxjAiIqK3UjAiIqKWFIyIiKilbwpGptVGRNTTt9NqJe0KnAP8EviB7bO6PCbTakfR9mm1\nmbYb0Rv9eGmQ/YHLbL8NOKDpZCIiNlZtKBg3AKdIuhb4z6aTiYjYWDW1HsYcSaskLRq2f0DSEklL\nJZ1edp8I/LXtQ4E3THqyEREBNDSGIekQ4GHgko4V96ZRrbh3GNVyrTcBs4GnAR8B7gcesv3+LvEy\nhjGKto8xZAwjojdacWkQ2wvLEq2dDgLutr0MQNI8YJbtM4Gj1hezc8S/bQsp5dIXETEZxrtw0pCp\ntKb3UcDhtk8u28cCM2yfViNWq1sYbf+G3vb4ERurNs+S2qD/xTkPIyKintadh9GlhfFyYND2QNn+\nILC623kXXWKlhbEmWt+1ANLCiOiNNrcwbgb2krSbpM2Ao4ErGs4pIiKKpqbVzqU6v2JvScslnWj7\nCeBUYD5wJ3Cp7cV1Y6ZLKiKintZ1SU2kdEmtFa3vuozSJRXRG23ukoqIiCksK+7FRi/nwUTU0zcF\nY3BwsHUn7MVUkiVgY+Mx3hP4MoYxBbR9DCDxR48fMVVlDCMiInoiBSMiImpJwYiIiFpSMCIiopYU\njIiIqKVvCkYuDRIRUU/fXhpE0iuBt1CdM7Kf7d/r8phMq10Tre+mpbY9fsRU1YoV98bC9jeAb0ia\nBdzYdD4RERurNnVJHQN8vukkIiI2Vk1d3nyOpFWSFg3bPyBpiaSlkk7v2P8c4EHbj0x6shERATTX\nwrgIGOjcIWkacF7Zvx8wW9K+5e6TgDmTmmFERKylkTEM2wvLEq2dDgLutr0MQNI8YBaw2PbgZOYX\nERHrmkqD3rsAyzu2VwAz6j65c4pYrlobEbGu8V6ldkhj02pLC+NK2/uX7SOBAdsnl+1jgRm2T6sR\nK9Nq10Tru2mpbY8fMVW1eVrtvcD0ju3pVK2MWrIeRkxVWaAppprWrYfRpYWxKXAXcCiwkuqci9m2\nF9eIlRbGmmh99w098UePHzFerVgPQ9Jc4AZgb0nLJZ1o+wngVGA+cCdwaZ1iERERk6OpWVKzR9h/\nNXD1eGKmSyoiop7WdUlNpHRJrRWt77pcEn/0+BHj1YouqYiIaJ++KRi5vHlERD19e3nzOtIltVa0\nvutySfzR40eMV5vPw4iIcch5HjFZUjAi+sLEtWAiRtI3YxgREdFbKRgREVFLCkZERNTSNwUj02oj\nIurp22m1qqaA/G9gW+Bm25d0eUym1a6J1nfTRhO/2fjRv/rxTO8jqBZX+i1juNx5RERMrDYUjL2B\nb9r+K+CdTScTEbGxaury5nMkrZK0aNj+AUlLJC2VdHrZvQJ4oNxePamJRkTEU9ZbMCTt34PjXgQM\nDDvONOC8sn8/YLakfYHLgcMlnQMs6EEuERFRQ50zvf9J0uZUH/L/avvBDT2o7YVlxb1OBwF3214G\nIGkeMMv2mcDbN/SYERGxYdZbMGy/UtLewEnAdyXdCFxk+6sTnMsuwPKO7RXAjLpP7pwiloWUIiLW\nNd6Fk4bUnlZb1tw+AjgHeJCqO+tDti8b14HXXdP7SGDA9sll+1hghu3TasTKtNo10fpuWmfiNxs/\n+teET6uV9CJJnwQWA68B3mh7X+DVwCfHnem67gWmd2xPZwzTaHPiXkREPT07cU/S9cCFwJds/3rY\nfcd1O5Gu1oHXbWFsCtwFHAqsBG4EZtteXCNWWhhrovXdN9zEbzZ+9K+xtjDqFIxtgN/YfrJsTwO2\nsP3IBiQ5F3gVsCNwH/AR2xdJej3wKWAacKHtj9eMl4KxJlrffWAlfrPxo3/1YgGl/wIOAx4u21sB\n84GDx55exfbsEfZfDVw9npiDg4MZ7I6IqGG8g991Whi32X7x+vY1KS2MtaL13TfcxG82fvSvXlxL\n6hFJB3Yc4KXAb8aTXEREtFedLqk/A74g6Sdle2fg6N6lNPVkzeTYmOXvP4bUOXHvpnKJjn2o2r13\n2X6855mNUe/HMLJmcmzM8vffT3o2hgEg6WBgd6oCY4DxTqfthV6PYbS9DzrxE38qx4/mTPgsKUmf\nA54H3AY82XHXlCkYERHRe3XGMA4E9mv1NKSIiNhgdWZJfY9qoDsiIjZidVoYzwTuLFepfazss+03\n9S6tiIiYauoUjMHyr1kzxWHKdU/lTO+IiHp6PUtqN2BP2/8laStgU9u/GvPReiSzpBI/8dsbP5rT\ni8ubnwJ8EfjnsmtX4N/Gl97YSZopaaGkf5L0qsk6bkRErK3OoPe7gVcCvwKw/QNgp14mNcxq4CFg\nc8awPkZEREysOmMYj9l+bOjyAGXdislsUy60/XVJOwFnA8dO4rEjIqKo08K4XtKHga0kvZaqe+rK\nDTmopDmSVklaNGz/gKQlkpZKOh2q6Vjl7geoWhkREdGAOpc3nwa8DXhd2TUfuGBDRpklHUK1vsYl\nHSvuTaNace8wquVabwJmA88HDge2B863/fUu8TLonfiJ39L40ZwJvzRIWWnvX8rPhLC9sMy86nQQ\ncLftZQCS5gGzbJ9JjUH2zvVpM702ImJd451OO6ROC+OeLrtt+3njPipPTdXtXNP7KOBw2yeX7WOB\nGbZPqxErLYzET/yWxo/m9GKJ1pd13N4COIpqLe6JtkF/RTlxLyKinp6euLfOk6Tv2n7JmJ+4dozd\nWLuF8XJg0PZA2f4gsNr2WTVipYWR+Inf0vjRnF5c3vxA1vy1bAK8FJg2vvRGdTOwVykkK6lW9Zvd\ng+NERMQ41OmS+nvWFIwngGXAH2/IQSXNBV4F7ChpOfAR2xdJOpVqFtY04ELbi+vGTJdUREQ9k9ol\nNdWkSyrxE7+98aM5veiS+kvW/Wt56qq1ts8eQ34REdFSdVfcexlwBVWheCPVSXU/6GFeERExxdQp\nGNOBl9h+CEDSGcBVtt/S08zGKGMYERH19GwMQ9JdwItsP1q2twBut73POPLsiYxhJH7itzd+NKcX\nJ+5dAtwo6XKqLqkjgIvHmV9ERLRU3RX3DqRaEwPg67Zv7WlWY5QWRuInfnvjR3MmfMW9YivgIdv/\nAKyQtPu4souIiNaqs0TrIPB+4ANl12bA53qYU0RETEF1xjD+EDgAuAXA9r2Stu1pVhGx0RhazXOi\npMurd+ou0bq6Y4nWrXub0vhkWm1Em03cGEmsXy+n1b4P2JNqxb2PAycBn7d9ztjTHJ9SpBZQXc32\nP7rcn0HvxE/8xO8aP0Y2odNqVf0mL6VaJvUhYG/gb2xfs0FZjt37Sx4REdGQOl1SV9l+AfDVXifT\njaTXAndSLd4UERENGXWWVOnnuUXSQRN5UElzJK2StGjY/gFJSyQtlXR62f0q4OXAMcDJmugRsoiI\nqKXupUH2BH4EPFJ22/YLx31Q6RDgYeCSjhX3pgF3AYcB91Jd4HD20JoYko4H7rd9VZd4GcNI/MRP\n/K7xY2QTNoYh6Tm2fwwcTvXbnLBv9rYXlpX1Oh0E3G17WTn+PGAWsLg8J5cjiYho0GhjGF8BDrC9\nTNJlto/scS67AMs7tlcAM+o+eXBw8KnbmV4bEbGu8U6nHTJil5SkW20fMPz2RCktjCs7uqSOBAZs\nn1y2jwVm2D6tRqx0SSV+4id+1/gxsl5dS2oy3Eu19saQ6VStjFoGBwc3qHJGRGwsFixYsFavTF2j