Skip to content

Instantly share code, notes, and snippets.

@sysuin
Created September 6, 2018 15:50
Show Gist options
  • Save sysuin/a6911b9abdb3557cde7ddfe53f224c07 to your computer and use it in GitHub Desktop.
Save sysuin/a6911b9abdb3557cde7ddfe53f224c07 to your computer and use it in GitHub Desktop.
HindiCodingZone.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "HindiCodingZone.ipynb",
"version": "0.3.2",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"[View in Colaboratory](https://colab.research.google.com/gist/sunnysinghnitb/a6911b9abdb3557cde7ddfe53f224c07/hindicodingzone.ipynb)"
]
},
{
"metadata": {
"id": "1auWNAj_HrcG",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 378
},
"outputId": "a8bdbc2b-e25d-404d-9890-34832055dcd5"
},
"cell_type": "code",
"source": [
"from sklearn import linear_model\n",
"import matplotlib.pyplot as plott\n",
"\n",
"features = [[120], [130], [140], [150], [160]]\n",
"labels = [1120, 1180, 1280, 1320, 1515]\n",
"plott.scatter(features, labels)\n",
"plott.xlabel(\"DAYS\")\n",
"plott.ylabel(\"PRICE\")\n",
"cd = linear_model.LinearRegression()\n",
"rd = cd.fit(features, labels)\n",
"result = rd.predict([[110], [170]])\n",
"plott.plot([[110], [170]], result)\n",
"print(result)\n",
"plott.show()\n"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"[1004. 1562.]\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFYCAYAAAC/NO6RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XlcU3e6P/BPVgISkAjBDRFRIO5b\n61Z3cIHa2rpVixZlZu7cOu20P3sd22lnOteZa23LffU11pm5Om6V0Vrt2GpRUCtWLdQNXFAQUdwQ\nIWFfk5Cc3x9MIxkRlyZk+7z/Mt8cDg+PCR+ec5ITkSAIAoiIiMitiB1dABEREdkeA56IiMgNMeCJ\niIjcEAOeiIjIDTHgiYiI3BADnoiIyA1JHV2ALWm1NTbdX0CADyoq6m26T1fGftzDXlhjP6yxH/ew\nF9Zs3Y+gIOUD7+ME3wapVOLoEpwK+3EPe2GN/bDGftzDXlhrz34w4ImIiNwQA56IiMgNMeCJiIjc\nEAOeiIjIDTHgiYiI3BADnoiIyA0x4ImIiNwQA56IiMgNMeCJiIjcEAOeiIjIDbnVteiJiIickdks\n4Ey+FoNFIsja6Xsy4ImIiOyopKIeG1NyceV2FeK0dZg1Nqxdvi8DnoiIyA7MgoBvT9/Gl99dhaHJ\njGGRQZg/JRKGBkO7fH8GPBERkY2VVtRj47485N+qhK+3DEviNHgqSg1/Xy9oGfBERESuxSwISM8q\nws4jBTAYzRgaEYSFUyPh30He7rUw4ImIiGygtLIBm/flIu9mJToopEiYHoURmmCIRCKH1MOAJyIi\n+gnMgoAj2UXYmX4VeqMJQ/oEYtHUSPj7ejm0LgY8ERHRE9JVNmDT/jzk3qhAB4UUi6b2xch+jpva\nW2LAExERPSZBEPDd2TvYkV4AvcGEwb0DsWhaJDo6eGpviQFPRET0GHRVDdi8Pw+XrlfAx0uKxDgN\nRvfv7BRTe0sMeCIiokcgCAKOnruDHYcL0GgwYWB4J7wyLQoBSueZ2ltiwBMRET1EeXUjNu3Pw8XC\ncnh7SbEkVoMxA5xvam+JAU9ERPQAgiDg2Pli7Dh8BQ16E/r3UiFhWhRUfgpHl/ZQDHgiIqJWlFc3\nYnNqHnKulcPbS4LF06PwzMAuTj21t8SAJyIiakEQBBy/UIzPvy1Ag74J/cJUWDzdNab2lhjwRERE\n/1JRo8eW1Dycv1oGhVyCV6ZFYtygri4ztbfEgCciIo8nCAIycu5i+6ErqNc3oW/PACRMj0Kgv7ej\nS3tiDHgiIvJolbV6fJZ6GWcLdPCSS7BoaiTGD3bNqb0lBjwREXkkQRDww6USbDuYj7rGJmhCA7B4\nehQCO7ru1N4SA56IiDxOVa0en6VdRvYVHbxkEsRPicCEId0gdvGpvSUGPBER2YXeaEKxrg4mowle\nMomjywHQPLWfyC3BPw40T+1RPToiIVYDtZtM7S0x4ImIyKZMZjN2HC5Adr4W5TV6qJReGBIRhHmT\nekMiFjusrqo6A7amXUZWvhZymRgvx0Rg4lD3mtpbYsATEZFN7ThcgEOnb1tul1XrLbcXREc4pKaT\nuSVIPpCP2gYjIrr7Y0mcBuoAH4fU0l4Y8EREZDN6ownZ+dpW78vO12HW+PB2PVxfXWdA8oHLOH1Z\nC7lUjPnRfTB5WHe3ndpbYsATEZHNVNXqUV6tb/W+ippGVNXq221yPpVXiq1pl1HbYETv7v5IjNUg\nWOXeU3tLDHgiIrIZf18vqPy8UNZKyAcoFfD3tf9Hq9bUG5B8IB+n8kohk4rx0qTeiB4eArHY/af2\nlhjwRERkM14yCYZEBFmdg//RkIhAux+eP3O5eWqvrjeid7fmc+2dPWhqb4kBT0RENjVvUm8Azefc\nK2oaEaBUYEhEoGXdHmobjEg+cBknc0shlYgxd2JvTHnK86b2luwa8Pn5+Xj11VeRkJCA+Ph4rFix\nAhcvXkTHjh0BAImJiZgwYQL27NmDLVu2QCwWY+7cuZgzZw6MRiNWrFiBO3fuQCKRYNWqVQgJCbFn\nuUREZAMSsRgLoiMwa3w4JHIZTAajXSf3rHwtPku7jOo6A3p19UNinAZdOnWw2/dzFXYL+Pr6eqxc\nuRKjRo2yWv9//+//YeLEiVbbrV27Frt27YJMJsPs2bMRExOD9PR0+Pn5ISkpCcePH0dSUhI++eQT\ne5VLREQ25iWTICiwA7TaGrvsv7bBiG2H8vHDxRJIJWLMmRCOqU/38OipvSW7XXFALpdj/fr1UKvV\nbW537tw5DBgwAEqlEgqFAkOHDkVWVhYyMzMRExMDABg9ejSysrLsVSoREbmY7CtavPf3E/jhYgnC\nuvjh/cVPYfrIUIZ7C3ab4KVSKaTS+3efnJyMTZs2oVOnTnjvvfeg0+mgUqks96tUKmi1Wqt1sVgM\nkUgEg8EAuVxur5KJiMjJ1TUase3gFWRevAupRIRZ43th2ogeDr1CnrNq1xfZPf/88+jYsSM0Gg3W\nrVuHTz/9FEOGDLHaRhCEVr/2QestBQT4QCq17XmeoCClTffn6tiPe9gLa+yHNfbjHlv14tSlu/h0\n5zmUVzeid3d/vDF/KEI7+9lk3+2pvR4b7RrwLc/HT5o0Ce+//z6mTp0KnU5nWS8tLcXgwYOhVquh\n1WoRFRUFo9EIQRAeOr1XVNTbtN6gIKXdzh25IvbjHvbCGvthjf24xxa9qG80YvuhK/g+5y4kYhFe\nHNcL00f2gEQscrk+2/qx0dYfC+16TOO1117DrVu3AAAnTpxAnz59MGjQIFy4cAHV1dWoq6tDVlYW\nhg8fjjFjxiA1NRUAkJ6ejhEjRrRnqURE5ATOXy3DextO4vucuwgNVuL3CU/h2dE9eUj+Edhtgs/J\nycHq1atRVFQEqVSKtLQ0xMfH44033oC3tzd8fHywatUqKBQKLFu2DImJiRCJRFi6dCmUSiViY2OR\nkZGB+fPnQy6X44MPPrBXqURE5GTqG5vw+eErOH6+GBKxCC+MDcP0kaGQShjsj0okPMrJbRdh60M1\nPMxmjf24h72wxn5YYz/ueZJe5Fwrw6b9eaio0aOH2heJz/ZFiNrXThW2r/Y8RM8r2RERkVNo0Ddh\nx+ErOHqueWp//pkwxI3i1P6kGPBERORwFwvLsWl/Lsqr9ege5IufPatBj2C+E+GnYMATEZHDNOib\nsDO9AEfO3oFYJMJzY3ri2dE9ObXbAAOeiIgc4tL1cmzal4ey6kZ0D+qAxLi+CO3Mqd1WGPBERNSu\nGg1N2Jl+FenZRRCLRHh2dChmjA6DTMqp3ZYY8ERE1G5yb1Rg075c6Koa0S2wA5bEaRDWxfWuRucK\nGPBERGR3eoMJu45cxbdZtyESAXGjQvHcGE7t9sSAJyIiu7p8swIb9+VCW9mILp18kBjXF726cmq3\nNwY8ERHZhd5gwrqvLmDvsWsQiYDpI3tg5jNhkNn4Q8GodQx4IiKyufxbldiYkovSygZ06eSDJbEa\nhHfzd3RZHoUBT0RENqM3mvDP767h0OnmDxZ7cUJvTBnWDXIZp/b2xoAnIiKbKLhdhQ0pl1BS0YBg\nlQ8SYzUYNaQ7r8vvIAx4IiL6SQxGE3Yfu4YDJ5un9ilPheDFcb04tTsYA56IiJ5YQVEVNqbk4m55\nPdQB3lgSq0FESEdHl0VgwBMR0RMwNpmw+1gh0k7eBAQgenh3zBofDi9O7U6DAU9ERI/l6p3mqb24\nrB7qjt5YEsep3Rkx4ImI6JEYm8z4+ngh9p+4AUEAJg/rjtnjw+El59TujBjwRET0UIXF1diQkos7\nujoE+iuwJFaDqNAAR5dFbWDAExHRAxmbzNjzfSH2/3ATZkHApKHdMHtCOBRyxoez4/8QERG16vrd\n5qm9SNs8tS+O1UDDqd1lMOCJiMhKk8mMPd9fx77MGzALAiYM6YY5E8Lh7cXIcCX83yIiIosbd2uw\nISUXt7W16OTnhYRYDfr1VDm6LHoCDHgiIkKTyYxvMq4jJfMGTGYB4wd3xdyJvTm1uzD+zxERebib\nJc1T+63SWqj8vJAwPQr9wzo5uiz6iRjwREQeqslkxr7MG9ibcR0ms4Bxg7pg7sQ+8FEwGtwB/xeJ\niDzQ7dJa/D3lEm6W1CJA2Ty1D+jFqd2dMOCJiDxIk8mM/T/cwJ7vm6f2ZwZ0wUuTe8NHIXN0aWRj\nDHgiIg9xW1uLDSm5uHG3Bh195UiYHoWB4YGOLovshAFPROTmTGYzUk/cxNfHC9FkEjCmf2e8FN0H\nHTi1uzUGPBGRGyvS1WFjyiUUFtfA31eOV6ZFYXBvTu2egAFPROSGTGYz0k7ewlfHrqHJJGBUv2DM\nj46Arzendk/BgCcicjN3dHXYkJKLwuJq+HeQY9G0SAzpE+TosqidMeCJiNyE2Swg7dRN7D5aiCaT\nGSP7BmNBDKd2T8WAJyJyA8Vlddi4LxdXi6rh5yPDwqn9MCySU7snY8ATEbkws1nAwdO38M+j12Bs\nMuNpjRovx0RA6SN3dGnkYAx4IiIXdbe8Hhv35aLgdhWUPjL8/Nm+GB6ldnRZ5CQY8ERELsYsCDh0\n+ja+/O4qjE1mDI9SI35KBPw4tVMLDHgiIhdSUlGPTSm5yL9dBV9vGX72bF88xamdWsGAJyJyAWZB\nwOEzt7HryFUYmswYFhmEhVMi4deBUzu1jgFPROTkSisbsCklF5dvVaKDQorFsRo8rVFDJBI5ujRy\nYmJ77jw/Px/R0dFITk62Wj927BgiIyMtt/fs2YNZs2Zhzpw52LlzJwDAaDRi2bJlmD9/PuLj43Hr\n1i17lkpE5HTMgoBvz9zG7zacwOVblRgaEYQ//nwkRvQNZrjTQ9ltgq+vr8fKlSsxatQoq3W9Xo91\n69YhKCjIst3atWuxa9cuyGQyzJ49GzExMUhPT4efnx+SkpJw/PhxJCUl4ZNPPrFXuURETkVb2YBN\n+3KRd7N5ak+YFsVgp8ditwleLpdj/fr1UKutX/zxt7/9DQsWLIBc3nze6Ny5cxgwYACUSiUUCgWG\nDh2KrKwsZGZmIiYmBgAwevRoZGVl2atUIiKnYRYEpGfdxu82nETezUoM7h2IlT8bgZH9OjPc6bHY\nbYKXSqWQSq13X1hYiLy8PPz617/GRx99BADQ6XRQqVSWbVQqFbRardW6WCyGSCSCwWCw/GHQmoAA\nH0ilEpv+HEFBSpvuz9WxH/ewF9bYD2tP0o/S8nqs+SIb567o0MFbhqVzBmHC0O4uH+x8bFhrr360\n64vsVq1ahXfffbfNbQRBeKz1lioq6p+orgcJClJCq62x6T5dGftxD3thjf2w9rj9EAQB3529gx3p\nBdAbTBgU3gmLpkUhQOkFna7WjpXaHx8b1mzdj7b+WGi3gC8pKcG1a9fw1ltvAQBKS0sRHx+P1157\nDTqdzrJdaWkpBg8eDLVaDa1Wi6ioKBiNRgiC0Ob0TkTkisqqGrF5fy4uXq+At5cUiXEajO7Pw/H0\n07VbwAcHB+PQoUOW25MmTUJycjIaGxvx7rvvorq6GhKJBFlZWXjnnXdQW1uL1NRUjB07Funp6Rgx\nYkR7lUpEZHeCIODY+WJ8/u0VNBpMGBjeCa/8a2onsgW7BXxOTg5Wr16NoqIiSKVSpKWlYc2aNejY\nsaPVdgqFAsuWLUNiYiJEIhGWLl0KpVKJ2NhYZGRkYP78+ZDL5fjggw/sVSoRUbsqr27E5v15yCks\nh7eXBItjo/DMgC6c2smmRMKjnNx2EbY+z8NzR9bYj3vYC2vsh7UH9UMQBBw/X4zPD19Bg96E/mEq\nJEyPgspP4YAq2wcfG9bc8hw8EZEnq6jRY/P+PFy4VgaFXIKE6VEYO5BTO9kPA56IyI4EQUBGzl1s\nO3QFDfom9OsZgITpGnTyd9+pnZwDA56IyE4qavTYkpqH81fL4CWXYNG0SIwf1JVTO7ULBjwRkY01\nT+3F2HbwCur1TdCEBmBxbBQC/b0dXRp5EAY8EZENVdbq8X97L+HExbvwkkmwcGokJgzm1E7tjwFP\nRGQDgiDgh0sl2HYwH3WNTYjq0RGLYzUI6sipnRyDAU9E9BNV1RnwWWoesq/oIJeJ8csXB2J4n04Q\nc2onB2LAExE9IUEQcDK3FP84mI/aBiMiQzpicZwG/fqo+d5vcjgGPBHRE6iuM2Br2mWcyddCLhVj\nQXQfTBrWnVM7OQ0GPBHRYzqZW4LkA81Te0R3fyyO0yA4wMfRZRFZYcATET2i6noDkg/k43ReKeRS\nMeZP7oPJwzm1k3NiwBMRPYLTeaXYeuAyauqN6N3dH4mxGgSrOLWT82LAExG1oabegH8czMfJ3FLI\npGLMm9QbMcNDIBZzaifnxoAnInqAM5e12JqWh+p6I8K7+WFJrAZdOnVwdFlEj4QBT0T0b2objPjH\nwXycuFQCqUSMuRN7Y8pTnNrJtTDgiYhayM7XYkvaZVTXGdCrqx8S4zi1k2tiwBMRoXlq334oH5kX\nSyCViDBnQjimPB0CiVjs6NKInggDnog83tkrOmxJy0NVrQFhXZRYEtcX3QI5tZNrY8ATkceqazRi\n+6EryMi5C6lEhFnje2HaiB6c2sktMOCJyCOdv6rD5v15qKw1ILSzEolxGnQP8nV0WUQ2w4AnIo9S\n32jE598W4PiFYkjEIrwwrhemj+gBqYRTO7kXBjwReYwL18qweX8eKmr06BHsi8S4vghRc2on98SA\nJyK3V9/YhB2Hr+DY+eapfeYzYYgdFcqpndwaA56I3FpOYRk27fvX1K72xZI4DXoEKx1dFpHdMeCJ\nyC016Juw43ABjp67A4lYhOfG9MSzo3tyaiePwYAnIrdz8Xo5Nu/LRVm1Ht2DOiAxri9CO3NqJ8/C\ngCcit9Ggb8LOI1dxJLsIYpEIM0b3xIwxnNrJMzHgicgt5F4vx8Z9eSirbkS3oA5IjNOgZ2c/R5dF\n5DAMeCJyaY2G5qk9Pat5an92dChmjA6DTMqpnTwbA56IXNblmxXYkJILXVUjugY2T+1hXRw7teuN\nJhTr6mAymuAlkzi0FvJsDHgicjl6gwm7jlzFt1m3IRIBsSND8fwzPSGTOi5QTWYzdhwuQHa+FuU1\neqiUXhgSEYR5k3rz2vbkEAx4InIpl29WYOO+XGgrG9Glkw8S4/qiV1fHn2vfcbgAh07fttwuq9Zb\nbi+IjnBUWeTBGPBE5BL0RhO+/O4qvj19GxAB00f0wMyxYQ6d2lvWlp2vbfW+7HwdZo0P5+F6ancM\neCJyevm3KrFxXy5KKxrQWeWDxDgNwrv5O7osi6paPcqr9a3eV1HTiKpaPdQBPu1cFXk6BjwROS2D\n0YR/Hr2Gg6duAQCmPh2CF8b2gtzJpmF/Xy+o/LxQ1krIBygV8Pf1ckBV5OkY8ETklApuV2HDvlyU\nlNcjOMAbS+I06NO9o6PLapWXTIIhEUFW5+B/NCQikIfnySEY8ETkVAxGE746Voi0kzcBAFOeCsEL\n43o5fUjOm9QbQPM594qaRgQoFRgSEWhZJ2pvbQb86tWr8Zvf/MZyOz09HRMnTgQA/OIXv8C6devs\nWx0ReZSrRVXYkJKLu+X1UAd4Y0msBhEhzjm1/zuJWIwF0RGYNT4cErkMJoPR6f8oIffWZsBfvHjR\n6vamTZssAd/Q0GC/qojIoxibmqf21JM3IQhA9PDuLvvKcy+ZBEGBHaDV1ji6FPJwj3WIXhAEy79F\nItFDt8/Pz8err76KhIQExMfHIzs7Gx9++CGkUinkcjk++ugjqFQq7NmzB1u2bIFYLMbcuXMxZ84c\nGI1GrFixAnfu3IFEIsGqVasQEhLy+D8hETm1a3eqsSHlEorL6hHUUYElsRpE9ghwdFlELu+Jz8G3\nDPvW1NfXY+XKlRg1apRlbdOmTfjwww8REhKCTz/9FF988QUWLVqEtWvXYteuXZDJZJg9ezZiYmKQ\nnp4OPz8/JCUl4fjx40hKSsInn3zypOUSkZMxNpnx9fFC7D9xA4IATB7WHbPHh8NL7npTO5EzavP6\niYIgQBAEmM1mmM1my9qP/26LXC7H+vXroVarLWt//vOfERISAkEQUFJSgs6dO+PcuXMYMGAAlEol\nFAoFhg4diqysLGRmZiImJgYAMHr0aGRlZf2Un5OInEhhcTX+e/Mp7PvhBjr5KbB8/hC8HBPBcCey\noTYn+FOnTqFv376W24IgoG/fvhAE4aGH6KVSKaTS+3d/9OhR/OlPf0KvXr3w3HPPISUlBSqVynK/\nSqWCVquFTqezrIvFYohEIhgMBsjl8sf6AYnIeRibzNibUYh9mTdhFgRMHNoNcyaEQyHnG3qIbK3N\nZ1VeXp7Nv+G4ceMwduxYfPzxx1i3bh26detmdf+DDv0/7JQAAAQE+EBq48tWBgUpbbo/V8d+3MNe\nWHtYPwpuV+KT7Vm4cbcG6gBvvD5vCAb1CWqn6tofHx/3sBfW2qsfD/2z+euvv8bzzz9vuV1SUoIf\nfvjBau1RHTx4EDExMRCJRJg6dSrWrFmDIUOGQKfTWbYpLS3F4MGDoVarodVqERUVBaPRCEEQHjq9\nV1TUP3ZNbQkKUvKVsC2wH/ewF9ba6keTyYy9319HSuYNmAUBEwZ3xZyJveHtJXXbHvLxcQ97Yc3W\n/Wjrj4U2z8EnJydj+/btqK2ttVrfsWMHUlJSHruQNWvWIDc3FwBw7tw5hIWFYdCgQbhw4QKqq6tR\nV1eHrKwsDB8+HGPGjEFqaiqA5vffjxgx4rG/HxE51s2SGvz35tPYm3EdAUo5lr00GIumRcHbi4fk\nieytzWfZ7t27sXnzZvj6+lrWgoOD8be//Q3/+Z//ibi4uAd+bU5ODlavXo2ioiJIpVKkpaXhj3/8\nI/7whz9AIpFAoVDgww8/hEKhwLJly5CYmAiRSISlS5dCqVQiNjYWGRkZmD9/PuRyOT744APb/dRE\nZFdNJjNSMm/gm4zrMJkFjBvUFfMm9WawE7WjNp9tCoUCSuX947+fn99DX2TXv39/bN269b71zz//\n/L61adOmYdq0aVZrP773nYhcy82SGmxMycXN0loEKL2weHoU+vfq5OiyiDxOmwFfU1ODpqam+14N\nr9frUVVVZdfCiMi1NJnM2PfDDez9vnlqHzuwC+ZN6gMfBad2Ikdo8xz8xIkT8c4771idgy8vL8db\nb72FmTNn2r04InJ+eqMJpy6VYOWW0/jqWCH8OsjxxpxBWByrYbgTOVCbz77XXnsNSUlJmDhxIrp0\n6QKTyQStVouXX34ZiYmJ7VUjETkhk9mM7d9eQWbOXTToTQCALp18sOLlIVD68PPPiRytzYCXSqX4\nzW9+g9dffx03btyARCJBaGgoLzZDRNiQkosfLpZYrRWX1WNvxg0siI5wUFVE9KM2Az4zM/O+tZbv\nWW95nXki8gwmsxkpGTfuC/cfZefrXPaT4IjcSZsB/5e//OWB94lEIgY8kYcp0tVhY0ouCourH7hN\nRU0jqmr1UAf4tGNlRPTv2gz41t7mRkSex2wWkHbyJnYfK0STyYynNWpcuV2JihrDfdsGKBXw9+U5\neCJHa/NV9ABw7NgxbNy4EdnZ2ZY1QRDw97//3a6FEZFzKC6rw6rkM9h55Cp8FFK89uIA/PL5/hgW\nqW51+yERgTw8T+QE2pzg16xZg4yMDAwcOBBvv/02fvWrX0Gj0eDtt99G586d26tGInIAs1nAgVO3\n8M+j19BkMmNE32C8HBMBX28ZAGDepN4Ams+5V9Q0IkCpwJCIQMs6ETlWmwF//PhxbNu2DRKJBP/x\nH/+BmTNnQqFQYPny5YiOjm6vGomond0tr8fGlFwUFFXBz0eGhVP73jexS8RiLIiOwKzx4ZDIZTAZ\njJzciZxImwEvl8shkTQ/YVUqFYKDg7Fp0yara9MTkfswmwUcOn0LXx69BmNT87n2l2MioPR58Ftj\nvWQSBAV24CeGETmZNgP+36837+3tzXAnclMl5fXYsC8XBber4Ostw8+f7YvhUa2fZyci59dmwFdV\nVVm9F766utrqNt8mR+T6zIKAb0/fxpffXYWhyYzhkUGInxIJvw68oBWRK2sz4P38/PDXv/7Vclup\nVFreG8/3wRO5vtKKemzcl4f8W5Xw9ZZhSZwGT2uCHV0WEdnAQy9085e//AWFhYUYPnw4EhIS7vtk\nOSJyPWZBwOEzt7Hru6swGM0YFhGE+KmR8OfUTuQ22nwf/B/+8AeIxWLMmzcPV69exdq1a9urLiKy\nk9LKBny0LRvbDl2BTCLGfzzXD6++0J/hTuRm2hzHi4qK8PHHHwMAxo0bh4SEhPaoiYjswCwIOJJd\nhJ3pV6E3mjCkTyAWTY3kVeeI3NRDP03uRz++XY6IXI+usgGb9uch90YFOiikWDStL0b2Db7vnTJE\n5D4e621y/GVA5FoEQcCRs3fwRXoB9AYTBvcOxKJpkejIqZ3I7bUZ8NnZ2ZgwYYLldllZGSZMmABB\nECASiXDkyBE7l0dET0pX1YDN+/Nw6XoFfLyk+NmzGozq15l/qBN5iDYDPjU1tb3qICIbEQQBR8/d\nwY7DBWg0mDAwvBNemRaFACWndiJP0mbAd+vWrb3qICIbKK9uxKb9ebhYWA5vLymWxGowZgCndiJP\nxDe1E7kBQRBw7Hwxdhy+gga9CQN6dcIr0yKh8lM4ujQichAGPJGLK69uxObUPORcK4e3lwSLp0fh\nmYFdOLUTeTgGPJGLEgQBxy8U4/NvC9Cgb0K/MBUWT4/i1E5EABjwRC6pokaPLal5OH+1DAq5BAnT\nozCWUzsRtcCAJ3IhgiAgI+cuth+6gnp9E/r2DMDi6Rp08ufUTkTWGPBELqKiRo/PUvNw7moZvOQS\nLJoWifGDunJqJ6JWMeCJnJwgCPjhYgm2HcpHXWMTNKEBWDw9CoEdvR1dGhE5MQY8kROrqtXjs7TL\nyL6ig5dMgoVTIjB+SDeIObUT0UMw4ImckCAIOJFbgn8caJ7ao3p0xOJYDYI4tRPRI2LAEzmZqjoD\ntqZdRla+FnKZGC/HRGDiUE7tRPR4GPBETkIQBJzKK0XygXzUNhgREdIRS2KjoA7wcXRpROSCGPBE\nTqC6zoCtBy7jzGUt5FIx5kf3weRh3Tm1E9ETY8ATOdipvFJsTbuM2gYj+nT3x5I4DYI5tRPRT8SA\nJ3KQmnoDkg/k41ReKeRSMV6Lti/VAAAcvUlEQVSa3AfRw7pDLObUTkQ/HQOeyAFO55Vi64HLqKk3\none35qm9s4pTOxHZDgOeqB3VNhiRfOAyTuaWQiYVY96k3ogZHsKpnYhsjgFP1E6y8rX4LO0yqusM\nCO/qhyVxGnTp1MHRZRGRm2LAE9lZbYMR2w7l44eLJZBKxJgzMRxTn+rBqZ2I7MquAZ+fn49XX30V\nCQkJiI+PR3FxMd5++200NTVBKpXio48+QlBQEPbs2YMtW7ZALBZj7ty5mDNnDoxGI1asWIE7d+5A\nIpFg1apVCAkJsWe5RDaXfUWLz1Ivo6rOgLAufkiM06BrIKd2IrI/sb12XF9fj5UrV2LUqFGWtU8+\n+QRz585FcnIyYmJisGnTJtTX12Pt2rXYvHkztm7dii1btqCyshLffPMN/Pz8sH37dvzyl79EUlKS\nvUolsrm6RiPW772ENV9eQF2jEbMnhOOdhUMZ7kTUbuwW8HK5HOvXr4darbas/f73v8fUqVMBAAEB\nAaisrMS5c+cwYMAAKJVKKBQKDB06FFlZWcjMzERMTAwAYPTo0cjKyrJXqUQ2dbZAh3f/fgKZF++i\nZ2clfp/wFGJHhkIittvTjYjoPnY7RC+VSiGVWu/ex6f5bUAmkwnbtm3D0qVLodPpoFKpLNuoVCpo\ntVqrdbFYDJFIBIPBALlcbq+SiX6S+kYjth+6gu9z7kIiFuHFcb0wfWQPBjsROUS7v8jOZDJh+fLl\nGDlyJEaNGoW9e/da3S8IQqtf96D1lgICfCCVSmxS54+CgpQ23Z+rYz/uadmL07kl+HTnWZRVNaJ3\nd3+88dJQhHbxc2B17Y+PDWvsxz3shbX26ke7B/zbb7+N0NBQ/OpXvwIAqNVq6HQ6y/2lpaUYPHgw\n1Go1tFotoqKiYDQaIQjCQ6f3iop6m9YaFKSEVltj0326Mvbjnh97Ud/YhM8PX8Hx88WQiEV4YWwY\npo8MhVQi8qhe8bFhjf24h72wZut+tPXHQrseO9yzZw9kMhlef/11y9qgQYNw4cIFVFdXo66uDllZ\nWRg+fDjGjBmD1NRUAEB6ejpGjBjRnqUSPVTOtTK8t+EEjp8vRg+1L36X8BRmjAmDVMJD8kTkeHab\n4HNycrB69WoUFRVBKpUiLS0NZWVl8PLywsKFCwEA4eHheP/997Fs2TIkJiZCJBJh6dKlUCqViI2N\nRUZGBubPnw+5XI4PPvjAXqUSPZYGfRPWfHEWB07cgEQswsxnwhA7KpTBTkRORSQ8ysltF2Hrw0A8\ntGSN/QAuFpZj0/5clFfrEaL2RWKcBj2CeX6Rjw1r7Mc97IW19jxEzyvZET2CBn0TvkgvwHdn70As\nFuHZZ8IwdXh3dFDIHF0aEVGrGPBED3Hpejk27ctDWXUjfL1lkIiBlO8LkXn+DoZEBGHepN58KxwR\nOR0GPNEDNBqasDP9KtKziyAWiRDWRYnC4nuH1sqq9Th0+jYAYEF0hKPKJCJqFccOolbk3qjA7zac\nRHp2EboFdsDyBUNQXWdoddvsfB30RlM7V0hE1DZO8EQt6A0m7DpyFd9m3YZIBMSNCsVzY8JQUdOI\n8mp9q19TUdOIqlo91AE+7VwtEdGDMeCJ/uXyzQps3JcLbWUjugZ2QGKcBmH/uhqdv68XVH5eKGsl\n5AOUCvj7erV3uUREbWLAk8fTG0z48rurOHSmeWqfPrIHZj4TBlmLyx57ySQYEhFkOefe0pCIQHjJ\nbHuJZCKin4oBTx4t/1YlNqbkorSyAV06+WBJnAbhXf1b3XbepN4Ams+5V9Q0IkCpwJCIQMs6EZEz\nYcCTR9IbTfjnd9dw6PQtQARMG9E8tcvbmMQlYjEWREdg1vhwSOQymAxGTu5E5LQY8ORxrtxuntpL\nKhoQrPJBYpwGvbu1PrW3xksmQVBgB16di4icGgOePIbBaMI/j17DwVO3AABTnw7BC2N7tTm1ExG5\nKgY8eYSCoipsSMlFSXk91AHeSIzToE/3jo4ui4jIbhjw5NaMTSbsPlaItJM3AQGIGR6CF8f34rlz\nInJ7DHhyW1fvVGFjSi6Ky+qh7uiNJXEaRIRwaiciz8CAJ7djbDLhq+OFSD1xE4IARA/rjlnjw+El\n59RORJ6DAU9upbC4GhtScnFHV4egjgosidUgskeAo8siImp3DHhyC8YmM/Z8X4j9P9yEWRAwaWg3\nzJ4QDoWcD3Ei8kz87Ucu7/rd5qm9SFuHQH8FFsdqoAnl1E5Eno0BTy6ryWTGnu+vY1/mDZgFAROH\ndMOciZzaiYgABjy5qBt3a7Ah5RJua+vQyc8Li2M16NtT5eiyiIicBgOeXEqTyYxvMq4jJfMGTGYB\n4wd3xdyJveHtxYcyEVFL/K1ILuNmSQ02pOTiVmktVH5eWDxdg35hnNqJiFrDgCen12QyIyXzBr7J\nuA6TWcC4QV0wb1IfTu1ERG3gb0hyardKa7Eh5RJultQiQOmFxdOj0L9XJ0eXRUTk9Bjw5JSaTGbs\n/+EG9nzfPLU/M7ALXprUBz4KPmSJiB4Ff1uS07mtrcWGlFzcuFuDjr5yJEyPwsDwQEeXRUTkUhjw\n5DRMZjNST9zE18cL0WQSMGZAZ8yf3Ac+CpmjSyMicjkMeHIKRbo6bEy5hMLiGvj7ypEwLQqDenNq\nJyJ6Ugx4ciiT2Yy0k7fw1bFraDIJGNWvMxbE9EEHTu1ERD8JA54c5o6uDhtSclFYXA3/DnIsmhaJ\nIX2CHF0WEZFbYMDTI9EbTSjW1cFkNMFL9tM+V91sFpB26iZ2Hy1Ek8mMkf2CsSA6Ar7enNqJiGyF\nAU9tMpnN2HG4ANn5WpTX6KFSemFIRBDmTeoNiVj82PsrLqvDxn25uFpUDT8fGRZN64ehEZzaiYhs\njQFPbdpxuACHTt+23C6r1ltuL4iOeOT9mM0CDpy6hd3HrsHYZMbTGjVejomA0kdu85qJiIgBT23Q\nG03Izte2el92vg6zxoc/0uH6u+X12JiSi4KiKih9ZPj5s30xPEpt63KJiKgFBjw9UFWtHuXV+lbv\nq6hpRFWtHuoAnwd+vVkQcOj0bXz53VUYm8x4KkqNl6dEwI9TOxGR3THg6YH8fb2g8vNCWSshH6BU\nwN/X64FfW1JRj00puci/XQVfbxl+9mxfPMWpnYio3TDg6YG8ZBIMiQiyOgf/oyERga0enjcLAr49\ncxtfHrkKQ5MZwyKDsHBKJPw6cGonImpPDHhq07xJvQE0n3OvqGlEgFKBIRGBlvWWSisbsDElF/m3\nKuHrLcOSOA2eilJDJBK1d9lERB6PAU9tkojFWBAdgVnjwyGRy2AyGO+b3M2CgPSsIuw8UgCD0Yyh\nEUFYODUS/pzaiYgchgFPj8RLJkFQYAdotTVW69rKBmzal4u8m5XooJAiYXoURmiCObUTETnY41+p\n5DHk5+cjOjoaycnJlrXPPvsM/fr1Q11dnWVtz549mDVrFubMmYOdO3cCAIxGI5YtW4b58+cjPj4e\nt27dsmep9Jiap/bb+N2Gk8i7WYkhfQLxx5+NwMi+nRnuREROwG4TfH19PVauXIlRo0ZZ1r766iuU\nlZVBrVZbbbd27Vrs2rULMpkMs2fPRkxMDNLT0+Hn54ekpCQcP34cSUlJ+OSTT+xVLj0GXWUDNu3P\nQ+6NCnRQSLFoal+M7MepnYjImdhtgpfL5Vi/fr1VmEdHR+PNN9+0CoJz585hwIABUCqVUCgUGDp0\nKLKyspCZmYmYmBgAwOjRo5GVlWWvUukRCYKAI9lFeG/jSeTeqMCg8E7478QRGNWfUzsRkbOx2wQv\nlUohlVrv3tfX977tdDodVCqV5bZKpYJWq7VaF4vFEIlEMBgMkMsf/MKtgAAfSKU/7YNQ/l1QkNKm\n+3NVpRX1+N26TJzN16KDtwyvzh+IicNCPDrY+diwxn5YYz/uYS+stVc/nO5FdoIgPNZ6SxUV9Tat\nJShIed+LyjyNIAg4dr4Yn397BY0GEwaGd8Ir06IQoPSCTlfr6PIcho8Na+yHNfbjHvbCmq370dYf\nCw4PeLVaDZ1OZ7ldWlqKwYMHQ61WQ6vVIioqCkajEYIgtDm9k+2VVzdi8/485BSWw9tLgl/PG4KB\nPTt69NROROQq7Poq+kcxaNAgXLhwAdXV1airq0NWVhaGDx+OMWPGIDU1FQCQnp6OESNGOLhSzyEI\nAo6du4P3NpxATmE5+vdSYWXiCEQ/3YPhTkTkIuw2wefk5GD16tUoKiqCVCpFWloaRo8ejYyMDGi1\nWvz85z/H4MGDsXz5cixbtgyJiYkQiURYunQplEolYmNjkZGRgfnz50Mul+ODDz6wV6nUQkWNHpv3\n5+HCtTJ4e0mQMD0KYwd2YbATEbkYkfAoJ7ddhK3P83jSuSNBEJCRcxfbDl1Bg74J/cJUWDw9Cio/\nhWUbT+rHw7AX1tgPa+zHPeyFNY86B0+OV1Gjx5bUPJy/WgaFXIJXpkVi3KCunNqJiFwYA96DCYKA\nzIt3se3gFdTrm6AJDcDi2CgE+ns7ujQiIvqJGPAeqrJWj89SL+NsgQ5eMgkWTo3EhMGc2omI3AUD\n3sMIgoAfLpVg28F81DX+a2qfHoXAjpzaiYjcCQPeg1TVGfBZah6yrzRP7fFTIjBhSDeIObUTEbkd\nBrwHEAQBJ3JL8I8DzVN7ZEhHLI7TQM2pnYjIbTHg3Vx1nQFb0y7jTL4WcpkYL8dEYOJQTu1ERO6O\nAe/GTuaWIPlAPmobjIjo7o8lcRqoA3wcXRYREbUDBrwbqq43IPlAPk7nlUIuFWN+dB9MHtadUzsR\nkQdhwLuZ03ml2HrgMmrqjejd3R+JsRoEqzi1ExF5Gga8m6ipN+AfB/NxMrcUMqkYL03qjejhIRCL\nObUTEXkiBrwbOHNZi61peaiuNyK8mx+WxGrQpVMHR5dFREQOxIB3YbUNRvzjYD5OXCqBVCLG3Im9\nMeUpTu1ERMSAd1nZ+VpsSbuM6joDenX1Q2Icp3YiIrqHAe9iahuM2HYoHz9cbJ7a50wIx9Sne3Bq\nJyIiKwx4F3L2ig5bUvNQVWdAWBcllsT1RbdATu1ERHQ/BrwLqGs0YvuhK8jIuQupRIRZ43th2oge\nkIjFji6NiIicFAPeyZ2/qsPm/XmorDUgtLMSP4vToFuQr6PLIiIiJ8eAd1L1jUZs//YKvr9wFxKx\nCC+O64XpIzm1ExHRo2HAO6EL18qweX8eKmr0CA1WIjFOg+5qTu1ERPToGPBOpL6xCTsOX8Gx88WQ\niEWYOTYMsSNDIZVwaiciosfDgHcSOYVl2LSveWrvofZF4rN9EcKpnYiInhAD3sEa9E3YcbgAR8/d\ngUQswvPPhCFuFKd2IiL6aRjwDnTxejk278tFWbUe3YN88bNnNegRrHR0WURE5AYY8A7QoG/CzvQC\nHDl7B2KRCDNG98SMMT05tRMRkc0w4NtZ7vVybNyXh7LqRnQP6oDEuL4I7cypnYiIbIsB304aDU3Y\neeQq0rOKIBaJ8OzoUMwYHQaZlFM7ERHZHgO+HeTdqMDGfbnQVTWia2AHJMZpENbFz9FlERGRG2PA\n25HeYMKuI1fxbdZtiERA3KhQPDeGUzsREdkfA95OLt9sntq1lY3o0skHiXF90asrp3YiImofDHgb\n0xtN+PK7q/j29G1ABEwf2QMznwmDTCpxdGlERORBGPA2lH+rEhv35aK0ogGdVT5IjNMgvJu/o8si\nIiIPxIC3Ab3RhN1Hr+HgqVsAgGlP98DMsWGQyzi1ExGRYzDgf6KC21XYkHIJJRUNCFb5IDFWg97d\nObUTEZFjMeCfkMFowlfHCpF28iYAYMpTIXhxXC9O7URE5BQY8E/galEVNqTk4m55PdQB3lgSq0FE\nSEdHl0VERGTBgH8MxqbmqT315E1AAKKHd8es8eHw4tROREROhgH/iK7dqcaGlEsoLqtHUEcFlsRq\nENkjwNFlERERtYoB/xDGJjO+Pl6I/SduQBCAycO6Y/b4cHjJObUTEZHzYsC34cqtCiQln0GRrg6B\n/s1Te1Qop3YiInJ+dg34/Px8vPrqq0hISEB8fDyKi4uxfPlymEwmBAUF4aOPPoJcLseePXuwZcsW\niMVizJ07F3PmzIHRaMSKFStw584dSCQSrFq1CiEhIfYs18rB07ew43ABzGYBk4Z2w+wJ4VDI+fcQ\nERG5Brt96kl9fT1WrlyJUaNGWdb+/Oc/Y8GCBdi2bRtCQ0Oxa9cu1NfXY+3atdi8eTO2bt2KLVu2\noLKyEt988w38/Pywfft2/PKXv0RSUpK9Sm3VhWtlCOrojf96aTDip0Qy3ImIyKXYLeDlcjnWr18P\ntVptWTtx4gQmT54MAJg4cSIyMzNx7tw5DBgwAEqlEgqFAkOHDkVWVhYyMzMRExMDABg9ejSysrLs