Last active
November 17, 2016 01:00
-
-
Save stefan2904/761c67751d5541f424cd67b28d41d5dd to your computer and use it in GitHub Desktop.
Demo analysis of KONECT's Internet topology network dataset ... (dataset from 2005)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:2811021351e0c297c4b5f3fee5bed55008b5badf77b2708a18b4ff30ac3ceedd" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"from scipy import stats, integrate\n", | |
"import matplotlib.pyplot as plt\n", | |
"from operator import mul\n", | |
"import requests\n", | |
"import re\n", | |
"\n", | |
"from graph_tool.all import *" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Load Dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"NETWORK_NAME = 'topology' # arenas-pgp, topology, as20000102" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"g = graph_tool.collection.konect_data[NETWORK_NAME] " | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"r = requests.get('http://konect.uni-koblenz.de/networks/' + NETWORK_NAME).text\n", | |
"print re.search('description\">(.*)</div></div>', r).group(1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"This is the network of connections between autonomous systems of the Internet. The nodes are autonomous systems (AS), i.e. collections of connected IP routing prefixes controlled by independent network operators. Edges are connections between autonomous systems. Multiple edges may connect two nodes, each representing an individual connection in time. Edges are annotated with the timepoint of the connection.\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Helper Functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def plot_hist(data, xlog=False, ylog=True, label=''):\n", | |
" plt.bar(range(len(data[0])), data[0], log=ylog)\n", | |
" if xlog:\n", | |
" plt.xscale('log')\n", | |
" plt.title(label + ' Histogram')\n", | |
" plt.xlabel(label)\n", | |
" plt.ylabel('Frequency')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def avg_from_hist(data):\n", | |
" ammount = data[0]\n", | |
" label = data[1][:-1]\n", | |
" return sum(map(mul, ammount, label)) / sum(ammount)\n", | |
"\n", | |
"# for degrees, this is equal to vertex_average(g, 'total')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Shortest-distance\n", | |
"the shortest-distance for each vertex pair in the graph." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"distance_hist = distance_histogram(g)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(distance_hist, label='Shortest Distance')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4XFWZ5/Hvj4Q7yMURxRANIEHQoNwSb2gUhKgMQUHx\nQAQCgq0SHe1WWlE5jNM22tNoA6KOEIbomESEVmITIyKJkYjhTjAXEyVykkAAEQggl8A7f+xVpDip\nk7PrpKp21a7f53nqSe1dVetdVadS716XvbYiAjMzs/62KLoCZmbWnpwgzMysJicIMzOryQnCzMxq\ncoIwM7OanCDMzKwmJwirSdKpkuYXXY9mkfQqSeskqei6NIukayV9pOh6WOdyguhikt4maYGkRyT9\nVdJvJR3SpFi9kn7QoLKel7TXJh4/VdJzKQGsk/RnSVMl7VN5TkTcGxE7xiAnArVropQ0V9Lp/faN\nl9RX2Y6I90bEoJ/5YJ+ndS8niC4l6SXAz4H/AHYBRgDnAU83IdbwRpcJDHbkf2NE7Ai8BDgC+Dtw\nq6TXNaEuRYh0a5SmtKQkDWtGudYaThDdazQQETEzMk9FxHURsaj6SZL+TdLD6Sh8QtX+V0q6JrU8\nlkv6aNVjvZJ+IukHkh4FPgZ8ATghHdHfnp63k6TLJK2RtErSVyVtkR57jaR5qXXzoKTpaf9vUpg7\nU1kfHOD9ifQGI+LPEfFJYB7Qm8oZlY6cK/FOlfQnSY+l93qipNcC3wXenGI9nJ77Pkm3S3pU0r2S\nzq1675VyT5b0l1T3L1Y9voWkL0pakWLdImmP9NhrJV2XPtOlm3hvuVS3Mur9PCWdkf6uf5X0M0m7\nV5V7pKRlqaxvp3IrcU6VdKOkCyQ9BJwraS9Jv5b0UIr9Q0k7VZW3UtI/Sbor1eEySS+XNDt9xtdJ\n2nlzPgsboojwrQtvwI7AQ8D/BSYAu/R7/FTgGeB0sh/bfwBWVz3+G+BiYCvgDcADwDvTY73ptcek\n7W2Ac4Fp/WL8J/AdYFvgZcDvgTPTY9OBL6T7WwFvqXrd88Bem3hvpwLza+yfDNyf7o9K5WwBbA88\nCuyTHns5sH+6f0r/soB3AK9L98cA9wMT+5X7PWBr4ADgKWDf9PjngLuqYo0Bdk116EvxtgDeCDwI\n7DfAe7wBOL3fvvFAX7/nnFbv5wm8K8V+Y3ruhcC89Nh/S5/Vsamen0p/69OqPvtngU+mx7cB9gYO\nB7ZMr58HfLMq3j3AgvQdeCWwFriN7Hu1NXA98JWi/890480tiC4VEeuAt5F1U3wfeCAdKe5W9bS/\nRMRlkf0vngbsLmk3SSOBtwBnR8QzEXEncClwctVrF0TENSnWU2RJ5oVuDEkvB94DfCYi/h4RDwLf\nAj6cnvIMMErSiBRjQQPe9n1kP8a1PA+MkbRtRKyNiMWVqvZ/YkTMi4g/pPuLgBlkSaPaeRHxdETc\nBdxJ9mMH8FHgnIhYXnl9RDwMHA3cExFXRMTzEXEHcDWwqRbShZL+VrkBsxi426mez/Mk4LKIuCMi\nniFr/b1Z0quB9wJ3R8RPUz0vJEuQ1dZExLfT409FxJ8i4vqIeDYiHgK+WePzuigiHoyINcB84HcR\ncWdEPE12IHHgJuprTeIE0cUiYmlETI6IkcDryY7evlX1lPurnvtkurtDet7DEfFE1XPvJRvHqFg1\nSPhXkx1R3lf1A/ddsqNIgM+T/QgulHS3pMn1vbuaRgAP99+Z3scJZK2kNZJ+LmnfgQqRNE7SDZIe\nkPQIWRfaS/s9rfpH80myzw1gD+BPNYp9NTCu3w/+iWStmVoCmBIRu1RuZElmoLGEej7P3YG/vBAo\n+3z+Svb57c7Gf9v+233VG6m7aEbqRnwU+AEbf15rq+7/vd/2U2z4/KyFnCAMgIhYBlxBligGswbY\nVVL1f9pX8eIfiv5Hss/32+4jGxB/adWP3E4RMSbVZ21EnBkRI8h+gC/R5s+0eT9Z19hGIuKXEXEk\n8ApgKVmrqtb7APgR8FNgj4jYmSyx5f2/1Ae8psb+e8m6cXapuu0Y2dhJXgMONNf5ea4h6yrLCpW2\nJ/tBX0XWCtuj6jFVb1fC9dv+GvAc8PqI2An4CIN/XqWdftxJnCC6lKR9JX1W0oi0PRLoAX432Gsj\noo+sz/hfJW0t6QDgNOCHm3jZWrIujsrg8X3AL4ELJO2YBm/3lvT2VJ8PVgZvgUfIfnSerypr75zv\nc5ikPSVdBLydbKZW/+fsJmli+iF8FniC7AetEmsPSVtWvWQH4G8R8YyksWRH+nlnFF0KfDUNGkvS\nAZJ2JZtRNlrSJElbptuhygbKB3x7OWPW+3lOByZLeoOkrcl+4G+KiHuBa8m64iYqm532SbKkuik7\nkH2mj6Xv2+fy1tuK1VYJQtL+kmZKukTScUXXp+TWAeOA30t6nCwx3AX8Y3q81jTK6u0esqPMNWR9\n5V+JiF9v4rVXpn//KumWdP9kskHQxWRdP1ey4cfmEOAmSeuAnwGfioiV6bFe4IrUFXN8jfcWpJlH\nZAOqN5D9SB1aGTvo9362AD4DrCbrSjkM+Hh67HrgD8D9kh5I+z4B/E9JjwFfBmbWiD+QC4AfkyXH\nR8laKttExOPAkWRjMKvJjtT/NX0+A6kVZ6DYuT/PiLg+va+ryP6+e6Z6kcYQPgh8g2ySw37ALWyY\nHl3rb38ecFB6v7NSuYMl1Oh33xeuKYCy8cf2IOmzwMKI+K2kn0XExKLrZGYDUzZNuA84MSLmFV0f\na6y2akGQDV59WNI32HgQy8zaQDoPYufU/VQ5x+OmIutkzdH0BKFsiYO1kvqfgDVB2clAyyWdDZCm\nuZ1FNq3uoWbXzcyG5M3ACrJzJd4HHJumo1rJNL2LSdJhwONkJ0mNSfuGAcvIlkBYDdxM1qf9JNkR\nyfbAJQ2a+25mZkPQjDVyXiQi5ksa1W/3WGBFZZBM0gyyM1HPJ5uCZ2ZmBWt6ghjACF58Ms0qshk1\nuUhqn5F1M7MOEhG5p0cXNUi92T/wRaxL0qrbueeeW3gd/P783vz+ynerV1EJYjUwsmp7JIMvzfAi\nvb29zJ07t5F1MjMrpblz59Lb21v364pKELcA+yhbGnkrsnVwrqmngN7eXsaPH9+MupmZlcr48ePb\nM0EoW3d+AdkyAn2SJkfEeuAsYA7ZWbQzI2JJs+vSKcqe+Mr8/sr83sDvr9u01ZnUeUmKc889l/Hj\nx/sPamY2iLlz5zJ37lzOO+88oo5B6o5NEJ1Yb8uk9fqawt8Ls4FJqitBFDXN1bpeM37IvUK0WSO1\n21pMZmbWJjq2BVGZxeQxiM3nLh+zcquMQdTLYxCWEkRzunxq/Z1aHc/MMvWOQbiLyczManKCMDOz\nmpwgzMysJicIMzOryQnCzMxqcoIwM7OaOjZBeLlvM7N8hrrct8+DMJ8HYdYlOnotJkl7ABcCfwP+\nGBFfL7hK1uGaeZY4+ExxK7d262IaA1wVEacDBxZdGSuLaNLNrNzaLUEsAM6UdD3wi6IrY2bWzVpx\nRbmpktZKWtRv/wRJSyUtl3R22j0Z+FJEHA68r9l1MzOzgTV9kFrSYcDjwLSIGJP2DQOWAUcAq4Gb\ngR5gS+ArwIPAuoj4/ABlepC6gco8SN28WLXjmbWzthukjoj5kkb12z0WWBERKwEkzQAmRsT5wPF5\nyq2esuVlv83MNjbUZb4rWjLNNSWIWVUtiOOBoyLijLQ9CRgXEVNylucWRAO5BdG4eGbtrFOW+/b/\nKjOzNldUglgNjKzaHgmsqqcAn0ltZpZPW59JXaOLaTjZIPXhwBpgIdATEUtylucupgZyF1Pj4pm1\ns7brYpI0nez8htGS+iRNjoj1wFnAHGAxMDNvcjAzs9ZoxSymngH2zwZmD7Xc3t5ez14yM8thqLOZ\nvFifuYupgfHM2lnbdTGZmVlnaqvVXC3TzBVIfcRrZnl1bIIo/xhEc7pgzKz7eAyiRMo8JtDqeB6D\nMNvAYxBmZtYQThBmZlaTE4SZmdXkBGFmZjU5QZiZWU0dO83VrB018xwW8Hks1lodmyDKfx6Eda7m\nTas1GwqfB1EiZT4vodXxWn0ehM+7sHbWdtekroektwEnkdVr/4h4a8FVMjPrWm2VICLit8BvJU0k\nu4iQmZkVpF1nMZ0I/KjoSpiZdbNWXFFuqqS1khb12z9B0lJJyyWdXbX/VcCjEfFEs+tmZmYDa0UL\n4nJgQvUOScOAi9P+/YEeSfulh08DpragXmZmtgmtuOTofEmj+u0eC6yIiJUAkmYAE4ElEdGbp9ze\n3g1P83RXM7ONDXV6a0VLprmmBDErIsak7eOBoyLijLQ9CRgXEVNyludprkMrufBpp62O52muZht0\nynLf/pabmbW5ohLEamBk1fZIYFU9BfT29m5W08nMrFvMnTv3Rd3yeRXVxTQcWAYcDqwhO+ehJyKW\n5CzPXUxDK7nwLp9Wx3MXk9kGbdfFJGk6sAAYLalP0uSIWA+cBcwBFgMz8yYHMzNrjVbMYuoZYP9s\nYPZQy/VifWZm+XixvhIpc5dPq+O5i8lsg7brYjIzs87kBGFmZjV1bILwNFczs3zaeppro3kMYsgl\nFz4m0Op4HoMw28BjEGZm1hBOEGZmVpMThJmZ1eQEYWZmNTlBmJlZTU1fasPMmiebNdU8njXV3To2\nQXgtJrOK5k2rtXIoxVpMyg6H/hewI3BLREwb4Hk+D2JoJRd+XkKr45X9PAifd2H16PTzII4FRgDP\nUOcFhMzMrLHaLUGMBm6MiH8CPl50ZczMulkrLhg0VdJaSYv67Z8gaamk5ZLOTrtXAY+k+883u25m\nZjawVrQgLgcmVO+QNAy4OO3fH+iRtB9wNXCUpAuBuS2om5mZDaAVV5Sbn65JXW0ssCIiVgJImgFM\njIjzgY82u05mZja4oqa5jgD6qrZXAePqKaB66VpPdzUz29hQp7dWtGSaa2pBzIqIMWn7OGBCRJyR\nticB4yJiSs7yPM11aCUXPu201fHKPu3U01ytHp0yzXU1MLJqeyR1Tmv1BYPMzPJp6wsG1WhBDAeW\nAYcDa4CFQE9ELMlZnlsQQyu58CP6Vscr+xG9WxBWj7ZrQUiaDiwARkvqkzQ5ItYDZwFzgMXAzLzJ\nwczMWqOtltrIyy2IIZdc+BF9q+OV/YjeLQirR9u1IJrFYxBmZvm09RhEo7kFMeSSCz+ib3W8sh/R\nuwVh9eiaFoSZmTWXE4SZmdXUsQnCYxBmZvl4DKJEyjwm0Op4ZR8T8BiE1cNjEGZm1hCDJghJY1pR\nETMzay95WhDfkXSzpE9I2qnpNTIzs7YwaIKIiLcBJwGvAm6TNF3SkU2vmZmZFSr3IHVaYO9Y4ELg\nUbLk8sWIuKp51RuwLh6kHlrJhQ8atzpe2QeNPUht9ah3kHrQCwZJegNwKnA0cB1wdETcJumVwE1A\nyxMEZNNcW3WhoOw/YXP4P6CZNdtQLxw0aAtC0jzgMuAnEfFkv8dOjohpdUfdTK1uQZT5CLvs8cp+\nRO8WhNWj3hZEngSxA/D3iHgubQ8DtomIJzarprVjjQe+CtwNzIiIeQM8zwnC8XLFK/sPthOE1aMZ\n50H8Cti2ans7sq6mZngeWAdsTZ1XmDMzs8YadAyCrLXweGUjItZJ2q5J9ZkfEb+RtBtwATCpSXHM\nzGwQeVoQT0g6uLIh6RDg73kDSJoqaa2kRf32T5C0VNJySWcDVPUbPULWijCzNiKpaTdrP3nGIA4F\nZgD3pV27AydExC25AkiHAY8D06quST2M7JrURwCrgZuBHuC1wFHAzsAlEfGbAcr0GITj5YpX9jGB\n8sTzeEcrNHyaa0TcLGk/YF+yb8ayiHg2b4CImC9pVL/dY4EVEbEyVXoGMDEizgf+M2/ZZmbWPHnG\nIAAOAfZMzz8oZaHNmd46Auir2l4FjKungOqla1t1PoSZWScZ6vkPFXm6mH4I7AXcATxX2R8RU3IH\nyVoQs6q6mI4DJkTEGWl7EjAub5nuYnK8vPHK0wVT9njuYmqFhncxAQcD+zf4F3k1MLJqeyR1Tmtt\n5ZnUZmadrJlnUl8JfDoi1gytajVbEMPJBqkPB9YAC4GeiFiSszy3IBwvV7zyHGGXPZ5bEK3QjBbE\ny4DFkhYCT6d9ERHH5KzQdOAdwEsl9QFfiYjLJZ0FzAGGAZflTQ5mZtYaeRJEb/o3AFXdzyUiegbY\nPxuYnbecjSrlLiYzs1ya1sUEL3QRvSYifpXOoh4eEY/VHa1B3MXkeHnjlacLpuzx3MXUCg1fi0nS\nmcCVwPfSrj3wuQpmZqWXZ6mNTwJvAx4DiIg/Ars1s1JmZla8PAni6YioDE5XZiC5LWhmVnJ5EsQ8\nSecA20l6N1l306zmVmtwvb29m3WGoJlZt5g7d+6LVp/IK895EMOA04Ej0645wKVFXhTag9SOlzde\neQZxyx7Pg9St0PAryrUjJwjHyxuvPD+gZY/nBNEKDT9RTtI9NXZHROxVV83MzKyj5DlR7tCq+9sA\nxwMvbU51zMysXQypi0nSbRFxUBPqkze+u5gcL1e88nTBlD2eu5haoRldTAez4RuxBdm1IYYNrXpm\nZtYp8nQx/TsbEsR6YCXwoWZVKC+vxWRmlk9T12JqN+5icry88crTBVP2eO5iaoVmdDH9Ixt/I15Y\n1TUiLqijfoOStD0wF+iNiP9qZNlmZpZf3ivKHQpcQ5YYjgZuBv7YpDp9HpjZpLLNzCynPAliJHBQ\nRKwDkHQucG1EnNToyqSlPBaTTac1M7MC5VmLaTfg2artZ6ljNVdJUyWtlbSo3/4JkpZKWi7p7LT7\nHcCbgBOBM5R1eJqZWQHytCCmAQslXU3WxXQscEUdMS4HLkrlAC+s73QxcASwGrhZ0jUR8aX0+CnA\ng0Wu92Rm1u0GTRAR8S+SfkF2TQiAUyPi9rwBImJ+uiJdtbHAiohYCSBpBjARWJJeU08CMjOzJsjT\nggDYDlgXEVMlvUzSnhFRa42mvEYAfVXbq4Bx9RRQvXStz4cwM9vYUM9/qMiz3Hcv2UymfSNitKQR\nwI8j4q25g2QtiFkRMSZtHwdMiIgz0vYkYFxETMlZns+DcLxc8cpznkDZ4/k8iFZo+DWpgfeTdf88\nARARq4Edh1a9F6wmmx1VMZKsFZGbLxhkZpZPMy8YtDAixkq6PSIOTCey/S4iDsgdZOMWxHBgGXA4\nsAZYCPRExJKc5bkF4Xi54pXnCLvs8dyCaIVmtCCulPQ9YGdJZwLXA5fWUaHpwAJgtKQ+SZMjYj1w\nFtnV6RYDM/MmBzMza41NDlKn8xBmAq8F1gGjgS9HxHV5A0REzwD7ZwOz81f1xbxYn5lZPk1ZrC8l\niEUR8fqhV63x3MXkeHnjlacLpuzx3MXUCg3tYkq/wrdKGrvZNTMzs46S5zyINwGTJP2FNJOJLHfk\nHqQ2M7POM2CCkPSqiLgXOIqsTdlW6yJ5DMKs/Jq5HFs3dWk1fAyiMq013b8qIo7brBo2kMcgHC9v\nvPL00Zc9XvHflW7QjGmuAHsNsT5mZtah8iYIMzPrMpsapD5A0rp0f9uq+5ANUr+kifUyM7OCDZgg\nImJYKytiZmbtxV1MZmZWkxOEmZnV1LEJwst9m5nl07TlvtuRz4NwvLzxynOeQNnjFf9d6QbNOg+i\nJSS9VtJ3JP1Y0ulF18fMrJu1ZQtC0hbAjIj40ACPuwXheLnilecIu+zxiv+udIOObkEASPrvwH8B\nM4qui5lZN2t6gpA0VdJaSYv67Z8gaamk5ZLOruyPiFkR8R7glGbXzczMBpZnue/NdTlwETCtskPS\nMOBi4AhgNXCzpGuA3YAPANsAN7SgbmZmNoCmJ4iImC9pVL/dY4EVEbESQNIMYGJEnA/My1Nu9ZQt\nL/ttZraxoS7zXdGSQeqUIGZFxJi0fTxwVESckbYnAeMiYkrO8jxI7Xi54pVnELfs8Yr/rnSDThmk\n7r6/jJlZhykqQawGRlZtjwRW1VOAz6Q2M8unrc+krtHFNBxYBhwOrAEWAj0RsSRnee5icrxc8crT\nBVP2eMV/V7pB23UxSZoOLABGS+qTNDki1gNnAXOAxcDMvMnBzMxaoxWzmHoG2D8bmD3Ucnt7ez17\nycwsh6HOZmrLpTYG4y4mx8sbrzxdMGWPV/x3pRu0XReTmZl1JicIMzOrqWMThKe5mpnl09bTXBvN\nYxCOlzdeefroyx6v+O9KN/AYhJmZNYQThJmZ1eQEYWZmNTlBmJlZTU4QZmZWkxOEmZnV1LEJwudB\nmJnl4/MgmhuPMs/9LnO88pwnUPZ4xX9XukG950E0fTXXekmaCLwPeAlwWURcV3CVzMy6Utu2ICTt\nDPzviPhojcfcgnC8XPHKc4Rd9njFf1e6QZnOpP4ScHHRlTAz61YtSRCSpkpaK2lRv/0TJC2VtFzS\n2WmfJH0dmB0Rd7SifmZmtrFWtSAuByZU75A0jKyFMAHYH+iRtB/ZpUgPB46X9LEW1c/MzPppySB1\nRMyXNKrf7rHAiohYCSBpBjAxIs4HLhqszOopW770qJnZxoZ6qdGKlg1SpwQxKyLGpO3jgaMi4oy0\nPQkYFxFTcpTlQWrHyxWvPIO4ZY9X/HelG3TSIHX3/XXMzDpIkQliNTCyansksCrvi30mtZlZPm1/\nJnWNLqbhwDKyAek1wEKgJyKW5CjLXUyOlyteebpgyh6v+O9KN2jLLiZJ04EFwGhJfZImR8R6shlL\nc4DFwMw8ycHMzFqjVbOYegbYPxuYPZQye3t7PXvJzCyHoc5matulNjbFXUyOlzdeebpgyh6v+O9K\nN2jLLiYzM+s8ThBmZlZTxyYIT3M1M8un7ae5NpLHIBwvb7zy9NGXPV7x35Vu4DEIMzNrCCcIMzOr\nyQnCzMxqcoIwM7OanCDMzKwmJwgzM6upYxOEz4MwM8unFOdBSNoTOAfYKSI+uInn+TwIx8sVrzzn\nCZQ9XvHflW7Q0edBRMQ9EfHRouthZmZtliDMzKx9ND1BSJoqaa2kRf32T5C0VNJySWc3ux5mZlaf\nVrQgLgcmVO+QNAy4OO3fH+iRtJ+kXSV9F3ijk4aZWbGafkW5iJifrkddbSywIiJWAkiaAUyMiPOB\nf2h2nczMbHAtueRoDSOAvqrtVcC4egqonrLlS4+amW1sqJcarWjJNNfUgpgVEWPS9nHAhIg4I21P\nAsZFxJSc5Xmaq+PlileeaaBlj1f8d6UbdMo019XAyKrtkWStiNx8opyZWT5tfaJcjRbEcGAZcDiw\nBlgI9ETEkpzluQXheLnilecIu+zxiv+udIO2a0FImg4sAEZL6pM0OSLWA2cBc4DFwMy8ycHMzFqj\nrZbayMstCMfLG688R9hlj1f8d6UbtF0Lolk8BmFmlk9bj0E0mlsQjpc3XnmOsMser/jvSjfomhaE\nmZk1lxOEmZnV1LEJwmMQZmb5eAyiufEoc79rmeOVp4++7PGK/650A49BmJlZQzhBmJlZTU4QZmZW\nkxOEmZnV5ARhZmY1FXXBoM3W29vrCwWZWUNls6aao8hZU0O9cJCnueaLR5mn9pU5XnmmgZY9XvHf\nlSLitVq901zbqgUhaXvgEuBpYG5E/KjgKpmZda12G4P4APDjiDgTOKboypiZdbN2SxAjgL50/7ki\nK2Jm1u1acUW5qZLWSlrUb/8ESUslLZd0dtq9ig3Xqm635GVm1lVa8SN8OTCheoekYcDFaf/+QI+k\n/YCrgeMkXQJc04K6mZnZAJo+SB0R8yWN6rd7LLAiIlYCSJoBTIyI84HTml0nMzMbXFGzmKrHGiDr\nWhpXTwHNnK88QMTmlDrg+3C8xsVr3nfF8Zodqxvita+iEsRmTQiuZx6vmZkNTVEDwavZMBhNur+q\noLqYmVkNRSWIW4B9JI2StBVwAh6UNjNrK62Y5jodWACMltQnaXJErAfOAuYAi4GZEbEkR1m1psaW\ngqSRkm6Q9AdJd0v6VNF1agZJwyTdLmlW0XVpNEk7S/qJpCWSFkt6U9F1aiRJX0jfz0WSfiRp66Lr\ntDlqTcGXtKuk6yT9UdIvJe1cZB2HaoD39m/pu3mnpKsl7TRoOe2wPkgeaWrsMuAIsi6qm4GePIml\nE0h6BfCKiLhD0g7ArcCxZXl/FZI+CxwM7BgRpTpbXtIVwLyImCppOLB9RDxadL0aIc1E/DWwX0Q8\nLWkmcG1EXFFoxTaDpMOAx4FpETEm7fsG8FBEfCMdhO4SEf9cZD2HYoD39m7g+oh4XtL5AIO9t046\nGe2FqbER8SwwA5hYcJ0aJiLuj4g70v3HgSXAK4utVWNJ2gN4L3ApzZx6U4B0NHZYREwFiIj1ZUkO\nyWPAs8B2KfltR3ag1rEiYj7wt367jwEqSe8K4NiWVqpBar23iLguIp5Pm78H9hisnE5KELWmxo4o\nqC5NlY7WDiT7I5bJN4HPAc8P9sQOtCfwoKTLJd0m6fuStiu6Uo0SEQ8D/w7cC6wBHomIXxVbq6Z4\neUSsTffXAi8vsjJNdBpw7WBP6qQE0Rl9YZspdS/9BPh0akmUgqSjgQci4nZK1npIhgMHAZdExEHA\nE0DHdU0MRNLewP8ARpG1bHeQdFKhlWqydE2B0v3uSDoHeCbPatmdlCBKPzVW0pbAVcAPI+KnRden\nwd4CHCPpHmA68C5J0wquUyOtAlZFxM1p+ydkCaMsDgEWRMRf0ySTq8n+pmWzNo0HIml34IGC69NQ\nkk4l6+bNldw7KUGUemqsstMsLwMWR8S3iq5Po0XEFyNiZETsCXwY+HVEnFx0vRolIu4H+iSNTruO\nAP5QYJUabSnwJknbpu/qEWQzEMvmGuCUdP8UoDQHapImkHXxToyIp/K8pmMSxFCnxnaQtwKTgHem\naaC3pz9oWZWu6Q5MAf6fpDuBA4CvFVyfhomIO4FpZAdqd6Xd/6e4Gm2+qin4+1am4APnA++W9Efg\nXWm749R4b6cBFwE7ANel35dLBi2nU6a5mplZa3VMC8LMzFrLCcLMzGpygjAzs5qcIMzMrCYnCDMz\nq8kJwszManKCsLYn6Zy0BPqdaf72oWn/Skm7bka5b5D0niG+didJH9/E48+lut4t6Q5Jn00nmCHp\nYEn/sYmp8Hw7AAAD5UlEQVTXvlpSz1DqZdZIThDW1iS9GXgfcGBEvAE4nA1LrARDXNcprUh6INmy\nA0OxC/CJTTz+ZEQcGBGvB94NvAc4FyAibo2IT2/itXsCJw6xXmYN4wRh7e4VZOvzPwvZqqIRcV/V\n41Mk3SrpLkn7wgsXfflpanH8TlJlPfxeST+Q9Fuys4LPA05IR/oflLR9utDK79OKrMek170u7bs9\ntQZeQ3aG7d5p39c39QYi4kHgTLKVAJA0XumCSZLeUXXm/K1pscbzgcPSvk+nFsVv0uO3pqRZKWeu\npCvThWB+WIkp6VBJN6b6/j69t2HKLhqzMH02Z272X8fKLSJ8861tb8D2wO1kF4v6NvD2qsfuAT6Z\n7n8c+H66fxHw5XT/ncDt6X4v2YWmtk7bpwAXVpX3NeCkdH/nFHM74ELgxLR/OLAN8Gpg0Sbqva7G\nvr8BLwPGA7PSvmuAN6f72wHDgHdUHk/7t62q8z7Azen+eOARstVVRba0wluArYA/AQen5+2Qyj0T\nOCft2zp9FqOK/hv71r43tyCsrUXEE2RXoDsTeBCYKemUqqdcnf69jWwpasjWtfpBev0NwEsl7UjW\nJXVNRDydnide3EV1JPDPkm4HbiD7EX0V8Dvgi5I+T/aD+hSNW7L8RuCbkqaQXb3suRplbwVcKuku\n4MfAflWPLYyINRERwB1k3VP7AvdFxK2QXYAqlXskcHJ6fzcBuwKvadD7sBIaXnQFzAYT2VWw5gHz\nlF1j9xQ2XPWr8mP/HC/+Pg/0A/5kddE1Hv9ARCzvt2+ppJuAo4FrJX2MrPWSm6S9gOci4sE0Vp1V\nIOLrkn5ONs5yo6Sjarz8M2Q/+B9Rdund6pU4n666X/kMNrXA2lkRcV09dbfu5RaEtTVJoyXtU7Xr\nQGDlIC+bT1rvXtJ44MGIWMfGSWMdsGPV9hzgU1WxD0z/7hkR90TERcDPgDFkl+Csfu2m3sPLgO+S\ndX31f2zviPhDRHyDrMtn3xplvwS4P90/may7aCBB1jW2u6RDUowdU2KZA3wiDdBXPtvSXPXOGs8t\nCGt3OwAXSdoZWA8sJ+tughcfKVdf/asXmJqW3X6CDev7979C2A1s6FL6GvBV4FupK2cL4M9k1yj+\nkKSPkF2T+T7gXyLikTQIvAi4NiLO7lfvbVO5W6Z6T4uIC2rU49OS3kl2Gda7gdnpseck3QFcDlwC\nXCXpZOAXZBejr37fLxIRz0o6IX1u25K1mo4guxb4KOC2NOX2AeD9/V9vVuHlvs3MrCZ3MZmZWU1O\nEGZmVpMThJmZ1eQEYWZmNTlBmJlZTU4QZmZWkxOEmZnV5ARhZmY1/X9xstvEpDrEdAAAAABJRU5E\nrkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fe5926eb290>" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Average Shortest-distance" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"avg_from_hist(distance_hist)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 10, | |
"text": [ | |
"3.7678760610552895" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Degree\n", | |
"the vertex degree." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"degree_hist = vertex_hist(g, \"total\")\n", | |
"# degree_hist" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(degree_hist, label='Degree')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGkpJREFUeJzt3XuUZWV55/Hvj+YmKCJoUBBtjKCgqIACQdBSEduEESMo\nkiFBVJhkhEzirIjoRCrORHHGxEsc1ERhRBMuXoceHQGNpUxQAQFFbtIjHaBRQI3cNCrw5I+9yz5U\nV9NnV9WpU+f097PWWX32u8/Z+31qVe+n3st+d6oKSZL6tcmwKyBJGi0mDklSJyYOSVInJg5JUicm\nDklSJyYOSVInJg5pQJIclOS6YddDWmgmDg1NktVJfpbkriT/kuSfkvyHJBl23TYkyUSSm2cpn0ry\nOoCquqiqntrHsSaTfHwQ9ZQGwcShYSrg0KraBngCcCpwEvDRQZwsyWL8vlf7WhKSbDrsOmj8mDi0\nJFTV3VW1EjgSOCbJ0wCSbJHk3Un+OckPk3wwyZbT30vypiS3JrklyeuTPJDkSe2+/9V+/gtJ7gEm\nkuyY5NNJbk/y/SQn9hwrSd6cZFWSHyU5J8mj5hrTzFZJkpPaet6V5LokL0yyAjgZODLJ3UmuaD+7\nY5Lzkvw4yQ1JXt9znIcl+ViSnyS5pv0Z9J5ndVv2HeDuJMt64rorydVJXt7z+de0rb2/blt+q5Ic\nkOTYJDcluS3JH8z156DxY+LQklJVlwK3AAe2RacCTwae2f67E/A2gPai+6fAi4BdgYlZDnkU8F+r\n6uHA14GVwBXAju33/iTJIe1n/xh4GfA84HHAvwD/cyHiSvIU4A3As9sW1iHA6qr6IvAO4OyqekRV\n7dV+5WzgprYeRwDvSPKCdt8pNC20XYAXA0ezbivn1cBLgW2r6n5gFXBge+6/AD6RZIeez+8LfBvY\nDjgLOBfYG/jN9vgfSLLVQvwsNPpMHFqKbgW2a8c6jgPeWFU/rap7gHfSXBQBXgWcXlXXVtXPaS6o\nM32uqr7evn8G8Oiq+m9VdV9V3Qh8pOd4fwj8l6q6tap+RXOBPeIhurh2bP9C//WLtQlvpvuBLYCn\nJdmsqm6qqu+3+9K+mo1kZ+AA4KSq+mVVfbut5/Rf/a8E3lFVd1bVGuB9vd+nSSLvr6o1VfULgKr6\nVFX9sH1/LnADsF/Pd26sqo9Vs3jduTSJ9e1V9auquhD4JU3ilrD/U0vR44GfAI8GtgK+1TNeHtb+\nwfM44JKe790y4zgFrOnZfiLtxb6nbBnwtZ79n03yQM/++4AdgB/MUs9bq2rn3oIkX5ktoKpaleRP\ngEma5HE+TUKc7bg7Aj+pqnt7ym4C9unZ3zswPzNuZuyn7Wr6U2B5W/RwYPuej9zW8/7nbZ3vmFH2\n8FnOo42QLQ4tKUmeQ3Nh/H/Aj2kuWHtU1aPa17Ztdws0F/PeC/fOrKu3C+cmmr+sH9Xz2qaqDu3Z\nv2LG/q3Wc3HvrKrOqqqDaBJUAe+apY6wtsXVe6F+AmuTYKe4kzwR+FuarrLtqupRwHd5cCtF6puJ\nQ8MWgCTbJDmUpn/941V1dVU9APwd8N4kj2k/t1PPmMS5wLFJntr2v//5bMfucQnNYPGb2gHmZUme\nnuTZ7f4P0YwlPKE912OSvGxBgkx2awfDtwB+AfwrTfcVwA+B5dPTkKvqZuBi4J3t5IBnAK8FPtET\n98lJtk2yE3ACDz2Ta+t2/4+ATZIcCzx9IeLSxmlJJY52FspF7UyY5w+7PloUK5PcRfPX/snAXwHH\n9uw/iWZg9xtJ7gQuBHYDaAeW3w98BfgezeA3NBdmmDE1tk1EhwLPAr4P3EHzl/h0C+Z9wHnABW2d\nvk4zaLw+/Uy7nf7MFjTjM3fQtBge3cYL8Mn23x8nuax9fxRNt9KtwGeAt1XVP7b73k7TPXUjcEH7\n/V+utwJV19D8XL9Ok6SeTtOi663jzFiWzJRiLT1ZSg9ySvI84M00v9x/WVX/f8hV0ghJsjtwFbB5\nmyQ2Ckn+CHhVVb1ggx+WFsCSanEAF1XVb9Mkj78YdmW09CX53bY751E0YwbnjXvSSPLYJM9Nskk7\nzfeNwGeHXS9tPAaeOJKc3t5AdNWM8hXtTVA3JDkJoNY2f35K07SXNuR4mhlBq4BfAX803Oosis1p\nxmPuAr4MfA44bag10kZl4F1VSQ4C7gHOrKo927JlwPXAwTQzRS6l6dN9KvASYFvgtKr62qwHlSQN\nzcDv46iqi5Isn1G8L7CqqlYDJDkbOKyqTsUmtyQtacO6AXAn1r2Bab/1fHYdSZbOiL4kjZCqmvf9\nO8MaHJ/3hb+qxvZ1yimnDL0Oxmdsxjd+r4UyrMSxhnXvfJ1t2YT1mpycZGpqaiHrJEljaWpqisnJ\nyQU73rASx2XArkmWJ9mcZint87ocYHJykomJiUHUTZLGysTExGgljiRn0SyfsFuSm5McW1X30SyT\ncD5wDXBOVV3b5bjj3OIY94Q4zvGNc2xgfKNqoVscS+rO8X4lqVGstyQNUxJqhAfHJUkjamQTxzh3\nVUnSQrKrCruqJGku7KqSJA3FyCYOu6okqT92VWFXlSTNhV1VkqShGNnEYVeVJPXHrirsqpKkubCr\nSpI0FCYOSVInI5s4HOOQpP44xoFjHJI0F45xSJKGwsQhSerExCFJ6sTEIUnqZGQTh7OqJKk/zqrC\nWVWSNBfOqpIkDYWJQ5LUiYlDktSJiUOS1ImJQ5LUiYlDktTJyCYO7+OQpP54HwfexyFJc+F9HJKk\noTBxSJI6MXFIkjoxcUiSOjFxSJI6MXFIkjpZcokjydZJLk3yO8OuiyRpXUsucQBvAs4ZdiUkSbPb\ndNgV6JXkxcA1wJbDroskaXYDb3EkOT3JbUmumlG+Isl1SW5IclJb/Hxgf+D3gOOSzPsOR0nSwhr4\nkiNJDgLuAc6sqj3bsmXA9cDBwBrgUuCoqrq23X8McEdVfWE9x3TJEUnqaKGWHBl4V1VVXZRk+Yzi\nfYFVVbUaIMnZwGHAte13Prah4/Yu2DUxMcHExMRCVFeSxsbU1NRAFoNdlEUO28SxsqfFcQTwkqo6\nrt0+Gtivqk7s83i2OCSpo1Ff5HDeV32XVZek/ozksuqztDj2ByarakW7fTLwQFW9q8/j2eKQpI5G\nvcVxGbBrkuVJNgeOBM4bUl0kSR0sxnTcs4CLgd2S3Jzk2Kq6DzgBOJ/mvo1zpmdU9cuuKknqz0h2\nVS00u6okqbtR76qaN1scktQfWxzY4pCkudjoWxySpOEY2cRhV5Uk9ceuKuyqkqS5sKtKkjQUJg5J\nUicjmzgc45Ck/jjGgWMckjQXjnFIkobCxCFJ6mRkE4djHJLUH8c4cIxDkubCMQ5J0lCYOCRJnZg4\nJEmdmDgkSZ2MbOJwVpUk9cdZVTirSpLmwllVkqShMHFIkjoxcUiSOjFxSJI6MXFIkjoZ2cThdFxJ\n6o/TcXE6riTNhdNxJUlDYeKQJHVi4pAkdWLikCR1YuKQJHVi4pAkdbKkEkeSpyb5YJJzk7xu2PWR\nJK1rSd7HkWQT4OyqetV69nsfhyR1NLb3cST5d8DngbOHXRdJ0roGnjiSnJ7ktiRXzShfkeS6JDck\nOWm6vKpWVtVLgWMGXTdJUncb7KpKsmdVXfWQH3ro7x8E3AOcWVV7tmXLgOuBg4E1wKXAUcBvAK8A\ntgSurar3rueYdlVJUkcL1VW1aR+f+WCSLYAzgL+vqju7nKCqLkqyfEbxvsCqqloNkORs4LCqOhX4\napfjS5IW1wYTR1UdmGQ34LXA5UkuAc6oqgvmcd6dgJt7tm8B9utygN6VHicmJpiYmJhHdSRp/ExN\nTQ1kFfG+Z1Ul2RR4OfB+4E6a8ZG3VNWn+/jucmBlT1fV4cCKqjqu3T4a2K+qTuyzLnZVSVJHizar\nKskzk7wHuBZ4IXBoVe0OvAB4zxzPuwbYuWd7Z5pWR998Hock9WfRn8eR5KvAR4FPVdXPZuz7g6o6\nc4MnWbfFsSnN4PiLgFuBS4Cjquravipti0OSOlvM+zh+h2ZQ/GftiZcl2Rqgz6RxFnAxsFuSm5Mc\nW1X3AScA5wPXAOf0mzSm2eKQpP4Mo8XxDeDgqrqn3X4EcH5VHbBgtejIFockdbeYLY4tp5MGQFXd\nDWw13xNLkkZTP4nj3iT7TG8keTbw88FVqT92VUlSf4bRVfUcmnWjftAWPQ44sqouW7BadGRXlSR1\nt1BdVX3dx5Fkc+ApQAHXV9Wv5nvi+TBxSFJ3i7nkCMCzgV3az+/dnnyDM6oGaXJy0jvGJakPC30H\neT9dVZ8AngRcCdw/Xd7vXd6DYItDkrpbzBbHPsAeXqklSdDfrKrv0gyILynOqpKk/gxjVtUU8Cya\nZUF+0RZXVb1swWrRkV1VktTdYnZVTbb/FpCe95KkjVC/03GXA0+uqi8l2QrYtKruGnDdHqo+tjgk\nqaPFXFb9eOCTwIfboscDn53viSVJo6mfwfE3AAcCdwFU1fdong0+VA6OS1J/hjE4fklV7Zvkiqra\nq32WxuVV9YwFq0VHdlVJUneLuTruV5O8FdgqyYtpuq1WzvfEkqTR1E+LYxnwOuCQtuh84CPD/JPf\nFockdbeoixwuNSYOSepu0e7jSHLjLMVVVU+a78nnw0UOJak/w1jk8NE9m1sCRwDbV9WfL1gtOkpS\nALY6JKl/Q+2qSnJ5Ve0935PPlYlDkrpbzK6qfVi7xMgmNM/mWDbfE0uSRlM/a1X9FWsTx33AauBV\ng6qQJGlpG9lZVWBXlSR1sZhdVf+ZdVfD/fUquVX11/OthCRpdPT7BMDnAOfRJIxDgUuB7w2wXpKk\nJaqfxLEzsHdV3Q2Q5BTgC1X17wdasz5MTU15H4ckbcAw7uO4HnhmVf1ru70l8O2qesqC1aIjxzgk\nqbvFfALgmcAlST5D01X1cuBj8z2xJGk09fsEwH1onskB8LWqumKgtdpwfWxxSFJHi7msOsBWwN1V\n9T7gliS7zPfEkqTR1M8YxyTNzKqnVNVuSXYCzq2q5y5C/dZXJ1scktTRYrY4fhc4DLgXoKrWAI+Y\n74klSaOpn8Txi6p6YHojydYDrI8kaYnrJ3F8MsmHgW2THA98GfjIoCqU5LAkf5vk7PZRtZKkJeQh\nxziShOYGwKfS8+jYqrpw4BVLtgXeXVWvn2WfYxyS1NGiPI+jTRxXVdXT53uirpK8G/hEVV05yz4T\nhyR1tCiD4+2Dvb+VZN/5nCTJ6UluS3LVjPIVSa5LckOSk9qyJHkX8H9nSxqSpOHqd8mRJwP/TDuz\niianPKPvkyQHAfcAZ1bVnm3ZMuB64GBgDc3CiUe128e021dW1YdnOZ4tDknqaOBLjiR5QlXdBLyE\nZln1OZ+sqi5KsnxG8b7Aqqpa3Z7vbOCwqjoV+Ju5nkuSNFgPtVbV/wb2qqrVST5dVYcv8Ll3Am7u\n2b4F2K/LASYnJwGYmJhwlVxJmmGhV8Wdtt6uqiRXVNVeM9/P+URNi2NlT1fV4cCKqjqu3T4a2K+q\nTuzjWHZVSVJHi71W1SCsoZnqO21nmlZH3waRSSVp3ExNTf26h2YhPFSL437gZ+3mw4Cf9+yuqtqm\n04nWbXFsSjM4/iLgVuAS4KiquraPY9nikKSOBj44XlXL5nvwaUnOAp4PbJ/kZuBtVXVGkhOA84Fl\nwEf7SRq9fAKgJG3Yoj8BcCmyxSFJ3Y3DGMe8OcYhSRu2aGMcS5ktDknqzhaHJGkoRjpx2FUlSRtm\nVxV2VUnSXNhVJUkaChOHJKmTkU4cr3nNa4ZdBUla8hzjYO0YBzjOIUn9coxDkjQUJg5JUicP9SAn\nSdIYcJFDHOOQpLlwjEOSNBQmDklSJyYOSVInJg5JUifOqpKkMeesKpxVJUlz4awqSdJQmDgkSZ2Y\nOCRJnZg4JEmdmDgkSZ2YOCRJnXgfhySNOe/j4MH3cZxyyikL+khESRpXC3Ufx8gnDvAmQEnqhzcA\nSpKGwsQhSepkLBJHMu+WlySpT2OROCRJi8fEIUnqZEkljiS7JPlIkk92/a5TciVpcSzJ6bhJPllV\nr3yI/bNWeinGIklLhdNxJUlDMfDEkeT0JLcluWpG+Yok1yW5IclJg66HJGlhLEaL4wxgRW9BkmXA\nB9ryPYCjkuyeZLskHwKeZTKRpKVp4IscVtVFSZbPKN4XWFVVqwGSnA0cVlWnAn846DpJ0sZgoRc3\nnLYog+Nt4lhZVXu220cAL6mq49rto4H9qurEPo/n4LgkdbRQg+PDWlbdK7wkLZKRXFZ9lhbH/sBk\nVa1ot08GHqiqd/V5PFscktTRqLc4LgN2bRPKrcCRwFFDqoskjbWRa3EkOQt4PrA9cDvwtqo6I8lL\ngfcCy4CPVtU7OxzTFockdeSDnGYxirFI0mIZ9a6qgZiYmGBiYgJw7SpJmjZyXVWDsL4WR69RjEuS\nBsm1qiRJQzFWXVWSpHXZVYVdVZI0F3ZVSZKGwsQhSepkbMc4pqfjOi1X0sbOMQ76G+OYNorxSdIg\nOMYhSRoKE4ckqZOxTxy9YxyOd0jaGE1NTS3o9W/sxzhg7ThH2783kDpJ0lLnGIckaShMHJKkTkwc\nkqROTBySpE7G9s7xXs6mkrQx885xus+q6jWK8UrSQnBWlSRpKEwckqROTBySpE5MHJKkTkwckqRO\nNorpuL0mJyeZnJxkYmKCiYmJdfZPTU0xMTGx3im809+XpFHhdFzmNx0Xmim5yUPPSFvfz8WFEiWN\nKqfjSpKGwsQhSerExCFJ6sTEIUnqxMQhSerExCFJ6mRJ3ceRZGvgNOAXwFRV/cOQqyRJmmGptThe\nAZxbVccDLxt2ZSRJ61pqiWMn4Ob2/f3DrMgwLeQdnkvROMc3zrGB8akx8MSR5PQktyW5akb5iiTX\nJbkhyUlt8S3AzotVt6Vq3H95xzm+cY4NjE+Nxbg4nwGs6C1Isgz4QFu+B3BUkt2BzwCHJzkNOG8R\n6iZJ6mjgg+NVdVGS5TOK9wVWVdVqgCRnA4dV1anAawddJ0nS3C3KIodt4lhZVXu220cAL6mq49rt\no4H9qurEPo/nKoOSNAcLscjhsKbjznd123kHLkmam2ENQK9h7SA47ftbhlQXSVIHw0oclwG7Jlme\nZHPgSBwMl6SRsBjTcc8CLgZ2S3JzkmOr6j7gBOB84BrgnKq6to9jzTaFd8mbbUpyku2SXJjke0ku\nSLJtz76T2xivS3JIT/k+Sa5q971vseNYnyQ7J/lKkquTfDfJH7flIx9jki2TfDPJlUmuSfLOtnzk\nY+uVZFmSK5KsbLfHJr4kq5N8p43vkrZsnOLbNsmnklzb/o7uN/D4qmokXsAyYBWwHNgMuBLYfdj1\n6rPuBwF7AVf1lP134E3t+5OAU9v3e7SxbdbGuoq1kxguAfZt338BWDHs2Nq6PBZ4Vvv+4cD1wO7j\nEiOwVfvvpsA3gAPHJbaeGN8I/D1w3hj+ft4IbDejbJzi+xjw2p7f0UcOOr6hB93hh/NbwBd7tt8M\nvHnY9epQ/+U8OHFcB+zQvn8scF37/mTgpJ7PfRHYH3gccG1P+auBDw07rvXE+jng4HGLEdgKuBR4\n2jjFBjwe+BLwAprZj2P1+0mTOLafUTYW8dEkie/PUj7Q+Ebp7uze5UigGUzfaUh1WQg7VNVt7fvb\ngB3a9zvy4IkC03HOLF/DEoy/nXq9F/BNxiTGJJskuZImhq9U1dWMSWyt9wB/BjzQUzZO8RXwpSSX\nJTmuLRuX+HYB7khyRpLLk/xdmsViBxrfKCWOsb13o5oUP/LxJXk48GngP1XV3b37RjnGqnqgqp5F\n85f585K8YMb+kY0tyaHA7VV1BTDrNPdRjq/13KraC3gp8IYkB/XuHPH4NgX2Bk6rqr2Be2l6Y35t\nEPGNUuIYtym8tyV5LECSxwG3t+Uz43w8TZxr2ve95WsWoZ59SbIZTdL4eFV9ri0eqxir6k7g88A+\njE9sBwAvS3IjcBbwwiQfZ3zio6p+0P57B/BZmpUrxiW+W4BbqurSdvtTNInkh4OMb5QSx7hN4T0P\nOKZ9fwzNuMB0+auTbJ5kF2BX4JKq+iFwVztjIsDv93xnqNr6fBS4pqre27Nr5GNM8ujpGSlJHga8\nGLiCMYgNoKreUlU7V9UuNP3a/1hVv8+YxJdkqySPaN9vDRwCXMWYxNfW6+Yku7VFBwNXAysZZHzD\nHtzpOBD0UpoZO6uAk4ddnw71Pgu4FfglzTjNscB2NAOS3wMuALbt+fxb2hivo1maZbp8H5pf+lXA\n+4cdV0+9DqTpH7+S5qJ6Bc0CliMfI7AncHkb23eAP2vLRz62WWJ9PmtnVY1FfDRjAFe2r+9OXzfG\nJb62Xs+kmbTxbZqFYh856PgWZa0qSdL4GKWuKknSEmDikCR1YuKQJHVi4pAkdWLikCR1YuKQJHUy\nrCcASktOkvtp7tXYDLgPOBN4TzlnXXoQE4e01s+qWdOIJI8B/gHYBpic74GTbFJVD2z4k9LSZ1eV\nNItq1jU6nuaBY9MPOvofSS5J8u0kx7flmyQ5rX2IzgVJPp/k8Hbf6iSnJvkW8MokhyS5OMm3kpzb\nLoEx/QCdqXb11i9OrzEkLVUmDmk9qupGYFmS3wBeB/y0qvalWSTvuHYJ+VcAT6yq3WnW9/kt1q5E\nWsCPqmof4MvAW4EXtdvfAt6YZFPgb4DDq+rZwBnAXy5SiNKc2FUl9ecQYM8kR7Tb29AsEPdc4FyA\nqrotyVdmfO+c9t/9aZ6+dnGzhhyb0zxS+Sk0D4b6Ulu+jGZdM2nJMnFI65HkScD9VXV7e1E/oaou\nnPGZ3+bBz7GY+UyLe3veX1hVvzfj+3sCV1fVAQtXc2mw7KqSZtEOjn+IphsJ4HzgP7ZdSyTZLclW\nwD8Bh6exA80Ks7P5JvDcJL/Zfn/rJLvSrFD6mCT7t+WbJdljYIFJC8AWh7TWw5JcwYzpuO2+j9A8\nN/7y9nkFtwMvp3l41YuAa2iWzL8cuHPmgavqjiSvAc5KskVb/NaquqHt/np/kkfS/J98T3s8aUly\nWXVpnpJsXVX3JtmepmVxQFXdvqHvSaPKFoc0f/+nfUrg5sDbTRoad7Y4JEmdODguSerExCFJ6sTE\nIUnqxMQhSerExCFJ6sTEIUnq5N8ABO5Djj2Ll4gAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fe57047da90>" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(degree_hist, xlog=True, label='Degree')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEfCAYAAABSy/GnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHEBJREFUeJzt3XuUZWV55/Hvj0ZUUIO3GCVoawQBRYMoOCqhjLdWiRhB\nCQ6GoGJMArOMs5bomEjhTAyuMTEax9soDsQJDUbNwGiCxrGVCWZARUOkUYgSuUTEK6BGBZ754+zD\nOVRXV+2qOrdd9f2sVatrv/s9e7/19qnz1HvdqSokSVrOLtMugCSpGwwYkqRWDBiSpFYMGJKkVgwY\nkqRWDBiSpFYMGNKYJDksyRXTLoc0KgYMTU2Sq5P8KMlNSb6X5O+T/HaSTLtsy0kyl+SaRdK3JXkp\nQFVdWFX7tbjWfJK/GEc5pVEyYGiaCjiiqu4FPBg4HTgFeN84bpZkEu/3ar5mQpJdp10GrR8GDM2E\nqrq5qs4HjgGOT/JIgCR3TfLmJP+S5JtJ3pnkbv3XJXl1kuuTXJvkZUluT/Kw5tz/aPJ/LMktwFyS\nByX5UJJvJflakpOHrpUkr0lyVZJvJzknyb1X+zMtbIUkOaUp501Jrkjyq0m2AK8Fjklyc5JLm7wP\nSnJeku8kuTLJy4auc/ckZyb5bpLLmzoYvs/VTdo/Ajcn2TT0c92U5MtJnjeU/7ea1t2fNi29q5I8\nMckJSb6R5IYkv7naetD6YcDQTKmqS4BrgSc3SacDDwce0/y7F/B6gObD9veBpwL7AHOLXPJY4D9X\n1T2AzwLnA5cCD2pe98okz2jy/gfgucCvAA8Evgf8t1H8XEkeAfwe8LimRfUM4Oqq+lvgjcDWqrpn\nVR3UvGQr8I2mHEcDb0zylObcqfRaZA8Fng4cx46tmt8AngXsWVW3AVcBT27ufRrwgSQPGMp/CPAl\n4D7A2cC5wGOBX2qu//Yku4+iLtRdBgzNouuB+zRjGScCr6qq71fVLcAf0/swBHghcEZVba+qH9P7\nIF3or6vqs833jwbuV1X/papuraqvA+8dut4rgD+oquur6mf0PliPXqIr60HNX+R3fDEIdAvdBtwV\neGSSu1TVN6rqa825NF+9g2Rv4InAKVX106r6UlPO/l/5LwDeWFU/qKrrgLcOv55e8HhbVV1XVT8B\nqKq/qqpvNt+fC1wJHDr0mq9X1ZnV21zuXHoB9Q1V9bOq+gTwU3oBWxuY/ZuaRb8IfBe4H7A78Pmh\ncfAw+EPngcDFQ6+7dsF1Crhu6PghNB/yQ2mbgM8Mnf9IktuHzt8KPAD410XKeX1V7T2ckORTi/1A\nVXVVklcC8/SCxgX0AuFi130Q8N2q+uFQ2jeAg4fODw+4L/y5WXCepkvp94HNTdI9gPsOZblh6Psf\nN2W+cUHaPRa5jzYQWxiaKUkeT+8D8f8C36H3QXVAVd27+dqz6VaB3of48Af23uxouKvmG/T+kr73\n0Ne9quqIofNbFpzffScf6itWVWdX1WH0AlMBb1qkjDBoYQ1/QD+YQfBb0c+d5CHAe+h1id2nqu4N\n/BN3bpVIyzJgaNoCkOReSY6g13/+F1X15aq6HfjvwJ8luX+Tb6+hMYdzgROS7Nf0r//hYtcecjG9\nQeBXNwPHm5I8KsnjmvPvojdW8ODmXvdP8tyR/JDJvs0g912BnwD/Rq+bCuCbwOb+dOKquga4CPjj\nZtD/0cBLgA8M/dyvTbJnkr2Ak1h6ZtYezflvA7skOQF41Ch+Lm0sMxUwmlklFzYzWw6fdnk0Eecn\nuYneX/evBf4EOGHo/Cn0Bmz/IckPgE8A+wI0A8ZvAz4FfJXeoDb0PpBhwRTXJgAdAfwy8DXgRnp/\nefdbLG8FzgM+3pTps/QGg3emzfTZfp670ht/uZFeC+F+zc8L8MHm3+8k+Vzz/bH0uo+uBz4MvL6q\n/k9z7g30uqG+Dny8ef1Pd1qAqsvp1etn6QWnR9FrwQ2XceHPMjNTgzU7MksPUEryK8Br6L2p/6iq\n/nnKRVKHJNkfuAzYrQkOG0KS3wFeWFVPWTaztAYz1cIALqyqZ9MLGqdNuzCafUl+vem2uTe9MYHz\n1nuwSPILSZ6UZJdmuu6rgI9Mu1xa/8YeMJKc0Sz8uWxB+pZm8dKVSU4BqEFz5/v0mvDScl5Ob4bP\nVcDPgN+ZbnEmYjd64y03AZ8E/hp4x1RLpA1h7F1SSQ4DbgHOqqoDm7RNwFeAp9Gb+XEJvT7b/YBn\nAnsC76iqzyx6UUnSxI19HUZVXZhk84LkQ4CrqupqgCRbgSOr6nRsWkvSTJrWwr292HHh0aE7ybuD\nJLMzUi9JHVJVq15/M61B7zV/4FfVyL5OPfXUkeZf6vxi55ZLW3h+qXPrrS5WcmxdWBfWxdLHazWt\ngHEdO65UXWx7g52an59n27ZtIynM3NzcSPMvdX6xc8ulLTy/0vKuxKzVxUqPR8m6WP21rYv2+SdR\nF9u2bWN+fn7JcrQyysi7sy96C5AuGzreFfjnJn034IvA/iu4Xqnn1FNPnXYRZoZ1MWBdDFgXA81n\n56o/yycxrfZsetsc7JvkmiQnVNWt9LYzuAC4HDinqrav5LqjbGF02Tj/kuoa62LAuhiwLhhZC2Om\nVnq3laS6WG5JmqYkVAcHvSVJHdPZgGGXlCS1Y5dUB8stSdNkl5QkaSI6GzDskpKkduyS6mC5JWma\n7JKSJE1EZwOGXVKS1I5dUh0styRNk11SkqSJMGBIkloxYEiSWulswHDQW5LacdC7g+WWpGly0FuS\nNBEGDElSKwYMSVIrnQ0YDnpLUjsOenew3JI0TQ56S5ImwoAhSWrFgCFJasWAIUlqxYAhSWrFgCFJ\naqWzAcN1GJLUjuswOlhuSZom12FIkibCgCFJasWAIUlqxYAhSWrFgCFJasWAIUlqZeYCRpI9klyS\n5DnTLoskaWDmAgbwauCcaRdCknRnu067AMOSPB24HLjbtMuyUSXt1/S4eFLaWMbewkhyRpIbkly2\nIH1LkiuSXJnklCb5cOAJwIuAE7OSTy+NULX4krTRjH1rkCSHAbcAZ1XVgU3aJuArwNOA64BLgGOr\nantz/njgxqr62E6u6dYgjVHF1H599q7Xpm5jC0PqmLVuDTL2LqmqujDJ5gXJhwBXVdXVAEm2AkcC\n25vXnLncdYc30pqbm2Nubm4Uxe2otX5w25CT1qNt27aNdJPWiWw+2ASM84daGEcDz6yqE5vj44BD\nq+rkltezhdFo3yJY8iq2MKQNoKubD675k8btzSWpnU5tb75IC+MJwHxVbWmOXwvcXlVvank9WxgN\nWxiS2upqC+NzwD5JNifZDTgGOG9KZZEktTCJabVnAxcB+ya5JskJVXUrcBJwAb11F+f0Z0i1ZZeU\nJLXTqS6pUbNLasAuKUltdbVLas1sYUhSO7YwOljucbCFIamtDdvCkCRNVmcDhl1SktSOXVIdLPc4\n2CUlqS27pCRJE2HAkCS10tmA4RiGJLXjGEYHyz0OjmFIassxDEnSRMzUM73VPcs98c9WiLR+dDZg\nzM/P+6S9mbGzoOCT/KRZMKon7zmG0XHTHsNYOr/jHNIscQxDkjQRBgxJUisGDElSKwYMSVIrnQ0Y\nrvSWpHZc6d3Bco+Ds6QkteUsKUnSRBgwJEmtGDAkSa0YMCRJrRgwJEmtGDAkSa10NmC4DkOS2nEd\nRgfLPQ6uw5DUluswJEkT0dkHKKkblnoin60PqVsMGJqAxQKDT+OTusYuKUlSKwYMSVIrMxUwkuyX\n5J1Jzk3y0mmXR5I0MJPTapPsAmytqhfu5LzTahuzPq22Z/ExDP8Ppclad9Nqk/wa8FFg67TLIkka\nGHvASHJGkhuSXLYgfUuSK5JcmeSUfnpVnV9VzwKOH3fZJEntLdslleTAqrpsyUxLv/4w4BbgrKo6\nsEnbBHwFeBpwHXAJcCzw88DzgbsB26vqz3ZyTbukGnZJSWprrV1SbdZhvDPJXYH3A/+zqn6wkhtU\n1YVJNi9IPgS4qqquBkiyFTiyqk4HPr2S60uSJmPZgFFVT06yL/AS4AtJLgbeX1UfX8N99wKuGTq+\nFjh0JRcY3khrbm6Oubm5NRRH07DYKnBbHdLobNu2baSbtLaeJZVkV+B5wNuAH9Ab//hPVfWhFq/d\nDJw/1CV1FLClqk5sjo8DDq2qk1uWxS6pRpe7pHY8ZzeVNE5jnyWV5DFJ3gJsB34VOKKq9geeArxl\nlfe9Dth76Hhveq2M1tzeXJLamdj25kk+DbwP+Kuq+tGCc79ZVWcte5MdWxi70hv0fipwPXAxcGxV\nbW9VaFsYd7CFIamtSazDeA69we4fNTfclGQPgJbB4mzgImDfJNckOaGqbgVOAi4ALgfOaRss+mxh\nSFI7k2xh/APwtKq6pTm+J3BBVT1xzXdfJVsYA7YwJLU1iWm1d+sHC4CqujnJ7qu9obQUZ05Js6tN\nl9QPkxzcP0jyOODH4ytSO3ZJrWc19CVprSbZJfV4evs6/WuT9EDgmKr63Jrvvkp2SQ2sty6pxdL8\nv5ZGY61dUq3WYSTZDXgEvd/kr1TVz1Z7w1EwYAwYMCS1NYkxDIDHAQ9t8j+2uemyM6TGaX5+3hXe\nG8TCcQ0DiLQyo1rx3aZL6gPAw4AvArf109uuyh4HWxgDG6GFYYtDGo1JtDAOBg7wE1qSNrY2s6T+\nid5AtyRpA2vTwrg/cHmzS+1PmrSqqueOr1jLcwxDktqZ5BjGXPNtMdTJXFVTe26FYxgDjmFIamtS\n02o3Aw+vqr9rVnnvWlU3rfama2XAGDBgSGprEtubvxz4IPDuJukXgY+s9obSWiW540vS5LQZ9P49\n4MnATQBV9VV6z96eKrcG2cjcNkRaiUluDXJxVR2S5NKqOqh5lsUXqurRa777KtklNbARu6QGx3ZP\nSSsxiedhfDrJ64DdkzydXvfU+au9oSSpm9q0MDYBLwWe0SRdALx3mn/i28IY2OgtjGG+J6SlTWSW\n1KwxYAwYMPr57Z6SljP2rUGSfH2R5Kqqh632pqPgwj1JameSC/fuN3R4N+Bo4L5V9Ydrvvsq2cIY\nsIXRz2/3lLScqXRJJflCVT12tTddKwPGgAGjn9/uKWk5k+iSOpjBb+gu9J6NsWm1N5QmYXhRn8FD\nGo02mw/+CYOAcStwNfDCcRVIGp0du6okrZ6zpDrOLql+frunpOVMokvqP7Ljb/zwrrV/utqbS5K6\no+0T9x4PnEcvUBwBXAJ8dYzlkiTNmDYBY2/gsVV1M0CSU4GPVdW/H2vJluE6DElqZ5LrML4CPKaq\n/q05vhvwpap6xJrvvkqOYQw4htHP7xiGtJyxj2EAZwEXJ/kwvd/E5wFnrvaG0qT1p9gaOKS1afvE\nvYPpPRMD4DNVdelYS7V8eWxhNGxh9PMv9b0tDQkms705wO7AzVX1VuDaJA9d7Q0lSd3U5hGt88Cr\ngdc0SbsBHxhjmaSx8LGu0tq0aWH8OnAk8EOAqroOuOc4CyWNx6DbzcAhrVybgPGTqrq9f5BkjzGW\nR5I0o9oEjA8meTewZ5KXA58E3juuAiU5Msl7kmxtHgkrSZoBS86SSq/dvjewH0OPaK2qT4y9YMme\nwJur6mWLnHOWVMNZUv38y8+SWrgZoe8hbTRjfR5GEzAuq6pHrfYGq5XkzcAHquqLi5wzYDQMGP38\nBgxpOWOdVtt8Kn8+ySGrvQFAkjOS3JDksgXpW5JckeTKJKc0aUnyJuBvFgsWkqTpaLs1yMOBf6GZ\nKUUvljy69U2Sw4BbgLOq6sAmbRPwFeBpwHX0NjQ8tjk+vjn+YlW9e5Hr2cJo2MLo5195C6PP95I2\nirFtDZLkwVX1DeCZrPFJNFV1YZLNC5IPAa6qqqub+20Fjqyq04E/X+29JEnjsdReUv8LOKiqrk7y\noao6asT33gu4Zuj4WuDQti+en5+/43t3rdVauNeU1qtR7VLbt9MuqSSXVtVBC79f9Y16LYzzh7qk\njgK2VNWJzfFxwKFVdXKLa9kl1bBLqp9/9V1Sfb6ntN5Nai+pcbiO3pTdvr3ptTJamZ+fH2nklMBV\n4Fqftm3bdqdemdVaqoVxG/Cj5vDuwI+HTldV3WtFN9qxhbErvUHvpwLXAxcDx1bV9hbXsoXRsIXR\nzz+aFobdU1rPxjboXVWbVnvRhZKcDRwO3DfJNcDrq+r9SU4CLgA2Ae9rEyz6fOKeRs2WhdariT1x\nbxbZwhiwhdHPv/YWxvB5319aj7o8hiHNLMcypB11NmA46C1J7Yx90HuW2SU1YJdUP/9ou6QWPet7\nTh1nl5Q0doNAMdxVZbeVNprOBgy7pCSpHbukOljucbBLqp9/nF1SvfThdRqnnnoqp512Wu+s70V1\nxFifhzGrDBgDBox+/skGjDud9b2ojtiwYxh2SWnSlhuvcExDs8ouqQ6WexxsYfTzj7+FsdNX3anu\nbHFodm3YFoYkabIMGNIaLeyGsltK61VnA4ZjGJolBgnNMscwOljucXAMo59/emMYi17J96dmkGMY\nkqSJMGBIY+AUW61HBgxJUisGDElSK50NGM6SUhfYLaVZ4CypDpZ7HJwl1c8/W7OkdriC71fNAGdJ\nSR0zir/0pGmwhdFxtjD6+bvTwmj+ylvT9aTVWGsLY9dRFkbS4hzL0Hpgl5QkqRUDhjQFtjjURQYM\nSVIrnQ0YrsOQpHZch9HBco+Ds6T6+Wd7ltSidxt6D8/PzzvdVmO31llSBoyOM2D083cvYNxx9aYe\nfU9r3Fy4J0maCAOGNGX9GVNuia5ZZ8CQZphBRLPEgCFJasWAIXVAEmdRaepmapZUkocCrwN+rqpe\nsEQ+Z0k1nCXVz9/dWVI73O2Oel383M70X+PvhnZmXc2SqqqvV9XLpl0OSdKOZipgSHKfKc2usQeM\nJGckuSHJZQvStyS5IsmVSU4ZdzkkSWsziRbG+4EtwwlJNgFvb9IPAI5Nsn+S+yR5F/DLBhFJmi1j\nf4BSVV2YZPOC5EOAq6rqaoAkW4Ejq+p04BVtrjs8Y2Rubo65ubm1F1aS1pFt27aNdJPWicySagLG\n+VV1YHN8NPDMqjqxOT4OOLSqTm55PWdJNZwl1c+/fmZJLcVZUlqLrj6idc3v6Pn5eVsW2rCGW9in\nnXbanc65kaEWGlVLY1otjCcA81W1pTl+LXB7Vb2p5fVsYTRsYfTzb6wWxnIzqfz90GK6ug7jc8A+\nSTYn2Q04BjhvSmWRJLUwiWm1ZwMXAfsmuSbJCVV1K3AScAFwOXBOVW1fyXV94p42KrcI0Ur5xL0O\nlnsc7JLq5984XVJtFvb5+6HFdLVLas1sYUg71/9rcrG/KofT3D59Y7CF0cFyj4MtjH5+Wxg7y7vw\nd2U4zam4G8uGbWFIkiarswHDLilpZRws37jskupgucfBLql+frukdpZ3+P92sbR+Xq1/dklJkibC\ngCFJaqWzAcMxDG1EK5kCO5y3//3CKbWLGc7juMf64BhGB8s9Do5h9PNvjDGM1Vhs3GNh2vDv02Lj\nHlofHMOQJE2EAUOS1EpnA4ZjGFI7bcc9lnq2zM76vx3j6AbHMDpY7nFwDKOf3zGMlVhsDGNn6zR2\ntsXI8Hl1g2MYkqSJMGBIkloxYEiSWjFgSJJa6WzAcJaUtHoLZ04t9cClxfKpW5wl1cFyj4OzpPr5\nnSU1SjubJbVwVpSzpLrFWVKSpIkwYEiSWjFgSJJaMWBIkloxYEiSWjFgSJJa6WzAcB2GND5J7ti9\ndrE1G/Pz83fa3XbhHP/+uX768HGSO11/qfUBrvsYDddhdLDc4+A6jH5+12GM22JP7htOX2x9xmL/\nLvfaYa7zGC3XYUiSJsKAIUlqxYAhSWrFgCFJasWAIUlqZddpF2BYkj2AdwA/AbZV1V9OuUiSpMas\ntTCeD5xbVS8HnjvtwkiSBmYtYOwFXNN8f9s0CyJpfXCB7+iMPWAkOSPJDUkuW5C+JckVSa5MckqT\nfC2w96TKJmn9M2CMziQ+lN8PbBlOSLIJeHuTfgBwbJL9gQ8DRyV5B3DeBMoGrPwNtVz+pc4vdm65\ntIXn/QXQetbmd2Slx6M0a58Xk6yLsQeMqroQ+N6C5EOAq6rq6qr6GbAVOLKqflRVL6mq362qs8dd\ntr5ZewMsTDNgaCOZtQ/J5cqy1vxdChgT2UsqyWbg/Ko6sDk+GnhmVZ3YHB8HHFpVJ7e8npvLSNIq\nrGUvqWlNq13TB/5afmBJ0upMa2D5OgaD2zTfXzulskiSWphWwPgcsE+SzUl2A45hgoPckqSVm8S0\n2rOBi4B9k1yT5ISquhU4CbgAuBw4p6q2j7sskqTV6+QDlCRJk7duFscleWiS9yb54LTLMk1J9khy\nZpL3JHnRtMszTb4nBpIc2bwntiZ5+rTLMy1J9kvyziTnJnnptMszbc3nxSVJntMq/3prYST5YFW9\nYNrlmJYkLwa+W1UfTbK1qn5j2mWato3+nhiWZE/gzVX1smmXZZqS7AJsraoXTrss05TkNOBmYHtV\nfXS5/OumhaE7uB+XlvIH9HZZ2LCS/BrwUXoLhjespqV5OXBj29fMXMBYyd5TSV6c5C1JHjSd0k6G\n+3ENrLAu1rUV/q4kyZuAv6mqL06lwGOy0vdEVZ1fVc8Cjp94YcdshXVxOPAE4EXAiUmWX99WVTP1\nBRwGHARcNpS2CbgK2AzcBfgisP+C190HeBdwJXDKtH+OadUJsDtwBr3nihw77bJPuS7W7XtiFXVx\nMr3p7O8EfnvaZZ9iPRwOvBV4N/DKaZd9mnUxdP544Nltrj9TD1CC3t5TzVYiw+7YewogyVbgSGD7\n0Ou+C7xiMqWcrJXUSVWdDrxkogWcoFXUxbp8T8Cq6uLPJ1rACVlFPXx6ogWcoNV8flbVmW2v35Uu\ni+F+eeh1u+w1pbLMCutkwLoYsC56rIeBkdVFVwLG+prKNRrWyYB1MWBd9FgPAyOri64EDPee2pF1\nMmBdDFgXPdbDwMjqoisBw72ndmSdDFgXA9ZFj/UwMLK6mLmA4d5TO7JOBqyLAeuix3oYGHddrLuV\n3pKk8Zi5FoYkaTYZMCRJrRgwJEmtGDAkSa0YMCRJrRgwJEmtGDAkSa3M3G610rQkuQ34R3pbQN8K\nnAW8pVysJAEGDGnYj6rqIIAk9wf+ErgXML/WCyfZpapuX+t1pGmyS0paRFXdCLyc3pYKJNmU5L8m\nuTjJl5K8vEnfJck7kmxP8vEkH01yVHPu6iSnJ/k88IIkz0hyUZLPJzk3yR5NvoOTbEvyuSR/m+QX\npvRjS0syYEg7UVVfBzYl+XngpcD3q+oQeg+kObF5UM3zgYdU1f7Ai4F/x2A76QK+XVUHA58EXgc8\ntTn+PPCqJLvSe7DRUVX1OOD9wB9N6EeUVsQuKamdZwAHJjm6Ob4XsA/wJOBcgKq6IcmnFrzunObf\nJwAHABc1j07ejd4mcY8AHgn8XZO+Cbh+fD+GtHoGDGknkjwMuK2qvtV8mJ9UVZ9YkOfZQIaTFlzm\nh0Pff6KqXrTg9QcCX66qJ46u5NJ42CUlLaIZ9H4Xg+dgXwD8btOFRJJ9k+wO/D1wVHoeABy+k0v+\nP+BJSX6pef0eSfYBrgDun+QJTfpdkhwwth9MWgNbGNLA3ZNcyoJptc259wKbgS+k19z4FvA84EPA\nU+k9Z+Aa4AvADxZeuKpuTPJbwNlJ7tokv66qrmy6ud6W5Ofo/U6+pbmeNFN8Hoa0Rkn2qKofJrkv\nvZbEE6vqW9MulzRqtjCktfvfSfakN5D9BoOF1itbGJKkVhz0liS1YsCQJLViwJAktWLAkCS1YsCQ\nJLViwJAktfL/ARHOzz4wmfFdAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fe571f37890>" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Average Degree" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"avg_from_hist(degree_hist)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 14, | |
"text": [ | |
"9.8617991427174125" | |
] | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"vertex_average(g, 'total')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 15, | |
"text": [ | |
"(9.861799142717413, 0.44994352911405905)" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment