Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000| # Coverage targets | |
| if HAVE_GCOV | |
| .PHONY: clean-gcda | |
| clean-gcda: | |
| @echo Removing old coverage results | |
| -find -name '*.gcda' -print | xargs -r rm | |
| .PHONY: coverage-html generate-coverage-html clean-coverage-html |
| linux.img | |
| .lock | |
| record | |
| .gdbinit |
| import com.thinkaurelius.titan.core.TitanFactory; | |
| import com.thinkaurelius.titan.core.TitanGraph; | |
| import com.thinkaurelius.titan.core.TitanKey; | |
| import com.thinkaurelius.titan.core.attribute.Geoshape; | |
| import com.thinkaurelius.titan.graphdb.configuration.GraphDatabaseConfiguration; | |
| import com.tinkerpop.blueprints.Edge; | |
| import com.tinkerpop.blueprints.Vertex; | |
| import com.tinkerpop.blueprints.util.ElementHelper; | |
| import org.apache.commons.configuration.BaseConfiguration; | |
| import org.apache.commons.configuration.Configuration; |
| package main | |
| import ( | |
| "bufio" | |
| "bytes" | |
| "fmt" | |
| "io" | |
| "log" | |
| "net" | |
| "os" |
| # Add field | |
| echo '{"hello": "world"}' | jq --arg foo bar '. + {foo: $foo}' | |
| # { | |
| # "hello": "world", | |
| # "foo": "bar" | |
| # } | |
| # Override field value | |
| echo '{"hello": "world"}' | jq --arg foo bar '. + {hello: $foo}' | |
| { |
| from numpy.linalg import solve | |
| class ExplicitMF(): | |
| def __init__(self, | |
| ratings, | |
| n_factors=40, | |
| item_reg=0.0, | |
| user_reg=0.0, | |
| verbose=False): | |
| """ |
flatMap, especially if the following operation will result in high memory usage. The flatMap op usually results in a DataFrame with a [much] larger number of rows, yet the number of partitions will remain the same. Thus, if a subsequent op causes a large expansion of memory usage (i.e. converting a DataFrame of indices to a DataFrame of large Vectors), the memory usage per partition may become too high. In this case, it is beneficial to repartition the output of flatMap to a number of partitions that will safely allow for appropriate partition memory sizes, based upon the