\ntTCeBH5dNrcEftNxt20/fcxHWzv+bqzdwtiUatD7UGAlcCMdg97riZUWRuInfuJ3jR8jm7BBb9vT\nJialdUmaSzVddkdJy4GP2L5I0qnAfGAacGGdYjEklwaJiKinZ5cGaYO0MBI/8RN/pPgxsjaPYURE\nxBSWghEREbX0TcHILKmIiHomfJZUm2QMI/ETP/FHih8jyxhGRET0RApGRETUkoIRERG1pGBEREQt\nKRgREVFL3xSMTKuNiKinb6fVSno+8F5gR2C+7Qu7PCbTahM/8RO/a/wY2Vin1U75gjFE0ibAPNt/\n3OW+FIzET/zE7xo/RtaX52FI+p/AfwDzms4lImJj1UjBkDRH0ipJi4btH5C0RNJSSacP7bd9pe3X\nA8dPerIREQGMvqZ3L10EnAtcMrRD0jTgPOAwqtX3bpJ0BbAT8EfAFsB1k59qRERAQwXD9sKy4l6n\ng4C7bS8DkDQPmGX7TOD6SU0wIiLW0VQLo5tdgOUd2yuAGXWf3DlFLCvvRUSsa7wr7Q1pbJZUlzW9\njwQGbJ9cto8FZtg+rUaszJJK/MRP/K7xY2RtniV1LzC9Y3s6VSujlpy4FxFRT+tO3OvSwtgUuAs4\nFFgJ3AjMtr24Rqy0MBI/8RO/a/wYWStaGJLmAjcAe0taLulE208ApwLzgTuBS+sUi4iImBxNzZKa\nPcL+q4GrxxNzcHAwg90RETWMd/C7NZcGGU26pBI/8RN/pPgxslZ0SUVERPukYERERC1T6cS9DZIx\njIgYrurumlj90OWVMYyMYSR+4if+sPgTG3vd+G2XMYyIiOiJFIyIiKglBSMiImpJwYiIiFr6pmDk\n4oMREfW07uKDEymzpBI/8RO/W/zMkhrdWGdJTfnzMCTNAt4APB240PY1DacUEbFRak0LQ9L2wP+1\n/fYu96WFkfiJn/jrxE8LY3T9fB7GXwPnNZ1ERMTGqqn1MOZIWiVp0bD9A5KWSFoq6fSyT5LOAq62\nfVsT+UZERHMtjIuAgc4dkqZRtSAGgP2A2ZL2pVpU6VDgKEnvmOxEIyKi0tQCSgvLEq2dDgLutr0M\nQNI8YJbtM4Fz1xezc4pYLkIYEbGu8V50cMhUWtP7KOBw2yeX7WOBGbZPqxErg96Jn/iJv078DHqP\nrs2D3hv0W8iJexER9bTuxL0uLYyXA4O2B8r2B4HVts+qESstjMRP/MRfJ35aGKNrcwvjZmAvSbtJ\n2gw4Grii4ZwiIqJoalrtXOAGYG9JyyWdaPsJqhlR84E7gUttL64bM11SERH1tK5LaiKlSyrxEz/x\nu8VPl9To2twlFRERU1gKRkRE1NI3BSNjGBER9WQMI2MYiZ/4iZ8xjDHJGEZERPRECkZERNSSghER\nEbWkYERERC0pGBERUUvfFIxMq42IqKdvp9VK2h34MLCd7TeP8JhMq038xE/8deJnWu3o+m5are17\nbL+96TwiIjZ2U75gRETE1NDU5c3nSFoladGw/QOSlkhaKun0JnKLiIjummphXAQMdO6QNA04r+zf\nD5gtaV9JO0j6NPDiFJGIiOZs2sRBbS8sS7R2Ogi42/YyAEnzgFm2zwT+dH0xO0f8Z86cycyZMycm\n2YiIPrFgwYINmk06ldb0Pgo43PbJZftYYIbt02rEyiypxE/8xF8nfmZJja7Ns6T657cQEdGHplLB\nuBeY3rE9HVhR98k5cS8iop7WnbjXpUtqU+Au4FBgJXAjMNv24hqx0iWV+Imf+OvET5fU6FrRJSVp\nLnADsLek5ZJOtP0EcCowH7gTuLROsRiSFkZERD2ta2FMpLQwEj/xE79b/LQwRteKFkZERLRPCkZE\nRNTSNwUjYxgREfVkDCNjGImf+ImfMYwxyRhGRET0RApGRETUkoIRERG1pGBEREQtKRgREVFLI+th\n9MLg4GDWwYiISVXNwpo4kzUDa7zrYkz5abWStgbOBx4DFtj+fJfHZFpt4id+4q8Tv9fTanv93vRa\nP06r/SPgC7ZPAd7UdDIRERurNhSMXYDl5faTTSYSEbExa+ry5nMkrZK0aNj+AUlLJC2VdHrZvYI1\nCyu1ocBFRPSlpj6ALwIGOndImgacV/bvB8yWtC9wOXCkpPOBKyY70YiIqDQyS8r2wrLiXqeDgLtt\nLwOQNA+YZftM4KRJTTAiItYxlabVdo5VQNUVNaPukyd6eluXI0xcpK65Jn7iJ35v4k/sZ0Mv4/f+\nc2zDTKWCMe75ZGOZFhYREeMzlQaR72XN4Dbl9oqGcomIiGGmUsG4GdhL0m6SNgOOJoPcERFTRlPT\naucCNwB7S1ou6UTbTwCnAvOBO4FLbS+uEavbVNxWkDRd0nWSvi/pe5Le03ROYyVpmqRbJV3ZdC5j\nJWl7SV+StFjSnZJe3nROYyHpg+VvZ5Gkz0vavOmcRtNtOr2kHSRdI+kHkr4qafsmcxzNCPn/Xfn7\nuV3S5ZK2azLH0Yx0OkO57y8lrZa0w6gxpvqlQUZTpuLeBRxG1aV1EzC7TqGZCiQ9G3i27dskbQPc\nAhzRlvwBJP0FcCCwre1WnYkv6WLgettzJG0KbG37wabzqqPMMvwasK/txyRdClxl++JGExuFpEOA\nh4FLbO9f9n0C+JntT5QvfM+w/YEm8xzJCPm/FrjW9mpJZwK0Kf+yfzrwGWAf4EDbvxgpxlTqkhqP\np6bi2n4cmAfMajin2mz/1PZt5fbDwGLgd5rNqj5JuwJ/AFzARE9F6bHyTfAQ23MAbD/RlmJR/Ap4\nHNiqFLutqL40TVm2FwK/HLb7TcBQkbsYOGJSkxqDbvnbvsb26rL5HWDXSU+sphHef4CzgffXidH2\ngtFtKu4uDeWyQco3xgOo/uja4pPA+4DV63vgFLQ7cL+kiyR9V9JnJG3VdFJ1lW+Bfw/8GFgJPGD7\nv5rNalyeZXtVub0KeFaTyWygk4Crmk5iLCTNAlbYvqPO49teMNrbn9ahdEd9CXhvaWlMeZLeCNxn\n+1Za1rooNgVeApxv+yXAI8CU7EroRtIewJ8Bu1G1SreR9JZGk9pA5ZLTrfw/LenDwG+7XU17qipf\nkD4EnNG5e7TntL1gtH4qrqSnAZcBn7P95abzGYODgTdJugeYC7xG0iUN5zQWK6i+Wd1Utr9EVUDa\n4qXADbZ/XiaMXE71O2mbVWUsD0k7A/c1nM+YSTqBqmu2bQV7D6ovHLeX/8e7ArdI2mmkJ7S9YLR6\nKq6q0zovBO60/amm8xkL2x+yPd327sCfAF+zfVzTedVl+6fAckl7l12HAd9vMKWxWgK8XNKW5e/o\nMKrZhW1zBXB8uX080KYvTUgaoOqWnWX70abzGQvbi2w/y/bu5f/xCuAltkcs2q0uGOOdijuF/B5w\nLPDqMjX11vIH2EZt7Eo4DfhXSbcDLwQ+1nA+tdm+HbiE6kvTUP/zvzSX0fp1TKffZ2g6PXAm8FpJ\nPwBeU7afgNalAAAEZElEQVSnpC75nwScC2wDXFP+/57faJKj6HY6w7CHrPf/cKun1UZExORpdQsj\nIiImTwpGRETUkoIRERG1pGBEREQtKRgREVFLCkZERNSSghGtJOnD5ZLwt5f57y8r+5et7xLN64n7\nIkmvH+dzt5P0zlHuf7Lk+j1Jt0n6i3LSHZIOlPQPozz3uZJmjyeviImSghGtI+kVwBuAA2y/CDiU\nNZeEMeO8tlW56usBVJd5GI9nAO8a5f5f2z7A9guA1wKvp1zHx/Yttt87ynN3B44ZZ14REyIFI9ro\n2VRrKDwO1ZVbbf+k4/7TJN0i6Q5J+8BTC/V8ubRIviVpaD2DQUmflfQNqjOnPwocXVoCb5a0dVl4\n5jvlqrZvKs/73bLv1tJa2JPqLOU9yr6zRnsBtu8HTqG6UgGSZqosQiXpVR1n/t9SLk55JnBI2ffe\n0uL4ern/llJEh+IskPRFVQv7fG7omJJeJumbJd/vlNc2TdUiQDeW9+aUDf7tRP+ynZ/8tOoH2Bq4\nlWrxrH8Efr/jvnuAd5fb7wQ+U26fC/xNuf1q4NZye5Bq4a3Ny/bxwDkd8T4GvKXc3r4ccyvgHOCY\nsn9TYAvgucCiUfJ+qMu+XwLPBGYCV5Z9VwCvKLe3AqYBrxq6v+zfsiPnvYCbyu2ZwANUV7AV1aUg\nDgY2A35ItUAOVJezmEZVtD5c9m1e3ovdmv4d52dq/qSFEa1j+xGqVf5OAe4HLpV0fMdDLi//fpfq\napxQXbfrs+X51wE7StqWqgvrCtuPlceJtbu0Xgd8QNKtwHVUH6rPAb4FfEjS+6k+YB9lnF1hXXwT\n+KSk06hWoHuyS+zNgAsk3QF8Adi3474bba+0beA2qu6sfYCf2L4FqgW7StzXAceV1/dtYAdgzwl6\nHdFnNm06gYjxcLXK2fXA9arWKD6eNSu3DX34P8naf+MjfaD/ujN0l/v/yPbSYfuWSPo28EbgKknv\noGrd1CbpecCTtu8vY99VAvZZkv6dapzmm5IO7/L0P6cqAG9VtVRx55VSH+u4PfQejHbRuFNtXzOW\n3GPjlBZGtI6kvSXt1bHrAGDZep62kLJegaSZwP22H2LdIvIQsG3H9nzgPR3HPqD8u7vte2yfC3wF\n2J9q2dTO5472Gp4JfJqqq2z4fXvY/r7tT1B1Ee3TJfbTgZ+W28dRdS+NxFRdaTtLemk5xral0MwH\n3lUG/Ife29asPBiTKy2MaKNtgHMlbQ88ASyl6p6Ctb9Jd67gNgjMKZcyf4Q1azAMX+XtOtZ0QX0M\n+FvgU6XrZxPgv6nWof5jSW+lWlf7J8D/sf1AGVReBFxl+/RheW9Z4j6t5H2J7bO75PFeSa+mWvr2\ne8DV5b4nJd0GXAScD1wm6TjgP4HOlRrXaU3YflzS0eV925KqVXUY1XrsuwHfLVN87wP+cPjzIyCX\nN4+IiJrSJRUREbWkYERERC0pGBERUUsKRkRE1JKCERERtaRgRERELSkYERFRSwpGRETU8v8BEliO\nmt+yVz4AAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fba3cac9f90>" | |
] | |
} | |
], | |
"prompt_number": 40 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Average Shortest-distance" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"avg_from_hist(distance_hist)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 41, | |
"text": [ | |
"3.747064003366638" | |
] | |
} | |
], | |
"prompt_number": 41 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Degree\n", | |
"the vertex degree." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"degree_hist = vertex_hist(g, \"total\")\n", | |
"# degree_hist" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 42 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(degree_hist, label='Degree')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGiVJREFUeJzt3XmYZXV95/H3h2YTlEHUqCDaGEFBUREFByGUG7aGASNE\nJEOCqDDJBDKJ80SCmWjFmSjOmLjEcckgDGjCYlwGRieIxlImqA0C2soiPdIBGgXcWMQoy3f+OKfo\na3V19z1V99atW/V+PU89dc/v3HvO9/ye7vut33J+J1WFJEn92mrUAUiSxouJQ5LUiYlDktSJiUOS\n1ImJQ5LUiYlDktSJiUMakiSHJLlu1HFIg2bi0MgkWZfk3iR3Jflxkn9K8u+SZNSxbUmSiSQ3z1I+\nleT1AFV1aVU9rY9jTSb56DDilIbBxKFRKuDwqtoJeCJwOnAq8JFhnCzJQvx7r/ZnUUiy9ahj0NJj\n4tCiUFV3V9VFwDHA8UmeDpBkuyTvSvLPSb6f5INJtp/+XJI3Jbk1yS1J3pDkwSRPbvf9z/b9n01y\nDzCRZNckn0hye5LvJjml51hJ8idJ1ib5QZLzkzxyrtc0s1WS5NQ2zruSXJfkRUlWAacBxyS5O8lV\n7Xt3TXJhkh8muSHJG3qO87AkZyf5UZJr2jroPc+6tuybwN1JVvRc111Jvp3klT3vf23b2vurtuW3\nNslBSU5IclOS25L8zlzrQUuPiUOLSlVdDtwCHNwWnQ48BXhW+3s34C0A7ZfuHwEvBvYEJmY55LHA\nf66qhwNfAS4CrgJ2bT/3h0kOa9/7B8ARwK8Bjwd+DPz3QVxXkqcCvw88t21hHQasq6p/AN4OnFdV\nj6iq/dqPnAfc1MZxNPD2JC9s972VpoW2B/BS4Dg2buW8Bng5sHNVPQCsBQ5uz/3nwMeSPLbn/QcA\n3wB2Ac4FLgCeA/xqe/z3J9lhEHWh8Wfi0GJ0K7BLO9ZxIvDGqvpJVd0DvIPmSxHg1cCZVXVtVf2M\n5gt1pk9X1Vfa188EHl1V/6Wq7q+qG4Ezeo73u8B/qqpbq+o+mi/YozfTxbVr+xf6Qz9sSHgzPQBs\nBzw9yTZVdVNVfbfdl/an2Uh2Bw4CTq2qX1TVN9o4p//q/03g7VV1Z1WtB97b+3maJPK+qlpfVT8H\nqKq/r6rvt68vAG4ADuz5zI1VdXY1i9ddQJNY31ZV91XVJcAvaBK3hP2fWoyeAPwIeDSwA/D1nvHy\nsOEPnscDq3s+d8uM4xSwvmf7SbRf9j1lK4Av9+z/VJIHe/bfDzwW+N4scd5aVbv3FiT54mwXVFVr\nk/whMEmTPC6mSYizHXdX4EdV9dOespuA/Xv29w7Mz7xuZuyn7Wr6I2BlW/Rw4FE9b7mt5/XP2pjv\nmFH28FnOo2XIFocWlSTPo/li/L/AD2m+sPapqke2Pzu33S3QfJn3fnHvzsZ6u3BuovnL+pE9PztV\n1eE9+1fN2L/DJr7cO6uqc6vqEJoEVcA7Z4kRNrS4er+on8iGJNjpupM8Cfgbmq6yXarqkcC3+OVW\nitQ3E4dGLQBJdkpyOE3/+ker6ttV9SDwP4D3JHlM+77desYkLgBOSPK0tv/9z2Y7do/VNIPFb2oH\nmFckeUaS57b7P0QzlvDE9lyPSXLEQC4y2asdDN8O+DnwLzTdVwDfB1ZOT0OuqpuBy4B3tJMDngm8\nDvhYz3WflmTnJLsBJ7P5mVw7tvt/AGyV5ATgGYO4Li1PiypxtLNQLm1nwhw66ni0IC5KchfNX/un\nAX8JnNCz/1Sagd2vJrkTuATYC6AdWH4f8EXgOzSD39B8McOMqbFtIjoceDbwXeAOmr/Ep1sw7wUu\nBD7XxvQVmkHjTeln2u30e7ajGZ+5g6bF8Oj2egE+3v7+YZIr2tfH0nQr3Qp8EnhLVf1ju+9tNN1T\nNwKfaz//i00GUHUNTb1+hSZJPYOmRdcb48xrWTRTirX4ZDE9yCnJrwF/QvOP+y+q6v+NOCSNkSR7\nA2uAbdsksSwk+T3g1VX1wi2+WRqARdXiAC6tqlfQJI8/H3UwWvyS/EbbnfNImjGDC5d60kjyuCQv\nSLJVO833jcCnRh2Xlo+hJ44kZ7Y3EK2ZUb6qvQnqhiSnAtSG5s9PaJr20pacRDMjaC1wH/B7ow1n\nQWxLMx5zF/AF4NPAB0YakZaVoXdVJTkEuAc4p6r2bctWANcDL6GZKXI5TZ/u04CXATsDH6iqL896\nUEnSyAz9Po6qujTJyhnFBwBrq2odQJLzgCOr6nRsckvSojaqGwB3Y+MbmA7cxHs3kmTxjOhL0hip\nqnnfvzOqwfF5f/FXlT9VvPWtbx15DIvlx7qwLqyLzf8MyqgSx3o2vvN1tmUTNmlycpKpqalBxiRJ\nS9LU1BSTk5MDO96oEscVwJ5JVibZlmYp7Qu7HGBycpKJiYlhxCZJS8rExMR4JY4k59Isn7BXkpuT\nnFBV99Msk3AxcA1wflVd2+W4tjgaJs8NrIsNrIsNrIvBtzgW1Z3j/UpS4xi3JI1SEmqMB8clSWNq\nbBOHXVWS1B+7qrCrSpLmwq4qSdJIjG3isKtKkvpjVxV2VUnSXNhVJUkaibFNHHZVSVJ/7KrCripJ\nmgu7qiRJI2HikCR1MraJwzEOSeqPYxw4xiFJc+EYhyRpJEwckqROTBySpE5MHJKkTsY2cTirSpL6\n46wqnFUlSXPhrCpJ0kiYOCRJnZg4JEmdmDgkSZ2YOCRJnZg4JEmdjG3i8D4OSeqP93HgfRySNBfe\nxyFJGgkThySpExOHJKkTE4ckqRMThySpExOHJKmTRZc4kuyY5PIkvz7qWCRJG1t0iQN4E3D+qIOQ\nJM1u61EH0CvJS4FrgO1HHYskaXZDb3EkOTPJbUnWzChfleS6JDckObUtPhR4PvBbwIlJ5n2HoyRp\nsIa+5EiSQ4B7gHOqat+2bAVwPfASYD1wOXBsVV3b7j8euKOqPruJY7rkiCR1NKglR4beVVVVlyZZ\nOaP4AGBtVa0DSHIecCRwbfuZs7d03N4FuyYmJpiYmBhEuJK0ZExNTQ1lMdgFWeSwTRwX9bQ4jgZe\nVlUnttvHAQdW1Sl9Hs8WhyR1NO6LHM77W99l1SWpP2O5rPosLY7nA5NVtardPg14sKre2efxbHFI\nUkfj3uK4Atgzycok2wLHABeOKBZJUgcLMR33XOAyYK8kNyc5oaruB04GLqa5b+P86RlV/bKrSpL6\nM5ZdVYNmV5UkdTfuXVXzZotDkvpjiwNbHJI0F8u+xSFJGo2xTRx2VUlSf+yqwq4qSZoLu6okSSNh\n4pAkdTK2icMxDknqj2McOMYhSXPhGIckaSRMHJKkTsY2cTjGIUn9cYwDxzgkaS4c45AkjYSJQ5LU\niYlDktSJiUOS1MnYJg5nVUlSf5xVhbOqJGkunFUlSRoJE4ckqRMThySpExOHJKkTE4ckqZOxTRxO\nx5Wk/jgdF6fjStJcOB1XkjQSJg5JUicmDklSJyYOSVInJg5JUicmDklSJ4sqcSR5WpIPJrkgyetH\nHY8kaWOL8j6OJFsB51XVqzex3/s4JKmjJXsfR5J/A3wGOG/UsUiSNjb0xJHkzCS3JVkzo3xVkuuS\n3JDk1Onyqrqoql4OHD/s2CRJ3W2xqyrJvlW1ZrNv2vznDwHuAc6pqn3bshXA9cBLgPXA5cCxwK8A\nrwK2B66tqvds4ph2VUlSR4Pqqtq6j/d8MMl2wFnA31bVnV1OUFWXJlk5o/gAYG1VrQNIch5wZFWd\nDnypy/ElSQtri4mjqg5OshfwOuDKJKuBs6rqc/M4727AzT3btwAHdjlA70qPExMTTExMzCMcSVp6\npqamhrKKeN+zqpJsDbwSeB9wJ834yJur6hN9fHYlcFFPV9VRwKqqOrHdPg44sKpO6TMWu6okqaMF\nm1WV5FlJ3g1cC7wIOLyq9gZeCLx7juddD+zes707Taujbz6PQ5L6s+DP40jyJeAjwN9X1b0z9v1O\nVZ2zxZNs3OLYmmZw/MXArcBq4NiquravoG1xSFJnC3kfx6/TDIrf2554RZIdAfpMGucClwF7Jbk5\nyQlVdT9wMnAxcA1wfr9JY5otDknqzyhaHF8FXlJV97TbjwAurqqDBhZFR7Y4JKm7hWxxbD+dNACq\n6m5gh/meWJI0nvpJHD9Nsv/0RpLnAj8bXkj9satKkvoziq6q59GsG/W9tujxwDFVdcXAoujIripJ\n6m5QXVV93ceRZFvgqUAB11fVffM98XyYOCSpu4VccgTgucAe7fuf0558izOqhmlyctI7xiWpD4O+\ng7yfrqqPAU8GrgYemC7v9y7vYbDFIUndLWSLY39gH7+pJUnQ36yqb9EMiC8qSZxVJUl9GMWsqing\n2TTLgvy8La6qOmJgUXSUpNogRhWCJI2dheyqmmx/F5Ce15KkZajf6bgrgadU1eeT7ABsXVV3DTm2\nzcVji0OSOlrIZdVPAj4OfLgtegLwqfmeWJI0nvoZHP994GDgLoCq+g7Ns8FHzsFxSdqyUQyOr66q\nA5JcVVX7tc/SuLKqnjmwKDqyq0qSulvI1XG/lORPgR2SvJSm2+qi+Z5YkjSe+mlxrABeDxzWFl0M\nnDHKGwJtcUhSdwu6yOFiY+KQpO4W7D6OJDfOUlxV9eT5nny+pqamXORQkrZgFIscPrpnc3vgaOBR\nVfVnA4uiI1scktTdSLuqklxZVc+Z78nnysQhSd0tZFfV/mxYYmQrmmdzrJjviSVJ46mftar+kg2J\n435gHfDqYQUkSVrcnFUlScvEQnZV/Uc2Xg33oVVyq+qv5huEJGl89PsEwOcBF9IkjMOBy4HvDDEu\nSdIi1U/i2B14TlXdDZDkrcBnq+rfDjWyPngfhyRt2Sju47geeFZV/Uu7vT3wjap66sCi6MgxDknq\nbiGfAHgOsDrJJ2m6ql4JnD3fE0uSxlO/TwDcn+aZHABfrqqrhhrVluOxxSFJHS3ksuoAOwB3V9V7\ngVuS7DHfE0uSxlM/YxyTNDOrnlpVeyXZDbigql6wAPFtKiZbHJLU0UK2OH4DOBL4KUBVrQceMd8T\nS5LGUz+J4+dV9eD0RpIdhxiPJGmR6ydxfDzJh4Gdk5wEfAE4Y1gBJTkyyd8kOa99VK0kaRHZ7BhH\nktDcAPg0eh4dW1WXDD2wZGfgXVX1hln2OcYhSR0tyPM42sSxpqqeMd8TdZXkXcDHqurqWfaZOCSp\nowUZHK/mm/nrSQ6Yz0mSnJnktiRrZpSvSnJdkhuSnNqWJck7gf8zW9KQJI1Wv0uOPAX4Z9qZVTQ5\n5Zl9nyQ5BLgHOKeq9m3LVgDXAy8B1tMsnHhsu318u311VX14luPZ4pCkjoa+5EiSJ1bVTcDLaJZV\nn/PJqurSJCtnFB8ArK2qde35zgOOrKrTgb+e67kkScO1ubWq/hewX1WtS/KJqjpqwOfeDbi5Z/sW\n4MAuB5icnARgYmLCVXIlaYZBr4o7bZNdVUmuqqr9Zr6e84maFsdFPV1VRwGrqurEdvs44MCqOqWP\nY9lVJUkdLfRaVcOwnmaq77TdaVodfXvta187yHgkaUmampp6qIdmEDbX4ngAuLfdfBjws57dVVU7\ndTrRxi2OrWkGx18M3AqsBo6tqmv7ONZDQdvqkKT+DH1wvKpWzPfg05KcCxwKPCrJzcBbquqsJCcD\nFwMrgI/0kzQkSd0s+BMAFyNbHJLU3UI+AVCSNMZscWCLQ5LmYinMqpIkjSG7qiRpibOrCruqJGku\n7KqSJI2EiUOS1IljHJK0xDnGgWMckjQXjnG0BrlwlyRpy8a+xQG2OiSpHy45Iknqi2Mc2OKQpLlw\njEOSNBImDklSJyYOSVInJg5JUifOqpKkJc5ZVWw8q+rQQw8daKVI0lI0qFlVSyJxgFNyJWlLnI4r\nSRqJJZM4XLNKkhbGkumqArurJGlz7KqSJI2EiUOS1In3cUjSEud9HDjGIUlz4RjHLJxZJUnDt6Ra\nHGCrQ5I2xRaHJGkkTBySpE5MHJKkTkwckqROFlXiSLJHkjOSfHzUsUiSZreoEkdV3VhVbxh1HJKk\nTVtUiUOStPgNPXEkOTPJbUnWzChfleS6JDckOXXYcUiSBmMhWhxnAat6C5KsAN7flu8DHJtk7yS7\nJPkQ8GyTiSQtTkNf5LCqLk2yckbxAcDaqloHkOQ84MiqOh343fmcb3Jy0qVHJInBL244bUGWHGkT\nx0VVtW+7fTTwsqo6sd0+Djiwqk7p83ibDdplRyRpY+O+5MhQv9knJiaGeXhJGitTU1MD7YkZVYvj\n+cBkVa1qt08DHqyqd/Z5vC0GbatDkn7ZoFoco3qQ0xXAnm1CuRU4Bjh2RLFI0pI2dg9ySnIucCjw\nKOB24C1VdVaSlwPvAVYAH6mqd3Q4pi0OSepoUC2OJfc8jmnjeF2SNEzj3lUlSVogY9dVNQy2OCSp\nu3GfjitJGlNLNnF497gkNcbyPo5B66erCuyukqRedlVJkkbCxCFJ6mRJJw7HOSTJMQ6g/zEOcJxD\nkqY5xiFJGgkThySpkyWfOHr79RzzkLQcOcZBtzEO2DDO0fbvDSUmSVrsHOOQJI2EiUOS1ImJQ5LU\niYlDktTJsniQ08zZBEkzNuRAuaTlwAc50X1WVa+qMnFIWpacVSVJGgkThySpExOHJKkTE4ckqRMT\nhySpk2WXOGYuejgxMbFROcDExMRD+6Z/935u++23Z2JigsnJyY2OOb0926Jii2Ghxc3FsBjikzRY\nLnLI/KbjzmZ6im5vXfRO2d3UvpnH2NLnpvePus43F8NiiE/ScDgdV5I0EiYOSVInJg5JUicmDklS\nJyYOSVInJg5JUieLaln1JDsCHwB+DkxV1d+NOCRJ0gyLrcXxKuCCqjoJOGLUwUiSNrbYEsduwM3t\n6wdGGci4GOTDWcaddbGBdbGBdTF4Q08cSc5McluSNTPKVyW5LskNSU5ti28Bdl+o2JYC/1NsYF1s\nYF1sYF0M3kJ8OZ8FrOotSLICeH9bvg9wbJK9gU8CRyX5AHDhAsQmSepo6IPjVXVpkpUzig8A1lbV\nOoAk5wFHVtXpwOuGHZMkae4WZJHDNnFcVFX7tttHAy+rqhPb7eOAA6vqlD6P5yp8kjQHg1jkcFTT\ncef1xT+IC5ckzc2oBqDXs2EQnPb1LSOKRZLUwagSxxXAnklWJtkWOAYHwyVpLCzEdNxzgcuAvZLc\nnOSEqrofOBm4GLgGOL+qru3jWLNN4V1SZpu+nGSXJJck+U6SzyXZuWffaW19XJfksJ7y/ZOsafe9\nd6GvYxCS7J7ki0m+neRbSf6gLV929ZFk+yRfS3J1kmuSvKMtX3Z1MS3JiiRXJbmo3V6WdZFkXZJv\ntnWxui0bbl1U1Vj8ACuAtcBKYBvgamDvUcc1hOs8BNgPWNNT9l+BN7WvTwVOb1/v09bDNm29rGXD\nhIfVwAHt688Cq0Z9bXOoi8cBz25fPxy4Hth7GdfHDu3vrYGvAgcv17poY38j8LfAhe32sqwL4EZg\nlxllQ62LcbrJ7qEpvFV1H3AecOSIYxq4qroU+PGM4iOAs9vXZwOvbF8fCZxbVfdVM7V5LXBgkscD\nj6iq1e37zun5zNioqu9X1dXt63uAa2lWF1iu9XFv+3Jbmj+kfswyrYskTwBeAZwBTE+WWZZ10Zo5\nYWiodTFOiaN3ORJoBtN3G1EsC+2xVXVb+/o24LHt61355UkF03Uys3w9Y15X7ZTu/YCvsUzrI8lW\nSa6mueYvVtW3WaZ1Abwb+GPgwZ6y5VoXBXw+yRVJTmzLhloXi2p13C3w3g2gqmq53ceS5OHAJ4D/\nUFV3Jxv+uFpO9VFVDwLPTvKvgIuTvHDG/mVRF0kOB26vqquSTMz2nuVSF60XVNX3kjwGuCTJdb07\nh1EX49TiWM5TeG9L8jiAtkl5e1s+s06eQFMn69vXveXrFyDOgUuyDU3S+GhVfbotXrb1AVBVdwKf\nAfZnedbFQcARSW4EzgVelOSjLM+6oKq+1/6+A/gUTbf+UOtinBLHcp7CeyFwfPv6eODTPeWvSbJt\nkj2APYHVVfV94K4kB6b58/y3ez4zNtrYPwJcU1Xv6dm17OojyaOnZ8YkeRjwUuAqlmFdVNWbq2r3\nqtoDeA3wj1X12yzDukiyQ5JHtK93BA4D1jDsuhj1jICOswdeTjOzZi1w2qjjGdI1ngvcCvyCZkzn\nBGAX4PPAd4DPATv3vP/NbX1cR7OMy3T5/u0/oLXA+0Z9XXOsi4Np+rCvpvmSvIpmYcxlVx/AvsCV\nbV18E/jjtnzZ1cWMejmUDbOqll1dAHu0/yauBr41/b047LpYkLWqJElLxzh1VUmSFgEThySpExOH\nJKkTE4ckqRMThySpExOHJKmTcVpyRBqqJA/Q3COxDXA/zUJv7y7nrEu/xMQhbXBvVe0H0K7783fA\nTsDkfA+cZKtq1pqSxp5dVdIsqln35ySaB45NPzTovyVZneQbSU5qy7dK8oEk17YPzPlMkqPafeuS\nnJ7k68BvJjksyWVJvp7kgnaJiOkH6Ey1q5v+w/QaQ9JiZeKQNqGqbgRWJPkV4PXAT6rqAJpF5E5s\nl3p/FfCkqtqbZn2ff82GlZwL+EFV7Q98AfhT4MXt9teBNybZGvhr4Kiqei5wFvAXC3SJ0pzYVSX1\n5zBg3yRHt9s70SwQ9wLgAoCqui3JF2d87vz29/Npnr52Wbss/LY0j1R+KvB0mucpQPOApluHdxnS\n/Jk4pE1I8mTggaq6vf1SP7mqLpnxnlfwy09fm/kktp/2vL6kqn5rxuf3Bb5dVQcNLnJpuOyqkmbR\nDo5/iKYbCeBi4N+3XUsk2SvJDsA/AUel8Via1Vpn8zXgBUl+tf38jkn2pFmh9DFJnt+Wb5Nkn6Fd\nmDQAtjikDR6W5CpmTMdt950BrASubJ9XcDvNM5k/AbwYuIZmGfwrgTtnHriq7kjyWuDcJNu1xX9a\nVTe03V/va5/st3V7zmuGcoXSALisujRPSXasqp8meRRNy+Kgqrp9S5+TxpUtDmn+/nf7dL5tgbeZ\nNLTU2eKQJHXi4LgkqRMThySpExOHJKkTE4ckqRMThySpExOHJKmT/w8mWULLnrQ75AAAAABJRU5E\nrkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fba48149bd0>" | |
] | |
} | |
], | |
"prompt_number": 43 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(degree_hist, xlog=True, label='Degree')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEfCAYAAABSy/GnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHFFJREFUeJzt3XuUbGV55/Hvj4OIoA7eYpSgR6MoKhq8gKMS2ng7KhEj\nqMHRGFSMSWCWcdYSHRNpzcTgGhOjcbwNwkiccMCoGRhN0DgeZYIZ8BoiB4UokUtEvIMaFXjmj9pF\nFXX6dO/urtvu/n7W6nV6v/utvd96T1U9/V4rVYUkSSvZY9YFkCR1gwFDktSKAUOS1IoBQ5LUigFD\nktSKAUOS1IoBQ5qQJIcnuXTW5ZDGxYChmUlyRZIfJflBku8m+fskv5Uksy7bSpIsJLlyifQdSV4M\nUFXnV9UDW1xrMclfTKKc0jgZMDRLBRxZVXcE7gWcApwEvGcSN0syjdd7NT9zIcmesy6DNg4DhuZC\nVV1fVecCzwVemOTBAElum+RNSf4lyTeSvCPJ3v3HJXllkmuSXJXkJUluTnLf5tz/aPJ/JMkNwEKS\neyb5QJJvJvlqkhOHrpUkr0pyeZJvJTkryZ3W+pxGWyFJTmrK+YMklyb5lSTbgFcDz01yfZLPN3nv\nmeScJN9OclmSlwxd53ZJ3pvkO0kuaepg+D5XNGn/CFyfZMvQ8/pBki8leeZQ/t9sWnd/2rT0Lk/y\nmCTHJfl6kmuT/MZa60EbhwFDc6WqLgKuAh7XJJ0C3A94WPPv/sBrAZoP298DngDcH1hY4pLHAn9Y\nVbcHPg2cC3weuGfzuJcneXKT9z8CzwB+GbgH8F3gv43jeSV5APC7wCObFtWTgSuq6m+BNwDbq+oO\nVXVI85DtwNebchwDvCHJ45tzJ9Nrkd0HeBLwfHZt1fw68FRgv6q6CbgceFxz79cB70ty96H8hwJf\nBO4MnAmcDTwc+MXm+m9Lss846kLdZcDQPLoGuHMzlnE88Iqq+l5V3QD8Mb0PQ4DnAKdV1c6q+jG9\nD9JRf11Vn25+fyhw16r6L1V1Y1V9DTh16HovA36/qq6pqp/R+2A9ZpmurHs2f5Hf8sMg0I26Cbgt\n8OAkt6mqr1fVV5tzaX56B8kBwGOAk6rqp1X1xaac/b/ynw28oaq+X1VXA28Zfjy94PHWqrq6qn4C\nUFV/VVXfaH4/G7gMOGzoMV+rqvdWb3O5s+kF1NdX1c+q6mPAT+kFbG1i9m9qHv0C8B3grsA+wGeH\nxsHD4A+dewAXDj3uqpHrFHD10PG9aT7kh9K2AJ8aOv+hJDcPnb8RuDvwr0uU85qqOmA4IcknlnpC\nVXV5kpcDi/SCxnn0AuFS170n8J2q+uFQ2teBRwydHx5wH33ejJyn6VL6PWBrk3R74C5DWa4d+v3H\nTZmvG0m7/RL30SZiC0NzJcmj6H0g/l/g2/Q+qB5UVXdqfvZrulWg9yE+/IF9ALsa7qr5Or2/pO80\n9HPHqjpy6Py2kfP77OZDfdWq6syqOpxeYCrgjUuUEQYtrOEP6HsxCH6ret5J7g28m16X2J2r6k7A\nP3HrVom0IgOGZi0ASe6Y5Eh6/ed/UVVfqqqbgf8O/FmSuzX59h8aczgbOC7JA5v+9T9Y6tpDLqQ3\nCPzKZuB4S5KHJHlkc/6d9MYK7tXc625JnjGWJ5kc2Axy3xb4CfBv9LqpAL4BbO1PJ66qK4ELgD9u\nBv0fCrwIeN/Q8351kv2S7A+cwPIzs/Ztzn8L2CPJccBDxvG8tLnMVcBoZpWc38xsOWLW5dFUnJvk\nB/T+un818CfAcUPnT6I3YPsPSb4PfAw4EKAZMH4r8AngK/QGtaH3gQwjU1ybAHQk8EvAV4Hr6P3l\n3W+xvAU4B/hoU6ZP0xsM3p0202f7eW5Lb/zlOnothLs2zxfg/c2/307ymeb3Y+l1H10DfBB4bVX9\nn+bc6+l1Q30N+Gjz+J/utgBVl9Cr10/TC04PodeCGy7j6HOZm6nBmh+Zpy9QSvLLwKvovaj/qKr+\necZFUockOQi4GNirCQ6bQpLfBp5TVY9fMbO0DnPVwgDOr6qn0Qsar5t1YTT/kvxa021zJ3pjAuds\n9GCR5OeTPDbJHs103VcAH5p1ubTxTTxgJDmtWfhz8Uj6tmbx0mVJTgKoQXPne/Sa8NJKXkpvhs/l\nwM+A355tcaZiL3rjLT8APg78NfD2mZZIm8LEu6SSHA7cAJxRVQc3aVuALwNPpDfz4yJ6fbYPBJ4C\n7Ae8vao+teRFJUlTN/F1GFV1fpKtI8mHApdX1RUASbYDR1XVKdi0lqS5NKuFe/uz68Kjw3aTdxdJ\n5mekXpI6pKrWvP5mVoPe6/7Ar6qx/Zx88sljzb/c+aXOrZQ2en65cxutLlZzbF1YF9bF8sfrNauA\ncTW7rlRdanuD3VpcXGTHjh1jKczCwsJY8y93fqlzK6WNnl9teVdj3upitcfjZF2s/drWRfv806iL\nHTt2sLi4uGw5Whln5N3dD70FSBcPHe8J/HOTvhfwBeCgVVyv1HPyySfPughzw7oYsC4GrIuB5rNz\nzZ/l05hWeya9bQ4OTHJlkuOq6kZ62xmcB1wCnFVVO1dz3XG2MLpskn9JdY11MWBdDFgXjK2FMVcr\nvdtKUl0styTNUhKqg4PekqSO6WzAsEtKktqxS6qD5ZakWbJLSpI0FZ0NGHZJSVI7dkl1sNySNEt2\nSUmSpqKzAcMuKUlqxy6pDpZbkmbJLilJ0lQYMCRJrRgwJEmtdDZgOOgtSe046N3BckvSLDnoLUma\nCgOGJKkVA4YkqZXOBgwHvSWpHQe9O1huSZolB70lSVNhwJAktWLAkCS1YsCQJLViwJAktWLAkCS1\n0tmA4ToMSWrHdRgdLLckzdJ612HsOc7CqPuS9q8lg7a0uRgwtIQ2gWDNf6RI6qjOjmFIkqbLFkbH\nraYLaTl2L0laiQFjQ1jvh73dS5JWZpeUJKmVuQsYSfZNclGSp8+6LJKkgbkLGMArgbNmXQhJ0q3N\n1RhGkicBlwB7z7oskqRbm3gLI8lpSa5NcvFI+rYklya5LMlJTfIRwKOB5wHHZ1xTgCRJ6zbxrUGS\nHA7cAJxRVQc3aVuALwNPBK4GLgKOraqdzfkXAtdV1Ud2c023Bmn0Yur6Z0n167P99eJUXKlj5n5r\nkKo6P8nWkeRDgcur6gqAJNuBo4CdzWPeu9J1hzfSWlhYYGFhYRzFlaQNY8eOHWPdpHUqmw82AePc\noRbGMcBTqur45vj5wGFVdWLL69nCaNjCkNTWelsYs5olte5PGrc3l6R2OrW9+RItjEcDi1W1rTl+\nNXBzVb2x5fVsYTRsYUhqq6stjM8A90+yNclewHOBc2ZUFklSC9OYVnsmcAFwYJIrkxxXVTcCJwDn\n0Vt3cVZ/hlRbdklJUjud6pIaN7ukBuySktRWV7uk1s0WhiS1Ywujg+WeBFsYktratC0MSdJ0zdXm\ng6uxuLjoCu85sNJ2X7ZCpNkb14pvu6Q6btZdUsvnt9tKmid2SUmSpsKAIUlqpbMBw2m1ktSO02o7\nWO5JcAxDUluOYUiSpsKAIUlqpbMBwzEMSWrHMYwOlnsSHMOQ1JZjGJKkqTBgSJJaMWBIkloxYEiS\nWulswHCWlCS14yypDpZ7EpwlJaktZ0lJkqbCgCFJaqWz37inbljuG/nsrpK6xYChKVgqMKy5G1XS\njNglJUlqxYAhSWqlswHDdRiS1I7rMDpY7kmY93UYPUuPYfh/KE2X6zAkSVNhwJAktWLAkCS1YsCQ\nJLXiwj3NzFKrwB0Il+bXXLUwkjwwyTuSnJ3kxbMuj6ahhn4kzbO5nFabZA9ge1U9ZzfnnVbb6PK0\n2l3POdVWmqQNN602ya8CHwa2z7oskqSBiQeMJKcluTbJxSPp25JcmuSyJCf106vq3Kp6KvDCSZdN\nktTeil1SSQ6uqouXzbT84w8HbgDOqKqDm7QtwJeBJwJXAxcBxwI/BzwL2BvYWVV/tptr2iXVsEtK\nUlvr7ZJqM0vqHUluC5wO/M+q+v5qblBV5yfZOpJ8KHB5VV0BkGQ7cFRVnQJ8cjXXlyRNx4oBo6oe\nl+RA4EXA55JcCJxeVR9dx333B64cOr4KOGw1FxjeSGthYYGFhYV1FEeSNp4dO3aMdZPW1rOkkuwJ\nPBN4K/B9euMf/7mqPtDisVuBc4e6pI4GtlXV8c3x84HDqurElmWxS6phl5SktiY+SyrJw5K8GdgJ\n/ApwZFUdBDweePMa73s1cMDQ8QH0Whmtub25JLUzte3Nk3wSeA/wV1X1o5Fzv1FVZ6x4k11bGHvS\nG/R+AnANcCFwbFXtbFVoWxi3sIUhqa1pDHo/HfhxVd3U3HALsHdV/bBlsDgTOAK4S5IrgddW1elJ\nTgDOA7YA72kbLPoWFxcdu9iA3C5EGr9xjWW0aWH8A/DEqrqhOb4DcF5VPWbdd18jWxgDG62FsVSa\n/9fSeExjpffe/WABUFXXA/us9YaSpG5qEzB+mOQR/YMkjwR+PLkiteOgtyS1M81B70fR29fpX5uk\newDPrarPrPvua2SX1IBdUpLaWm+XVKt1GEn2Ah5A75385ar62VpvOA4GjAEDhqS2pjFLCuCRwH2a\n/A9vbrriDKlJcpbU5jE6c8oAIq3ONGdJvQ+4L/AF4KZ+ettV2ZNgC2NgM7QwbHFI4zGNFsYjgAf5\nCS1Jm1ubWVL/RG+gW5K0ibVpYdwNuKTZpfYnTVpV1TMmV6yVOYaxeQ2PadjwlVY2zTGMhebXYqiT\nuapm9r0VjmEMbMYxjMGx4xnSakx8DKOqdjSbB96vqv4uyT5tHidJ2ljabG/+UuD9wLuapF8APjTJ\nQkmS5k+bQe/fBR4H/ACgqr5C77u3Z8qtQSSpnWluDXJhVR2a5PNVdUjzXRafq6qHrvvua+QYxsBm\nH8MY5mtCWt40dqv9ZJLXAPskeRK97qlz13pDafwMFNI0tGlhbAFeDDy5SToPOHWWf+LbwhiwhdHP\n74wpaSVT2Xxw3hgwBgwY/fwGDGklE59Wm+RrSyRXVd13rTcdBxfuaZQL+qSlTXPh3l2HDvcGjgHu\nUlV/sO67r5EtjAFbGP38tjaklcykSyrJ56rq4Wu96XoZMAYMGP38BgxpJdPoknoEg3foHvS+G2PL\nWm8oTYPdU9L4tdni408YBIwbgSuA50yqQNL4DLc8JK2Xs6Q6zi6pfv6VfrelIU2jS+o/ses7fnjX\n2j9d682l6bClIY1D22/cexRwDr133ZHARcBXJlguaez64xq2NKS1aRMwDgAeXlXXAyQ5GfhIVf2H\niZZsBa7D0Or1WhoGDm0201yH8WXgYVX1b83x3sAXq+oB6777GjmGMeAYRj//cr+P/tuc9TWkTWbi\nYxjAGcCFST5I7932TOC9a72hJKmbWs2SatZiPK45/FRVfX6ipVq5PLYwGrYw+vltYUgrmcb25gD7\nANdX1VuAq5LcZ603lOZFklst8JO0vDZf0boIvBJ4VZO0F/C+CZZJkjSH2rQwfg04CvghQFVdDdxh\nkoWSJM2fNgHjJ1V1c/8gyb4TLI8kaU61CRjvT/IuYL8kLwU+Dpw6qQIlOSrJu5Nsb74SVpooxzKk\ndpadJZXeu+gA4IEMfUVrVX1s4gVL9gPeVFUvWeKcs6QazpLq51/9LKnd8bWljWqi34fRBIyLq+oh\na73BWiV5E/C+qvrCEucMGA0DRj//OALG4LyvL21EE51W23wqfzbJoWu9AUCS05Jcm+TikfRtSS5N\nclmSk5q0JHkj8DdLBQtJ0my03RrkfsC/0MyUohdLHtr6JsnhwA3AGVV1cJO2Bfgy8ETganobGh7b\nHL+wOf5CVb1rievZwmjYwujnt4UhrWRiW4MkuVdVfR14CuvcH7qqzk+ydST5UODyqrqiud924Kiq\nOgX487XeS5I0GcvtJfW/gEOq6ookH6iqo8d87/2BK4eOrwIOa/vgxcXFW35311pJ2tW4dqnt222X\nVJLPV9Uho7+v+Ua9Fsa5Q11SRwPbqur45vj5wGFVdWKLa9kl1bBLqp/fLilpJdPaS2oSrqY3Zbfv\nAHqtjFYWFxfHGjmlcRpuAUuztmPHjrG8JpdrYdwE/Kg5vB3w46HTVVV3XNWNdm1h7Elv0PsJwDXA\nhcCxVbWzxbVsYTRsYfTzj7+FMbqYbzWvueYvudb5pWmY2KB3VW1Z60VHJTkTOAK4S5IrgddW1elJ\nTgDOA7YA72kTLPr8xj1Nz7rmfEgzN7Vv3JtHtjAGbGH080+yhdFLt4WhruvyGIY0t8axt5T7U2mj\n6WzAcNBb09YmALiRoebRxAe955ldUgN2SfXzj7dLaqX0ZSaL7PpoX6uaE3ZJSZKmorMBwy4pSWrH\nLqkOlnsS7JLq5599l9Tuxi58rWpe2CUlzYgD3NpsOhsw7JKSpHbskupguSfBLql+/ul3SfVbF7eu\nu2Wu7mtWM2aXlDQH2nZNuSmhusyAIa3BWj/4X/e61423INIUdTZgOIahWVrPB7+tDE2bYxgdLPck\nOIbRzz/dMYxbnV1iK/SV8vn61Sw4hiFJmgoDhrROrsXQZmHAkGbIxX/qEgOGJKmVzgYMZ0mpa0Zb\nEsPHtjQ0Sc6S6mC5J8FZUv38s5sltRa7m1l18skn3/LGXlxcdAquxmq9s6QMGB1nwOjn71bAWEm/\nbn2da5ycVitJmgoDhjSHlhvPsJtKs2KXVMfZJdXPv7G6pG658252xfX1r7WwS0rawGxNaJ4YMKQ5\nNrzJocFDs9bZgOE6DG02bo2utXIdRgfLPQmOYfTzb8wxjFFOt9V6OIYhbUK7WxnuinFNkgFD6hCD\ngWbJgCFJasWAIXWY+01pmhz07jgHvfv5N8eg9+7c+v/Pr4DV0hz0liRNxVwFjCT3SXJqkvfPuiyS\npFubq4BRVV+rqpfMuhySpF3NVcCQJM2viQeMJKcluTbJxSPp25JcmuSyJCdNuhySpPWZRgvjdGDb\ncEKSLcDbmvQHAccmOSjJnZO8E/glg4gkzZc9J32Dqjo/ydaR5EOBy6vqCoAk24GjquoU4GVtrjs8\n93xhYYGFhYX1F1bqsOFV4K7PEPQ2HRznJq1TWYfRBIxzq+rg5vgY4ClVdXxz/HzgsKo6seX1XIfR\ncB1GP7/rMEa3DfE9olFdXYex7ley25tLy+u3MNyQUJ3a3nyJFsajgcWq2tYcvxq4uare2PJ6tjAa\ntjD6+W1hLBUUlvqKV21eXW1hfAa4f5KtSfYCngucM6OySJJamMa02jOBC4ADk1yZ5LiquhE4ATgP\nuAQ4q6p2rua6dklJK3PgW9CxLqlxs0tqwC6pfn67pFYap/A9o652Sa2bLQxpoM2gtlNtNy9bGB0s\n9yTYwujn39wtjNXwvbN5bdoWhiRpujobMOySktbOtRmbi11SHSz3JNgl1c9vl1Rbrs3YvOySkiRN\nhQFDktRKZwOGYxjS+DjddmNzDKOD5Z4ExzD6+R3DaGupMYymb3uWxdIUOIYhSZoKA4YkqZXOBgzH\nMKTxGO7bXq6f23GO7nIMo4PlngTHMPr5HcNoa3QMY/T33b23HOfoPscwJElTYcCQJLViwJAktWLA\nkCS10tmA4SwpaW2GZ8sM71jb/31xcXGX3Wz7jxmdaePMqW5wllQHyz0JzpLq53eW1CTc+nVx67R+\nuu/F7nCWlCRpKgwYkqRWDBiSpFYMGJKkVgwYkqRWDBiSpFY6GzBchyFN3vB02t2lLSwssLi4eKsf\nWHqNxsLCwi6P6VtcXGRhYYG99957l+uM5t3d9dtarowbkeswOljuSXAdRj+/6zAmZXhH2+E0WDqg\nDD9m9H3aT1tqXcdS19pd3uFrrcVwOTbTZ4nrMCRJU2HAkCS1YsCQJLViwJAktWLAkCS1suesCzAs\nyb7A24GfADuq6i9nXCRJUmPeWhjPAs6uqpcCz5h1YSRJA/MWMPYHrmx+v2mWBZG0MbjAd3wmHjCS\nnJbk2iQXj6RvS3JpksuSnNQkXwUcMK2ySdr4DBjjM40P5dOBbcMJSbYAb2vSHwQcm+Qg4IPA0Une\nDpwzhbIBq39BrZR/ufNLnVspbfS8bwDNu0m/Rld6T0zy/vP2eTHNuph4wKiq84HvjiQfClxeVVdU\n1c+A7cBRVfWjqnpRVf1OVZ056bL1zdsLYDTNgKGuMWC0z9+lgDGVvaSSbAXOraqDm+NjgKdU1fHN\n8fOBw6rqxJbX2zybv0jSGK1nL6lZTatd1wf+ep6wJGltZjWwfDWDwW2a36+aUVkkSS3MKmB8Brh/\nkq1J9gKeyxQHuSVJqzeNabVnAhcABya5MslxVXUjcAJwHnAJcFZV7Zx0WSRJa9fJL1CSJE3fhlkc\nl+Q+SU5N8v5Zl2WWkuyb5L1J3p3kebMuzyz5mhhIclTzmtie5EmzLs+sJHlgknckOTvJi2ddnllr\nPi8uSvL0Vvk3Wgsjyfur6tmzLsesJHkB8J2q+nCS7VX167Mu06xt9tfEsCT7AW+qqpfMuiyzlGQP\nYHtVPWfWZZmlJK8Drgd2VtWHV8q/YVoYuoX7cWk5v09vl4VNK8mvAh+mt2B402pampcA17V9zNwF\njNXsPZXkBUnenOSesyntdLgf18Aq62JDW+V7JUneCPxNVX1hJgWekNW+Jqrq3Kp6KvDCqRd2wlZZ\nF0cAjwaeBxyfZOX1bVU1Vz/A4cAhwMVDaVuAy4GtwG2ALwAHjTzuzsA7gcuAk2b9PGZVJ8A+wGn0\nvlfk2FmXfcZ1sWFfE2uoixPpTWd/B/Bbsy77DOvhCOAtwLuAl8+67LOsi6HzLwSe1ub6c/UFStDb\ne6rZSmTYLXtPASTZDhwF7Bx63HeAl02nlNO1mjqpqlOAF021gFO0hrrYkK8JWFNd/PlUCzgla6iH\nT061gFO0ls/Pqnpv2+t3pctiuF8eet0u+8+oLPPCOhmwLgasix7rYWBsddGVgLGxpnKNh3UyYF0M\nWBc91sPA2OqiKwHDvad2ZZ0MWBcD1kWP9TAwtrroSsBw76ldWScD1sWAddFjPQyMrS7mLmC499Su\nrJMB62LAuuixHgYmXRcbbqW3JGky5q6FIUmaTwYMSVIrBgxJUisGDElSKwYMSVIrBgxJUisGDElS\nK3O3W600K0luAv6R3hbQNwJnAG8uFytJgAFDGvajqjoEIMndgL8E7ggsrvfCSfaoqpvXex1pluyS\nkpZQVdcBL6W3pQJJtiT5r0kuTPLFJC9t0vdI8vYkO5N8NMmHkxzdnLsiySlJPgs8O8mTk1yQ5LNJ\nzk6yb5PvEUl2JPlMkr9N8vMzetrSsgwY0m5U1deALUl+Dngx8L2qOpTeF9Ic33xRzbOAe1fVQcAL\ngH/PYDvpAr5VVY8APg68BnhCc/xZ4BVJ9qT3xUZHV9UjgdOBP5rSU5RWxS4pqZ0nAwcnOaY5viNw\nf+CxwNkAVXVtkk+MPO6s5t9HAw8CLmi+OnkvepvEPQB4MPB3TfoW4JrJPQ1p7QwY0m4kuS9wU1V9\ns/kwP6GqPjaS52lAhpNGLvPDod8/VlXPG3n8wcCXquox4yu5NBl2SUlLaAa938nge7DPA36n6UIi\nyYFJ9gH+Hjg6PXcHjtjNJf8f8Ngkv9g8ft8k9wcuBe6W5NFN+m2SPGhiT0xaB1sY0sDtknyekWm1\nzblTga3A59JrbnwTeCbwAeAJ9L5n4Ergc8D3Ry9cVdcl+U3gzCS3bZJfU1WXNd1cb03y7+i9J9/c\nXE+aK34fhrROSfatqh8muQu9lsRjquqbsy6XNG62MKT1+99J9qM3kP16g4U2KlsYkqRWHPSWJLVi\nwJAktWLAkCS1YsCQJLViwJAktWLAkCS18v8B/Ey1JlzObeYAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fba47c71610>" | |
] | |
} | |
], | |
"prompt_number": 44 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Average Degree" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"avg_from_hist(degree_hist)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 45, | |
"text": [ | |
"8.5966267594240406" | |
] | |
} | |
], | |
"prompt_number": 45 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"vertex_average(g, 'total')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 46, | |
"text": [ | |
"(8.59662675942404, 0.2892062692872614)" | |
] | |
} | |
], | |
"prompt_number": 46 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 46 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 46 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment