Skip to content

Instantly share code, notes, and snippets.

View t-kabaya's full-sized avatar

t-kabaya t-kabaya

  • Japan
View GitHub Profile
@t-kabaya
t-kabaya / UserAPI
Last active April 19, 2018 12:39
UserAPI
{
A: {
name: 'Aさん',
age: 23
},
B: {
name: 'Bさん',
age: 36
}
}
[
{
"pid": "403447",
"masterTitle": "ひるねとまそたん",
"episodeTitle": "第二話「なんで名前だけスーツを着ていないんだろう」",
"image": ["https://firebasestorage.googleapis.com/v0/b/animeapi-f3343.appspot.com/o/faveriteAnimeIMage%2F1.jpg?alt=media&token=ca8f24fd-9957-44e8-a33d-9b613908a9c1", "https://firebasestorage.googleapis.com/v0/b/animeapi-f3343.appspot.com/o/image%2Fhirune.jpeg?alt=media&token=8a9d8594-9c45-4385-a3c7-4864b3433e46", "https://firebasestorage.googleapis.com/v0/b/animeapi-f3343.appspot.com/o/image%2Fhirune2.jpeg?alt=media&token=e50e0195-cf33-4b77-b2d7-9d753e34e633"],
"ch": "7",
"serviceName": "TOKYO MX",
"startTime": "5月22日"
},
[
{
"pid": "333739",
"startTime": "3月7日 木曜 17:55〜",
"ch": "9",
"serviceName": "チバテレ1",
"masterTitle": "ヤッターマン",
"pictures": ["https://firebasestorage.googleapis.com/v0/b/animecheckerapi-c526f.appspot.com/o/animeImages%2Fimg_kv2.jpg?alt=media&token=1ec75459-4dcc-4f2d-a47f-6dd97bcd668f"]
},
{
Privacy Policy
built the calCalc app as a Free app. This SERVICE is provided by at no cost and is intended for use as is.
This page is used to inform visitors regarding my policies with the collection, use, and disclosure of Personal Information if anyone decided to use my Service.
If you choose to use my Service, then you agree to the collection and use of information in relation to this policy. The Personal Information that I collect is used for providing and improving the Service. I will not use or share your information with anyone except as described in this Privacy Policy.
The terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, which is accessible at calCalc unless otherwise defined in this Privacy Policy.
Information Collection and Use
{
"name": "kabaya",
"job": "engineer"
}
from spotlight.cross_validation import user_based_train_test_split
from spotlight.datasets.synthetic import generate_sequential
from spotlight.evaluation import sequence_mrr_score
from spotlight.sequence.implicit import ImplicitSequenceModel
from spotlight.interactions import Interactions
import numpy as np
# デフォルトでは、各ユーザー最低10のアイテムが必要 10を下回るとエラーは発生しないが予測が不正確になる。
user_ids = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype = 'int32')
item_ids = np.array([3, 4, 5, 4, 3, 3, 4, 5, 4, 3, 1, 6, 2, 2, 1, 1, 6, 2, 2, 1], dtype = 'int32')