Skip to content

Instantly share code, notes, and snippets.

@t20100
Created October 12, 2021 13:38
Show Gist options
  • Save t20100/d6a2a721a8302ecc538fc3344d88e0d5 to your computer and use it in GitHub Desktop.
Save t20100/d6a2a721a8302ecc538fc3344d88e0d5 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# hdf5plugin compression filters comparison\n",
"\n",
"This notebook provides a comparison of the HDF5 lossless compression filters provided by [hdf5plugin](https://github.com/silx-kit/hdf5plugin) as well as \"gzip\" and \"lzf\" filters provided by [libhdf5](https://www.hdfgroup.org/) and [h5py](https://www.h5py.org/).\n",
"\n",
"License: [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/), copyright [ESRF](https://www.esrf.fr/)\n",
"\n",
"\n",
"## Preparation\n",
"\n",
"### Install dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade matplotlib numpy h5py h5glance fabio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Choose either `hdf5plugin` wheel or build from source with optimization enabled for current platform:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip uninstall hdf5plugin -y # Uninstall"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#%pip install hdf5plugin # Install from wheel (= only SSE2 enabled, no OpenMP)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install hdf5plugin --no-binary hdf5plugin # Install from source (= optimization available on host are enabled)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Code for running/displaying the benchmark"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Initialisation\n",
"#%matplotlib inline\n",
"%matplotlib nbagg\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.colors import LogNorm\n",
"\n",
"import numpy\n",
"import h5py\n",
"from h5glance import H5Glance"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Benchmarking helper function\n",
"\n",
"import os\n",
"import tempfile\n",
"import time\n",
"from typing import NamedTuple, Tuple\n",
"\n",
"\n",
"class Result(NamedTuple):\n",
" data: numpy.ndarray # Dataset used for the benchmark\n",
" write_durations: Tuple[float]\n",
" read_durations: Tuple[float]\n",
" compressed_nbytes: int\n",
"\n",
" write_duration = property(\n",
" lambda self: numpy.min(self.write_durations),\n",
" doc=\"Fastest write duration\")\n",
" read_duration = property(\n",
" lambda self: numpy.min(self.read_durations),\n",
" doc=\"Fastest read duration\")\n",
" raw_nbytes = property(\n",
" lambda self: self.data.nbytes,\n",
" doc=\"Number of bytes of uncompressed data\")\n",
" compression_rate = property(\n",
" lambda self: self.raw_nbytes / self.compressed_nbytes)\n",
" write_speed = property(\n",
" lambda self: (self.raw_nbytes / 1024**2) / self.write_duration,\n",
" doc=\"Unit: MB/sec\")\n",
" read_speed = property(\n",
" lambda self: (self.raw_nbytes / 1024**2) / self.read_duration,\n",
" doc=\"Unit: MB/sec\")\n",
"\n",
" config = property(\n",
" lambda self: hdf5plugin.config, doc=\"hdf5plugin build options\")\n",
"\n",
" \n",
"def benchmark(data, directory=None, repeat=1, **kwargs):\n",
" \"\"\"Run benchmark for given conditions\n",
"\n",
" :param numpy.ndarray data: Dataset to use for compression\n",
" :param Union[str,None] directory:\n",
" Directory where to write HDF5 file for benchmark.\n",
" :param kwargs: Arguments passed to create_dataset.\n",
" :rtype: Result\n",
" \"\"\"\n",
" if directory is None:\n",
" tmpdir = tempfile.TemporaryDirectory()\n",
" dirname = tmpdir.name\n",
" else:\n",
" dirname = directory\n",
"\n",
" filename = os.path.join(dirname, 'hdf5plugin_benchmark.h5')\n",
"\n",
" #time.sleep(10)\n",
"\n",
" # Compression\n",
" write_durations = []\n",
" for index in range(repeat):\n",
" if os.path.exists(filename):\n",
" os.remove(filename)\n",
"\n",
" with h5py.File(filename, \"w\") as h5file:\n",
" dataset = h5file.create_dataset(\n",
" \"data\", shape=data.shape, dtype=data.dtype, **kwargs)\n",
" start_time = time.perf_counter()\n",
" dataset[:] = data\n",
" dataset.flush()\n",
" write_durations.append(time.perf_counter() - start_time)\n",
"\n",
" #time.sleep(10)\n",
"\n",
" # file_size = os.path.getsize(filename)\n",
" \n",
" # Decompression\n",
" read_durations = []\n",
" for index in range(repeat):\n",
" with h5py.File(filename, \"r\") as h5file:\n",
" dataset = h5file[\"data\"]\n",
" start_time = time.perf_counter()\n",
" read_data = dataset[()]\n",
" read_durations.append(time.perf_counter() - start_time)\n",
" storage_size = dataset.id.get_storage_size()\n",
" assert numpy.abs(numpy.max(data - read_data)) == 0\n",
" del read_data\n",
"\n",
" #time.sleep(10)\n",
"\n",
" os.remove(filename)\n",
"\n",
" return Result(\n",
" data,\n",
" tuple(write_durations),\n",
" tuple(read_durations),\n",
" compressed_nbytes=storage_size)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Plot helper\n",
"\n",
"def display_results(title='', **results):\n",
" \"\"\"Plot comparison of compression results.\n",
" \n",
" :param str title: Additional dataset name\n",
" :param **results: {compression-name: Result} mapping \n",
" \"\"\"\n",
" # Sort results by compression rate\n",
" results = dict(sorted(\n",
" results.items(),\n",
" key=lambda item: item[1].compression_rate,\n",
" ))\n",
" \n",
" names = list(results.keys())\n",
" write_speed = numpy.array([r.write_speed for r in results.values()])\n",
" read_speed = numpy.array([r.read_speed for r in results.values()])\n",
" c_rate = numpy.array([r.compression_rate for r in results.values()])\n",
" \n",
" print(f\"hdf5plugin_config: {results[names[0]].config}\")\n",
"\n",
" fig, (speed_plt, c_rate_plt) = plt.subplots(1, 2)\n",
"\n",
" data = results[names[0]].data\n",
" fig.suptitle(f\"Dataset: {title} shape:{data.shape} dtype:{data.dtype} size: {data.nbytes//1024**2}MB\")\n",
"\n",
" ticks = numpy.arange(len(names))\n",
"\n",
" # Speed\n",
" speed_plt.barh(y=ticks, width=write_speed, height=0.4, align='edge', label=\"Write\")\n",
" speed_plt.barh(y=ticks-.4, width=read_speed, height=0.4, align='edge', label=\"Read\")\n",
" speed_plt.set_xlabel(\"Speed [MB/s]\")\n",
" speed_plt.autoscale(axis='y')\n",
" speed_plt.yaxis.set_ticks(ticks)\n",
" speed_plt.yaxis.set_ticklabels(names, fontsize=8)\n",
" speed_plt.set_ylim(-0.5, len(ticks)-0.5)\n",
" speed_plt.grid(axis=\"x\")\n",
" speed_plt.legend()\n",
" \n",
" # Compression ratio\n",
" c_rate_plt.barh(y=ticks, width=c_rate)\n",
" c_rate_plt.set_xlabel(\"Compression rate\")\n",
" c_rate_plt.autoscale(axis='y')\n",
" c_rate_plt.yaxis.set_ticks(ticks)\n",
" c_rate_plt.yaxis.set_ticklabels([''] * len(ticks))\n",
" c_rate_plt.set_ylim(-0.5,len(ticks)-0.5)\n",
" c_rate_plt.axvline(1, color=\"red\")\n",
" c_rate_plt.grid(axis=\"x\")\n",
"\n",
" fig.tight_layout()\n",
"\n",
" # Tooltip\n",
" tooltip = c_rate_plt.annotate(\n",
" \"\", (0, 0), backgroundcolor=\"lightyellow\",\n",
" verticalalignment=\"top\", xycoords='figure pixels')\n",
" tooltip.set_visible(False)\n",
"\n",
" def hover(event):\n",
" if event.inaxes in (speed_plt, c_rate_plt):\n",
" index = numpy.clip(round(event.ydata), 0, len(names)-1)\n",
" tooltip.set_text(\n",
" f\"{names[index]}\\n\"\n",
" f\"Comp. Rate: {c_rate[index]:.2f}x\\n\"\n",
" f\"Write: {write_speed[index]:.1f}MB/s\\n\"\n",
" f\"Read: {read_speed[index]:.1f}MB/s\")\n",
" tooltip.set_x(event.x + 15)\n",
" tooltip.set_y(event.y)\n",
" tooltip.set_visible(True)\n",
" else:\n",
" tooltip.set_visible(False)\n",
" fig.canvas.draw_idle()\n",
" \n",
" def resize(event):\n",
" fig.tight_layout()\n",
"\n",
" fig.canvas.mpl_connect(\"motion_notify_event\", hover)\n",
" fig.canvas.mpl_connect(\"resize_event\", resize)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Benchmark"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python: /users/tvincent/venvs/py3/bin/python3\n",
"Dataset directory: /dev/shm/\n",
"Directory: /dev/shm/\n"
]
}
],
"source": [
"import sys\n",
"\n",
"# Directory where test data are stored\n",
"dataset_dir = \"/dev/shm/\"\n",
"\n",
"# Directory where to run read/write benchmarks\n",
"directory = \"/dev/shm/\"\n",
"\n",
"print('Python:', sys.executable)\n",
"print('Dataset directory:', dataset_dir)\n",
"print('Directory:', directory)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download data\n",
"\n",
"Dataset: http://www.silx.org/pub/pyFAI/pyFAI_UM_2020/data_ID13/kevlar.h5"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import urllib.request\n",
"\n",
"diff_tomo_filename = os.path.join(dataset_dir, 'kevlar.h5')\n",
"if not os.path.exists(diff_tomo_filename):\n",
" print('Downloading file...')\n",
" urllib.request.urlretrieve(\n",
" 'http://www.silx.org/pub/pyFAI/pyFAI_UM_2020/data_ID13/kevlar.h5',\n",
" diff_tomo_filename)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Number of CPU/Process affinity"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Machine (63GB) + Package L#0 + L3 L#0 (15MB)\r\n",
" L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0\r\n",
" PU L#0 (P#0)\r\n",
" PU L#1 (P#6)\r\n",
" L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1\r\n",
" PU L#2 (P#1)\r\n",
" PU L#3 (P#7)\r\n",
" L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2\r\n",
" PU L#4 (P#2)\r\n",
" PU L#5 (P#8)\r\n",
" L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3\r\n",
" PU L#6 (P#3)\r\n",
" PU L#7 (P#9)\r\n",
" L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4\r\n",
" PU L#8 (P#4)\r\n",
" PU L#9 (P#10)\r\n",
" L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5\r\n",
" PU L#10 (P#5)\r\n",
" PU L#11 (P#11)\r\n"
]
}
],
"source": [
"!hwloc-ls --no-io --output-format console"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Number of CPUs to use\n",
"\n",
"This should be done **before** import of hdf5plugin"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"NCPU: 1\n",
"hdf5plugin config: HDF5PluginBuildOptions(openmp=True, native=True, sse2=True, avx2=True, cpp11=True, filter_file_extension='.so')\n"
]
}
],
"source": [
"import os\n",
"\n",
"NCPU = 1\n",
"\n",
"os.environ[\"OMP_NUM_THREADS\"] = str(NCPU)\n",
"os.environ[\"BLOSC_NTHREADS\"] = str(NCPU)\n",
"\n",
"import hdf5plugin\n",
"\n",
"print(f\"NCPU: {NCPU}\")\n",
"print('hdf5plugin config:', hdf5plugin.config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compression filters"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Raw': {},\n",
" 'gzip': {'compression': 'gzip'},\n",
" 'lzf': {'compression': 'lzf'},\n",
" 'Bitshuffle': <hdf5plugin.Bitshuffle at 0x7f33f9044710>,\n",
" 'FciDecomp': <hdf5plugin.FciDecomp at 0x7f33f9044748>,\n",
" 'LZ4': <hdf5plugin.LZ4 at 0x7f33f9044780>,\n",
" 'Zstd': <hdf5plugin.Zstd at 0x7f33f90447b8>,\n",
" 'Blosc-blosclz-NoShuffle-5': <hdf5plugin.Blosc at 0x7f33f90444a8>,\n",
" 'Blosc-blosclz-Shuffle-5': <hdf5plugin.Blosc at 0x7f33f9044470>,\n",
" 'Blosc-blosclz-BitShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044438>,\n",
" 'Blosc-lz4-NoShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044400>,\n",
" 'Blosc-lz4-Shuffle-5': <hdf5plugin.Blosc at 0x7f33f90443c8>,\n",
" 'Blosc-lz4-BitShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044390>,\n",
" 'Blosc-lz4hc-NoShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044358>,\n",
" 'Blosc-lz4hc-Shuffle-5': <hdf5plugin.Blosc at 0x7f33f9044320>,\n",
" 'Blosc-lz4hc-BitShuffle-5': <hdf5plugin.Blosc at 0x7f33f90442e8>,\n",
" 'Blosc-snappy-NoShuffle-5': <hdf5plugin.Blosc at 0x7f33f90442b0>,\n",
" 'Blosc-snappy-Shuffle-5': <hdf5plugin.Blosc at 0x7f33f9044278>,\n",
" 'Blosc-snappy-BitShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044240>,\n",
" 'Blosc-zlib-NoShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044208>,\n",
" 'Blosc-zlib-Shuffle-5': <hdf5plugin.Blosc at 0x7f33f90441d0>,\n",
" 'Blosc-zlib-BitShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044198>,\n",
" 'Blosc-zstd-NoShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044160>,\n",
" 'Blosc-zstd-Shuffle-5': <hdf5plugin.Blosc at 0x7f33f9044128>,\n",
" 'Blosc-zstd-BitShuffle-5': <hdf5plugin.Blosc at 0x7f33f9044080>}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Filters to test\n",
"\n",
"filters = {\n",
" \"Raw\": {}, # No compression\n",
" \"gzip\": {\"compression\": \"gzip\"}, # Provided by libhdf5\n",
" \"lzf\": {\"compression\": \"lzf\"}, # Provided by h5py\n",
" # hdf5plugin\n",
" \"Bitshuffle\": hdf5plugin.Bitshuffle(),\n",
" \"FciDecomp\": hdf5plugin.FciDecomp(),\n",
" \"LZ4\": hdf5plugin.LZ4(),\n",
" \"Zstd\": hdf5plugin.Zstd(),\n",
"}\n",
"\n",
"# blosc\n",
"for cname in ('blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'):\n",
" for shuffle_name, shuffle in (('NoShuffle', hdf5plugin.Blosc.NOSHUFFLE),\n",
" ('Shuffle', hdf5plugin.Blosc.SHUFFLE),\n",
" ('BitShuffle', hdf5plugin.Blosc.BITSHUFFLE)):\n",
" for clevel in [5]: # (1, 5, 9):\n",
" filters[f\"Blosc-{cname}-{shuffle_name}-{clevel}\"] = hdf5plugin.Blosc(\n",
" cname=cname, clevel=clevel, shuffle=shuffle)\n",
"\n",
"filters"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"diff tomo shape: (100, 2167, 2070) dtype: uint16 size: 855MB\n"
]
}
],
"source": [
"# Load diff tomo data\n",
"\n",
"with h5py.File(diff_tomo_filename, mode=\"r\") as h5file:\n",
" diff_tomo_data = h5file[\"/entry/data/data\"][::10] # Take 100 frames\n",
"\n",
"print(f\"diff tomo shape: {diff_tomo_data.shape} dtype: {diff_tomo_data.dtype} size: {diff_tomo_data.nbytes//1024**2}MB\")\n",
"#plt.imshow(diff_tomo_data[5], norm=LogNorm())\n",
"#plt.colorbar()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Run test\n",
"diff_tomo_results = dict((name, benchmark(\n",
" diff_tomo_data,\n",
" directory=directory,\n",
" chunks=(1,) + diff_tomo_data.shape[1:],\n",
" **compression)) for name, compression in filters.items())"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"N cpu: 1\n",
"hdf5plugin_config: HDF5PluginBuildOptions(openmp=True, native=True, sse2=True, avx2=True, cpp11=True, filter_file_extension='.so')\n"
]
},
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"/* global mpl */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function () {\n",
" if (typeof WebSocket !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof MozWebSocket !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert(\n",
" 'Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.'\n",
" );\n",
" }\n",
"};\n",
"\n",
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = this.ws.binaryType !== undefined;\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById('mpl-warnings');\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent =\n",
" 'This browser does not support binary websocket messages. ' +\n",
" 'Performance may be slow.';\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = document.createElement('div');\n",
" this.root.setAttribute('style', 'display: inline-block');\n",
" this._root_extra_style(this.root);\n",
"\n",
" parent_element.appendChild(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
" fig.send_message('send_image_mode', {});\n",
" if (fig.ratio !== 1) {\n",
" fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
" }\n",
" fig.send_message('refresh', {});\n",
" };\n",
"\n",
" this.imageObj.onload = function () {\n",
" if (fig.image_mode === 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function () {\n",
" fig.ws.close();\n",
" };\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"};\n",
"\n",
"mpl.figure.prototype._init_header = function () {\n",
" var titlebar = document.createElement('div');\n",
" titlebar.classList =\n",
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
" var titletext = document.createElement('div');\n",
" titletext.classList = 'ui-dialog-title';\n",
" titletext.setAttribute(\n",
" 'style',\n",
" 'width: 100%; text-align: center; padding: 3px;'\n",
" );\n",
" titlebar.appendChild(titletext);\n",
" this.root.appendChild(titlebar);\n",
" this.header = titletext;\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._init_canvas = function () {\n",
" var fig = this;\n",
"\n",
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
" canvas_div.setAttribute(\n",
" 'style',\n",
" 'border: 1px solid #ddd;' +\n",
" 'box-sizing: content-box;' +\n",
" 'clear: both;' +\n",
" 'min-height: 1px;' +\n",
" 'min-width: 1px;' +\n",
" 'outline: 0;' +\n",
" 'overflow: hidden;' +\n",
" 'position: relative;' +\n",
" 'resize: both;'\n",
" );\n",
"\n",
" function on_keyboard_event_closure(name) {\n",
" return function (event) {\n",
" return fig.key_event(event, name);\n",
" };\n",
" }\n",
"\n",
" canvas_div.addEventListener(\n",
" 'keydown',\n",
" on_keyboard_event_closure('key_press')\n",
" );\n",
" canvas_div.addEventListener(\n",
" 'keyup',\n",
" on_keyboard_event_closure('key_release')\n",
" );\n",
"\n",
" this._canvas_extra_style(canvas_div);\n",
" this.root.appendChild(canvas_div);\n",
"\n",
" var canvas = (this.canvas = document.createElement('canvas'));\n",
" canvas.classList.add('mpl-canvas');\n",
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
"\n",
" this.context = canvas.getContext('2d');\n",
"\n",
" var backingStore =\n",
" this.context.backingStorePixelRatio ||\n",
" this.context.webkitBackingStorePixelRatio ||\n",
" this.context.mozBackingStorePixelRatio ||\n",
" this.context.msBackingStorePixelRatio ||\n",
" this.context.oBackingStorePixelRatio ||\n",
" this.context.backingStorePixelRatio ||\n",
" 1;\n",
"\n",
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
" 'canvas'\n",
" ));\n",
" rubberband_canvas.setAttribute(\n",
" 'style',\n",
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
" );\n",
"\n",
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
" if (this.ResizeObserver === undefined) {\n",
" if (window.ResizeObserver !== undefined) {\n",
" this.ResizeObserver = window.ResizeObserver;\n",
" } else {\n",
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
" this.ResizeObserver = obs.ResizeObserver;\n",
" }\n",
" }\n",
"\n",
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
" var nentries = entries.length;\n",
" for (var i = 0; i < nentries; i++) {\n",
" var entry = entries[i];\n",
" var width, height;\n",
" if (entry.contentBoxSize) {\n",
" if (entry.contentBoxSize instanceof Array) {\n",
" // Chrome 84 implements new version of spec.\n",
" width = entry.contentBoxSize[0].inlineSize;\n",
" height = entry.contentBoxSize[0].blockSize;\n",
" } else {\n",
" // Firefox implements old version of spec.\n",
" width = entry.contentBoxSize.inlineSize;\n",
" height = entry.contentBoxSize.blockSize;\n",
" }\n",
" } else {\n",
" // Chrome <84 implements even older version of spec.\n",
" width = entry.contentRect.width;\n",
" height = entry.contentRect.height;\n",
" }\n",
"\n",
" // Keep the size of the canvas and rubber band canvas in sync with\n",
" // the canvas container.\n",
" if (entry.devicePixelContentBoxSize) {\n",
" // Chrome 84 implements new version of spec.\n",
" canvas.setAttribute(\n",
" 'width',\n",
" entry.devicePixelContentBoxSize[0].inlineSize\n",
" );\n",
" canvas.setAttribute(\n",
" 'height',\n",
" entry.devicePixelContentBoxSize[0].blockSize\n",
" );\n",
" } else {\n",
" canvas.setAttribute('width', width * fig.ratio);\n",
" canvas.setAttribute('height', height * fig.ratio);\n",
" }\n",
" canvas.setAttribute(\n",
" 'style',\n",
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
" );\n",
"\n",
" rubberband_canvas.setAttribute('width', width);\n",
" rubberband_canvas.setAttribute('height', height);\n",
"\n",
" // And update the size in Python. We ignore the initial 0/0 size\n",
" // that occurs as the element is placed into the DOM, which should\n",
" // otherwise not happen due to the minimum size styling.\n",
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
" fig.request_resize(width, height);\n",
" }\n",
" }\n",
" });\n",
" this.resizeObserverInstance.observe(canvas_div);\n",
"\n",
" function on_mouse_event_closure(name) {\n",
" return function (event) {\n",
" return fig.mouse_event(event, name);\n",
" };\n",
" }\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mousedown',\n",
" on_mouse_event_closure('button_press')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseup',\n",
" on_mouse_event_closure('button_release')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'dblclick',\n",
" on_mouse_event_closure('dblclick')\n",
" );\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband_canvas.addEventListener(\n",
" 'mousemove',\n",
" on_mouse_event_closure('motion_notify')\n",
" );\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseenter',\n",
" on_mouse_event_closure('figure_enter')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseleave',\n",
" on_mouse_event_closure('figure_leave')\n",
" );\n",
"\n",
" canvas_div.addEventListener('wheel', function (event) {\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" on_mouse_event_closure('scroll')(event);\n",
" });\n",
"\n",
" canvas_div.appendChild(canvas);\n",
" canvas_div.appendChild(rubberband_canvas);\n",
"\n",
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
" this.rubberband_context.strokeStyle = '#000000';\n",
"\n",
" this._resize_canvas = function (width, height, forward) {\n",
" if (forward) {\n",
" canvas_div.style.width = width + 'px';\n",
" canvas_div.style.height = height + 'px';\n",
" }\n",
" };\n",
"\n",
" // Disable right mouse context menu.\n",
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
" event.preventDefault();\n",
" return false;\n",
" });\n",
"\n",
" function set_focus() {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'mpl-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" continue;\n",
" }\n",
"\n",
" var button = (fig.buttons[name] = document.createElement('button'));\n",
" button.classList = 'mpl-widget';\n",
" button.setAttribute('role', 'button');\n",
" button.setAttribute('aria-disabled', 'false');\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
"\n",
" var icon_img = document.createElement('img');\n",
" icon_img.src = '_images/' + image + '.png';\n",
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
" icon_img.alt = tooltip;\n",
" button.appendChild(icon_img);\n",
"\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" var fmt_picker = document.createElement('select');\n",
" fmt_picker.classList = 'mpl-widget';\n",
" toolbar.appendChild(fmt_picker);\n",
" this.format_dropdown = fmt_picker;\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = document.createElement('option');\n",
" option.selected = fmt === mpl.default_extension;\n",
" option.innerHTML = fmt;\n",
" fmt_picker.appendChild(option);\n",
" }\n",
"\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"};\n",
"\n",
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
"};\n",
"\n",
"mpl.figure.prototype.send_message = function (type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"};\n",
"\n",
"mpl.figure.prototype.send_draw_message = function () {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
" fig.send_message('refresh', {});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
" var x0 = msg['x0'] / fig.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
" var x1 = msg['x1'] / fig.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0,\n",
" 0,\n",
" fig.canvas.width / fig.ratio,\n",
" fig.canvas.height / fig.ratio\n",
" );\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch (cursor) {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" var img = evt.data;\n",
" if (img.type !== 'image/png') {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" img.type = 'image/png';\n",
" }\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" img\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.key === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.key;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.key !== 'Control') {\n",
" value += 'ctrl+';\n",
" }\n",
" else if (event.altKey && event.key !== 'Alt') {\n",
" value += 'alt+';\n",
" }\n",
" else if (event.shiftKey && event.key !== 'Shift') {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k' + event.key;\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.binaryType = comm.kernel.ws.binaryType;\n",
" ws.readyState = comm.kernel.ws.readyState;\n",
" function updateReadyState(_event) {\n",
" if (comm.kernel.ws) {\n",
" ws.readyState = comm.kernel.ws.readyState;\n",
" } else {\n",
" ws.readyState = 3; // Closed state.\n",
" }\n",
" }\n",
" comm.kernel.ws.addEventListener('open', updateReadyState);\n",
" comm.kernel.ws.addEventListener('close', updateReadyState);\n",
" comm.kernel.ws.addEventListener('error', updateReadyState);\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" var data = msg['content']['data'];\n",
" if (data['blob'] !== undefined) {\n",
" data = {\n",
" data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
" };\n",
" }\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(data);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager) {\n",
" manager = IPython.keyboard_manager;\n",
" }\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"928.6666666666666\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Display results\n",
"\n",
"print(f\"N cpu: {NCPU}\")\n",
"display_results(**diff_tomo_results)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (venv)",
"language": "python",
"name": "python3-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment