// from here: http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
// great example !!
func payloadHandler(w http.ResponseWriter, r *http.Request) {

    if r.Method != "POST" {
		w.WriteHeader(http.StatusMethodNotAllowed)
		return
	}

    // Read the body into a string for json decoding
	var content = &PayloadCollection{}
	err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(&content)
    if err != nil {
		w.Header().Set("Content-Type", "application/json; charset=UTF-8")
		w.WriteHeader(http.StatusBadRequest)
		return
	}

    // Go through each payload and queue items individually to be posted to S3
    for _, payload := range content.Payloads {

        // let's create a job with the payload
        work := Job{Payload: payload}

        // Push the work onto the queue.
        JobQueue <- work
    }

    w.WriteHeader(http.StatusOK)
}

type Dispatcher struct {
	// A pool of workers channels that are registered with the dispatcher
	WorkerPool chan chan Job
}

func NewDispatcher(maxWorkers int) *Dispatcher {
	pool := make(chan chan Job, maxWorkers)
	return &Dispatcher{WorkerPool: pool}
}

func (d *Dispatcher) Run() {
    // starting n number of workers
	for i := 0; i < d.maxWorkers; i++ {
		worker := NewWorker(d.pool)
		worker.Start()
	}

	go d.dispatch()
}

var (
	MaxWorker = os.Getenv("MAX_WORKERS")
	MaxQueue  = os.Getenv("MAX_QUEUE")
)

// Job represents the job to be run
type Job struct {
	Payload Payload
}

// A buffered channel that we can send work requests on.
var JobQueue chan Job

// Worker represents the worker that executes the job
type Worker struct {
	WorkerPool  chan chan Job
	JobChannel  chan Job
	quit    	chan bool
}

func NewWorker(workerPool chan chan Job) Worker {
	return Worker{
		WorkerPool: workerPool,
		JobChannel: make(chan Job),
		quit:       make(chan bool)}
}

// Start method starts the run loop for the worker, listening for a quit channel in
// case we need to stop it
func (w Worker) Start() {
	go func() {
		for {
			// register the current worker into the worker queue.
			w.WorkerPool <- w.JobChannel

			select {
			case job := <-w.JobChannel:
				// we have received a work request.
				if err := job.Payload.UploadToS3(); err != nil {
					log.Errorf("Error uploading to S3: %s", err.Error())
				}

			case <-w.quit:
				// we have received a signal to stop
				return
			}
		}
	}()
}

// Stop signals the worker to stop listening for work requests.
func (w Worker) Stop() {
	go func() {
		w.quit <- true
	}()
}

func (d *Dispatcher) dispatch() {
	for {
		select {
		case job := <-JobQueue:
			// a job request has been received
			go func(job Job) {
				// try to obtain a worker job channel that is available.
				// this will block until a worker is idle
				jobChannel := <-d.WorkerPool

				// dispatch the job to the worker job channel
				jobChannel <- job
			}(job)
		}
	}
}