\nVWqrfj17INa/Ew1NT1W7fl8iIiJbsNtYKpVKIZVa776hoQFyuRwA0KlTJ2i1Wuh0OqhU90JUpVLd\nty4WiyESiWAwGCxf35qAAB9IbfyhLkFBSpvuz9WxH/ewF9bYD2vsxz3shbX26ofDjjsLgmCT9ZYq\nKup/Uk3/LihICa22xqb7dGXsxz3shTX2wxr7cQ97Yc3W/WjrjwW7HaJvjY+PDxobGwEAJSUlUKvV\nUKvV0Ol0lm1KS0st61qtFgBgNBohCEKb0zsRERHd064BP3r0aKSlpQEADhw4gLFjx2LQoEG4cOEC\nqqurUVdXh6ysLAwfPhxjxoxBamoqACA9PR0jRoxoz1KJiIhcmt0O0efk5GD16tUoKiqCVCpFWloa\nPv74Y6xYsQI7duxA165dMXPmTMhkMixbtgyJiYkQiURYunQplEolYmNjkZGRgfnz50Mul+ODDz6w\nV6lERERuRyQ8ysltF2Hr8zw8d2SN/biHvbDGflhjP+5hL6y57Tl4IiIiah8MeCIiIjfEgCciInJD\nDHgiIiI3xIAnIiJyQwx4IiIiN+RWb5MjIiKiZpzgiYiI3BADnoiIyA0x4ImIiNwQA56IiMgNMeCJ\niIjcEAOeiIjIDXl8wOfn5yM6OhrJycmWtc8++wz9+vVDXV2dZW3Pnj2YNWsW5syZg507dzqi1Hbx\n7/0oLi5GQkIC4uPjkZCQAK1WC8Bz+5GdnY358+dj4cKFSExMRHl5OQDP6EdrzxUAOHbsGCIjIy23\nPaEXwP39WLFiBWbMmIGFCxdi4cKFOHLkCADP6Me/98JoNGLZsmWYPXs2XnnlFVRVVQHwjF4A9/fj\n9ddftzwuZsyYgffeew8A8Pe//x2zZ8/GnDlz8N1339m+EMGD1dXVCfHx8cK7774rbN26VRAEQdi9\ne7fwv//7v8KECROE2tpay3ZTpkwRqqurhYaGBiEuLk6oqKhwZOl20Vo/li9fLqSkpAiCIAjJycnC\n6tWrPbofr732mnDz5k1BEARhzZo1wl//+leP6EdrvRAEQWhsbBTi4+OFMWPGWLZz914IQuv9+M1v\nfiMcPnz4vu3cvR+t9SI5OVlYuXKlIAiC8PnnnwuHDh3yiF4IwoOfKz9asWKFcO7cOeHmzZvCCy+8\nIOj1eqGsrEyYOnWq0NTUZNNaPHqCl8vlWL9+PdRqtWUtOjoab775JkQikWXt3LlzGDBgAJRKJRQK\nBYYOHYqsrCxHlGxXrfXj97//PaZOnQoACAgIQGVlpUf3489//jNCQkIgCAJKSkrQuXNnj+hHa70A\ngL/97W9YsGAB5HI5AM9+rrTGE/rRWi/S09Px3HPPAQDmzZuHyZMne0QvgLYfG9euXUNNTQ0GDhyI\nEydOYOzYsZDL5VCpVOjWrRsKCgpsWotHB7xUKoVCobBa8/X1vW87nU4HlUplua1SqSyHqt1Ja/3w\n8fGBRCKByWTCtm3bMGPGDI/uBwAcPXoU06ZNg06nw3PPPecR/WitF4WFhcjLy8P06dMta57QC+DB\nj43k5GQsWrQIb775JsrLyz2iH631oqioCEePHsXChQvx5ptvorKy0iN6ATz4sQE0n/6Nj48H0D7P\nFY8O+CcleNjVfU0mE5YvX46RI0di1KhR993vaf0YN24cUlNT0atXL6xbt+6++z2lH6tWrcLbb7/d\n5jae0gsAeP755/HWW2/hs88+g0ajwaeffnrfNp7SD0EQEBYWhq1bt6JPnz74v//7v1a38SQGgwFn\nzpzByJEjW73fHv1gwD8CtVoNnU5nuV1aWvrQQ3Pu5O2330ZoaCh+9atfAfDsfhw8eBAAIBKJMHXq\nVJw5c8Yj+1FSUoJr167hrbfewty5c1FaWor4+HiP7MWPRo0aBY1GAwCYNGkS8vPzPbYfgYGBeOqp\npwAAzzzzDAoKCjy2Fz86deoUBg4caLn97/0oKSmxeT8Y8I9g0KBBuHDhAqqrq1FXV4esrCwMHz7c\n0WW1iz179kAmk+H111+3rHlyP9asWYPc3FwAzedXw8LCPLIfwcHBOHToEL744gt88cUXUKvVSE5O\n9she/Oi1117DrVu3AAAnTpxAnz59PLYf48aNw7FjxwAAFy9e9NjnSUsXLlxAVFSU5fbIkSNx5MgR\nGAwGlJSUoLS0FL1797bp9/ToT5PLycnB6tWrUVRUBKlUiuDgYIwePRoZGRk4e/YsBgwYgMGDB2P5\n8uVITU3Fhg0bIBKJEB8fb3kBiTtprR9lZWXw8vKyvDYhPDwc77//vsf247/+67/wP//zP5BIJFAo\nFPjwww/RqVMnt+9Ha71Ys2YNOnbsCKB5Yj18+DAAuH0vgNb7ER8fj3Xr1sHb2xs+Pj5YtWqVxz42\nPv74Y/zpT3+CVquFj48PVq9ejcDAQLfvBfDg58qaNWswbNgwxMbGWrbdunUr9u7dC5FIhDfeeKPV\nU6A/hUcHPBERkbviIXoiIiI3xIAnIiJyQwx4IiIiN8SAJyIickMMeCIiIjfEgCcii9u3b6N///6W\nT7566aWX8PHHH6OhocGyzfnz5xEZGYmUlBTLWlZWFqZMmQK9Xm9Zu3HjBsaNG4fy8nI0Njbi3Xff\ntXwS34svvoh9+/a1689G5GkY8ERkRaVSYevWrdi6dSu2bNmCuro6LFu2zHL/rl27EBERgX/+85+W\ntaFDh2LEiBFYv369ZW3lypV44403oFKpsGnTJigUCmzfvh1bt27F2rVr8de//tXqI5mJyLYY8ET0\nQF5eXnjnnXeQl5eHgoICNDQ0YN++ffjwww+RlZWFu3fvWrZ966238OWXX+LWrVs4cOAA9Ho9Xnzx\nRQBAVVUV6urqLNfb7tKlC/bu3YsOHTo45Oci8gQMeCJqk0wmQ//+/ZGfn4+0tDRoNBpoNBpMmjQJ\nu3fvtmzn7++PX//613j//feRlJSEP/zhD5b7Fi1ahJycHEyePBm//e1vsX//fhgMBkf8OEQegwFP\nRA9VU1MDsViMXbt2YdasWQCA2bNnWwU8AMycORN1dXWIjo5Gr169LOtdu3bFnj178MknnyA0NBQb\nN27EjBkzUFtb264/B5EnkTq6ACJybg0NDcjNzUVERATOnj2LqqoqbNq0CYIgoLi4GKdPn7b60JCe\nPXuiZ8+eVvtobGyEl5cXBg4ciIEDB+LnP/85FixYgIyMDEyZMqWdfyIiz8AJnogeyGg04o9//CPG\njBmD3bt3Y86cOdi7dy++/vpr7NmzB0uXLsWXX3750P288sor+Oqrryy36+rqUFFRgZCQEHuWT+TR\nOMETkZXy8nIsXLgQJpMJ1dXVGDNmDH77299iypQp2Lhxo9W2s2fPRlxcHOrr6+Hj4/PAfSYlJeFP\nf/oTduzYAblcDr1ej1/84heWz08nItvjp8kRERG5IR6iJyIickMMeCIiIjfEgCciInJDDHgiIiI3\nxIAnIiJyQwx4IiIiN8SAJyIickMMeCIiIjf0/wFc0Q91KzXjHAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7ff6184effd0>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"metadata": {
"id": "fVJsdXXq7wUh",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 134
},
"outputId": "1f3589f0-0614-4bac-d7e7-1f2916cac50b"
},
"cell_type": "code",
"source": [
"from sklearn.datasets import load_iris \n",
"from sklearn import tree\n",
"import numpy as no\n",
"\n",
"iris = load_iris()\n",
"print(iris.keys())\n",
"\n",
"print(iris.feature_names)\n",
"print(iris.target_names)\n",
"print(iris.data[0])\n",
"print(iris.target[0])\n",
"remove = [0, 50, 100]\n",
"new_target = no.delete(iris.target, remove)\n",
"new_data = no.delete(iris.data, remove, axis = 0)\n",
"\n",
"clf = tree.DecisionTreeClassifier()\n",
"clf = clf.fit(new_data, new_target)\n",
"prediction = clf.predict(iris.data[remove])\n",
"print(\"Original Labels: \", iris.target[remove])\n",
"print(\"Predicted Labels: \", prediction)\n",
"\n"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])\n",
"['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']\n",
"['setosa' 'versicolor' 'virginica']\n",
"[5.1 3.5 1.4 0.2]\n",
"0\n",
"Original Labels: [0 1 2]\n",
"Predicted Labels: [0 1 2]\n"
],
"name": "stdout"
}
]
},
{
"metadata": {
"id": "ImZmr954SgW3",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 469
},
"outputId": "e5a8329e-d978-4422-c9b0-310aeb1e89a6"
},
"cell_type": "code",
"source": [
"import numpy as np\n",
"x1 = np.array([4, 3, 4, 4, 8, 4])\n",
"print(x1)\n",
"x3 = x1[::-1]\n",
"x2 = np.eye(3)\n",
"print(x2)\n",
"print(x3)\n",
"\n",
"import pandas as pd\n",
"data = pd.DataFrame({'Country': ['Russia','Colombia','Chile','Equador','Nigeria'],\n",
" 'Rank':[121,40,100,130,11]})\n",
"data\n",
"print(data)\n",
"data.describe()\n"
],
"execution_count": 37,
"outputs": [
{
"output_type": "stream",
"text": [
"[4 3 4 4 8 4]\n",
"[[1. 0. 0.]\n",
" [0. 1. 0.]\n",
" [0. 0. 1.]]\n",
"[4 8 4 4 3 4]\n",
" Country Rank\n",
"0 Russia 121\n",
"1 Colombia 40\n",
"2 Chile 100\n",
"3 Equador 130\n",
"4 Nigeria 11\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>5.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>80.400000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>52.300096</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>11.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>40.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>100.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>121.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>130.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Rank\n",
"count 5.000000\n",
"mean 80.400000\n",
"std 52.300096\n",
"min 11.000000\n",
"25% 40.000000\n",
"50% 100.000000\n",
"75% 121.000000\n",
"max 130.000000"
]
},
"metadata": {
"tags": []
},
"execution_count": 37
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment