Skip to content

Instantly share code, notes, and snippets.

View suvojit-0x55aa's full-sized avatar
💭
Learning to Learn

Suvojit Manna suvojit-0x55aa

💭
Learning to Learn
View GitHub Profile
@jeetsukumaran
jeetsukumaran / custom_iterator.cpp
Created February 18, 2010 02:33
Sample C++/STL custom iterator
// Sample custom iterator.
// By perfectly.insane (http://www.dreamincode.net/forums/index.php?showuser=76558)
// From: http://www.dreamincode.net/forums/index.php?showtopic=58468
#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <cassert>
@AliMD
AliMD / gist:3344523
Created August 13, 2012 22:28
All github Emoji (Smiles)

All github Emoji (Smiles)

ali.md/emoji

:bowtie: | 😄 | 😆 | 😊 | 😃 | ☺️ | 😏 | 😍 | 😘 | :kissing_face: | 😳 | 😌 | 😆 | 😁 | 😉 | :wink2: | 👅 | 😒 | 😅 | 😓

😩 | 😔 | 😞 | 😖 | 😨 | 😰 | 😣 | 😢 | 😭 | 😂 | 😲 | 😱 | :neckbeard: | 😫 | 😠 | 😡 | 😤 | 😪 | 😋 | 😷

😎 | 😵 | 👿 | 😈 | 😐 | 😶 | 😇 | 👽 | 💛 | 💙 | 💜 | ❤️ | 💚 | 💔 | 💓 | 💗 | 💕 | 💞 | 💘 | ✨

@rygorous
rygorous / gist:4172889
Created November 30, 2012 00:28
SSE/AVX matrix multiply
#include <immintrin.h>
#include <intrin.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
union Mat44 {
float m[4][4];
__m128 row[4];
};
@goakley
goakley / linus.c
Last active December 10, 2020 00:34
In response to: http://meta.slashdot.org/story/12/10/11/0030249/linus-torvalds-answers-your-questions An explanation of the two different types of singly-linked list removal explained by Linus Torvalds, using the variable names introduced here: http://stackoverflow.com/questions/12914917/
#include <stdio.h>
typedef struct ll {
int value;
struct ll *next;
} ll;
void print_list(ll *list_head)
{
@andrewgiessel
andrewgiessel / gist:4635563
Last active June 30, 2023 20:31
simple numpy based 2d gaussian function
import numpy as np
def makeGaussian(size, fwhm = 3, center=None):
""" Make a square gaussian kernel.
size is the length of a side of the square
fwhm is full-width-half-maximum, which
can be thought of as an effective radius.
"""
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
#AlexNet with batch normalization in Keras
#input image is 224x224
model = Sequential()
model.add(Convolution2D(64, 3, 11, 11, border_mode='full'))
@bastman
bastman / docker-cleanup-resources.md
Created March 31, 2016 05:55
docker cleanup guide: containers, images, volumes, networks

Docker - How to cleanup (unused) resources

Once in a while, you may need to cleanup resources (containers, volumes, images, networks) ...

delete volumes

// see: https://github.com/chadoe/docker-cleanup-volumes

$ docker volume rm $(docker volume ls -qf dangling=true)

$ docker volume ls -qf dangling=true | xargs -r docker volume rm

import lasagne
from lasagne.nonlinearities import rectify, softmax
from lasagne.layers import InputLayer, DenseLayer, DropoutLayer, batch_norm, BatchNormLayer
from lasagne.layers import ElemwiseSumLayer, NonlinearityLayer, GlobalPoolLayer
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer
from lasagne.init import HeNormal
def ResNet_FullPre_Wide(input_var=None, n=3, k=2):
'''
Adapted from https://github.com/Lasagne/Recipes/tree/master/papers/deep_residual_learning.
@tylermakin
tylermakin / Multipart MIME Email.md
Last active May 7, 2024 21:24
Multipart MIME Email Guide

Multipart MIME Email Guide

This is a guide on how to send a properly formatted multipart email. Multipart email strings are MIME encoded, raw text email templates. This method of structuring an email allows for multiple versions of the same email to support different email clients.

// Example Multipart Email:
From: [email protected]
To: [email protected]
Subject: Multipart Email Example
Content-Type: multipart/alternative; boundary="boundary-string"
@mjdietzx
mjdietzx / ResNeXt_gan.py
Last active February 14, 2020 18:10
Keras/tensorflow implementation of GAN architecture where generator and discriminator networks are ResNeXt.
from keras import layers
from keras import models
import tensorflow as tf
#
# generator input params
#
rand_dim = (1, 1, 2048) # dimension of the generator's input tensor (gaussian noise)