| 😄 | 😆 | 😊 | 😃 |
😩 | 😔 | 😞 | 😖 | 😨 | 😰 | 😣 | 😢 | 😭 | 😂 | 😲 | 😱 | | 😫 | 😠 | 😡 | 😤 | 😪 | 😋 | 😷
😎 | 😵 | 👿 | 😈 | 😐 | 😶 | 😇 | 👽 | 💛 | 💙 | 💜 | ❤️ | 💚 | 💔 | 💓 | 💗 | 💕 | 💞 | 💘 | ✨
// Sample custom iterator. | |
// By perfectly.insane (http://www.dreamincode.net/forums/index.php?showuser=76558) | |
// From: http://www.dreamincode.net/forums/index.php?showtopic=58468 | |
#include <iostream> | |
#include <vector> | |
#include <algorithm> | |
#include <iterator> | |
#include <cassert> |
| 😄 | 😆 | 😊 | 😃 |
😩 | 😔 | 😞 | 😖 | 😨 | 😰 | 😣 | 😢 | 😭 | 😂 | 😲 | 😱 | | 😫 | 😠 | 😡 | 😤 | 😪 | 😋 | 😷
😎 | 😵 | 👿 | 😈 | 😐 | 😶 | 😇 | 👽 | 💛 | 💙 | 💜 | ❤️ | 💚 | 💔 | 💓 | 💗 | 💕 | 💞 | 💘 | ✨
#include <immintrin.h> | |
#include <intrin.h> | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <string.h> | |
union Mat44 { | |
float m[4][4]; | |
__m128 row[4]; | |
}; |
#include <stdio.h> | |
typedef struct ll { | |
int value; | |
struct ll *next; | |
} ll; | |
void print_list(ll *list_head) | |
{ |
import numpy as np | |
def makeGaussian(size, fwhm = 3, center=None): | |
""" Make a square gaussian kernel. | |
size is the length of a side of the square | |
fwhm is full-width-half-maximum, which | |
can be thought of as an effective radius. | |
""" |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.layers.normalization import BatchNormalization | |
#AlexNet with batch normalization in Keras | |
#input image is 224x224 | |
model = Sequential() | |
model.add(Convolution2D(64, 3, 11, 11, border_mode='full')) |
Once in a while, you may need to cleanup resources (containers, volumes, images, networks) ...
// see: https://github.com/chadoe/docker-cleanup-volumes
$ docker volume rm $(docker volume ls -qf dangling=true)
$ docker volume ls -qf dangling=true | xargs -r docker volume rm
import lasagne | |
from lasagne.nonlinearities import rectify, softmax | |
from lasagne.layers import InputLayer, DenseLayer, DropoutLayer, batch_norm, BatchNormLayer | |
from lasagne.layers import ElemwiseSumLayer, NonlinearityLayer, GlobalPoolLayer | |
from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer | |
from lasagne.init import HeNormal | |
def ResNet_FullPre_Wide(input_var=None, n=3, k=2): | |
''' | |
Adapted from https://github.com/Lasagne/Recipes/tree/master/papers/deep_residual_learning. |
This is a guide on how to send a properly formatted multipart email. Multipart email strings are MIME encoded, raw text email templates. This method of structuring an email allows for multiple versions of the same email to support different email clients.
// Example Multipart Email:
From: [email protected]
To: [email protected]
Subject: Multipart Email Example
Content-Type: multipart/alternative; boundary="boundary-string"
from keras import layers | |
from keras import models | |
import tensorflow as tf | |
# | |
# generator input params | |
# | |
rand_dim = (1, 1, 2048) # dimension of the generator's input tensor (gaussian noise) |