Last active
November 17, 2016 21:31
-
-
Save stefan2904/dade3aab84363b9c67838ece14cb6e42 to your computer and use it in GitHub Desktop.
Demo analysis of KONECT's Internet topology network dataset ... (dataset from 2005, updated by me, IPv4 only!) http://irl.cs.ucla.edu/topology/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:1d21ba339c6c8b45c71bca03770e6af5d93cc7542d8513e27be172456c4bc2e0" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"from scipy import stats, integrate\n", | |
"import matplotlib.pyplot as plt\n", | |
"from operator import mul\n", | |
"import requests\n", | |
"import re\n", | |
"\n", | |
"from graph_tool.all import *" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Load Dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"NETWORK_NAME = 'topology' # arenas-pgp, topology, as20000102" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# g = graph_tool.collection.konect_data[NETWORK_NAME] \n", | |
"g = graph_tool.collection.load_koblenz_dir('topology2') \n", | |
"# print g.gp.readme" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"g" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
"<Graph object, undirected, with 20277 vertices and 57238 edges at 0x7fc68aa2d190>" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"r = requests.get('http://konect.uni-koblenz.de/networks/' + NETWORK_NAME).text\n", | |
"print re.search('description\">(.*)</div></div>', r).group(1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"This is the network of connections between autonomous systems of the Internet. The nodes are autonomous systems (AS), i.e. collections of connected IP routing prefixes controlled by independent network operators. Edges are connections between autonomous systems. Multiple edges may connect two nodes, each representing an individual connection in time. Edges are annotated with the timepoint of the connection.\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Helper Functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def plot_hist(data, xlog=False, ylog=True, label=''):\n", | |
" plt.bar(range(len(data[0])), data[0], log=ylog)\n", | |
" if xlog:\n", | |
" plt.xscale('log')\n", | |
" plt.title(label + ' Histogram')\n", | |
" plt.xlabel(label)\n", | |
" plt.ylabel('Frequency')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def avg_from_hist(data):\n", | |
" ammount = data[0]\n", | |
" label = data[1][:-1]\n", | |
" return sum(map(mul, ammount, label)) / sum(ammount)\n", | |
"\n", | |
"# for degrees, this is equal to vertex_average(g, 'total')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Shortest-distance\n", | |
"the shortest-distance for each vertex pair in the graph." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"distance_hist = distance_histogram(g)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(distance_hist, label='Shortest Distance')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHGWd7/HPl4Q7kdsRxTAS7oIGRJCoCzIKQhAPwRXF\nIHJTcFXQ1V1FxYXxeI6iexYQFHWFsATWJKKuJh44iMiECCoXuQRJMCiRXCCACASQa377Rz1DmqFn\npnqmq6u7+vt+vfqVruru5/d0T6d/9dyqFBGYmZkNtk7ZFTAzs/bkBGFmZnU5QZiZWV1OEGZmVpcT\nhJmZ1eUEYWZmdTlBWF2SjpO0oOx6FEXSqyWtlqSy61IUSZdL+mDZ9bDO5QTRxSTtK+l6SY9I+ouk\nX0nau6BYfZIuaVJZayRtP8zjx0l6PiWA1ZL+JGmGpJ0GnhMR90bEhBhhIVC7JkpJ/ZI+NGhfr6Rl\nA9sR8c6IGPEzH+nztO7lBNGlJL0M+BnwDWBzYCLwJeDpAmKNb3aZwEhH/tdFxATgZcCBwN+AmyW9\ntoC6lCHSrVkKaUlJGldEudYaThDda2cgImJOZJ6KiKsiYmHtkyT9q6SH01H41Jr9r5I0N7U8lkj6\ncM1jfZJ+KOkSSY8CHwE+DxyZjuhvSc/bVNKFklZKWi7py5LWSY/tKGl+at08KGlW2n9tCnNbKuu9\nQ7w/kd5gRPwpIj4OzAf6UjmT0pHzQLzjJP1R0mPpvR4l6TXAd4A3p1gPp+ceKukWSY9KulfSGTXv\nfaDcYyT9OdX9CzWPryPpC5LuTrFukrRNeuw1kq5Kn+niYd5bLrWtjEY/T0knpr/rXyT9VNLWNeUe\nJOmuVNa3UrkDcY6TdJ2ksyQ9BJwhaXtJv5T0UIp9qaRNa8pbKumfJd2e6nChpFdIuiJ9xldJ2mws\nn4WNUkT41oU3YALwEPAfwFRg80GPHwc8A3yI7Mf2H4AVNY9fC3wTWA/YA3gAeFt6rC+99rC0vQFw\nBjBzUIz/Ar4NbAi8HPgtcFJ6bBbw+XR/PeAtNa9bA2w/zHs7DlhQZ//xwP3p/qRUzjrAxsCjwE7p\nsVcAu6X7xw4uC9gfeG26Pxm4H5g2qNzvAusDuwNPAbukxz8D3F4TazKwRarDshRvHeD1wIPArkO8\nx2uADw3a1wssG/ScExr9PIG3p9ivT889F5ifHvsf6bM6PNXzE+lvfULNZ/8s8PH0+AbADsABwLrp\n9fOBs2vi3QNcn74DrwJWAb8j+16tD1wNnF72/5luvLkF0aUiYjWwL1k3xfeAB9KR4lY1T/tzRFwY\n2f/imcDWkraS1AO8BTg1Ip6JiNuAC4Bjal57fUTMTbGeIksyL3RjSHoFcAjwqYj4W0Q8CJwDvD89\n5RlgkqSJKcb1TXjb95H9GNezBpgsacOIWBURdw5UdfATI2J+RPw+3V8IzCZLGrW+FBFPR8TtwG1k\nP3YAHwZOi4glA6+PiIeBdwH3RMTFEbEmIm4FfgwM10I6V9JfB27APIbudmrk8/wAcGFE3BoRz5C1\n/t4saVvgncAdEfGTVM9zyRJkrZUR8a30+FMR8ceIuDoino2Ih4Cz63xe50XEgxGxElgA/DoibouI\np8kOJPYcpr5WECeILhYRiyPi+IjoAV5HdvR2Ts1T7q957pPp7ibpeQ9HxBM1z72XbBxjwPIRwm9L\ndkR5X80P3HfIjiIBPkv2I3iDpDskHd/Yu6trIvDw4J3pfRxJ1kpaKelnknYZqhBJUyRdI+kBSY+Q\ndaFtOehptT+aT5J9bgDbAH+sU+y2wJRBP/hHkbVm6gnglIjYfOBGlmSGGkto5PPcGvjzC4Gyz+cv\nZJ/f1rz0bzt4e1ntRuoump26ER8FLuGln9eqmvt/G7T9FGs/P2shJwgDICLuAi4mSxQjWQlsIan2\nP+2refEPxeAj2TWDtpeRDYhvWfMjt2lETE71WRURJ0XERLIf4PM19pk27ybrGnuJiPh5RBwEvBJY\nTNaqqvc+AL4P/ATYJiI2I0tsef8vLQN2rLP/XrJunM1rbhMiGzvJa8iB5gY/z5VkXWVZodLGZD/o\ny8laYdvUPKba7YFwg7a/AjwPvC4iNgU+yMifV2WnH3cSJ4guJWkXSZ+WNDFt9wDTgV+P9NqIWEbW\nZ/xVSetL2h04Abh0mJetIuviGBg8vg/4OXCWpAlp8HYHSW9N9XnvwOAt8AjZj86amrJ2yPk+x0na\nTtJ5wFvJZmoNfs5WkqalH8JngSfIftAGYm0jad2al2wC/DUinpG0D9mRft4ZRRcAX06DxpK0u6Qt\nyGaU7SzpaEnrptsblQ2UD/n2csZs9POcBRwvaQ9J65P9wP8mIu4FLifripumbHbax8mS6nA2IftM\nH0vft8/krbeVq60ShKTdJM2RdL6k95Rdn4pbDUwBfivpcbLEcDvwT+nxetMoa7enkx1lriTrKz89\nIn45zGsvS//+RdJN6f4xZIOgd5J1/VzG2h+bvYHfSFoN/BT4REQsTY/1ARenrpgj6ry3IM08IhtQ\nvYbsR+qNA2MHg97POsCngBVkXSn7AR9Nj10N/B64X9IDad/HgP8l6THgX4A5deIP5SzgB2TJ8VGy\nlsoGEfE4cBDZGMwKsiP1r6bPZyj14gwVO/fnGRFXp/f1I7K/73apXqQxhPcCXyeb5LArcBNrp0fX\n+9t/CXhDer/zUrkjJdQYdN8XrimBsvHH9iDp08ANEfErST+NiGll18nMhqZsmvAy4KiImF92fay5\n2qoFQTZ49X5JX+elg1hm1gbSOojNUvfTwBqP35RZJytG4QlC2SkOVkkavABrqrLFQEsknQqQprmd\nTDat7qGi62Zmo/Jm4G6ytRKHAoen6ahWMYV3MUnaD3icbJHU5LRvHHAX2SkQVgA3kvVpP0l2RLIx\ncH6T5r6bmdkoFHGOnBeJiAWSJg3avQ9w98AgmaTZZCtRzySbgmdmZiUrPEEMYSIvXkyznGxGTS6S\n2mdk3cysg0RE7unRZQ1Sj/kHvozzkrTqdsYZZ5ReB78/vze/v+rdGlVWglgB9NRs9zDyqRlepK+v\nj/7+/mbWycyskvr7++nr62v4dWUliJuAnZSdGnk9svPgzG2kgL6+Pnp7e4uom5lZpfT29rZnglB2\n3vnryU4jsEzS8RHxHHAycCXZKto5EbGo6Lp0iqonviq/vyq/N/D76zZttZI6L0nRifU2MyuTJKID\nBqnHzGMQZmb5jHYMwi0IM7Mu0TUtCDMzK5YThJmZ1eUEYWZmdXVsgvAgtZlZPh6kNjOzYXmQ2szM\nmsIJwszM6nKCMDOzupwgzMysLicIMzOrywnCzMzq6tgE4XUQZmb5eB2EmZkNy+sgzMysKcaXXYFa\nkrYBzgX+CvwhIr5WcpXMzLpWWyUIYDLwo4j4T0mzy65Mt5BytzgbVq8rsNXxzGx02moMQtKmwFzg\nOeCSiPiPIZ7nMYgmyn6wi/g8NUyCaF08M8u03RiEpBmSVklaOGj/VEmLJS2RdGrafTzwxYg4ADi0\n6LqZmdnQCm9BSNoPeByYGRGT075xwF3AgcAK4EZgOrAucDrwILA6Ij47RJluQTSRWxBm3aHRFkTh\nYxARsUDSpEG79wHujoilAGm8YVpEnAkcUXSdzMxsZGUNUk8EltVsLwemNFJA7aKP3t5eent7m1Ev\nM7PK6O/vH9OC4pYMUqcWxLyaLqb3AFMj4sS0fTQwJSJOyVmeu5iayF1MZt2h7Qaph7AC6KnZ7iFr\nReTmU22YmeXT1qfaqNOCGE82SH0AsBK4AZgeEYtylucWRBO5BWHWHdquBSFpFnA9sLOkZZKOj4jn\ngJOBK4E7gTl5k4OZmbVGWy2Uy8stiOZyC8KsO7RdC6IoHoMwM8unrccgms0tiOZyC8KsO7TdQjmz\nMhV5YkDwyQGt2pwgrAsU9SNebPIxK1vHjkGYmVmxOjZBeJDazCwfD1LbqFV5kLq4WPXjmbWzrpnm\namZmxXKCMDOzupwgzMysLicIMzOry+sg2lCRi7s8qGpmeTlBtK1iZvmYmeXVsV1MXgdhZpaP10FU\nSJXXJbQ6ntdBmK3ldRBmZtYUbTUGIWlf4ANk9dotIv6u5CqZmXWttuxikjQN2CoivjfE4+5iGl3J\npXf5tDqeu5jM1qpKF9NRwPfLroSZWTcrPEFImiFplaSFg/ZPlbRY0hJJp9bsfzXwaEQ8UXTdzMxs\naK1oQVwETK3dIWkc8M20fzdguqRd08MnADNaUC8zMxtG4YPUEbFA0qRBu/cB7o6IpQCSZgPTgEUR\n0Zen3No5vb29vfT29o65rmZmVdLf3z+m9WItGaROCWJeRExO20cAB0fEiWn7aGBKRJySszwPUo+u\n5NIHjVsdz4PUZmt1yiC1/1eZmbW5shLECqCnZrsHWN5IAT7VhplZPm19qo06XUzjgbuAA4CVwA3A\n9IhYlLM8dzGNruTSu3xaHa/VXUxFnokXfDZeG5u262KSNAu4HthZ0jJJx0fEc8DJwJXAncCcvMnB\nrP1FQTez1mrLldQjcQti1CWXfkTf6njltCA8KG7tqe1aEEXxGISZWT5tPQbRbG5BjLrk0o/oWx3P\nLQiztbqmBWFmZsVygjAzs7qcIMzMrK6OTRAepDYzy8eD1BVS5UHjVsfzILXZWh6kNjOzpnCCMDOz\nupwgzMysLicIMzOrywnCzMzqcoIwM7O6OjZBeB2EmVk+XgdRIVVel9DqeF4HYbaW10GYmVlTjC+7\nArWUHX79b2ACcFNEzCy5SmZmXavdWhCHAxOBZ4DlJdfFzKyrtVuC2Bm4LiL+Gfho2ZUxM+tmhScI\nSTMkrZK0cND+qZIWS1oi6dS0eznwSLq/pui6mZnZ0AqfxSRpP+BxYGZETE77xgF3AQcCK4AbgenA\nUuA84ElgUUR8e4gyPYtpdCWXPquo1fE8i8lsrUZnMRU+SB0RCyRNGrR7H+DuiFgKIGk2MC0izgQ+\nnKfc2jm9vb299Pb2jr2yZmYV0t/fP6b1Yi1ZB5ESxLyaFsQRwMERcWLaPhqYEhGn5CzPLYjRlVz6\nEX2r47kFYbZWp6yD8LfczKzNlZUgVgA9Nds9NDit1afaMDPLp7BTbUiaHBELh33SSEFe2sU0nmyQ\n+gBgJXADMD0iFuUsz11Moyu59C6fVsdzF5PZWkV0MX1b0o2SPiZp01FUaBZwPbCzpGWSjo+I54CT\ngSuBO4E5eZODma0lqdCbdbcRZzFFxL6SdgZOAH4n6Qbgooj4eZ4AETF9iP1XAFc0UtlafX19nr1k\nBhTZYrFqGO1sptyzmFK30OHAucCjZK2PL0TEjxqOOkbuYhp1yaV3+bQ6XtW7mNylZY1oeheTpD0k\nnQ0sAt4OvCsidgXeBpw96pqamVlby7NQ7lzgQuC0iHhyYGdErJT0xcJqZmZmpcozi2kT4G8R8Xza\nHgdsEBFPtKB+Q9XJXUyjK7n0Lp9Wx6t6l4+7mKwRRcxi+gWwYc32RsBVjVas2bwOwswsnyLXQdwa\nEa8faV8ruQUx6pJLP6JvdbyqH9G7BWGNKKIF8YSkvWoC7A38bTSVMzOzzpFnkPofgR9Iui9tbw0c\nWVyVzMysHeRaByFpPWAXsrbsXRHxbNEVG6E+7mIaXcmld/m0Ol7Vu3zcxWSNKOp6EHsD26XnvyEF\nmTmaCpqZWWcYMUFIuhTYHrgVeL7mIScIM7MKy9OC2AvYrdJ9OmZm9hJ5ZjHdQTYwbWZmXSRPC+Ll\nwJ3pLK5Pp30REYcVV62R+WyuZmb5FHY2V0m96W6w9vy/ERHzG47WJJ7FNOqSS59V1Op4VZ9V5FlM\n1oimz2KKiP50RbgdI+IXkjbK8zozM+tseU73fRJwGfDdtGsb4L+KqIykXkkLJH1b0v5FxDAzs3zy\nDFJ/HNgXeAwgIv4AbFVQfdYAq4H1geUFxTAzsxzydBU9HRFPD1yfNl1ZrqiOyQURca2krYCzgKML\nimNmZiPI04KYL+k0YCNJ7yDrbpqXN4CkGZJWSVo4aP9USYslLZF0KmQj3+nhR8haEWZmVpI8s5jG\nAR8CDkq7rgQuyDuNSNJ+wOPAzIiYXFPmXcCBwArgRmA68BrgYGAz4PyIuHaIMls6i2mg9VSEsmf5\nVD1e1WcVeRaTNaKIWUzPA/+ebg2LiAVpFlStfYC7I2IpgKTZwLSIOJOcA+C1F79ozXqIYn7QzMyK\nMtr1DwPytCDuqbM7ImL73EGyBDGvpgVxBHBwRJyYto8GpkTEKTnLK6EFUc0j7KrHq/oRvVsQ1ogi\nzub6xpr7GwBHAFs2WrFB/K0zM2tzIw5SR8RDNbflEXEOcOgY464Aemq2e2hwWquvSW1mlk+R16Te\ni7VH/OuQXRvioxGxR+4gL+1iGk82SH0AsBK4AZgeEYtylucuJsfLFa/qXT7uYrJGFNHF9G+s/QY+\nBywF3tdAhWYB+wNbSloGnB4RF0k6mWxG1DjgwrzJwczMWiPPLKbesQSIiOlD7L8CuGK05fpsrmZm\n+RR5Ntd/4qVt2Nqzup7VcNQxcheT4+WNV/UuH3cxWSOK6GLai2wm01yyxPAusoVtfxhVDc3MrCPk\naUEsAN4ZEavT9gTg8ojYrwX1G6pObkE4Xq54VT+idwvCGtFoCyLPuZi2Ap6t2X6W4s7mamZmbSJP\nF9NM4AZJPybrYjocuLjQWuXgQWozs3wKG6SGF9ZC7Js2r42IWxqO1ETuYnK8vPGq3uVTTrxiuDur\neEV0MQFsBKyOiG8AyyVtN6ramVkFRAE3a0d5LjnaB3wW+FzatR5waYF1MjOzNpCnBfFuYBrwBEBE\nrAAmFFkpMzMrX54E8XRErBnYkLRxgfUxM7M2kSdBXCbpu8Bmkk4CrgYuKLZaZmZWtmFnMSmbstBD\ndinQFy45GhFXtaBuQ/IsJsfLG687ZhVVIZ4X5bVCo7OY8iSIhRHxumZUrlmcIBwvb7zq/IBWPZ4T\nRCs0dZpr+hW+WdI+Y65Zk/mCQWZm+RR5waC7gB2BP5NmMpHljt0bjtYkbkE4Xt541TnCrno8tyBa\noWlnc5X06oi4FziY7BtR3BJKMzNrO8N1Mf0UICKWAmdFxNLaW1EVkrSxpBsljfW612ZmNgZ5T7Wx\nfaG1eLHPAnNaGM/MzOrIczbXlpH0DuBOYIOy62Jm1u2Ga0HsLmm1pNXA5IH76fZY3gCSZkhaJWnh\noP1TJS2WtETSqWn3/sCbgKOAE1XkqSPNzGxYuU73PaYA0n7A48DMiJic9o0D7gIOBFaQXcJ0ekQs\nSo8fCzwYEZcPUaZnMTlernjVmeVT9XiexdQKRVyTekwiYoGkSYN27wPcPTDYLWk22QkBF6XXjHhB\noto5vb5wkJnZS432QkEDCm9BAKQEMa+mBXEEcHBEnJi2jwamRMQpOctzC8LxcsWrzhF21eO5BdEK\nRV0wqNn8TTAza3NlJYgVZCcBHNADLG+kAJ9qw8wsn8JOtdEMdbqYxpMNUh8ArARuoGaQOkd57mJy\nvFzxqtMFU/V47mJqhbbrYpI0C7ge2FnSMknHR8RzwMnAlWTrHubkTQ5mZtYarZjFNH2I/VcAV4y2\n3L6+Ps9eMjPLYbSzmVrSxdRs7mJyvLzxqtMFU/V47mJqhbbrYjIzs87kBGFmZnU5QZiZWV0dmyC8\nDsLMLJ+2XgfRbB6kdry88aoziFv1eB6kbgUPUpuZWVM4QZiZWV1OEGZmVpcThJmZ1eUEYWZmdTlB\nmJlZXU4QZmZWV8cmCC+UMzPLxwvlio1HVReSVT1edRaSVT2eF8q1QkcvlJP0GknflvQDSR8quz5m\nZt2sLVsQktYBZkfE+4Z43C0Ix8sVrzpH2FWP5xZEK3R0CwJA0v8E/h8wu+y6mJl1s1Zck3qGpFWS\nFg7aP1XSYklLJJ06sD8i5kXEIcCxRdfNzMyGVvg1qYGLgPOAmQM7JI0DvgkcCKwAbpQ0F9gK+Htg\nA+CaFtTNzNpY1qVVDHdpjazwBBERCyRNGrR7H+DuiFgKIGk2MC0izgTmF10nM+skxYx52Mha0YKo\nZyKwrGZ7OTClkQJq5/T29vbS29vbjHqZmVVGf3//mNaLtWQWU2pBzIuIyWn7PcDUiDgxbR8NTImI\nU3KW51lMjpcrXnVm+VQ9XvnflW7QKbOYVgA9Nds9ZK0IMzNrE2UliJuAnSRNkrQecCQwt5ECfKoN\nM7N82vZUG5JmAfsDWwIPAKdHxEWSDgHOAcYBF0bEVxso011MjpcrXnW6YKoer/zvSjdotIupLVdS\nj8QJwvHyxqvOD2jV45X/XekGnTIGMWbuYjIzy6dtu5iK4BaE4+WNV50j7KrHK/+70g26pgVhZmbF\ncoIwM7O6nCDMzKyujk0QHqQ2M8vHg9TFxqPKA3NVjledQdyqxyv/u9INPEhtZmZN4QRhZmZ1OUGY\nmVldThBmZlaXE4SZmdXlBGFmZnU5QZiZWV0dmyC8UM7MLB8vlCs2HlVeHFTleNVZSFb1eOV/V7pB\nowvlxhdZmdGQNA04FHgZ2ZXmriq5SmZmXaltWxCSNgP+b0R8uM5jbkE4Xq541TnCrnq88r8r3aBK\np9r4IvDNsithZtatWpIgJM2QtErSwkH7p0paLGmJpFPTPkn6GnBFRNzaivqZmdlLtaoFcREwtXaH\npHFkLYSpwG7AdEm7AicDBwBHSPpIi+pnZmaDtGSQOiIWSJo0aPc+wN0RsRRA0mxgWkScCZzXinqZ\nmdnQypzFNBFYVrO9HJiS98W1c3p7e3vp7e1tVr3MzCqhv79/TOvFWjaLKbUg5kXE5LT9HmBqRJyY\nto8GpkTEKTnK8iwmx8sVrzqzfKoer/zvSjfopFlMK4Cemu0eslaEmZm1gTITxE3ATpImSVoPOBKY\nm/fFPtWGmVk+bX2qDUmzgP2BLYEHgNMj4iJJhwDnAOPIVk1/NWd57mJyvFzxqtMFU/V45X9XukGj\nXUxtu5J6OE4Qjpc3XnV+QKser/zvSjfopDGIMXEXk5lZPm3dxdRsbkE4Xt541TnCrnq88r8r3aBr\nWhBmZlYsJwgzM6vLCcLMzOrq2AThQWozs3w8SF1sPKo8MFfleNUZxK16vPK/K93Ag9RmZtYUThBm\nZlaXE4SZmdXlBGFmZnU5QZiZWV1OEGZmVleZlxwdk76+Pl9q1MyaKptWW4wyp9WO9tKjXgeRLx5V\nnvtd5XjVWSdQ9Xjlf1fKiNdqXgdhZmZN0VYJQtJ2ki6QdFnZdTEz63ZtlSAi4p6I+HDZ9TAzszZL\nEGZm1j4KTxCSZkhaJWnhoP1TJS2WtETSqUXXw8zMGtOKFsRFwNTaHZLGAd9M+3cDpkvaVdIWkr4D\nvN5Jw8ysXIWvg4iIBZImDdq9D3B3RCwFkDQbmBYRZwL/UHSdzMxsZGUtlJsILKvZXg5MaaSAIhe0\nDBGxmFKHfB+O17x4xX1XHK/oWN0Qr32VlSDGtGKkkYUeZmY2OmXNYloB9NRs95C1IszMrE2UlSBu\nAnaSNEnSesCRwNyS6mJmZnW0YprrLOB6YGdJyyQdHxHPAScDVwJ3AnMiYlGOsio7NVZSj6RrJP1e\n0h2SPlF2nYogaZykWyTNK7suzSZpM0k/lLRI0p2S3lR2nZpJ0ufT93OhpO9LWr/sOo1FvSn4aSbl\nVZL+IOnnkjYrs46jNcR7+9f03bxN0o8lbTpiOe1wAqk80tTYu4ADybqobgSm50ksnUDSK4FXRsSt\nkjYBbgYOr8r7GyDp08BewISIOKzs+jSTpIuB+RExQ9J4YOOIeLTsejVDmon4S2DXiHha0hzg8oi4\nuNSKjYGk/YDHgZkRMTnt+zrwUER8PR2Ebh4RnyuznqMxxHt7B3B1RKyRdCbASO+tk1ZSvzA1NiKe\nBWYD00quU9NExP0RcWu6/ziwCHhVubVqLknbAO8ELqDIqTclSEdj+0XEDICIeK4qySF5DHgW2Cgl\nv43IDtQ6VkQsAP46aPdhwEDSuxg4vKWVapJ67y0iroqINWnzt8A2I5XTSQmi3tTYiSXVpVDpaG1P\nsj9ilZwNfAZYM9ITO9B2wIOSLpL0O0nfk7RR2ZVqloh4GPg34F5gJfBIRPyi3FoV4hURsSrdXwW8\noszKFOgE4PKRntRJCaIz+sLGKHUv/RD4ZGpJVIKkdwEPRMQtVKz1kIwH3gCcHxFvAJ4AOq5rYiiS\ndgD+EZhE1rLdRNIHSq1UwdJFZyr3uyPpNOCZiPj+SM/tpARR+amxktYFfgRcGhE/Kbs+TfYW4DBJ\n9wCzgLdLmllynZppObA8Im5M2z8kSxhVsTdwfUT8JU0y+THZ37RqVqXxQCRtDTxQcn2aStJxZN28\nuZJ7JyWISk+NVbbM8kLgzog4p+z6NFtEfCEieiJiO+D9wC8j4piy69UsEXE/sEzSzmnXgcDvS6xS\nsy0G3iRpw/RdPZBsBmLVzAWOTfePBSpzoCZpKlkX77SIeCrPazomQYx2amwH+TvgaOBtaRroLekP\nWlWVa7oDpwD/Kek2YHfgKyXXp2ki4jZgJtmB2u1p97+XV6Oxq5mCv8vAFHzgTOAdkv4AvD1td5w6\n7+0E4DxgE+Cq9Pty/ojldMo0VzMza62OaUGYmVlrOUGYmVldThBmZlaXE4SZmdXlBGFmZnU5QZiZ\nWV1OENb2JJ2WToF+W5q//ca0f6mkLcZQ7h6SDhnlazeV9NFhHn8+1fUOSbdK+nRaYIakvSR9Y5jX\nbitp+mjqZdZMThDW1iS9GTgU2DMi9gAOYO0pVoJRntcpnZF0T7LTDozG5sDHhnn8yYjYMyJeB7wD\nOAQ4AyAibo6ITw7z2u2Ao0ZZL7OmcYKwdvdKsvPzPwvZWUUj4r6ax0+RdLOk2yXtAi9c9OUnqcXx\na0kD58Pvk3SJpF+RrQr+EnBkOtJ/r6SN04VWfpvOyHpYet1r075bUmtgR7IVtjukfV8b7g1ExIPA\nSWRnAkBSr9IFkyTtX7Ny/uZ0ssYzgf3Svk+mFsW16fGbU9IcKKdf0mXpQjCXDsSU9EZJ16X6/ja9\nt3HKLhpzQ/psThrzX8eqLSJ8861tb8DGwC1kF4v6FvDWmsfuAT6e7n8U+F66fx7wL+n+24Bb0v0+\nsgtNrZ+2KeatAAACxElEQVS2jwXOrSnvK8AH0v3NUsyNgHOBo9L+8cAGwLbAwmHqvbrOvr8CLwd6\ngXlp31zgzen+RsA4YP+Bx9P+DWvqvBNwY7rfCzxCdnZVkZ1a4S3AesAfgb3S8zZJ5Z4EnJb2rZ8+\ni0ll/419a9+bWxDW1iLiCbIr0J0EPAjMkXRszVN+nP79HdmpqCE7r9Ul6fXXAFtKmkDWJTU3Ip5O\nzxMv7qI6CPicpFuAa8h+RF8N/Br4gqTPkv2gPkXzTll+HXC2pFPIrl72fJ2y1wMukHQ78ANg15rH\nboiIlRERwK1k3VO7APdFxM2QXYAqlXsQcEx6f78BtgB2bNL7sAoaX3YFzEYS2VWw5gPzlV1j91jW\nXvVr4Mf+eV78fR7qB/zJ2qLrPP73EbFk0L7Fkn4DvAu4XNJHyFovuUnaHng+Ih5MY9VZBSK+Juln\nZOMs10k6uM7LP0X2g/9BZZferT0T59M19wc+g+FOsHZyRFzVSN2te7kFYW1N0s6SdqrZtSewdISX\nLSCd715SL/BgRKzmpUljNTChZvtK4BM1sfdM/24XEfdExHnAT4HJZJfgrH3tcO/h5cB3yLq+Bj+2\nQ0T8PiK+Ttbls0udsl8G3J/uH0PWXTSUIOsa21rS3inGhJRYrgQ+lgboBz7bylz1zprPLQhrd5sA\n50naDHgOWELW3QQvPlKuvfpXHzAjnXb7Cdae33/wFcKuYW2X0leALwPnpK6cdYA/kV2j+H2SPkh2\nTeb7gP8TEY+kQeCFwOURceqgem+Yyl031XtmRJxVpx6flPQ2ssuw3gFckR57XtKtwEXA+cCPJB0D\n/H+yi9HXvu8XiYhnJR2ZPrcNyVpNB5JdC3wS8Ls05fYB4N2DX282wKf7NjOzutzFZGZmdTlBmJlZ\nXU4QZmZWlxOEmZnV5QRhZmZ1OUGYmVldThBmZlaXE4SZmdX131NU7JTICrJPAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb7db3dc1d0>" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Average Shortest-distance" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"avg_from_hist(distance_hist)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 10, | |
"text": [ | |
"3.6676403855683604" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Degree\n", | |
"the vertex degree." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"degree_hist = vertex_hist(g, \"total\")\n", | |
"# degree_hist" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(degree_hist, label='Degree')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGV5JREFUeJzt3XuUZWV55/HvjwZEQIIoomBrYwQFRSEYcFRiGRWbCSMq\nRNKJE4IKExPJGGdNGGNGGjOjZCbGSxxvAzheVrh4XTBKEDOWYeIFVNBWLtJLCNAo4CVy0VEuz/yx\nd9nHoqr77Ko61/5+1jqr9n73OXu/b+3u89R72e+bqkKSpH5tN+oMSJImi4FDktSJgUOS1ImBQ5LU\niYFDktSJgUOS1ImBQxqQJEckuWbU+ZBWmoFDI5PkhiQ/SXJHkh8l+ack/y5JRp23rUkyk+SmBdJn\nk7wCoKouraon9nGu9Uk+NIh8SoNg4NAoFXB0Ve0GPAY4AzgVOGsQF0syjH/v1b7GQpLtR50HTR8D\nh8ZCVd1ZVRcCxwMnJHkSQJIHJfnrJP+c5HtJ3p1kp7nPJfmzJLckuTnJK5Pcn+Rx7bH/1b7/00nu\nAmaS7J3kY0luS/KdJKf0nCtJ/lOSjUm+n+S8JA9dapnm10qSnNrm844k1yT5zSRrgdcBxye5M8kV\n7Xv3TnJBkh8kuS7JK3vO8+AkH0jywyRXtb+D3uvc0KZ9A7gzyaqect2R5FtJXtTz/j9oa3t/09b8\nNiZ5RpITk9yY5NYkv7/U34Omj4FDY6WqLgduBp7VJp0BPB54avtzH+ANAO2X7p8CzwX2A2YWOOU6\n4C+ralfgi8CFwBXA3u3nXpPkyPa9fwK8EPgN4FHAj4D/sRLlSvIE4I+Bp7U1rCOBG6rq74E3AedW\n1UOq6pD2I+cCN7b5OA54U5LntMdOo6mh7Qs8H3gZD6zl/A5wFLB7Vd0HbASe1V77dODDSfbqef9h\nwNeBPYBzgPOBXwN+tT3/O5PsvBK/C00+A4fG0S3AHm1fx0nAa6vqX6rqLuDNNF+KAC8Fzq6qq6vq\npzRfqPN9sqq+2G4/BXh4Vf2Xqrq3qq4Hzuw53x8Cf1FVt1TVPTRfsMdtoYlr7/Yv9F+82Bzw5rsP\neBDwpCQ7VNWNVfWd9ljaV7OTrAaeAZxaVT+vqq+3+Zz7q/+3gTdV1Y+rahPw9t7P0wSRd1TVpqr6\nGUBVfbSqvtdunw9cBxze85nrq+oD1Uxedz5NYH1jVd1TVZcAP6cJ3BK2f2ocPRr4IfBwYGfgqz39\n5WHzHzyPAi7r+dzN885TwKae/cfSftn3pK0C/rHn+CeS3N9z/F5gL+C7C+Tzlqpa3ZuQ5HMLFaiq\nNiZ5DbCeJnhcTBMQFzrv3sAPq+runrQbgUN7jvd2zM8vN/OO0zY1/Smwpk3aFXhYz1tu7dn+aZvn\n2+el7brAdbQNssahsZLk12m+GP8v8AOaL6wDq+qh7Wv3trkFmi/z3i/u1TxQbxPOjTR/WT+057Vb\nVR3dc3ztvOM7L/Ll3llVnVNVR9AEqAL+aoE8wuYaV+8X9WPYHAQ7lTvJY4H30TSV7VFVDwW+yS/X\nUqS+GTg0agFIsluSo2na1z9UVd+qqvuB/wm8Lcme7fv26emTOB84MckT2/b3/7zQuXtcRtNZ/Gdt\nB/OqJE9O8rT2+Hto+hIe015rzyQvXJFCJvu3neEPAn4G/D+a5iuA7wFr5oYhV9VNwBeAN7eDA54C\nvBz4cE+5X5dk9yT7AK9myyO5dmmPfx/YLsmJwJNXolzaNo1d4EiyS5LLk/zWqPOiobgwyR00f+2/\nDngLcGLP8VNpOna/lOTHwCXA/gBtx/I7gM8B36bp/IbmixnmDY1tA9HRwMHAd4Dbaf4Sn6vBvB24\nAPhMm6cv0nQaL6afYbdz73kQTf/M7TQ1hoe35QX4SPvzB0m+0m6vo2lWugX4OPCGqvo/7bE30jRP\nXQ98pv38zxfNQNVVNL/XL9IEqSfT1Oh68zi/LGMzpFjjJ+O2kFOS04E7gaur6lOjzo8mR5IDgA3A\njm2Q2CYkeRXw0qp6zlbfLK2AsapxJHk+cBXNX2XSViV5cduc81CaPoMLpj1oJHlkkmcm2a4d5vta\n4BOjzpe2HQMPHEnObh8g2jAvfW37ENR1SU5tk58NPB34XeCkuTZfaQtOphkRtBG4B3jVaLMzFDvS\n9MfcAfwD8EngXSPNkbYpA2+qSnIEcBfwwao6qE1bBVwLPI9mpMjlwLqquro9fgJwe1V9eqCZkyR1\nNvDnOKrq0iRr5iUfBmysqhsAkpwLHANc3X7mA4POlyRpaUb1AOA+PPABpsMXee8DJBmvHn1JmhBV\ntewugFF1ji/7i7+qpvZ12mmnjTwPls+yWb7pe62UUQWOTTzwydeFpk1Y1Pr165mdnV3JPEnSVJqd\nnWX9+vUrdr5RBY6vAPslWZNkR5qptC/ocoL169czMzMziLxJ0lSZmZmZrMCR5Bya6RP2T3JTkhOr\n6l6aaRIupnlu47xqR1SJqQ+I01y+aS4bWD41xu7J8X4kqdNOO42ZmRlvtCRtxezsLLOzs5x++unU\nCnSOT2zgmMR8S9IoJVmRwDFWU45IksbfxAYOR1VJUn9WelSVTVWStI2wqUqSNBIGDklSJxMbOOzj\nkKT+2MeBfRyStBT2cUiSRsLAIUnqZGIDh30cktQf+ziwj0OSlsI+DknSSBg4JEmdGDgkSZ0YOCRJ\nnUxs4HBUlST1x1FVOKpKkpbCUVWSpJEwcEiSOjFwSJI6MXBIkjoxcEiSOpnYwOFwXEnqj8NxcTiu\nJC2Fw3ElSSNh4JAkdWLgkCR1YuCQJHVi4JAkdWLgkCR1YuCQJHVi4JAkdTKxgcMnxyWpPz45jk+O\nS9JS+OS4JGkkDBySpE4MHJKkTgwckqRODBySpE4MHJKkTgwckqRODBySpE4MHJKkTsYqcCR5YpJ3\nJzk/yStGnR9J0gON5ZQjSbYDzq2qly5y3ClHJKmjqZ1yJMm/AT4FnDvqvEiSHmjggSPJ2UluTbJh\nXvraJNckuS7JqXPpVXVhVR0FnDDovEmSuht4U1WSI4C7gA9W1UFt2irgWuB5wCbgcmAd8AjgJcBO\nwNVV9bZFzmlTlSR1tFJNVduvRGa2pKouTbJmXvJhwMaqugEgybnAMVV1BvD5fs7bO7f8zMwMMzMz\ny8+sJE2R2dnZgaxbNJTO8TZwXNhT4zgOeEFVndTuvww4vKpO6fN81jgkqaNJ7xz3W1+SJtSoAscm\nYHXP/mrg5i4ncOlYSerPRC4du0BT1fY0nePPBW4BLgPWVdXVfZ7PpipJ6mhimqqSnAN8Adg/yU1J\nTqyqe4FXAxcDVwHn9Rs0JEmjNYxRVesWSb8IuGip512/fr2jqSSpDys9umospxzZGpuqJKm7iWmq\nkiRNl4kNHI6qkqT+TOSoqpVmU5UkdWdTlSRpJAwckqROJjZw2MchSf2xjwP7OCRpKezjkCSNhIFD\nktTJxAYO+zgkqT/2cdD0cQBMYt4laVTs45AkjYSBQ5LUiYFDktSJgUOS1MlEBw5HVUnS1jmqCkdV\nSdJSOKpKkjQSBg5JUicGDklSJwYOSVInBg5JUicTHTgcjitJW+dwXByOK0lLMbThuEkOWu5FJEnT\no5+mqncnuTzJHyX5lYHnSJI01rYaOKrqWcDvAY8BvpbknCRHDjxnkqSx1HcfR5LtgRcB7wB+TBN0\n/ryqPja47C2aF/s4JKmjYfZxPDXJW4Grgd8Ejq6qA4DnAG9dbgYkSZNlqzWOJJ8HzgI+WlU/mXfs\n96vqgwPM32J5ssYhSR2tVI2jn8CxK/DTqrqv3V8F7FRVdy/34ktl4JCk7oY5O+5ngQf37O8MXLLc\nC68EHwCUpK0b+gOASa6sqoO3ljZM1jgkqbth1jjuTnJoz4WfBvx0uReWJE2m7ft4z2uA85N8t91/\nFHD84LIkSRpnfT3HkWRH4AlAAddW1T2DzthW8mNTlSR1NLRRVe3FngHsS1NDmfvSHvow3J78GDgk\nqaOVChxbbapK8mHgccCVwH09h0YWOCRJo9NPH8ehwIHln/eSJPobVfVNmg5xSZL6qnHsCVyV5DLg\nZ21aVdULB5ctSdK46idwrG9/FpCebUnSNqjfUVVrgMdX1WeT7AxsX1V3DDhvW8qPo6okqaNhTqt+\nMvAR4L1t0qOBTyz3wlu43jFJ3pfk3CTPH9R1JElL089cVV8HDgO+VFWHtGkbqmqga5En2R3466p6\n5QLHrHFIUkfDnKvqZ1U11yk+txLgML6x/wJ45xCuI0nqoJ/A8fkkrwd2bpuOPgJc2OUiSc5OcmuS\nDfPS1ya5Jsl1SU5t05Lkr4CLqurKLteRJA1eP01Vq4BXAEe2SRcDZ3Z5IDDJEcBdwAfnmrja814L\nPA/YBFwOrGv3T2j3r6yq9y5wPpuqJKmjoU050q789772tSRVdWk7MqvXYcDGqroBIMm5wDFVdQbw\nt/2cd25hkpmZGWZmZpaaPUmaSrOzswNZ8K6fGsf1CyRXVT2u04WawHFhT43jOOAFVXVSu/8y4PCq\nOqWPc1njkKSOhlbjAH69Z3sn4DjgYcu9MD5EKEkTaaud41X1/Z7XzVX1NuC3VuDam4DVPfurgZu7\nnMA1xyVp60ax5vihbK4dbAc8DXhVVT2104Ue2FS1PU3n+HOBW4DLgHVVdXUf57KpSpI6GmZT1VvY\nHDjuBW4AXtrlIknOAZ4NPCzJTcAbqur9SV5NM0prFXBWP0FDkjRa/YyqmlnuRapq3SLpFwEXLfW8\ns7OzjqaSpK1Y6dFV/TRV/Qce2JH9i1lyq+pvViw3fbKpSpK6G2ZT1aE0I6suoAkYR9M8nPft5V5c\nkjR5+gkcq4Ffq6o7AZKcBny6qn5voDnrg01VkrR1K91U1c9cVY8A7unZv6dNGzmH40rS1s3MzAx9\nOO7rgeOBj9M0Vb0IOK+q3rRiuehoro8D7OeQpH6tVB9HvysAHgo8q939x6q6YrkXXg4DhyR1N8zO\ncYCdgTur6uwkeybZt6oWmsNKkjRmRjEcdz3NyKonVNX+SfYBzq+qZ65YLjqyxiFJ3Q1zBcAXA8cA\ndwNU1SbgIcu9sCRpMvW7dOz9cztJdhlgfiRJY66fPo6PJHkvsHuSk4GXA2cONluSpJUy1D6OJKF5\nAPCJ9CwdW1WXrFgOlsA+DknqbijDcdvAsaGqnrzcC60kA4ckdTeUzvFqvpW/muSw5V5IkjQd+hmO\ney3weOCfaUdW0cSUpww4b1vKkzUOSepo4A8AJnlMVd0IvIBmWvVlX0ySNHxD6xxPckVVHdJuf6yq\njl2xqy6TNQ5J6m6YDwACPG65F5IkTYd+A4ckScCWm6ruA37S7j4Y+GnP4aqq3Qact0XZVCVJ3Q28\nc7yqVi335JKk6TPxTVUruaqVJGnr+lrIadz0NlWBzVWStCVzw3FPP/304a0AOG4MHJLU3bCH40qS\nBBg4JEkdGTgkSZ0YOCRJnRg4JEmdGDgkSZ0YOCRJnRg4JEmdLDpXlSRpOgxtIadx5pPjktSdT45L\nkkbCwCFJ6mQqAodTq0vS8ExFHwfYzyFJW2MfhyRpJAwckqRODBySpE4MHJKkTgwckqROxipwJNk3\nyZlJPjLqvEiSFjZWgaOqrq+qV446H5KkxY1V4FgOHwKUpOEYeOBIcnaSW5NsmJe+Nsk1Sa5Lcupy\nr3P66acv9xSSpD4Mo8bxfmBtb0KSVcA72/QDgXVJDkiyR5L3AAevRDCRJK28ga/HUVWXJlkzL/kw\nYGNV3QCQ5FzgmKo6A/jDQedJkrR0o1rIaR/gpp79m4HDR5QXSZpKK72A05yhTHLY1jgurKqD2v1j\ngbVVdVK7/zLg8Ko6pc/zLZhpJzqUpMVN+iSHm4DVPfuraWodkqQxN6qmqq8A+7U1kVuA44F1I8qL\nJE21iVtzPMk5wLOBhwG3AW+oqvcnOQp4G7AKOKuq3tzhnDZVSVJHK9VUNYxRVQvWJKrqIuCiQV9f\nkrZ1E1fjGARrHJLU3aR3jkuSJpSBQ5LUydQFDic7lKRfNjs7u6LfjVPXx9G24Q07S5I09uzjkCSN\nxKgeAByINWvWjDoLkjR2HI7L4k1VcyaxTJI0aDZVSZJGwsAhSerEwCFJ6mSqOsd7zY1Z9rkOSds6\nO8fpr3M8yS+2JUl2jkuSRsTAIUnqxMAhSerEwIEd6JKmm5McsvKd406MKGlbYOe4JGkkDBySpE4M\nHJKkTgwckqRODBySpE6mMnDMjaiaMzMzAzjsVtK2yeG4bH04bq/edcgXG3brcFxJ2wKH40qSRsLA\nIUnqxMAhSerEwCFJ6sTAIUnqxMAhSerEwCFJ6sTAIUnqZOoDx0477QRsfmp8/fr1v3jB5qfKe9/T\nqzdtJZ+8HMRT7D4ZL2khPjlOtyfHt2T+gk8LPUHem7aST5gP4ml1n4CXtCU+OS5JGgkDhySpEwOH\nJKkTA4ckqRMDhySpEwOHJKkTA4ckqRMDhySpEwOHJKmT7UedgV5JdgHeBfwMmK2qvxtxliRJ84xb\njeMlwPlVdTLwwlFnRpL0QOMWOPYBbmq37xtlRkZpdnZ21FkYqGku3zSXDSyfGgMPHEnOTnJrkg3z\n0tcmuSbJdUlObZNvBlYPK2/jatr/8U5z+aa5bGD51BjGl/P7gbW9CUlWAe9s0w8E1iU5APg4cGyS\ndwEXDCFvkqSOBt45XlWXJlkzL/kwYGNV3QCQ5FzgmKo6A3j5oPMkSVq6oazH0QaOC6vqoHb/OOAF\nVXVSu/8y4PCqOqXP87nohCQtwUqsxzGq4bjL+uJfiYJLkpZmVB3Qm9jcCU67ffOI8iJJ6mBUgeMr\nwH5J1iTZETgeO8MlaSIMYzjuOcAXgP2T3JTkxKq6F3g1cDFwFXBeVV3dx7kWGsI7cZLckOQbSa5I\nclmbtkeSS5J8O8lnkuze8/7XtWW+JsmRo8v5whYacr2U8iQ5NMmG9tjbh12OxSxSvvVJbm7v4RVJ\njuo5NjHlS7I6yeeSfCvJN5P8SZs+FfdvC+Wblvu3U5IvJ7kyyVVJ3tymD/b+VdVEvIBVwEZgDbAD\ncCVwwKjztcSyXA/sMS/tvwF/1m6fCpzRbh/YlnWHtuwbge1GXYZ5eT8COATYsMTyzA3SuAw4rN3+\nNLB21GXbQvlOA167wHsnqnzAI4GD2+1dgWuBA6bl/m2hfFNx/9q87Nz+3B74EvCsQd+/SXrI7hdD\neKvqHuBc4JgR52k55nfwvxD4QLv9AeBF7fYxwDlVdU81w5c30vwuxkZVXQr8aF5yl/IcnuRRwEOq\n6rL2fR/s+cxILVI+eOA9hAkrX1V9r6qubLfvAq6mmcFhKu7fFsoHU3D/AKrqJ+3mjjR/YP+IAd+/\nSQocvdORQNOZvs8i7x13BXw2yVeSnNSm7VVVt7bbtwJ7tdt788sDByal3F3LMz99E+NfzlOSfD3J\nWT1NARNbvnbY/CHAl5nC+9dTvi+1SVNx/5Jsl+RKmvv0uar6FgO+f5MUOKbp2Y1nVtUhwFHAHyc5\novdgNXXFLZV3on4XfZRnEr0b2Bc4GPgu8JbRZmd5kuwKfAz491V1Z++xabh/bfk+SlO+u5ii+1dV\n91fVwcCjgd9I8px5x1f8/k1S4JiaIbxV9d325+3AJ2ianm5N8kiAttp4W/v2+eV+dJs27rqU5+Y2\n/dHz0se2nFV1W7WAM9ncfDhx5UuyA03Q+FBVfbJNnpr711O+D8+Vb5ru35yq+jHwKeBQBnz/Jilw\nTMUQ3iQ7J3lIu70LcCSwgaYsJ7RvOwGY+w98AfA7SXZMsi+wH00n1rjrVJ6q+h5wR5LDkwT4tz2f\nGTvtf8Y5L6a5hzBh5WvzchZwVVW9refQVNy/xco3Rffv4XPNbEkeDDwfuIJB379RjwjoOHrgKJpR\nERuB1406P0ssw740oxquBL45Vw5gD+CzwLeBzwC793zmz9syX0MzVcvIyzGvTOcAtwA/p+mHOnEp\n5aH5S2lDe+wdoy7XFsr3cprOw28AX2//g+01ieWjGYFzf/vv8Yr2tXZa7t8i5Ttqiu7fQcDX2vJ9\nA/iPbfpA799Q5qqSJE2PSWqqkiSNAQOHJKkTA4ckqRMDhySpEwOHJKkTA4ckqZNRrQAojZ0k99GM\nhd8BuJdmrP9byzHr0i8xcEib/aSaOcRIsifwd8BuwPrlnjjJdlV1/3LPI40Dm6qkBVQzj9jJNAuO\nkWRVkv+e5LJ2RtWT2/TtkrwrydXtgjmfSnJse+yGJGck+Srw20mOTPKFJF9Ncn475czcAjqz7WzJ\nfz83x5A0rgwc0iKq6npgVZJHAK8A/qWqDqOZEO+kdprulwCPraoDaOb3+Vdsnom0gO9X1aHAPwCv\nB57b7n8VeG2S7YG/BY6tqqcB7wf+65CKKC2JTVVSf44EDkpyXLu/G80Ecc8EzgeoqluTfG7e585r\nfz6dZvW1LzRzyLEjzZLKTwCeRLM+CzQL8dwyuGJIy2fgkBaR5HHAfVV1W/ul/uqqumTee/41v7yS\n3PxV5e7u2b6kqn533ucPAr5VVc9YuZxLg2VTlbSAtnP8PTTNSAAXA3/UNi2RZP8kOwP/BBybxl7A\nsxc55ZeBZyb51fbzuyTZj2aG0j2TPL1N3yHJgQMrmLQCrHFImz04yRXMG47bHjsTWAN8rV2v4Daa\nNZk/BjwXuIpmyvWvAT+ef+Kquj3JHwDnJHlQm/z6qrqubf56R5Jfofk/+db2fNJYclp1aZmS7FJV\ndyd5GE3N4hlVddvWPidNKmsc0vL973YVth2BNxo0NO2scUiSOrFzXJLUiYFDktSJgUOS1ImBQ5LU\niYFDktSJgUOS1Mn/B7elMYc8l731AAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb7bb27e810>" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plot_hist(degree_hist, xlog=True, label='Degree')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEfCAYAAABSy/GnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGxBJREFUeJzt3X2UZHV95/H3h0FAMASfYoSMjkZBUDSIAaOytkERIxEj\nqBmjIagQdSHHuOeEdXVD4+4qnjXxcX1axIV4wgBRs7JIEF3bsGIWRDFEBgIrBBgi4kMU1Kjgd/+o\nW1TR0z19u7seu9+vc/pM3d+9de+vflNV3/o93lQVkiQtZadxZ0CSNB0MGJKkVgwYkqRWDBiSpFYM\nGJKkVgwYkqRWDBjSkCQ5LMm1486HNCgGDI1NkpuS/CjJD5J8L8kXk/xhkow7b0tJMpPklgXS55K8\nCqCqLq2qx7U412ySvxhGPqVBMmBonAo4qqr2BB4BnA6cAnxkGBdLMor3ezV/EyHJzuPOg9YOA4Ym\nQlXdWVUXAC8FjkvyeIAkuyZ5R5J/SvLNJB9Islv3eUn+JMltSW5N8uokP0/y6Gbf/2iO/3SSu4CZ\nJHsn+XiSbyX5RpKT+86VJP8+yQ1Jvp3k3CQPXOlrml8LSXJKk88fJLk2yW8mORJ4I/DSJHcm+Wpz\n7N5JPpXkO0muT/LqvvPcP8lZSb6b5JqmDPqvc1OT9vfAnUk29L2uHyT5epIX9h3/B03t7s+bmt4N\nSZ6W5PgkNye5Pcnvr7QctHYYMDRRquoK4FbgGU3S6cBjgCc1/+4D/ClA82X7x8DhwGOBmQVOuRn4\nT1X1AOBLwAXAV4G9m+e9PskRzbF/BLwA+DfAw4HvAf9tEK8ryX7AvwWe0tSojgBuqqq/Ad4KbKmq\nX6iqg5qnbAFubvJxLPDWJM9q9p1Kp0b2KOA5wMvZvlbzu8DzgL2q6h7gBuAZzbVPAz6W5GF9xx8C\nfA14EHAOcB7wZOBXm/O/L8nugygLTS8DhibRbcCDmr6ME4A3VNW/VNVdwNvofBkCvAQ4s6q2VtWP\n6XyRzvfXVfWl5vETgYdU1X+uqrur6kbgjL7zvQZ4c1XdVlU/o/PFeuwOmrL2bn6R3/tHL9DNdw+w\nK/D4JPerqpur6hvNvjR/nY1kI/A04JSq+mlVfa3JZ/dX/ouBt1bV96tqG/Du/ufTCR7vqaptVfUT\ngKr6q6r6ZvP4POB64NC+59xYVWdVZ3G58+gE1LdU1c+q6hLgp3QCttYx2zc1iX4F+C7wEGB34Mq+\nfvDQ+6HzcODyvufdOu88BWzr234kzZd8X9oG4G/79n8yyc/79t8NPAz45wXyeVtVbexPSPL5hV5Q\nVd2Q5PXALJ2gcTGdQLjQefcGvltVP+xLuxk4uG9/f4f7/NfNvP00TUp/DGxqkh4APLjvkNv7Hv+4\nyfMd89IesMB1tI5Yw9BESfLrdL4Q/w/wHTpfVAdU1QObv72aZhXofIn3f2FvZHv9TTU30/kl/cC+\nvz2r6qi+/UfO27/7Il/qy1ZV51TVYXQCUwFvXyCP0Kth9X9BP4Je8FvW607ySODDdJrEHlRVDwT+\ngfvWSqQlGTA0bgFIsmeSo+i0n/9FVX29qn4O/HfgXUke2hy3T1+fw3nA8Uke17Sv/8eFzt3ncjqd\nwH/SdBxvSPKEJE9p9n+QTl/BI5prPTTJCwbyIpN9m07uXYGfAP9Kp5kK4JvApu5w4qq6BbgMeFvT\n6f9E4JXAx/pe9xuT7JVkH+Akdjwya49m/7eBnZIcDzxhEK9L68vEBYwkeyS5Isnzx50XjcQFSX5A\n59f9G4E/A47v238KnQ7bv0vyfeASYF+ApsP4PcDngX+k06kNnS9kmDfEtQlARwG/BnwDuIPOL+9u\njeXdwKeAzzR5+hKdzuDFtBk+2z1mVzr9L3fQqSE8pHm9AOc3/34nyZebx5vpNB/dBnwC+NOq+t/N\nvrfQaYa6EfhM8/yfLpqBqmvolOuX6ASnJ9CpwfXncf5rmZihwZocmbQbKCU5DbgT2FpVF447P5oe\nSfYHrgZ2aYLDupDktcBLqupZSx4srcJE1TCSPAe4hs6vMGlJSX6nabZ5IJ0+gU+t9WCR5JeTPD3J\nTs1w3TcAnxx3vrT2DT1gJDmzmfhz9bz0I5vJS9cnOaVJfibwVOBlwAndNl1pB06kM8LnBuBnwGvH\nm52R2IVOf8sPgM8Bfw28f6w50row9CapJIcBdwFnV9WBTdoG4Drg2XRGflwBbK6qrc3+44A7qurT\nQ82cJKm1oc/DqKpLk2yal3wIcENV3QSQZAtwNLC1ec5Zw86XJGl5xjVxbx+2n3h06CLHbifJZPXU\nS9KUqKoVN/WPq9N71V/4VTWwv1NPPXWgx+9o/0L7lkqbv39H+9ZaWSxn27KwLCyLHW+v1rgCxja2\nn6m60PIGi5qdnWVubm4gmZmZmRno8Tvav9C+pdLm719ufpdj0spiuduDZFms/NyWRfvjR1EWc3Nz\nzM7O7jAfrQwy8i72R2cC0tV92zsD/69J3wW4Cth/GecrdZx66qkDPR+9SVxL/k2aQZfFNLMseiyL\nnuZzu+Lv8lEMqz2HzjIH+ya5JcnxVXU3neUMLqYz7+LcakZIaXmG80uqTbyYPMP8VTltLIsey2Jw\nJm6mdxtJ6tRTT2VmZsY3w4B1pr60eU9kIG2ikoZvbm6Oubk5TjvtNGoVnd5TGzCmMd/TwIAhrV1J\nVhUwJmppEEnS5JragDHIUVKStJYNapSUTVK6D5ukpLXLJilJ0kgYMCRJrUxtwLAPQ5LasQ9jCvM9\nDezDkNYu+zAkSSNhwJAktWLAkCS1Mq4bKK3a7Oysa0nR7XNYPfsjpLWru5bUatnpPeXad1Lv8Cz3\nBgw7vaW1y05vSdJIGDAkSa0YMCRJrUxtwHCmtyS140zvKcz3MNjpLaktO70lSSNhwJAktWLAkCS1\nYsCQJLViwJAktTK1AcNhtZLUjsNqpzDfw+CwWkltOaxWkjQSBgxJUisGDElSKwYMSVIrBgxJUisG\nDElSK1N7T29NhqXuKe7QW2ntMGBoABYLCise7i1pAk1tk5QzvSWpHWd6T2G+h2HcM713fLyzwaVJ\n4kxvSdJIGDAkSa0YMCRJrRgwJEmtGDAkSa0YMCRJrRgwJEmtGDAkSa0YMCRJrUxUwEjyuCQfSHJe\nkleNOz+SpJ6JXBokyU7Alqp6ySL7XRqk4dIgktpac0uDJPlt4EJgy7jzIknqGXrASHJmktuTXD0v\n/cgk1ya5Pskp3fSquqCqngccN+y8SZLaG3qTVJLDgLuAs6vqwCZtA3Ad8GxgG3AFsBn4JeBFwG7A\n1qp61yLntEmqYZOUpLZW2yQ19BsoVdWlSTbNSz4EuKGqbgJIsgU4uqpOB74w7DxJkpZvXHfc2we4\npW/7VuDQ5Zyg/2YgMzMzzMzMDCJfkrRmzM3NDfRGcyMZJdXUMC7oa5I6Bjiyqk5otl8OHFpVJ7c8\nn01SDZukJLU18U1Si9gGbOzb3kinltHa7OysNYsp0AkoCzOYSKMxqJrGuGoYO9Pp9D4cuA24HNhc\nVVtbns8aRmPSaxgdC+239iGN2sTPw0hyDnAZsG+SW5IcX1V3AycBFwPXAOe2DRaSpPEYxSipzYuk\nXwRctNLz2iQlSe1MVZPUoNkk1WOTlKS2Jr5JSpK0NkxtwJidnR3o+GJJWqvm5ubuM3dtpWySmnI2\nSUlqyyYpSdJIGDAkSa1MbcCwD0OS2rEPYwrzPQz2YUhqyz4MSdJIGDAkSa1MbcCwD0OS2rEPYwrz\nPQz2YUhqa1rvhyEteK8Mg4g0uQwYGrP+ALHiHz6SRmBq+zAkSaNlwJAktTK1AcNRUpLUjqOkpjDf\nwzDNo6S23+fIKWmYnOktSRoJA4YkqRUDhiSpFQOGJKkVJ+5pojj7W5pcUxswZmdnmZmZYWZmZtxZ\n0cA5+1sapLm5uYFMQ3BY7ZRba8NqF0rz/1oajKEPq01y4EpPLklaO9p0en8gyRVJXpfkF4eeI0nS\nRFoyYFTVM4DfAx4BfCXJOUmOGHrOJEkTpXUfRpKdgRcC7wG+TyfY/Ieq+vjwsrdoXuzDaNiHIamt\nUfRhPCnJO4GtwG8CR1XV/sCzgHeu9MKSpOmyZA0jyReAjwB/VVU/mrfv96vq7CHmb7E8WcNorIca\nxnz+30srs9oaRpuA8QDgx1V1T7O9Aditqn640ouulgGjZ30EDJuopEEYxWq1nwXu37e9O3DJSi8o\nSZpObQLGblV1V3ejqu6kEzTGyhsoSVI7I7uBUpIvAn9UVVc2208B3ltVv7Hqq6+QTVI9NklJamu1\nTVJt1pJ6PXBekn9uth8OvHSlF5RWq3+BQoOHNDqt5mEk2QXYj85Pveuq6mfDztgS+bGG0ViPNYze\ntrUNaTlGUcMAeArwqOb4JzcXHflwWknS+CwZMJJ8DHg0cBVwT98uA4YkrSNtahgHAwfYBiRJ61ub\nYbX/QKejW5K0jrWpYTwUuCbJ5cBPmrSqqhcML1uSpEnTJmDMNv8WOx72Io2cQ2yl0VkyYFTVXJJN\nwGOq6rNJdm/zPGl0+n/LSBqWNsubnwicD3yoSfoV4JPDylCSo5N8OMmWJM8Z1nUkScvTZmmQrwGH\nAH9XVQc1aVdX1VDv9Z1kL+AdVfXqBfY5aKux3ifu9Y53Ep+0lFGsVvuTqup2dnfvvDeKT+abgfeN\n4DqSpBbaBIwvJHkTsHvTRHQ+cMFyLpLkzCS3J7l6XvqRSa5Ncn2SU5q0JHk7cFFVXbWc60iShqdN\nk9QG4FXAEU3SxcAZy2kTSnIYcBdwdrcpqznvdcCzgW3AFcDmZvu4ZvuqqvrQAuezSaphk1T3eJuk\npKUMfS2p5k57H27+VqSqLm1GWvU7BLihqm4CSLIFOLqqTgfeu9Q5+9d2n5mZYWZmZqXZ0xrhEFvp\nvubm5gZ636A2NYwbF0iuqnr0si7UCRgX9NUwjgWeW1UnNNsvBw6tqpNbnMsaRsMaRvd4axvSUkax\nWu2v9z3eDTgWePBKL9jHT7QkTZElO72r6tt9f7dW1buA5w/g2tuAjX3bG4Fb2z7ZW7RKUjujvEXr\nwfRqAzvRuTfGa6vqScu60PZNUjvT6fQ+HLgNuBzYXFVbW5zLJqmGTVLd422SkpYyiiapP6P3Cb0b\nuAl4yXIukuQc4JnAg5PcAvxpVX00yUl0Rl1tAD7SJlhIksajzSipmdVepKo2L5J+EXDRSs45Ozvr\n6ChJamFQo6XaNEn9O7ZvU7i3/l9Vf77qXCyTTVI9Nkl1j7dJSlrKKJqkDqYzUupTdD6VR9GZVPeP\nK72oJGn6tAkYG4EnV9WdAElOBT5dVb831JwtwSYpSWpnlE1S1wFPqqp/bbZ3A75WVfut+uorZJNU\nj01S3eMXbpJaaPZ3N833kNabUTRJnQ1cnuQTdD6VLwTOWukFpVHoDxTeYEkajCVrGHDvXIxnNJt/\nW1VfHWquls6PNYyGNYzu8Tt6vHCtw/eQ1ptR3A8DYHfgzqp6N3Brkket9IKD4kxvSWpnlDO9Z+mM\nlNqvqvZNsg9wXlU9fdVXXyFrGD3WMLrHW8OQljKKGsbvAEcDPwSoqm3AL6z0gtK4JJnXtyFpOdre\novXn3Y0kewwxP9IQWaOQVqNNwDg/yYeAvZKcCHwOOGO42VqafRiS1M5I+jDSqb9vBB5H3y1aq+qS\nVV95FezD6LEPo3v80n0Y84fX+h7SerPaPow2AePqqnrCSi8wDAaMHgNG93gDhrSUoXZ6N9/KVyY5\nZKUXkCaVneDS8rRdGuQxwD/RjJSiE0ueOOS87ShP1jAa1jC6xy+/htHle0nrxdCWBknyiKq6GXgu\nrq0gSevejtaS+p/AQVV1U5KPV9Uxo8pUG65WK0ntDH212iRfraqD5j+eBDZJ9dgk1T1+5U1S8/ne\n0lo1qrWkpHXAQCHtyI6apJ6Y5M7m8f37HkOn03vPIeZLkjRhFg0YVbVhlBmRJE02m6SkAXBOh9YD\nA4Y0T/eL3yAg3dfUBgwXH9SkMKho0o3sBkqTyGG1PQ6r7R4/iGG1vf2917b94+1eSV/A8H2pSeaw\nWmmErE1oPTNgSAswMEjbM2BIKzCI9mBp2tiHMeXsw+geP9g+jPuk9vVh9G/ft8x6+6RJZR+GJGkk\nDBjSANn3obXMgCEtwSAgdUxtwHDinkbHfglNNyfuTWG+h8FO7+7xw+v0np++o07v7n5pEtnpLY1Y\nf4CwuUrriQFDWiGDhdYbA4Y0RK54q7XEgCFJasWAIUlqxYAhDYmd41prDBiSpFYMGNIQWKPQWmTA\nkCS1YsCQRsRah6bdRAWMJI9KckaS88edF0nSfU1UwKiqG6vq1ePOh7QaO1rkzTv1aZpN5OKDSc6v\nqhfvYL+LDzZcfLB7/OgWH1wt37sal4lffDDJmUluT3L1vPQjk1yb5Pokpww7H5Kk1RlFk9RHgSP7\nE5JsAN7XpB8AbE6yf5IHJfkg8GsGEUmaLDsP+wJVdWmSTfOSDwFuqKqbAJJsAY6uqtOB17Q5b39b\n8MzMDDMzM6vPrDQCs7Oz9mVoJObm5gZ6o7mR9GE0AeOCqjqw2T4WeG5VndBsvxw4tKpObnk++zAa\n9mF0j5+ePgywH0PjMfF9GIvw0yJJU2ZcAWMbsLFveyNw63JO4D29Ne1sltKoTNU9vRdoktoZuA44\nHLgNuBzYXFVbW57PJqmGTVLd46evSar/vuDSKEx8k1SSc4DLgH2T3JLk+Kq6GzgJuBi4Bji3bbCQ\nJI3H0ANGVW2uqr2rateq2lhVH23SL6qq/arqMVX1tuWe1yYpTbPuulI2S2kUpqpJatBskuqxSap7\n/HQ1Sd3n7L6XNSIT3yQlSVobpjZg2CSltSLJgkuf21ylQbFJagrzPQw2SXWPn94mqXuvMu897Sgq\nDZpNUpKkkTBgSJJamdqAYR+G1hpv4aphsQ9jCvM9DPZhdI+f/j4MuG8/hn0YGjT7MCRJI2HAkCS1\nMrUBwz4MrUXz25nbLCHS3bfYfA7JPowpzPcw2IfRPX5t9GEA8/4vll7Ztruv/3hpIfZhSJJGwoAh\nSWrFgCFJamVqA4ad3lqrJqXj2sUP1w47vacw38Ngp3f3+LXT6Q1s14k9jk5vJw6uPXZ6S5JGwoAh\nSWrFgCFJasWAIUlqxYAhSWplagOGw2q1lvUPre1fK6r7b//fYrrPmz+c0uGy64/Daqcw38PgsNru\n8WtrWO1i+ofPLpbe/3+50JDctsNlHVa79jisVpI0EgYMSVIrBgxJUisGDElSKwYMSVIrBgxJUisG\nDElSKwYMSVIrUxswnOmt9Wixmd396UnYtGnTffYvNMu3fyZ4/6zxmZmZJZ+70L6VziRu+zxnqK+c\nM72nMN/D4Ezv7vHrY6b3crWZAd4fbOant7150/zHy+HM89FxprckaSQMGJKkVgwYkqRWDBiSpFYM\nGJKkVgwYkqRWDBiSpFYMGJKkVgwYkqRWdh53Bvol2QN4P/ATYK6q/nLMWZIkNSathvEi4LyqOhF4\nwbgzI0nqmbSAsQ9wS/P4nnFmRNLa4CKlgzP0gJHkzCS3J7l6XvqRSa5Ncn2SU5rkW4GNo8qbpLXP\ngDE4o/hS/ihwZH9Ckg3A+5r0A4DNSfYHPgEck+T9wKdGkDdg+W+opY7f0f6F9i2VNn+/HwCN2qR9\nRpa7PUjruSyGHjCq6lLge/OSDwFuqKqbqupnwBbg6Kr6UVW9sqpeV1XnDDtvXZP2BpifZsDQuE3a\nZ8SAsfLt1RjJ/TCSbAIuqKoDm+1jgedW1QnN9suBQ6vq5Jbnc1F8SVqB1dwPY1zDalf1hb+aFyxJ\nWplxdSxvo9e5TfP41jHlRZLUwrgCxpeBxybZlGQX4KWMsJNbkrR8oxhWew5wGbBvkluSHF9VdwMn\nARcD1wDnVtXWYedFkrRyI+n0liRNvzUzOS7Jo5KckeT8cedlnJLskeSsJB9O8rJx52ecfE/0JDm6\neU9sSfKccednXJI8LskHkpyX5FXjzs+4Nd8XVyR5fqvj11oNI8n5VfXicedjXJK8AvhuVV2YZEtV\n/e648zRu6/090S/JXsA7qurV487LOCXZCdhSVS8Zd17GKclpwJ3A1qq6cKnj10wNQ/dyPS7tyJvp\nrLKwbiX5beBCOhOG162mpnkNcEfb50xcwFjO2lNJXpHknUn2Hk9uR8P1uHqWWRZr2jI/K0nyduCi\nqrpqLBkekuW+J6rqgqp6HnDcyDM7ZMssi2cCTwVeBpyQZOn5bVU1UX/AYcBBwNV9aRuAG4BNwP2A\nq4D95z3vQcAHgeuBU8b9OsZVJsDuwJl07iuyedx5H3NZrNn3xArK4mQ6w9k/APzhuPM+xnJ4JvBu\n4EPA68ed93GWRd/+44DfanP+ibqBEnTWnmqWEul379pTAEm2AEcDW/ue913gNaPJ5Wgtp0yq6nTg\nlSPN4AitoCzW5HsCVlQW7x1pBkdkBeXwhZFmcIRW8v1ZVWe1Pf+0NFn0t8tDp9llnzHlZVJYJj2W\nRY9l0WE59AysLKYlYKytoVyDYZn0WBY9lkWH5dAzsLKYloDh2lPbs0x6LIsey6LDcugZWFlMS8Bw\n7antWSY9lkWPZdFhOfQMrCwmLmC49tT2LJMey6LHsuiwHHqGXRZrbqa3JGk4Jq6GIUmaTAYMSVIr\nBgxJUisGDElSKwYMSVIrBgxJUisGDElSKxO3Wq00LknuAf6ezhLQdwNnA+8sJytJgAFD6vejqjoI\nIMlDgb8E9gRmV3viJDtV1c9Xex5pnGySkhZQVXcAJ9JZUoEkG5L81ySXJ/lakhOb9J2SvD/J1iSf\nSXJhkmOafTclOT3JlcCLkxyR5LIkVyY5L8kezXEHJ5lL8uUkf5Pkl8f0sqUdMmBIi6iqG4ENSX4J\neBXwL1V1CJ0b0pzQ3KjmRcAjq2p/4BXAb9BbTrqAb1fVwcDngDcBhzfbVwJvSLIznRsbHVNVTwE+\nCvyXEb1EaVlskpLaOQI4MMmxzfaewGOBpwPnAVTV7Uk+P+955zb/PhU4ALisuXXyLnQWidsPeDzw\n2SZ9A3Db8F6GtHIGDGkRSR4N3FNV32q+zE+qqkvmHfNbQPqT5p3mh32PL6mql817/oHA16vqaYPL\nuTQcNklJC2g6vT9I7z7YFwOva5qQSLJvkt2BLwLHpONhwDMXOeX/BZ6e5Feb5++R5LHAtcBDkzy1\nSb9fkgOG9sKkVbCGIfXcP8lXmTesttl3BrAJ+Eo61Y1vAS8EPg4cTuc+A7cAXwG+P//EVXVHkj8A\nzkmya5P8pqq6vmnmek+SX6TzmXxncz5pong/DGmVkuxRVT9M8mA6NYmnVdW3xp0vadCsYUir97+S\n7EWnI/stBgutVdYwJEmt2OktSWrFgCFJasWAIUlqxYAhSWrFgCFJasWAIUlq5f8DJCkdxFqcysUA\nAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb7bac1ed50>" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Average Degree" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"avg_from_hist(degree_hist)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 14, | |
"text": [ | |
"5.6251674739771209" | |
] | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"vertex_average(g, 'total')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 15, | |
"text": [ | |
"(5.625167473977121, 0.27574733192371698)" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment