Skip to content

Instantly share code, notes, and snippets.

@tandon-aman
Last active February 10, 2018 17:15
Show Gist options
  • Save tandon-aman/b05f740e39f41af2b2ea21b2b9fd0e16 to your computer and use it in GitHub Desktop.
Save tandon-aman/b05f740e39f41af2b2ea21b2b9fd0e16 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from spacy.en import English\n",
"import codecs\n",
"import re\n",
"import os\n",
"import unidecode"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"parser = English()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting tweets from elasticsearch"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 1000\n",
"scroll size: 234\n",
"scroll size: 0\n"
]
}
],
"source": [
"tweets = []\n",
"from elasticsearch import Elasticsearch\n",
"es = Elasticsearch()\n",
"res = es.search(index=\"elections\", doc_type=\"statuses\", scroll='1m',\n",
" size=1000, \n",
" body={\"query\": {\n",
" \"match_all\": {}\n",
" }\n",
" }\n",
" )\n",
"sid = res['_scroll_id']\n",
"scroll_size = res['hits']['total']\n",
"while (scroll_size > 0):\n",
" res = es.scroll(scroll_id = sid, scroll = '1m')\n",
" sid = res['_scroll_id']\n",
" for doc in res['hits']['hits']:\n",
" tweets.append(doc['_source']['text'])\n",
" scroll_size = len(res['hits']['hits'])\n",
" print \"scroll size: \" + str(scroll_size)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"24234"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(tweets)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Trying out word similarity"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from numpy import dot\n",
"from numpy.linalg import norm\n",
"\n",
"# you can access known words from the parser's vocabulary\n",
"nasa = parser.vocab[u\"computer\"]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2))"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"allWords = list({w for w in parser.vocab if w.has_vector and w.orth_.islower() and w.lower_ != \"nasa\"})"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Top 10 most similar words to NASA:\n",
"computer\n",
"computers\n",
"workstation\n",
"mainframe\n",
"laptop\n",
"microcomputer\n",
"pc\n",
"microprocessor\n",
"microcontroller\n",
"pda\n"
]
}
],
"source": [
"# sort by similarity to NASA\n",
"allWords.sort(key=lambda w: cosine(w.vector, nasa.vector))\n",
"allWords.reverse()\n",
"print(\"Top 10 most similar words to NASA:\")\n",
"for word in allWords[:10]: \n",
" print(word.orth_)"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import langdetect\n",
"\n",
"def retriveEnglistSentenceOnly(corpus):\n",
" english_sentence = []\n",
" for sentence in corpus:\n",
" try:\n",
" if langdetect.detect(sentence) == 'en':\n",
" english_sentence.append(sentence)\n",
" except:\n",
" english_sentence.append(sentence)\n",
" return english_sentence"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 3min 43s, sys: 10.8 s, total: 3min 54s\n",
"Wall time: 3min 57s\n"
]
}
],
"source": [
"%%time\n",
"tweets = retriveEnglistSentenceOnly(tweets)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating the tweets file"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tweets_filepath = os.path.join('tweets_all.txt')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Saving all the tweets in file"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 3 s, sys: 180 ms, total: 3.18 s\n",
"Wall time: 3.53 s\n"
]
}
],
"source": [
"%%time\n",
"with codecs.open(tweets_filepath, 'w', encoding='utf_8') as f:\n",
" for tweet in tweets:\n",
" #print \"Orig: \"+tweet\n",
" #print 'Orig New '+unidecode.unidecode(tweet)\n",
" tweet = unidecode.unidecode(tweet)\n",
" #removing out the Retweet word, @abc, url and hash from hashtag\n",
" tweet = re.sub(r\"http\\S+\", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = re.sub(r\"#\", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = re.sub(r\"@\", \" \", tweet,flags=re.IGNORECASE)#|RT|@\\S+|-|'|%|\\'|\\(|\\)|;|:| |'s|’|\\\"|&amp|’s|\\U000\\S+\n",
" tweet = re.sub(r\"RT\", \" \", tweet,flags=re.IGNORECASE)\n",
" #tweet = re.sub(r\"@\\S+\", \" \", tweet,flags=re.IGNORECASE)\n",
" #for removing the >\n",
" tweet = re.sub(r\"&\\S+\", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = re.sub(r\"-\", \"\",tweet)\n",
" tweet = re.sub(r\" \", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = re.sub(r\"%\", \" \",tweet)\n",
" tweet = re.sub(r\"'s\", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = re.sub(r\"\\'\", \"\",tweet)\n",
" tweet = re.sub(r\"\\\\\", \"\",tweet)\n",
" tweet = re.sub(r\"/\", \"\",tweet)\n",
" tweet = re.sub(r\"\\(\", \" \",tweet)\n",
" tweet = re.sub(r\"\\)\", \" \",tweet)\n",
" tweet = re.sub(r\";\", \" \",tweet)\n",
" tweet = re.sub(r\":\", \" \",tweet)\n",
" tweet = re.sub(r\"[.]{2,}\",\" \", tweet)\n",
" tweet = re.sub(r\"\\\"\", \" \",tweet)\n",
" tweet = re.sub(r\"<\", \" \",tweet)\n",
" tweet = re.sub(r\">\", \" \",tweet)\n",
" tweet = re.sub(r\"\\[\", \" \",tweet)\n",
" tweet = re.sub(r\"\\]\", \" \",tweet)\n",
" tweet = re.sub(r\"\\{\", \" \",tweet)\n",
" tweet = re.sub(r\"\\}\", \" \",tweet)\n",
" tweet = re.sub(r\"\\|\", \" \",tweet)\n",
" tweet = re.sub(r\"=\", \" \",tweet)\n",
" tweet = re.sub(r\"~\", \" \",tweet)\n",
" tweet = re.sub(r\"\\`\", \" \",tweet)\n",
" tweet = re.sub(r\"\\^\", \" \",tweet)\n",
" tweet = re.sub(r\"\\+\", \" \",tweet)\n",
" tweet = re.sub(r\"!\", \" \",tweet)\n",
" tweet = re.sub(r\"\\*\", \" \",tweet)\n",
" \n",
" tweet = re.sub(r\" [a-z0-9] \", \" \",tweet)\n",
" # tweet = re.sub(r\"^[a-z0-9] \", \" \",tweet)\n",
" # tweet = re.sub(r\" [a-z0-9]$\", \" \",tweet)\n",
" #tweet = re.sub(r\"[a-z]\", \"\",tweet)\n",
" tweet = re.sub(r\"&amp\", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = re.sub(r\"\\\\U\\S+\", \" \", tweet,flags=re.IGNORECASE)\n",
" tweet = \" \".join(tweet.split())\n",
" #print \"Axed: \"+tweet\n",
" f.write(tweet+'\\n')"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"23873"
]
},
"execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(tweets)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Applying the tokenization & stemming ad again saving in some file"
]
},
{
"cell_type": "code",
"execution_count": 357,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def punct_space_stopword(token):\n",
" \"\"\"\n",
" helper function to eliminate tokens\n",
" that are pure punctuation or whitespace\n",
" \"\"\"\n",
" \n",
" return token.is_punct or token.is_space or token.is_stop or (len(str(token.lemma)) <= 2)\n",
"\n",
"def line_tweet(filename):\n",
" \"\"\"\n",
" generator function to read in tweets from the file\n",
" and un-escape the original line breaks in the text\n",
" \"\"\"\n",
" \n",
" with codecs.open(filename, encoding='utf_8') as f:\n",
" for tweet in f:\n",
" yield tweet.replace('\\\\n', '\\n')\n",
" \n",
"def lemmatized_sentence_corpus(filename):\n",
" \"\"\"\n",
" generator function to use spaCy to parse tweet,\n",
" lemmatize the text, and yield sentences\n",
" \"\"\"\n",
" \n",
" for parsed_tweet in parser.pipe(line_tweet(filename),\n",
" batch_size=10000, n_threads=4):\n",
" \n",
" for sent in parsed_tweet.sents:\n",
" yield u' '.join([token.lemma_ for token in sent\n",
" if not punct_space_stopword(token)])"
]
},
{
"cell_type": "code",
"execution_count": 358,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from gensim.models import Phrases\n",
"from gensim.models.word2vec import LineSentence\n",
"import pandas as pd\n",
"import itertools as it"
]
},
{
"cell_type": "code",
"execution_count": 359,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"unigram_sentences_filepath = os.path.join('unigram_sentences_all.txt')"
]
},
{
"cell_type": "code",
"execution_count": 360,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 24.5 s, sys: 857 ms, total: 25.4 s\n",
"Wall time: 26.2 s\n"
]
}
],
"source": [
"%%time\n",
"with codecs.open(unigram_sentences_filepath, 'w', encoding='utf_8') as f:\n",
" for sentence in lemmatized_sentence_corpus(tweets_filepath):\n",
" f.write(sentence + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 361,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"unigram_sentences = LineSentence(unigram_sentences_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 362,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"thnk india not need rg anymore dear cong choose leader wisely person electionresults\n",
"\n",
"bjp 260 sp 73 bsp 36 pun cong 62 akali 26 aap 22 ukhnd bjp 57 cong 09 goa cong 9 bjp 7 4 electionresults\n",
"\n",
"credit go narendramodi sir amitshah sir feel happy proud electionresults\n",
"\n",
"guess donkin donut outlet jhasanjay electionresults\n",
"\n",
"harry_steven\n",
"\n",
"close early race goa\n",
"\n",
"clear\n",
"\n",
"watch space\n",
"\n",
"electionresults httweets\n",
"\n",
"feel sorry people make fun delhite vote aap. electionresults\n",
"\n"
]
}
],
"source": [
"for unigram_sentence in it.islice(unigram_sentences, 200, 210):\n",
" print u' '.join(unigram_sentence)\n",
" print u''"
]
},
{
"cell_type": "code",
"execution_count": 363,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ArvindKejriwal and together they will make you history. ElectionResults\n",
"\n",
"And BJP4India poised at 300 seats in UP. What phenomenal win Some of us saw it, some refused to sagarikaghose ElectionResults\n",
"\n",
"This is called perfect planning and better execution in marketing terms. ElectionResults BJP4India did it again.\n",
"\n",
"doubtinggaurav Not fan of Yogi Adityanath but preferable to Dev_Fadnavis like dhimmi ElectionResults\n",
"\n",
"Congress may still be able to keep afloat in the national political scene but for how long ElectionResults\n",
"\n",
"Now INCIndia will sta bragging about Punjab and Goa after losing badly in UP. ElectionResults\n",
"\n",
"Hi AAPstrd Anyone Alive In Twitter ? ElectionResults PunjabElection2017\n",
"\n",
"SickularLibtard BJP Wins EVM Scam BJP Looses Demonetization Referendum. ElectionResults SattaKaGulaal sardanarohit\n",
"\n",
"ichiragpaswan Finaly corruption nepotism will be eliminated. Time has come for uttar pradesh to be Uttam pradesh. ElectionResults\n",
"\n",
"nihar2610 Voters of rest of India sma er than voters of Delhi. ElectionResults\n",
"\n"
]
}
],
"source": [
"sntnc = LineSentence(tweets_filepath)\n",
"\n",
"for unigram_sentence in it.islice(sntnc, 200, 210):\n",
" print u' '.join(unigram_sentence)\n",
" print u''"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating Bigram Model "
]
},
{
"cell_type": "code",
"execution_count": 364,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"bigram_model_filepath = os.path.join('bigram_model_all')"
]
},
{
"cell_type": "code",
"execution_count": 365,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"bigram_model = Phrases(unigram_sentences)\n",
"bigram_model.save(bigram_model_filepath)\n",
"\n",
"#loading the model\n",
"bigram_model = Phrases.load(bigram_model_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 366,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"bigram_sentences_filepath = os.path.join('bigram_sentences_all.txt')"
]
},
{
"cell_type": "code",
"execution_count": 367,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 1.59 s, sys: 130 ms, total: 1.72 s\n",
"Wall time: 1.77 s\n"
]
}
],
"source": [
"%%time\n",
"with codecs.open(bigram_sentences_filepath, 'w', encoding='utf_8') as f:\n",
" for unigram_sentence in unigram_sentences: \n",
" bigram_sentence = u' '.join(bigram_model[unigram_sentence])\n",
" f.write(bigram_sentence + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 368,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"hop change\n",
"\n",
"man day stamp ballot_paper toh evm pr dikhta hi nhi saala vote kahan gya\n",
"\n",
"electionresults\n",
"\n",
"great win bjp development speaks bjp4india electionresults election2017\n",
"\n",
"pm_modi capable fight arvind_kejriwal\n",
"\n",
"capt_amarinder singh man. electionresults punjabelection2017\n",
"\n",
"zeenews uttarakhand electionresults 2017_live harish_rawat lose_haridwar rural bjp head_massive win\n",
"\n",
"aap berozgars catchnews predict aap victory delhi municipal election reference exit_poll beware electionresults\n",
"\n",
"56_rocks feel_proud share electionresults elections2017 uttar_pradesh storieswelove\n",
"\n",
"vishnuksaboo see electionresults officeofrg_yadavakhilesh mayawati vote bjp4india sattakagulaal modivanibh\n",
"\n",
"jokeoftheday cong win punjabelection2017 officeofrg lol rahulgandhi believe electionresults\n",
"\n",
"today headline news_channel like electionresults elections2017 punjabelection2017 ut\n",
"\n",
"bjp need think abt dere alliance wid akali_dal asap clearly nt work dey need maharashtra way pu\n",
"\n",
"officeofrg_yadavakhilesh face guy deserve lose\n",
"\n",
"communal politics se desh nahi jeeta jaata\n",
"\n",
"kyaukhaadlega scene et office watch electionresults\n",
"\n",
"big defeat prashant_kishore\n",
"\n",
"electionresults modi congress\n",
"\n",
"akshayraina1\n",
"\n",
"kish92\n",
"\n",
"srinidhi_gk shivangi_dkl\n",
"\n",
"uttarkhand cm lose seat contest\n",
"\n",
"electionresults spineless candidate hoga people\n",
"\n",
"cnnnews18_resultswithnews18\n",
"\n",
"victory people_faith believe navjot_singh sidhu electionresults\n",
"\n",
"virendersehwag_karun126 nair bjp join_300 club\n",
"\n",
"electionresults elections2017\n",
"\n",
"sidhu careful attack bjp modi\n",
"\n",
"keep door open\n",
"\n",
"electionresults\n",
"\n",
"priyaakulkarni2 sattakagulaal electionresults cycle_puncture vanvaas\n",
"\n",
"victory bjp4up triumph\n",
"\n",
"narendramodi_amitshah\n",
"\n",
"historic_day kejriwal reject\n",
"\n",
"electionresults elections2017 punjab\n",
"\n",
"lol not thing ur voter repent voting\n",
"\n",
"electionresults\n",
"\n",
"navjot sidhu evade reply want dy cm punjab electionresults httweets elections2017\n",
"\n",
"mr_lolwa electionresults\n",
"\n",
"learning elections2017 punjabelection2017 uttarpradesh bjp sp aap congress electionresults\n",
"\n",
"narendramodi effect obviously fact fact electionresults\n",
"\n",
"muh_pe_bolunga\n",
"\n",
"voter sp_bsp aap congress electionresults\n",
"\n",
"pretikakhanna aap cm_candidate ielvisgomes trail 4th position_cuncolim constituency goa livemint electionresults\n",
"\n",
"swarupphd goa_manipur result confuse\n",
"\n",
"sure ahead\n",
"\n",
"medium tally diff eci result electionresults\n",
"\n",
"time grab double shot espresso turn wifi router\n",
"\n",
"electionresults\n",
"\n",
"21century_kant bjp headqua\n",
"\n",
"er right electionresults results2017\n",
"\n",
"arvindkejriwal come tweet\n",
"\n",
"leader bold speech time failure\n",
"\n",
"electionresults\n",
"\n",
"financialxpress electionresults cm_harishrawat lose election haridwar_rural uttarakhand\n",
"\n",
"bjp suppo\n",
"\n",
"er state rule bjp electionresults\n",
"\n",
"election_result congress like electionresults elections2017 punjabelection2017 manipur\n",
"\n",
"electionresults arvindkejriwal leave gujarat\n",
"\n",
"electionresults tiebreaker trend incindia bjp4india ec show 88 manipur\n",
"\n",
"livemint\n",
"\n",
"electionresults elections2017 people manipur suppo_ed ilom sharmilla arvindkejriwal rally\n",
"\n",
"jokes_apa\n",
"\n",
"let_moment thank_rahul gandhi_ente aining_election campaign\n",
"\n",
"bjplivenews lucknow celebration bjp office huge_victory assembly_election 2017\n",
"\n",
"electionresults\n",
"\n",
"goa\n",
"\n",
"sure great poker\n",
"\n",
"electionresults\n",
"\n",
"belike_jammie bjp star_campaigner\n",
"\n",
"electionresults\n",
"\n",
"56_rocks feel_proud share electionresults elections2017 uttar_pradesh\n",
"\n",
"lal_krishna advani_happy man today\n",
"\n",
"hope india president\n",
"\n",
"electionresults\n",
"\n",
"wittyfeedlive electionresults punjabelection2017 pa_ie lead 116117 sad bjp 18 congress 75 aap 20 03\n",
"\n",
"electionresults hand pappu take cycle akhilesh hit elephant mayavati get drown pond lotus\n",
"\n",
"weldon congress punjab electionresults punjabelection2017 election2017\n",
"\n",
"repubiicofindia good_bye appeasement hello democracy upwinsbjp electionresults\n",
"\n",
"nickhunterr ohh behencho can_not stop laugh\n",
"\n",
"electionresults\n",
"\n",
"clearly divisive force defeat\n",
"\n",
"politics base development nt\n",
"\n",
"electionresults\n",
"\n",
"pura bjp voting development electionresults elections2017\n",
"\n",
"thechiraggrover electionresults\n",
"\n",
"way bjp4india\n",
"\n",
"uttar_pradesh\n",
"\n",
"uniball_india win\n",
"\n",
"win electionresults win gift hampers uniball india contestale\n",
"\n",
"chanakya bjp4india prove mettle kingdom new_height electionresults\n",
"\n",
"people not vote narendramodi .rahul gandhi\n",
"\n",
"storieswelove electionresults\n",
"\n",
"mobile friendly interactive election electionresults upelection2017\n",
"\n",
"11.20 trend goaelection2017 result live_updates\n",
"\n",
"congratulation people bjp reject castebased politics completely\n",
"\n",
"electionresults\n",
"\n",
"tejasyagnik electionresults surgicalstrike bjp win_deoband\n",
"\n",
"muslim concentrated seat amitshah narendramodi bjp4india\n",
"\n",
"result come check lead uttar_pradesh bingelectionslive electionresults\n",
"\n",
"vivek16_ 403 304 mirror image number\n",
"\n",
"victory bjp4india congratulation\n",
"\n",
"electionresults elections2017\n",
"\n",
"bindu_5 beginning modi era electionresults\n",
"\n",
"democracy get strong\n",
"\n",
"electionresults\n",
"\n",
"electionresults modi win go\n",
"\n",
"rishika625 communal polarisation new normal indian_politics\n",
"\n",
"electionresults bjp upelection2017\n",
"\n",
"gharwapasi nitish_kumar unhappy lalu\n",
"\n",
"electionresults verdict2017\n",
"\n",
"wittyfeedlive electionresults uttarakhandelection2017 pa_ie lead 7070 bjp 52 congress 14 04\n",
"\n",
"electionresults shameless yadavakhilesh rahulgandhicong\n",
"\n",
"tejasyagnik narendramodi_amitshah magic gorakhpur bjp lead_10 seats time electionresults\n",
"\n",
"hea_iest thanks give tremendous mendate bjp4india join narendramodi_ji vision development electionresults\n",
"\n",
"evm_tampering reason bjp win machine perfectly fine punjab electionresults\n",
"\n",
"chanakya bjp4india prove mettle pa new_height electionresults electionresults2017\n",
"\n",
"rocksboiling electionresults incindia atleast understand impo_ance punjab border state strategic location nat\n",
"\n",
"chotaa_bheem electionresults devband muslim_area\n",
"\n",
"win bjp\n",
"\n",
"stay_tune current result right bingelectionslive electionresults\n",
"\n",
"wanna know congress comeback punjab\n",
"\n",
"late update electionresults bingelectionslive\n",
"\n",
"jhasanjay ban congress ishrat connection\n",
"\n",
"guy decimate elections2017 electionresults\n",
"\n",
"chill water burnol people use mint base toothpaste electionresults\n",
"\n",
"electionresults wave public belief develop govt modivsall narendramodi upelection2017 suppo bjp\n",
"\n",
"aap sweep goa seat\n",
"\n",
"arvindkejriwal excuse\n",
"\n",
"eggsonface aaptards\n",
"\n"
]
}
],
"source": [
"bigram_sentences = LineSentence(bigram_sentences_filepath)\n",
"for bigram_sentence in it.islice(bigram_sentences, 2020, 2150):\n",
" print u' '.join(bigram_sentence)\n",
" print u''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating Trigram Model"
]
},
{
"cell_type": "code",
"execution_count": 369,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"trigram_model_filepath = os.path.join('trigram_model_all')"
]
},
{
"cell_type": "code",
"execution_count": 370,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"trigram_model = Phrases(bigram_sentences)\n",
"trigram_model.save(trigram_model_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 371,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"trigram_model = Phrases.load(trigram_model_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 372,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"trigram_sentence_filepath = os.path.join('trigram_sentences.txt')"
]
},
{
"cell_type": "code",
"execution_count": 373,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 1.52 s, sys: 127 ms, total: 1.65 s\n",
"Wall time: 1.67 s\n"
]
}
],
"source": [
"%%time\n",
"with codecs.open(trigram_sentence_filepath, 'w', encoding='utf-8') as f:\n",
" for sentence in bigram_sentences:\n",
" trigram_sentence = u' '.join(trigram_model[sentence])\n",
" f.write(trigram_sentence+'\\n')"
]
},
{
"cell_type": "code",
"execution_count": 374,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"trigram_sentences = LineSentence(trigram_sentence_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 375,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"elections2017\n",
"\n",
"cnbctv18live captain amarinder singh helps congress regain power\n",
"\n",
"punjab resultswithnews18 electionresults\n",
"\n",
"shefvaidya cm sattakagulaal electionresults\n",
"\n",
"india today repo er abuse goa cm record electionresults elections2017 punjab uttarakhand uttarpradesh\n",
"\n",
"atleast day delhi people cm work delhi election2017 electionresults punjabelection2017\n",
"\n",
"congress credit rahul ji punjab victory blame capt amrinder singh loss uttarakhand\n",
"\n",
"electionresults\n",
"\n",
"resultswithndtv\n",
"\n",
"result pm narendramodi unifying figure m_lekhi ndtv electionresults\n",
"\n",
"manojtiwarimp sir ji time change delti punjab goa give answer aap electionresults\n",
"\n",
"electionresults hea ly congratulation modi ji team invincible victory\n",
"\n",
"electionresults save tigers save congress sp bsp\n",
"\n",
"ra_bie\n",
"\n",
"today chanakya group survey agency analyst astrologer electionresults\n",
"\n",
"cycle sp pe break haath congress hi lagata hai\n",
"\n",
"thank manojtiwarimp zeenews electionresults\n",
"\n",
"indian presstitute\n",
"\n",
"shame sham electionresults\n",
"\n",
"barkha rajdeep rana et staff right\n",
"\n",
"electionresults\n",
"\n",
"thequintlab electionresults fever take thequint\n",
"\n",
"check election special page\n",
"\n",
"congratulation evey bjp4india member guy\n",
"\n",
"electionresults\n",
"\n",
"bjp win uttarakhand\n",
"\n",
"say bjp truly win nation electionresults elections2017 modified modivsall\n",
"\n",
"bhaavnaarora electionresults super exciting\n",
"\n",
"look like hope manipur goa\n",
"\n",
"wave tsunami electionresults\n",
"\n"
]
}
],
"source": [
"for unigram_sentence in it.islice(unigram_sentences, 220, 250):\n",
" print u' '.join(unigram_sentence)\n",
" print u''"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%%time\n",
"for parsed_tweet in parser.pipe(line_tweet(bigram_sentences_filepath),\n",
" batch_size=10000, n_threads=4):\n",
" \n",
" for sent in parsed_tweet.sents:\n",
" noun_word = [token.lemma_ for token in sent\n",
" if token.pos_ == \"NOUN\"]\n",
" if len(noun_word) > 0:\n",
" print noun_word"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%%time\n",
"pnoun = []\n",
"for parsed_tweet in parser.pipe(line_tweet(bigram_sentences_filepath),\n",
" batch_size=10000, n_threads=4):\n",
" \n",
" for sent in parsed_tweet.sents:\n",
" pnoun.extend([token.lemma_ for token in sent\n",
" if token.pos_ == \"PROPN\"])\n",
" \n",
"print len(set(pnoun))\n",
"print len(pnoun)\n",
"print set(pnoun)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"for parsed_tweet in parser.pipe(line_tweet(bigram_sentences_filepath),\n",
" batch_size=10000, n_threads=4):\n",
" \n",
" for num, entity in enumerate(parsed_tweet.ents):\n",
" print 'Entity {}:'.format(num + 1), entity, '-', entity.label_\n",
" print ''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Trying to find out similar words "
]
},
{
"cell_type": "code",
"execution_count": 379,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from gensim.models import Word2Vec\n",
"\n",
"trigram_sentences = LineSentence(trigram_sentence_filepath)\n",
"word2vec_filepath = os.path.join('word2vec_model_all')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training the word2vec model"
]
},
{
"cell_type": "code",
"execution_count": 380,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2.87 s, sys: 176 ms, total: 3.04 s\n",
"Wall time: 1.99 s\n"
]
}
],
"source": [
"%%time\n",
"word2vec = Word2Vec(trigram_sentences, size=200, window=5, min_count=25, sg=1, workers=4)"
]
},
{
"cell_type": "code",
"execution_count": 381,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"word2vec.save(word2vec_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 382,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 31.3 s, sys: 1.81 s, total: 33.1 s\n",
"Wall time: 21.5 s\n"
]
}
],
"source": [
"%%time\n",
"for i in range(1,12):\n",
" word2vec.train(trigram_sentences)\n",
" word2vec.save(word2vec_filepath)"
]
},
{
"cell_type": "code",
"execution_count": 383,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"word2vec = Word2Vec.load(word2vec_filepath)\n",
"word2vec.init_sims()"
]
},
{
"cell_type": "code",
"execution_count": 384,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1,007 terms in the word2vec vocabulary.\n"
]
}
],
"source": [
"print u'{:,} terms in the word2vec vocabulary.'.format(len(word2vec.wv.vocab.keys()))"
]
},
{
"cell_type": "code",
"execution_count": 385,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<bound method Word2Vec.build_vocab of <gensim.models.word2vec.Word2Vec object at 0x10d9d1110>>"
]
},
"execution_count": 385,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"word2vec.build_vocab"
]
},
{
"cell_type": "code",
"execution_count": 386,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def get_related_terms(token, topn=10):\n",
" \"\"\"\n",
" look up the topn most similar terms to token\n",
" and print them as a formatted list\n",
" \"\"\"\n",
"\n",
" for word, similarity in word2vec.most_similar(positive=[token], topn=topn):\n",
"\n",
" print u'{:20} {}'.format(word, round(similarity, 3))"
]
},
{
"cell_type": "code",
"execution_count": 471,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 493,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def listToDict(data):\n",
" data_dict = {}\n",
" for pair in data:\n",
" data_dict[pair[0]] = pair[1]\n",
" return data_dict"
]
},
{
"cell_type": "code",
"execution_count": 497,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"aajtak 0.392\n",
"indiatoday 0.387\n",
"rajdeep 0.378\n",
"cnnnews18 0.359\n",
"abpnewstv 0.312\n",
"lady 0.302\n",
"anti 0.299\n",
"bjp_join_300 0.294\n",
"truth 0.293\n",
"listen 0.284\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH5CAYAAAALNG85AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl0FHX+9fFbSUggG2EJSyCAawKyBGRTkCUiEBEEhJEt\nCuqgIygig8iMLKLCzDCKAooLiKwCKouDArKIjiIIOMgyIgKCICYEQjYSAknX88c85GfsStlAJ9Uk\n79c5Hk33t6s/fU9hLtXV1YZpmqYAAACAIvg5PQAAAAB8G4URAAAAtiiMAAAAsEVhBAAAgC0KIwAA\nAGxRGAEAAGArwOkBSpucnPPKysp1egyfExoaRC4WyMUaubgjE2vkYo1crJGLu8jIMI/WcYTRywIC\n/J0ewSeRizVysUYu7sjEGrlYIxdr5HL5KIwAAACwxVvSXnb06FFlZOQ4PYbPSU+vQC4WyMUaubgj\nE2vkYo1crF1qLjVrRikggKokURi97k8vfKTgsKpOjwEAAK5AduYp/f2xeEVH13F6FJ9AYfSy4LCq\nComo4fQYAAAAXsM5jAAAALBFYQQAAIAtCiMAAABsURgBAABgi8IIAAAAWxRGAAAA2KIwAgAAwBaF\nEQAAALYojAAAALBFYQQAAIAtCiMAAABsURgBAABgi8IIAAAAWxRGAAAA2KIwFiEpKUkJCQlasWKF\nJGndunWKj49Xx44d9dlnnzk8HQAAQMkJcHqA3/rll180YsQInT59WjfddJO+/fZbNWrUSHv27FHP\nnj01cuRIxcbGqlu3btq6dauGDx+u2267TT169FCbNm20Y8cOTZ48WfXr19eoUaOUnp6uZs2aqUOH\nDpo7d65mzZqlVq1aadasWfrmm2+Um5uroKAgrVq1SoZhaPTo0WrYsKFGjBih8+fPyzAMSdInn3yi\nxx9/XL/88os2btyo9u3bO5wUAABAyfC5I4wLFixQ/fr1tXHjRnXt2lW5ublKSEjQxIkTtXbt2oJ1\niYmJ+tOf/qT169fLMAxlZ2dr/Pjx6tmzpzZt2qSFCxfq4MGDcrlc2rhxo6KionTgwAF98sknqlSp\nkr766it9+umn6tq1q/bt26e4uDglJibq+uuvV1RUlJYvX66oqKiC50tISND48eM1a9YsJSQkOBEN\nAACAI3yuMBqGofz8fJmmqRMnTig3N1fVqlVTcHCwLly4ULDO6rbIyEgFBwcrLy9P+fn5ateunVau\nXKkHH3xQ11xzjdq2bavp06dr2LBhWrNmjTIzM9WkSRP17dtXd9xxh/bv36/x48fL39/fba433nhD\nEydO1Pjx4/WPf/yjRLIAAADwBT5XGBMTE/X999/r9ttv17fffquKFSsW3Hfx7eFf/9vqtovbOXLk\niLp06aKffvpJQUFB6tKli1JSUtStWzdVqlRJXbp0kSQdPnxY//znP7V9+/aC236rb9++mj59umbO\nnKl+/foVz4sHAADwQYZpmqbTQ5Qmdz/+rkIiajg9BgAAuAJn05I0YXBjRUfXcXqUYhUZGebROp87\nwggAAADfQmEEAACALQojAAAAbFEYAQAAYIvCCAAAAFsURgAAANiiMAIAAMAWhREAAAC2KIwAAACw\nRWEEAACALQojAAAAbFEYAQAAYIvCCAAAAFsBTg9Q2mRnnnJ6BAAAcIX4fV6YYZqm6fQQpcnBg4eV\nkZHj9Bg+Jzy8ArlYIBdr5OKOTKyRizVysXapudSsGaWAgNJ9bC0yMsyjdRRGL7twIV9padlOj+Fz\nIiKCycUCuVgjF3dkYo1crJGLNXJx52lh5BxGAAAA2KIwAgAAwBaFEQAAALYojAAAALBFYQQAAIAt\nCiMAAABsle6LCzng6NGjXPvKQno61wSzQi7WyMUdmVgjF2vkYq005VLS14ikMHrZhDV/UZiH1zQC\nAAC4VJkpmRrVZpyio+uU2HNSGL0sLDJMFWuEOz0GAACA13AOIwAAAGxRGAEAAGCLwggAAABbFEYA\nAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0KIwAAAGxRGAEAAGCLwggAAABbFEYAAADYKhOF\n0TRNnThxwukxAAAArko+XRjXr1+vMWPG2K6ZMWOGxo4dq927d2vw4MGWa5577jktX778d59v27Zt\nio+Pv5xRAQAASq0Apwewk5mZqe3bt+vmm2/Wrbfeqh07dmjy5Mlq2rSpHnnkEWVlZSkwMFAxMTE6\nd+6cfvrpJ+Xk5Oihhx5SSkqKQkNDNWvWLK1atUqBgYFq166dDh06pJkzZ8rf318PP/yw7rnnHv3l\nL3/Rtm3bVKtWLRmGYbmNu+++WwsXLlRKSoomTpyodevWOR0PAABAifDpwmgYhiQpOztb48eP19tv\nv61NmzbpxIkTqlChgpYsWaKxY8cWeoyfn58GDhyos2fPaurUqTp27Jg6d+6sWrVq6dprr9WAAQO0\ndu1auVwu3Xnnnbrpppu0bt06ffnll1q7dq2mT59uuY1+/fppyZIlOnPmjAYNGuREHAAAAI7w6bek\nTdMs+O/IyEgFBwcrLy9PhmEU3PfrNZK0b98+vfLKK4qNjVVISIhcLpfbNk3TlMvlkp+fnwIC/q8z\nX1z7222YpqlBgwbp448/1ldffaXevXsX10sGAADwOVfFEcbf/tyjRw999NFHuuuuu1SpUiXVrl27\n4P6IiAidO3dOzz77rEJDQ5WamqoGDRrorbfe0i233KIxY8bo4YcfVl5eniZNmqTrr79e3bt3V7du\n3XTjjTdabuP06dNq0aKFbrjhBt1www0KCQkp8SwAAACcYpi/PUQHS0OGDNGJEyc0f/58Va9evch1\njyz5oyrWCC/ByQAAQFmSnpShoTc+oejoOle8rcjIMI/W+fQRRl8yd+5cp0cAAABwhE+fwwgAAADn\nURgBAABgi8IIAAAAWxRGAAAA2KIwAgAAwBaFEQAAALYojAAAALBFYQQAAIAtCiMAAABsURgBAABg\ni8IIAAAAWxRGAAAA2ApweoDSJjMl0+kRAABAKZaZkindWLLPaZimaZbsU5ZuBw8eVkZGjtNj+Jzw\n8ArkYoFcrJGLOzKxRi7WyMVaacqlZs0oBQRc+XG/yMgwj9ZRGL3swoV8paVlOz2Gz4mICCYXC+Ri\njVzckYk1crFGLtbIxZ2nhZFzGAEAAGCLwggAAABbFEYAAADYojACAADAFoURAAAAtiiMAAAAsMWF\nu73s6NGjpeYaT96Unl56rn3lTeRijVzckYk1crFGLtZ8NRdvXVOxOPn2dFehjWPHqFpoqNNjAACA\nq8DJrCy1GDtR0dF1nB7FFoXRy6qFhqpmeLjTYwAAAHgN5zACAADAFoURAAAAtiiMAAAAsEVhBAAA\ngC0KIwAAAGxRGAEAAGCLwggAAABbFEYAAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0KIwAA\nAGxRGAEAAGCrzBTGrl276uTJk4Vui4+P19dff+3QRAAAAFeHUlUYZ8yYoYSEBNWvX19du3ZVfHy8\nnnrqKUnSkSNHlJeXp08//VQdOnTQ4MGDlZWVJUlavXq17rzzTt19993avHmzkpKSNHDgQN11110a\nP368JCk2NlYjRoxQ+/bt9d577zn2GgEAAEpaqSqMklSjRg1t2bJFjzzyiHr37q3Vq1cX3GeapmbM\nmKEnn3xSr732mvLy8iRJU6ZM0YULF5STk6N58+Zp0aJFOnjwoFwulzZu3KhDhw5JkgYPHqyXXnpJ\nL730kiOvDQAAwAkBTg/gbdWrV9d7772nb7/9VgMGDJDL5Sp0v7+/v0zTlGmaBbfl5+dr0qRJCgkJ\n0alTp7R9+3a1a9dOL7zwghYuXKjatWtLks6fPy9/f3/5+ZW6ng0AAFCkUlUYDcOQYRiqVauW5s6d\nq7y8PIWFhenUqVOS/lcWR4wYoXHjxmnFihWKiIiQYRh6+umnNW7cOEnShAkTlJiYqBEjRqhLly5q\n3769goKCJElvvvmmDh48qJEjRzr2GgEAAEqaYf76UFsp1adPH5mmqaVLlyog4PI6cv369bVx40ZF\nRUXZrlsxZIhqhodf1nMAAICy5ZeMDNV97M+Kjq7jyPNHRoZ5tK5UHWEsyvvvv3/F2/juu++8MAkA\nAMDVh5PxAAAAYIvCCAAAAFsURgAAANiiMAIAAMAWhREAAAC2KIwAAACwRWEEAACALQojAAAAbFEY\nAQAAYIvCCAAAAFsURgAAANiiMAIAAMBWgNMDlDYns7KcHgEAAFwlTmZlqa7TQ3jAME3TdHqI0uTg\nwcPKyMhxegyfEx5egVwskIs1cnFHJtbIxRq5WPPVXGrWjFJAgDPH8CIjwzxaR2H0sgsX8pWWlu30\nGD4nIiKYXCyQizVycUcm1sjFGrlYIxd3nhZGzmEEAACALQojAAAAbFEYAQAAYIvCCAAAAFsURgAA\nANiiMAIAAMAWF+72sqNHj/rkNZ6clp7um9e+chq5WCMXd2Rirazm4uR1+1A2sbd52XtTP1KV8KpO\njwEAKKVOZ5xSl4fjFR1dx+lRUIZQGL2sSnhVVatUw+kxAAAAvIZzGAEAAGCLwggAAABbFEYAAADY\nojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0KIwAAAGxRGAEAAGCLwggAAABbFEYAAADYojACAADA\nFoURAAAAthwtjDNmzNDYsWMLfn7qqae0YcMGjx67e/duDR48uMj7u3btqpMnT3q0rR9++EHdu3dX\nx44dtWTJEknSnDlzFB8fr969eyslJUUnT55U7969FR8fr7lz53q0XQAAgNIgwMknNwxDu3fvVo8e\nPRQYGKjc3FzdcsstmjFjhj7//HOdP39e5cuX1+zZsxUWFlbosTk5Ofrpp58kSStWrNDMmTPl7++v\nhx9+WPfcc4+OHDmiCxcuKDExUeXLl9ehQ4fUvHlz/eMf/3CbIzs7W08//bRSUlK0aNEi9enTR6+8\n8oo++eQTTZ8+Xe+//75cLpfq16+v4cOHq0uXLrr//vvl58cBWgAAUPo52nhM01SNGjX04YcfKiQk\npOCIoGEYCg8P16pVqxQcHKwPP/ywyG1kZWVp3Lhxmj9/vmbPnq0JEyYoJyen0JoWLVro9ddf18cf\nf2y5jSZNmqhKlSoaP368EhISlJqaqvPnz6t69eqqXr26kpKSlJycrBo1aqh69eo6f/68zpw5470g\nAAAAfJjjh8jy8vIkSX5+fgoI+L8DnufPn5f0v1L5e0fyTNOUy+WSy+WSn5+f2/pq1aopODi44Ll+\na/fu3crLy9Pq1as1depUBQQEqFy5cjp58qSSkpIKimJycrKSkpIUGBioSpUqXcnLBgAAuGo4/pZ0\nbm6u7r77bpUvX16VKlWSYRiSpNTUVHXv3l0hISHq3r2722Pz8vLk5+en0NBQjRkzRg8//LDy8vI0\nadIkBQUFFWznt89n5fz58/rrX/+q3Nxc3X///apcubJGjhypAQMGKCIiQqNGjZLL5dKjjz6qxMRE\nPfnkk7wdDQAAygzDNE3T6SEkaerUqVq1apXmzZunNWvW6Oeff9aUKVMkSV988YVeeOGFgrUul0vJ\nycnq3bu3xo8ff0nP89prr+lf//pXwc8BAQGFfr5Sb45+V9Uq1fDa9gAA+LWTZ5LUvH9jRUfXKXJN\nRESw0tKyS3CqqwO5uIuMDPv9RfKhwlhaUBgBAMWJwnj5yMWdp4WR91UBAABgi8IIAAAAWxRGAAAA\n2KIwAgAAwNYVF8YzZ85oy5YtOnLkiBfGAQAAgK+5pMK4atUq9e3bt+Ci2lu3blV8fLweeOABJSQk\naOzYsXK5XMUyKAAAAJzhcWFcu3atxowZo++//16nTp2SJD377LM6d+6cevfurVatWmnFihVatGhR\nsQ0LAACAkudxYVywYIGqVq2q9evXKyoqSnv37tWPP/6ozp07a/LkyXrnnXfUsGFDLV++vDjnBQAA\nQAnzuDDu379fXbt2VfXq1SVJmzdvliTdcccdBWtatGihw4cPe3dCAAAAOMrjwmiapgIDAwt+/vzz\nz2UYhm699daC23Jzc1WhQgXvTggAAABHBXi6sF69etq2bZtcLpd++ukn7d27Vw0bNlTlypUlSenp\n6Vq/fr3q1atXXLMCAADAAR4fYezVq5f27dunhIQE9enTRy6XS/369ZMkrVy5Uj169FBKSor69+9f\nbMMCAACg5Hl8hDExMVE5OTmaM2eO/P39NXToUN1zzz2SpB9//FFpaWl68skndffddxfbsAAAACh5\nhmma5pVuJCUlRSEhIQoODvbGTFe1KQ/PUJXwqk6PAQAopU5nnFKXh+MVHV2nyDUREcFKS8suwamu\nDuTiLjIyzKN1Hh9htH+ySG9splToO7qbMjJynB7D54SHVyAXC+RijVzckYm1sppLzZpRTo+AMqbI\nwjh27NjL3uiUKVMu+7FXu7p16/K3Fwv8rc4auVgjF3dkYo1cgJJRZGFcsWLFZW+0LBdGAACA0qbI\nwrhu3bpCP6empuqxxx5T5cqV9fjjj6tp06aqWLGicnJytHv3bs2YMUOpqal66623in1oAAAAlJwi\nC2PdunUL/fzqq68qICBA8+fPV0RERMHtYWFhatOmjZo0aaKePXtq6tSpmjlzZvFNDAAAgBLl8XUY\nP/30U91+++2FyuKvhYaGqkOHDtqyZYvXhgMAAIDzPC6Mfn5+SktLs12TnJysoKCgKx4KAAAAvsPj\nwti8eXOtW7dOX331leX969at04YNG9S2bVuvDQcAAADneXzh7gMHDqh///46d+6c2rZtq0aNGik0\nNFSZmZnauXOntm7dqqpVq2rp0qWqVatWcc/tsw4ePFwmrwn2e8rqtdJ+D7lYIxd3ZGKNXNzVrBml\nqlXDudyQBS7D5M7TC3df0je9fPfdd3rhhRe0Y8eOwhsxDN12220aN26coqOjL23SUualZ/upamXP\nwgcAwJtOpWaqQ/dxatQolmJkgcLozuvf9HL8+HHVr19fCxcuVHJysvbv36+MjAyFh4frpptuUtWq\nfB2eJFWtHKbqkeFOjwEAAOA1HhfG++67T40aNdIrr7yi6tWrq3r16sU5FwAAAHyExx96SUlJKfNv\nNwMAAJRFHhfGli1basuWLcrNzS3OeQAAAOBjPH5Lum/fvnr++efVtWtX3Xbbbapdu7bKly9vufa+\n++7z2oAAAABwlseF8Yknnij472XLlhW5zjAMCiMAAEAp4nFhnDx5skfrDMO47GEAAADgezwujL17\n9y7OOQAAAOCjPC6MF2VlZWn9+vX6/vvvlZOTo4iICN1www3q2LGjQkJCimNGAAAAOOiSCuPGjRs1\nduxYZWRkuN1XsWJFTZkyRfHx8V4bDgAAAM7zuDDu3btXI0aMUEBAgB544AE1a9ZM1apVU0ZGhrZv\n366FCxdq5MiRWrp0qWJjY4tzZgAAAJQgjwvja6+9Jj8/Py1evFgNGjQodF/btm3VuXNn9e/fX2+8\n8YamTZvm9UEBAADgDI8v3L1z50516tTJrSxedNNNN6lTp07avn2714YDAACA8zwujNnZ2YqMjLRd\nU6VKFaWnp1/xUL7o2LFjTo8AAADgCI8LY3R0tL766iu5XC7L+/Pz87Vt2zbVrl3ba8P5iuTkZCUk\nJEiS1q9frzFjxjg8EQAAQMnxuDD26NFDBw4c0DPPPKPs7OxC96Wmpurpp5/WgQMH1L17d68PWdy2\nbNmiTp06qWPHjpo2bZpiY2M1atQotWnTRu+++67eeecd5eXl6emnn1ZWVpZOnDjh9MgAAAAlxuMP\nvTzwwAP6/PPPtXz5cq1Zs0YNGjRQWFiYkpOT9eOPP+rcuXNq2rSpHnzwweKct1jUrVtXw4YN0969\ne/Xxxx/LMAwlJiaqadOmWr9+vZ577jnNnTtXf/vb37R8+XKnxwUAAChRHhfGwMBAzZ07V7Nnz9aK\nFSu0c+fOgvtq166tXr166Y9//KMCAwOLZdDi9MYbb8gwDDVt2lSffvqpTNNUZGSkgoODdeHCBb7u\nEAAAlGmXdOHuoKAgDRs2TMOGDVNWVpbOnj2rkJAQhYaGFtd8JaJevXqaM2eOTp8+rczMTBmGUeif\nKlWqqFatWho1apTatm1LgQQAAGWKYZqm6cnC+Ph4dejQQe3bt9ctt9xyVR5JLAnzZ/xR1SPDnR4D\nAFAGJadkqGGbJ9SoUazS0rJ//wFlTEREMLn8RmRkmEfrPD7CGBYWpnfffVeLFy9WhQoV1KpVK3Xo\n0EEdOnRQjRo1LntQAAAA+DaPC+OqVauUkpKif//73/riiy/05ZdfavPmzZKkG2+8UR07dlT79u3V\ntGlT3rIFAAAoRTx+S/q3XC6X9uzZU1Ag9+zZo/z8fFWsWFHbtm3z9pxXDd6SBgA4hbek7fGWtDtP\n35L2+DqMv2WapkzTVFBQkMLDwxUUFCRJpfabXgAAAMoqj9+Szs3N1a5du7R9+3bt2LFD3377rXJy\nciRJVatWVfv27dWyZUu1atWq2IYFAABAyfO4MDZv3lx5eXkyTVNRUVHq0KGDWrRooZYtW+r6668v\nzhkBAADgII/fks7Pz5dpmgoODtZNN92km2++Wc2bN6csAgAAlHIeH2Hctm2btm3bpq1bt2rbtm3a\nsGGDTNNUpUqV1Lx5c7Vs2VItW7ZUTExMcc4LAACAEnZJ12Hs1KmTOnXqJEk6ffp0QYn85ptvCgpk\nRESEtm7dWmwDAwAAoGRd0lcD/lqVKlXUtm1blStXTgEBAcrKytIvv/yitLQ0b84HAAAAh11SYTx3\n7px27typr776Sl999ZW+++47uVwulStXTjfffLPuu+8+tWvXrrhmBQAAgAM8LoyJiYn69ttvdf78\neUlSjRo11KdPH7Vr106tW7dWaGhosQ0JAAAA53hcGL/55hs1bdpU7dq1U/v27flwCwAAQBnhcWHc\nunWrwsI8+/qYsuxUaqbTIwAAyih+B6G4XNKnpPH7egycrIyMHKfH8Dnh4RXIxQK5WCMXd2RijVzc\n1awZ5fQIKIUu+1PSsFa3bl2+2NwCX/hujVyskYs7MrFGLkDJ8PibXgAAAFA2URgBAABgy+PCuHbt\nWiUnJxfnLAAAAPBBHhfGiRMnasKECcU5CwAAAHyQx4Xx3Llzuvbaa4tzFgAAAPggjwtjnz599OGH\nH+rAgQPFOQ8AAAB8jMeX1QkPD5ck9ezZU3Xq1FHt2rVVvnx5y7UzZ870znRXoaNHj3JNMAvp6Vwr\nzQq5WCMXd2RirazlUrNmlAICuCIeSp7He91rr71W8N9HjhzRkSNHimOeq94//vW5wqtWc3oMAEAp\nk3HqpB5p30LR0XWcHgVlkMeFccOGDcU5R6kRXrWaKlXnKvsAAKD08Lgw1q5duzjnAAAAgI+65BMh\njhw5otTUVLlcLpmmKUkyTVN5eXk6c+aMPv/8c/3973/3+qAAAABwhseFMTU1VUOHDtXevXst7zcM\no6BAUhgBAABKD48vq/PKK69o7969uvHGG9WvXz+FhoaqSZMmuvfee9WiRQuZpqlbb71VK1asKM55\nAQAAUMI8PsL473//W/Xq1dOKFSvk7++v06dPKzc3V88++6wkaeXKlXrmmWeKbVAAAAA4w+MjjCdP\nnlTbtm3l7+8vSapfv76+/fbbgvt79uyppk2batasWd6fEgAAAI7xuDCWL19eQUFBBT/XqVNH6enp\nSk5OLritUaNG+vrrr707IQAAABzlcWG89tprCx1RvOaaayRJ+/btK7jt7Nmzys3N9eJ4AAAAcJrH\nhbFbt27asWOHnnrqKR0/flwxMTGKjIzU9OnTdejQIW3dulUfffRRQZEEAABA6eBxYRwwYIA6d+6s\nDz/8UDt27FBAQICGDRum/fv3q1u3bho8eLCysrL00EMPFee8AAAAKGEef0q6XLlymj59unbt2qWa\nNWtKkvr166eKFStq9erVCgoK0t1336327dsX27AAAAAoeZf8TS9xcXGFfk5ISFBCQoLXBgIAAIBv\nKbIwZmVlXfZGQ0NDL/uxAAAA8C1FFsbmzZvLMIxL2phpmjIMQ999990VD1bcjh07pujoaNs1pmnq\nl19+UVRUVAlNBQAA4HuKLIwtWrQoyTlK1Nq1a7V48WLNnz/fdt1zzz2nypUra/jw4YqPj9ff/vY3\ntWzZsoSmBAAA8A1FFsYFCxaU5Bwl6s0339Thw4fVunVrRUVFqXLlyoqMjFStWrU0fPhwxcbGavHi\nxVq1apUCAwPVrl07SdIbb7yh0aNHq0+fPnrsscccfhUAAAAlw+PL6pQmiYmJatSokW644Qbdcccd\nmj17ttua6tWrq3Pnzho4cKAaN24sSbrnnnv07LPP6l//+ldJjwwAAOCYIo8wDhs2TN26ddOdd95Z\n8LOn5zTOnDnTO9MVk1+/jho1akiS/Pz8dO7cOaWmphb5uMjISLlcLuXl5RX7jAAAAL6iyMK4ceNG\n1a9fv9DPpcW1116rH374oeBDOpLUqVMnTZgwQcnJyQoNDZVhGGrQoIHeeust3XLLLQWPNQzjkj8M\nBAAAcDUzTNM0re44fvy4KlasqLCwsIKfPVW7dm3vTHcV+vOCj1WpOp+qBgB415nkExpwU11FR9f5\n3bUREcFKS8sugamuLuTiLjIyzKN1RR5h/G3pK8slEAAAoCy75G96yc3N1c8//6zz588XuSY2NvaK\nhgIAAIDv8LgwnjlzRuPGjdPGjRtVxLvYknTVXLgbAAAAnvG4ME6ePFkbNmxQnTp1dNNNNykoKMhy\nHR8IAQAAKF08Loxffvml4uLitHjxYvn5lcnLNwIAAJRJHje/3Nxc3XzzzZRFAACAMsbj9nfbbbdp\n586dxTkLAAAAfJDHhXHs2LE6efKkRo4cqd27dys1NVVZWVmW/wAAAKD08PgcxooVK6phw4Zas2aN\n1qxZY/nhlovfnMKnpAEAAEqPS/qU9CeffKIKFSro2muvVXBwcHHOBQAAAB/hcWH85JNPdMMNN2jx\n4sUFXxcIAACA0u+SPiXdrl07yiIAAEAZ43FhbNasmfbv31+cswAAAMAHefyW9FNPPaUBAwZoypQp\nGjx4sGpGLMZ2AAAgAElEQVTWrFmcc121Mk6ddHoEAEAp9L/fL3WdHgNllGHafTH0rwwZMkTHjx/X\nsWPHZBiGAgICVKFCBcu1X3/9tVeHvJocPHhYGRk5To/hc8LDK5CLBXKxRi7uyMRaWculZs0oBQT8\n/rGeiIhgpaVll8BEVxdycRcZ6dmphh4fYTx69KgkKSoq6vImKiPq1q3LzmiBP6TWyMUaubgjE2vk\nApQMjwvjpk2binMOAAAA+Ci+GBoAAAC2ijzCOH/+fMXFxalx48aSpHnz5ll+u4uV++67zzvTAQAA\nwHFFFsbJkydr+PDhBYVxypQpHm3QMAwKIwAAQCliWxgbNGhQ6GdPeHoUEgAAAFeHIgtj7969bX8G\nAABA2eDxp6St5ObmKikpSVWrVlVISIi3ZrqqHT16tExdE8xT6ell61ppniIXa+TijkyskYu1X+fi\n6bUbATu/uwdt3LhRGzZs0P3336/Y2FhJkmmaevHFF7Vw4UKdO3dO/v7+6tSpkyZOnKhKlSoV+9C+\n7E8vfKTgsKpOjwEAgLIzT+nvj8UrOrqO06PgKmdbGMePH69ly5ZJktq3b19QGKdNm6bZs2fLMAy1\nadNGkrR+/XodPHhQK1asUGBgYDGP7buCw6oqJKKG02MAAAB4TZHXYdy0aZOWLVumBg0aaM6cOerY\nsaMkKTk5WW+//bYkadKkSZozZ47mzJmj6dOn69ChQ5o3b17JTA4AAIASUWRhfP/991WxYkXNnz9f\nbdq0UVBQkCRp7dq1ysvLU926ddW3b9+C9Z06dVJcXJzWrVtX/FMDAACgxBRZGHfv3q0OHTooNDS0\n0O1btmyRJMXHx7s9pkmTJgXfOQ0AAIDSocjCmJ6erho1Cp+L53K5tGPHDhmGodatW7s9ply5cjp/\n/rz3pwQAAIBjiiyMoaGhOnPmTKHbdu/erbNnzyogIEAtWrRwe8xPP/1U5j8lDQAAUNoUWRgbN26s\nLVu2yOVyFdy2evVqSVLr1q0VHBxcaH1qaqq++OKLgq8SBAAAQOlQZGH8wx/+oOPHj2vkyJHavn27\nFi5cqKVLl0qSBg0aVGhtZmam/vznPys7O1s9evQo3okBAABQooq8DuPtt9+ugQMHatGiRYU++dy/\nf3+1b9++4OeRI0fqs88+U3Z2trp06aJOnToV78QAAAAoUbYX7h43bpw6d+6szZs368KFC2rbtq06\ndOhQaM2+fftUvnx5Pfjgg3rkkUeKc1YAAAA44He/GrBVq1Zq1apVkfcvX77c7dI7AAAAKD2KPIfR\nU5RFAACA0u2KCyMAAABKNwojAAAAbJXpwrh8+XIlJibaromNjdWJEydKaCIAAADfU6YLo2EYOnny\npHr27KlOnTpp8ODBcrlcWrZsmdq1a6dHH31UhmHol19+UbNmzZSWlqb3339fgwcPdnp0AACAEvO7\nn5IuzUzTVEhIiIYMGaL09HRNnjxZJ0+e1IsvvqjXXntNNWvW1KZNm1SjRg3dfvvtWrFihdatW6eh\nQ4c6PToAAECJKdNHGCUpOztbCxcuVOPGjRUQEKD8/Hz5+/vLNM2Cr0U0DEMPPPCAZs+erdOnTys+\nPt7hqQEAAEpOmT7CaBiGjhw5oipVqmjq1KmqWrWqTp8+rdGjR+vJJ59Uo0aNFBISIkmqX7++goOD\nNWDAAIenBgAAKFllujD26tVLvXr1cru9cePGhW43TVMJCQkKCwvTvffeW5IjAgAAOK5MF0ZPGYah\nNWvWOD0GAACAI8r8OYwAAACwR2EEAACALQojAAAAbFEYAQAAYIvCCAAAAFsURgAAANiiMAIAAMAW\nhREAAAC2KIwAAACwRWEEAACALQojAAAAbFEYAQAAYIvCCAAAAFsBTg9Q2mRnnnJ6BAAAJPE7Cd5j\nmKZpOj1EaXLw4GFlZOQ4PYbPCQ+vQC4WyMUaubgjE2vkYu3XudSsGaWAAI4PSVJERLDS0rKdHsOn\nREaGebSOPcjL6taty85ogT+k1sjFGrm4IxNr5GKNXOBtnMMIAAAAWxRGAAAA2KIwAgAAwBaFEQAA\nALYojAAAALBFYQQAAIAtLqvjZUePHuWaYBbS07lWmhVysUYu7sjEGrlY80YuXL8Rv8ae4GUT1vxF\nYR5eBBMAAF+UmZKpUW3GKTq6jtOjwEdQGL0sLDJMFWuEOz0GAACA13AOIwAAAGxRGAEAAGCLwggA\nAABbFEYAAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0KIwAAAGxRGAEAAGCLwggAAABbFEYA\nAADYojD+juPHjzs9AgAAgKOuisJ4/PhxxcbGlvjzzpkzR6+++mqJPy8AAIAvCXB6gKJs2bJF48eP\nV35+vpo1ayZJ+tOf/qR9+/ZpwoQJSk9P19tvv62QkBCdPXtWr7/+ulasWKEvv/xSZ8+elZ+fnxYt\nWqTNmzfrtddeU7ly5fTEE09o+fLl6tixo3JycjRr1ix98cUX6tChg/75z3/q73//u9LS0hQWFqa3\n3npLb775plwul2JiYjR9+nR9/vnn2rx5sxYuXKglS5Y4nBAAAEDJ8NkjjHXr1tWwYcMUHx+vNWvW\nyDAMPfvssxo1apReffVVGYahvLw8LV26VHFxcVq8eLEMw1BISIg+/PBDpaSk6MCBA5oyZYouXLig\nnJwczZ8/X126dNHmzZv1xRdfSJJWrlyp4OBg1ahRQ7/88ovuvvtu3XPPPapQoYISExPVqVMnDR48\nWC1bttTHH3+s5cuXa8CAAQ6nAwAAUHJ89gjjG2+8IcMw1LRpU3366ac6ceKE8vPzZRiGAgL+N3Z+\nfr7y8/NlmqYMw5AkVatWTYZhqHz58srLy1N+fr4mTZqkkJAQnT59Wi1bttTkyZMVFBSk++67T9Om\nTdM999yj8uXL68knn1RgYKBeffVVBQYGFppn4MCBmjJlijIyMpSQkFDieQAAADjFZ48w1qtXTxs2\nbNCGDRuUmZmp8uXL6/nnn9dLL72k4cOHyzRN5efn695779Xu3bs1cOBAt20YhqGnn35a48aN05NP\nPqmAgACFhISoSZMmatSokdq1a6eTJ0+qa9euKleunFatWqVp06YpICBAcXFxio2N1WeffaZ169bp\ntttuU35+vnr16qVy5co5kAgAAIAzDNM0TaeHuBwrVqzQihUrNH/+fKdHKeSRJX9UxRrhTo8BAMBl\nS0/K0NAbn1B0dB2nR/GqiIhgpaVlOz2GT4mMDPNonc++Jf17evXqpV69ejk9BgAAQKnns29JAwAA\nwDdQGAEAAGCLwggAAABbFEYAAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0KIwAAAGxRGAEA\nAGCLwggAAABbFEYAAADYCnB6gNImMyXT6REAALgimSmZ0o1OTwFfYpimaTo9RGly8OBhZWTkOD2G\nzwkPr0AuFsjFGrm4IxNr5GLNG7nUrBmlgIDSdVwpIiJYaWnZTo/hUyIjwzxaV7r2BB9Qt25ddkYL\n/CG1Ri7WyMUdmVgjF2vkAm/jHEYAAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0KIwAAAGxx\nWR0vO3r0KNcEs5CezrXSrJCLNXJxRybWyMUauVgrK7kUxzU0KYxetnHsGFULDXV6DAAAUAadzMpS\ni7ETFR1dx6vbpTB6WbXQUNUMD3d6DAAAAK/hHEYAAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAA\ngC0KIwAAAGxRGAEAAGCLwggAAABbFEYAAADYojACAADAFoURAAAAtiiMAAAAsEVhBAAAgC0K428c\nO3bM6REAAAB8CoVR0lNPPaUNGzZo7dq1+utf/2q5Zvny5UpMTCzhyQAAAJwX4PQAJWHLli0aP368\n8vPz1blzZ+3bt08nT55UaGio3nnnHf3yyy/KzMzUwoULdejQIS1atEjZ2dlavHixTNPUuHHjZBiG\nJGnBggVatmyZFixYoIiICIdfGQAAQPErE4Wxbt26GjZsmPbu3atNmzZp5MiROnv2rKZOnaoDBw4U\nrBs0aJBWrFihgQMH6j//+Y8iIyP14YcfatOmTWrevLm+//577dy5U6tXr6YsAgCAMqNMvCX9xhtv\naNeuXWrUqJFOnDihV155RbGxsQoJCZHL5SpYZxiGTNOUJI0dO1YXLlzQddddV7AmKChI3bt318KF\nCx15HQAAAE4oE4WxXr162rBhgzZs2CB/f3+dO3dOzz77rEJDQ3X69Gnl5eXJz89P1157rX744QfN\nnz9f1113nWbNmqVDhw4pNTVVknTNNdfomWee0SeffKL9+/c7/KoAAABKhmFePKRWRk2dOlWrVq3S\nvHnzdN11113x9lYMGaKa4eFemAwAAODS/JKRobqP/VnR0XU8Wh8ZGebRujJxhNHO6NGj9cUXX3il\nLAIAAJRGZb4wAgAAwB6FEQAAALYojAAAALBFYQQAAIAtCiMAAABsURgBAABgi8IIAAAAWxRGAAAA\n2KIwAgAAwBaFEQAAALYojAAAALBFYQQAAICtAKcHKG1OZmU5PQIAACijTmZlqW4xbNcwTdMshu2W\nWQcPHlZGRo7TY/ic8PAK5GKBXKyRizsysUYu1sjFWlnJpWbNKAUEeHZMMDIyzKN1FEYvu3AhX2lp\n2U6P4XMiIoLJxQK5WCMXd2RijVyskYs1cnHnaWHkHEYAAADYojACAADAFoURAAAAtiiMAAAAsEVh\nBAAAgC0KIwAAAGxx4W4vO3r0aJm4xtOlSk8vG9e+ulTkYo1c3JGJtas9l0u5Xh7gJPZSL3tv6keq\nEl7V6TEAAD7udMYpdXk4XtHRdZweBfhdFEYvqxJeVdUq1XB6DAAAAK/hHEYAAADYojACAADAFoUR\nAAAAtiiMAAAAsEVhBAAAgC0KIwAAAGxRGAEAAGCLwggAAABbFEYAAADYojACAADAFoURAAAAtiiM\nAAAAsEVh/I1jx445PQIAAIBPKVOFcfny5ercubMSEhIs71+7dq3++te/lvBUAAAAvi3A6QFKkmEY\nysvL07Fjx5Sfn6+hQ4fq6NGjCgwM1IwZM/Tmm2/q8OHDWrRokSpWrKjXXntN5cqV08iRI1WhQgWN\nHTtW9erV04EDBzRr1iw1atTI6ZcEAABQ7MrUEcZfO3/+vPbv368777xT9957rypXrqzExEQ1btxY\nAwcO1JQpU3ThwgXl5ORo/vz5MgxDmZmZmjVrlpo1a6Yvv/zS6ZcAAABQIsrUEUbTNAv+nZ+fr1Gj\nRik4OFhz585VamqqrrnmmoI1+fn5mjRpkkJCQnTq1CmZpqmwsDAFBQUpODhYeXl5Tr4UAACAElOm\nCqNhGAX/DgoK0ubNm7V3716VK1dOt956qypUqKAffvhBCxYs0NNPP61x48ZJkiZMmCDDMAo9HgAA\noKwwzIuH1OAVb45+V9Uq1XB6DACAjzt5JknN+zdWdHQdr287IiJYaWnZXt/u1Y5c3EVGhnm0rsye\nwwgAAADPUBgBAABgi8IIAAAAWxRGAAAA2KIwAgAAwBaFEQAAALYojAAAALBFYQQAAIAtCiMAAABs\nURgBAABgi8IIAAAAWxRGAAAA2KIwAgAAwBaFEQAAALYCnB6gtDmdccrpEQAAVwF+X+BqQmH0sr6j\nuykjI8fpMXxOeHgFcrFALtbIxR2ZWLvac6lZM8rpEQCPUBi9rG7dukpLy3Z6DJ8TERFMLhbIxRq5\nuCMTa+QClAzOYQQAAIAtCiMAAABsGaZpmk4PAQAAAN/FEUYAAADYojACAADAFoURAAAAtiiMAAAA\nsEVhBAAAgC0KIwAAAGzxTS9esHPnTiUnJ6tGjRpq1qyZ0+P4hD179uiGG27QypUr5e/vrx49eigo\nKMjpsXwC+4s79hdr7Cvu2FeKxv7ijv3F2uXsK1yH8QqNGDFC3333nSIjI5WSkqIGDRro5Zdfdnos\nxyUkJOi6665Tenq6ypUrp5CQEM2YMcPpsRzH/mKN/cUd+4o19hVr7C/W2F/cXe6+whHGK7Rnzx5t\n3LhRhmHI5XLpjjvucHokn3D+/HkdOXJEH374oQzDUHx8vNMj+QT2F2vsL+7YV6yxr1hjf7HG/uLu\ncvcVCuMVatiwobp06aJq1aopJSVFDRs2dHokn1ClShX997//1datW/Xpp58qNjbW6ZF8AvuLNfYX\nd+wr1thXrLG/WGN/cXe5+wpvSXvBjh07lJycrOrVq6t58+ZOj+Mzzp49Kz8/PyUnJysqKkqBgYFO\nj+Q40zS1c+dOJSUlqXr16mrRooXTI/mMrKws+fv7KykpSbVq1WJ/0f/9v6VatWrsK79y8f8t7CuF\n7dixQ0lJSapRowa/i36F30XuLqe3+E+cOHFi8Y5Vum3btk2zZs3Spk2btH//ftWsWVO1atVyeizH\nbdu2TZMmTdKcOXP0zTffqHbt2uQiyTAMRUVF6cYbbySP3wgMDFS5cuVUqVIl+fv7Oz2O45YsWaJX\nX31VMTEx6ty5s4YMGaKePXs6PZbjlixZomeffVaBgYFq27atHnroIXKRtGvXLm3cuFFNmjTR888/\nr5CQEMXExDg9luN27dqlpUuXKiwsTH/5y18UHh5e5nNZuXKlMjIylJ+fr4kTJ6py5coeHXnlLekr\nNG7cOD366KOqXr26kpOTNW7cOK1bt87psRxHLtbi4+NlGIYuHtg3DEMbN250eCrnkYu7WbNm6amn\nntIbb7yhwMBAJSUlOT2ST5g1a5ZGjx6tN998k1x+ZcyYMWrevLmGDBmiZ555RtOmTVP37t2dHstx\nv83l5ZdfLvO5vPjii/Lz81OdOnWUmZmpDz74wKO/dFEYr5BpmjIMQ35+fvLz47KWF5GLtcTERH3+\n+ef605/+JM4G+T/k4s7f31/XXHONXn/9dQ0YMEDp6elOj+QT/P39de2115LLb7hcLj344INq2LCh\n2rVrp1mzZjk9kk8gF3cffPCBRo0apbvuukunTp3SggULPHocb0lfoRtvvFELFizQ6tWr9dNPP2n0\n6NGqXbu202M5jlysxcXFae/everbt6/q1KlDJv8fubirWrWqfvjhB91222265ZZbtHXrVg0YMMDp\nsRxHLtaqVq2qU6dOqXfv3vr66691/fXXq3Hjxk6P5ThycRcSEqK77rpLH3zwgf773//qoYce8uhx\nfOjFy3bv3l3md0Yr5GJtz549atSokdNj+BxyccefIWvkYo1crJFLYVlZWfrxxx89+v8t7xV6gcvl\n0unTp5Wfn6+XXnrJ6XF8BrlY+3UuL774otPj+AxyccefIWvkYo1crJGLu4uZVKhQweP/31IYr9Dc\nuXMVFxenNm3aqGnTpurQoYPTI/kEcrFGLtbIxR2ZWCMXa+RijVzcXXYmJq5Ix44dzRMnTpj5+fnm\nzz//bMbHxzs9kk8gF2vkYo1c3JGJNXKxRi7WyMXd5WbCp6SvUEREhGbOnKkaNWooOTlZlSpVcnok\nn0Au1sjFGrm4IxNr5GKNXKyRi7vLzYQPvVyhkydP6r333iu4Ynrfvn1VrVo1p8dyHLlYIxdr5OKO\nTKyRizVysUYu7i43EwojAAAAbPGhFwAAANiiMAIAAMAWhREAAAC2KIwAtHHjRj388MO65ZZb1KhR\nI7Vt21aPPvqoNm3a5LZ2+fLlio2N1fz58732/MePH1dsbKyGDRtWcFtiYqJiY2OVlZXlteeRip5/\n9erVOnbsmFefqyz64osvtGfPHqfHKNL58+d111136Z133im47dChQ+rfv7+aNGmi7t27W+73ktSv\nXz89/vjjlvdt2bJFLVq0UEpKSnGMDTiOwgiUcc8995yGDRumQ4cO6Y477tADDzygNm3aaOfOnXr0\n0Uc1fvz4QusbNGig4cOHKy4uzmszVKxYUcOHD1e3bt0K3W4Yhtee4yKr+adOnao///nPOnv2rNef\nryxZvHixHnroIZ08edLpUYr0+uuvKzc3V4MGDZIkmaapkSNH6vDhw+rfv78qVKigxx57TN9//32h\nx3366afavXu3RowYYbndW2+9VU2bNtWkSZOK/TUATuA6jEAZtm3bNi1atEhdunTRtGnT5Of3f3+H\nzMrK0n333adly5apffv2uv322yVJsbGxio2N9eocYWFhGj58uFe3WRSr+U+fPl0iz13a+XqOR44c\n0ZtvvqnnnntOAQH/+/W3Z88eHThwQNOmTVNCQoLOnTun9u3b67333tMzzzwj6X+l8pVXXlG3bt10\n3XXXFbn9kSNHqlevXtq8eTPfKIJShyOMQBm2efNmSdKgQYMKlUVJCg0N1ahRoyRJGzZsKOnRcBXz\n1au1vf322woLC1P37t0Lbjt+/LgkFfwlonz58qpXr17B7ZK0Zs0aHTx4sMi3oy+qX7++mjVrptdf\nf70YpgecRWEEyrALFy5Iktvbbxc1b95cL7/8su6///6C2y6eAzhv3ryC2+Lj4zVkyBB9//33evDB\nB9W0aVO1bt1a48eP17lz55ScnKwnnnhCN998s2699VaNHj1aZ86cKXi81TmMRc07b948/eEPf1Dz\n5s3VsGFDxcfHa8KECUpNTXXb3vTp0/X8888rLi5OrVu31tq1a93OYYyPj9fKlSslST179lR8fLx2\n7Nih2NhYjR492nKOTp06qWPHjrazxsfHa8CAAdq/f78SExMVFxen9u3b6/nnn1d6errb+pSUFE2c\nOFHt2rVTo0aNdPvtt+uf//yn29vkiYmJio+P12effab4+HjFxcXpiSeeKLh/+/btevjhh9WqVSs1\nb95c/fr108aNG92eb9++fXr00UfVqlUrNWnSRD179tSSJUssX0diYqIOHTqkRx55RDfffLOaNWum\noUOHav/+/YXmevXVVyVJw4cPL3QU9+zZs3r11Vd19913q1mzZmrcuLG6dOmiqVOnKicnx+05lyxZ\nou7duysuLk6dOnXS7NmztXLlSsXGxmr79u2X9TrOnDmjVatWqWvXrgVHF6X/nQ5xccaLMjMzFRYW\nJknKz8/XjBkz1KtXL0VHR7tt97e6d++uXbt2adeuXb+7FriaUBiBMqxt27aSpL///e96/vnntWvX\nLrlcroL7g4KC1LVrV8u3oH97fuHx48c1YMAASdKAAQMUGRmpZcuW6amnnlL//v2VlJSkfv36qU6d\nOvrXv/6lcePG/e42f2vUqFGaMmWKAgMDde+996pfv34KDAzU0qVLNXToULf1y5Yt09q1azVgwADF\nxcWpadOmbmvuv//+gtfXr18/DR48WM2bN1ft2rW1adMmnTt3rtD6b775RsePH1ePHj1sZ5X+940K\n999/v86ePatBgwYpOjpaCxcu1KBBg5SdnV2w7sSJE+rTp4+WLl2qRo0aaciQIbrmmms0e/ZsJSYm\nupWqtLQ0jRw5Us2bN1fv3r3VokULSdKqVat0//33a+fOnerQoYP69OmjpKQkDRs2TMuXLy94/Gef\nfaZ+/frp66+/LiiELpdLEydOdDtnVZKSkpLUv39/nTlzRv369VPLli31+eef67777iso6r+eo1u3\nbgWnGOTl5WnIkCGaOXOmqlevroEDB+qee+7RuXPnNGfOHI0ZM6bQc02ePFkTJ07U+fPn9Yc//EFx\ncXF6+eWXC8ror13K69iwYYNyc3ML9vmL6tevr6CgIM2dO1dZWVlav369Dh8+rGbNmhVkevz48d/9\ny8xFF7e/evVqj9YDV43i+nJrAFeHiRMnmjExMQX/NGvWzBw6dKj5zjvvmElJSW7rP/jgAzMmJsac\nN29ewW0dO3Y0Y2JizMmTJxfclpGRYcbFxZkxMTHmE088UXB7fn6+eccdd5ixsbHmuXPnTNM0zWPH\njpkxMTHmsGHDCtYNGjTIjI2NNTMzM03TNM3//Oc/ZkxMjDl69OhC8+Tl5Zndu3c3Y2JizB9//LHQ\n9urXr29+//33vzv/mDFjzJiYGPO7774ruG3GjBlmTEyM+dFHH1nmdfDgQdtcL2by6KOPmi6Xq+D2\n5557zoyJiTFnzJhRcNsf//hHs379+ubmzZsLbWP+/PlmTEyM+Y9//KNQLjExMebf/va3QmvT0tLM\nm2++2WzTpo155MiRgttTU1PN2267zWzdurWZl5dnZmdnm61btzbbtGlj/vzzzwXrXC6X+fjjj5sx\nMTGF5rj4Op577rlCzzdu3DgzJibGfPfddwtumz59uhkTE2Nu2LCh4LbVq1ebMTEx5ssvv1zo8f+v\nvbsPiqpsHzj+XZaVgFVAMbTiTVJgaFCnUlKQUWhSJwVRo2LGXtCGySFLHV/+SMzRwmnQMVI0MDG0\nwWQ0oJKXhmJ9QSWmVlBHG6VoYqzARUVA2Ty/P5g9DwvLspDPz3y8Pv/AHs65X845DBfXue/7tLa2\nKlOnTlXCwsLU++DMmTNKcHCwkpiYqLS1tan7fv/990pwcLASEhKinD59WlEUZcD9WLlypRIcHGzz\nns7JyVFCQkLU34GXX35ZMZvNyu3bt5Xp06db9b37tezLpEmTlDlz5vS7nxD3E8kwCvGAS0tLY9eu\nXURFRaHT6Whra6OyspIPPviAmJgYtmzZ4tCYNI1Gw6uvvqp+Hjp0KGPGjAHgtddeU7c7OTkRFhaG\noij8/vvvDrdz9OjRpKen9xpHptVq1WxQ98fSAH5+fowbN87hOrqLi4sDrDNFnZ2dHDlyhLCwMLuT\nH7q3bc2aNVaZ07fffhs3NzeKi4uBriykwWBg2rRpREdHWx2flJTEqFGjOHz4cK+yn3vuOavPlZWV\n6kQlf39/dbuXlxdr165l8eLF3Lx5k4qKCkwmE8nJyTzyyCPqfhqNhuXLlwNYZSMtP1uyZInVtmnT\npgFd2VF7wsLC2LRpk9WwBgB3d3dCQ0Mxm820tLQAXdk86Jo84urqqu4bHR3N1KlTre7Dgfbj3Llz\n6PV6fHx8erUxOTmZAwcOsGbNGjIzM8nLy0Or1fLFF19w9epVUlJSaG9vZ8WKFYSHh6tDNfoSFBTE\nzyO+IKQAAAn1SURBVD//jNlstntuhLifyCxpIQTR0dFER0fT1tZGdXU1J0+epKKigl9//ZVPPvmE\nO3fusHLlSrtlODs7M3r0aKttbm5uaDQaHnvsMavtLi4uQNeaeI7y8fEhPj4es9nM2bNnqa+vp6Gh\ngfPnz1NVVQVg9Tgd6FXvQPj6+vLkk09y9OhRrl+/zrBhwzh27BgtLS28+eabDre557g3vV5PQEAA\n58+fp6Ojg3PnzgFdj5kzMzN7laHT6bhy5Qp//vknDz/8MIDNc2oZT2hruaNZs2ap39fV1alfbdXn\n5ORkNTYRuq5Xz0BLr9cD/V/DgIAAAgICuHXrFkajUb1uZ8+epbq6Go1Go1632tpaNBoN4eHhvcqZ\nOHEix48fH3Q/mpub8fLy6rOd4eHhVvV2dHSQlZVFUlIS3t7efPjhhxgMBtLT07l27Rrvv/8+vr6+\nzJ8/v1dZXl5eKIqCyWRi5MiRds+PEPcLCRiFECo3Nzc1eFy9ejUHDx5k3bp17Nu3j9TUVDXQs6V7\nRqinIUOG3JX25efns337dnVxZA8PD8aPH09QUBBGo7FXJvShhx76R/XFx8dTU1NDaWkpCxcupKio\nCGdnZ55//nmHjreVzQLw9vYGupYuun79OoDdiRIajYZr166pASP07pulHEsg15cbN24A8PXXX9ut\nqztb18+SNe0v+6woCjt37mTPnj1qG729vZk4cSKPPvooly5dUsswmUy4urravJe6930w/WhtbR1Q\n8LZ//346OjrUzGpBQQELFixQ1wqtqqri888/txkwWtp//fp1CRjF/wwJGIV4QLW2tpKQkEBYWBhb\nt261uc/ChQspKSnh+PHjXLlyxepR5/+3I0eOsH79ekJCQnjvvfcICwtTA7K0tDSMRuNdr3PWrFls\n3LiRkpIS4uLi+O6774iMjGT48OEOHX/r1i2b2y2Bk6enJ25ubgAsXbqU1NTUQbfVUo6txcdv376N\nk5MTzs7O6n579+5l8uTJg67PUbt372bbtm1MnjyZJUuWEBoayogRIwBYvHgxly5dUvfV6/U0Njby\n999/o9Vqrcrp+cafgfbDw8PD4bcGtba2kp2dzaJFi/D09MRkMnHt2jUCAgLUffz9/Tl16pTN4y3B\nrL1/sIS438gYRiEeUHq9ntbWViorK9U/cH3RarVqVuxesYwlzMjIYMaMGVbZu8uXLwODX/+vr9nZ\ner2emJgYTp8+TXl5OR0dHQ7Nju7eru6zoQHa29u5cOECoaGhODs7ExwcDNDn6/R27NhBTk6OugRS\nXyzl2Aqcd+/ezYQJE9Tlgvqq78aNG6Snp1NUVNR/52ywdR6/+uornJ2d2bFjB5GRkWqwqCgKly9f\nRqPRqNftiSeewGw2q4+bu+vZr4H2Y+TIkepYyf7k5uaiKAqvv/460LW0DmA1JvHWrVt93jcmkwmt\nVttnhlmI+5EEjEI8wJKSkmhra2PZsmW9JoxA11IkVVVVxMbG4u7ufg9a+B+WbE3Pd/V++eWX6li4\nwU4ysKzLZ2s8Xnx8PJ2dnWRkZKDX64mNjXW43I6ODrZs2aJ+VhSFjIwM2tvb1UeZvr6+PP300xgM\nBkpLS62OLyoq4qOPPsJgMKDT6ezWFRsbi6urK5999pnVRJSWlhby8/Nxd3dn/PjxPPvss+j1erKz\ns/nll1+syti8eTO5ubk0NDQ43MfubJ1HFxcXzGZzr/tr+/btajst1y0hIQGArVu3Wi1ndPLkSb79\n9lurAG2g/Rg7dizt7e39vi+8paWF3NxckpOT1cf7I0aMwMPDw2rIgNFoJDAwsNfxd+7c4dKlSwQG\nBvZ7zYS4n8gjaSEeYCkpKVy8eJHS0lJiY2OJjIzEz8+Pzs5OjEYjP/30E0FBQaxfv37QdQw269fz\n2Li4OL755hv1ndPu7u7U1tby448/MmXKFE6cOGG1GPhAWDJBmzdv5plnnrF6TWFkZCTe3t40NjYy\nf/78AY3H1Ol0FBQUUFdXx/jx49VzGhERoa5ZCbBhwwaSkpJYtmwZ06ZN4/HHH6e+vp7Kyko8PT1J\nS0vr87xYeHh4kJaWxtq1a5k3bx4xMTG4ublRUlJCc3MzmZmZ6HQ6dDodGzduZOXKlcybN4/Y2FhG\njhxJdXU1tbW1hIeHk5ycPNBTCMCoUaMAyMrK4uzZs7z11lvMnTsXo9HISy+9xMyZM9HpdJw6dYr6\n+nqeeuopfvjhB0wmE/7+/kyYMIEXX3yR/Px84uLiiIqKorm5mfLycoYNG4bJZFLfSDR06NAB9WP6\n9OkUFxdTU1NjdwHunJwcXFxcWLRokbpNo9GQkJBAbm4uWq2WlpYWzpw5Q0ZGRq/jL168yM2bN5ky\nZcqgzqEQ/1aSYRTiAabVatm2bRsff/wxkZGRnDlzhry8PA4dOoTZbGbFihUcPnzYanapRqPpd4Ht\n7mzt62gZ3feJjo5my5Yt+Pn5UVRUxKFDh/Dy8uLgwYPqG1kMBoNDZfasOykpialTp1JXV6dOdrBw\ncnJSs4qWpXYcpdfr2bNnD4qikJ+fz9WrV0lNTSU7O9uqDYGBgRw6dIgXXniBCxcukJeXx8WLF4mL\ni6OgoKDXEj59nbv4+Hg+/fRTQkNDKS0tpaCgAD8/P3bt2mWVGZ05cyb79u0jIiICg8HA/v37aWtr\nY+nSpezZs8fuBCZ7Zs+ezaxZs/jtt984cOAAjY2NJCUl8e677+Lp6cnBgwcpLi5m3LhxFBYWqssw\ndb9u69atY9WqVWg0Gg4cOEBdXR2rVq1SM7Ld2zaQfkRFRTFkyBCrmdY9NTU1sX//fpYsWdJrUtHy\n5ctJTEykrKyM2tpa3nnnHXUCTHfHjh0DcHhilBD3C43yT/79F0KIB0BiYiJ//fUXFRUVDh8zY8YM\n2tvb1SV/RP+amppwdnbG09Oz189Wr15NYWEhJ06ccHjSUU9paWkUFhZy7NixfmeTD9bs2bMZPnw4\n+/bt+6+UL8S9IhlGIYSww2AwYDQaWbBgwb1uyv+8wsJCIiIi1Hd7WzQ0NFBeXs7YsWMHHSwCvPHG\nG5jN5kFP6ulPTU0Nly9fJiUl5b9SvhD3kmQYhRDChk2bNlFTU8OFCxfw8PCgpKSEYcOGOXy8ZBgH\n7o8//mDOnDm0t7cTExODr68vTU1NlJWVYTabyc7OZtKkSf+ojoyMDIqLiykrK7tr64NavPLKK7i6\nurJz5867Wq4Q/waSYRRCCBt8fHyor69nzJgxZGVlDShYFIPj4+NDQUEBc+fOpba2lr1793L06FGi\noqLIz8//x8EiQGpqKu7u7uTl5d2FFv/H0aNHOX/+PBs2bLir5QrxbyEZRiGEEEIIYZdkGIUQQggh\nhF0SMAohhBBCCLskYBRCCCGEEHZJwCiEEEIIIeySgFEIIYQQQtglAaMQQgghhLDr/wB7K+jNvRFa\nuQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10fd79d10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"get_related_terms(u'timesnow')#punjabelection2017#timesnow#immigrant#syria#refugee#hillary#donaldtrump\n",
"data_dict = listToDict(word2vec.similar_by_word('timesnow'))\n",
"sns.set_style(\"darkgrid\")\n",
"plt.rc(\"font\", size=44)\n",
"plt.figure(figsize=(10,8),dpi=500) # does not affect the following plot\n",
"plt.xlabel(\"Similarity percentage(%)\",size=20)\n",
"plt.ylabel(\"Similar words\",size=20)\n",
"bar_plot = sns.barplot(x=data_dict.values(),y=data_dict.keys(),\n",
" palette=\"muted\",\n",
" x_order=data_dict.keys().sort(reverse=True))\n",
"plt.xticks(rotation=90)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 498,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"modi_ji 0.316\n",
"narendramodi_amitshah 0.316\n",
"bjpwins 0.294\n",
"congratulation_narendramodi_ji 0.294\n",
"narendramodi_ji 0.289\n",
"pm_narendramodi 0.288\n",
"bow 0.285\n",
"develop 0.281\n",
"nair_chennai_modi 0.278\n",
"har_har_modi 0.276\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAH5CAYAAAClAnm4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOXd///3SYZJyMaELCSQEASXsMliWEWWCAhVAUFb\nxS/U1hZFCAoukFZElOW2QlWg0iKKIssN0gRQRAigIsgi2kqxUErZZQkhZIOQbc7vD3/MTco2ZM4w\nWV7Px4OHzMw153zOZ0x4c3HlOoZpmqYAAAAAeMTP1wUAAAAA1QHBGgAAALAAwRoAAACwAMEaAAAA\nsADBGgAAALAAwRoAAACwgM3XBaDmKiwsVkFBka/LqJJCQgLonQfon2foX8XRO8/QP8/QP89ERYVe\ncwwz1vAZm83f1yVUWfTOM/TPM/Sv4uidZ+ifZ+if9xGsAQAAAAuwFAQ+c+jQIeXlFfq6jCopN7c2\nvfMA/fMM/as4eueZqtC/2Nj6stmIVzUVnzx8ZvjkVQoKjfR1GQAAWOJcfpZeS0lWfHxDX5cCHyFY\nw2eCQiMV7IjxdRkAAACWYI01AAAAYAGCNQAAAGABgjUAAABgAYI1AAAAYAGCNQAAAGABgjUAAABg\nAYI1AAAAYAGCNQAAAGABgjUAAABgAYI1AAAAYAGCNQAAAGABgjUAAABgAYI1AAAAYAGCNQAAAGAB\ngnUllJaWpiFDhlT4/TNnzlRqaqqFFV2f5ORkbd++XdOnT9fChQt9VgcAAMCNZPN1Abi848eP65FH\nHtHp06f11FNPacaMGXI6nRo2bJiaNGmiZ599Vg6HQ+PGjVOXLl3KvdcwDP3www/q37+//P399eGH\nH2rhwoVavHixTNPU+PHjlZubqz/96U/y9/fXn//8ZzVu3LjcMYYMGSK73a4DBw6offv22r9/v3Jy\ncvTee+/JMAylpKQoPz9fTZs21bRp07R582ZNnDhRjRo1UkFBgSQpKytLAQEBN6xnAAAAvsSMdSUV\nEBCgxYsXKzQ0VMePH1dKSoratm2rtWvXyjAMnT17VmlpaZeEakkyTVPR0dFavny5Tpw4oT179qhd\nu3Z6+umn1bhxY23YsEGGYcjf319r1669JFRf0KlTJ02cOFHr16/XggUL5HA4tGPHDk2bNk09evRQ\nRkaGsrOztWLFCs2aNUtjxozR22+/rdLSUm+3BwAAoNIhWFdSdevWlSQFBQVp9uzZOnbsmBITE1VW\nViZJCg8Pl91uv+L7o6KiZBiGAgMDVVZWptTUVJWUlKhJkyZyOp2SpHr16l21hoiICNntdoWGhspu\ntysgIECmaZb7Jf00Q+7n51fuOQAAgJqGpSCVkGEYMgzD9dhut2vp0qVKTEzUmTNnXGOu9v7/1qRJ\nE82ePVuNGjVSrVq1rnmMi+u4eJxhGBoxYoR+//vfa9WqVWrWrJn69++vmJgYjR8/Xunp6XI4HNd1\nvQAAANWBYTLFWKVNmDBB27dvdz1u0KCB5s6de13HGD58uA4ePOh63LZtW02ePNmqEq+o/6jFCnbE\neP08AADcCGdzTmjCY7crPr6hr0u5LIcjSDk553xdRpUVFRV6zTHMWFdxEydO9PgYs2fPtqASAACA\nmo011gAAAIAFCNYAAACABQjWAAAAgAUI1gAAAIAFCNYAAACABQjWAAAAgAUI1gAAAIAFCNYAAACA\nBQjWAAAAgAUI1gAAAIAFCNYAAACABQjWAAAAgAVsvi4ANde5/CxflwAAgGX4cw2GaZqmr4tAzbRv\n337l5RX6uowqKSysNr3zAP3zDP2rOHrnmarQv9jY+rLZKue8pcMRpJycc74uo8qKigq95pjK+cmj\nRkhISOALvIL45ugZ+ucZ+ldx9M4z9A+VHWusAQAAAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEA\nAAALEKwBAAAAC7DdHnzm0KFDlX4/0soqN7fy7+VamdE/z9C/iqN3nqmJ/avM+2LjUnxS8JkJq3+n\nUDc2WwcAoCbKP5WvZ+8cr/j4hr4uBW4iWMNnQqNCVScmzNdlAAAAWII11gAAAIAFCNYAAACABQjW\nAAAAgAUI1gAAAIAFCNYAAACABQjWAAAAgAUI1gAAAIAFCNYAAACABQjWAAAAgAUI1gAAAIAFCNYA\nAACABQjWAAAAgAUI1gAAAIAFCNY1zLhx4zRr1iyvHf/o0aNKTEyUJP3yl7/Uzp07vXYuAACAysTm\n6wKqm5kzZ2rjxo0qLi5WYGCgioqKFBERoQMHDqh9+/bav3+/cnJy9N577ykuLu6S9ycmJuree+/V\n1q1bNXLkSCUnJ2vYsGE6e/as4uLi9N5776lnz56Kjo5W48aN1blzZ7399tuqVauWRo8erdq1ays1\nNVWNGjXS3r17NXv2bNWpU0cjRoyQzWZTcXGx4uLiNHPmTH366adyOp2aPHmyfv/736ukpERJSUn6\nwx/+oMTERN1zzz367rvv1KtXL23atElxcXF65513tGXLFk2cOFGSNHDgQA0fPlwzZsxQWlqabr75\nZhmGIUk6cuSIioqKbmj/AQAAfIUZay8ICwvTihUrVLt2bZ08eVKdOnXSxIkTtX79ei1YsEAOh0M7\nduy44vuHDBmi4cOHKyMjQ8HBwXr88cf12GOPafv27crMzJQkDR48WFOmTNHUqVNVUlKiwsJCzZ8/\nX4ZhKD8/X7Nnz1bbtm21efNmLV68WK1atVJ6eroiIiIkSYZhKCYmRmvWrFHjxo01fPhwDRw4UJ98\n8omrjscff1wDBgzQ4cOH9fHHH+vrr79WZmamxo4dq0mTJiktLU1z5szRv/71L82ePVtLlizRE088\nIdM0vdtgAACASogZay8oLi52/d4wDEVGRsputys0NFR2u10BAQFXfX90dLSCgoJUUlKijRs3auHC\nhfr9738vm82msrIySVJMTIwkqaysTK+88oqCg4OVlZUl0zQVGhqqgIAABQUFqbS0VH5+fq6we3Ho\nrVevniRp2bJl+v777zV48GA5nU7X6xEREbLb7YqKinLV7HQ6ZZqm6ziGYcjPz0+GYcg0zXLvBwAA\nqEkI1l6QnZ2t+++/X0FBQa7wahiGa4nE1VwYc2F8VFSUjhw5otdff12RkZE6ffp0uXHjxo3T+PHj\nJUkTJkwod54L/3300Uc1fPhwPfDAA+VC/YXXGzRooHnz5qm0tFShoaHKzs52Hefimi88Hj9+vCZP\nnqzz58/rySef1C233KJRo0bp4YcfVuvWrd26TgAAgOrGMPl3e0vNmjVLP/74o6ZOnXrVcfv27VNK\nSkq558aOHavu3bt7sbrK5cn//a3qxIT5ugwAACql3BN5GnbrM4qPb2jJ8RyOIOXknLPkWDVRVFTo\nNccwY22xkSNHujXu5ptv1urVq71cDQAAAG4UfngRAAAAsADBGgAAALAAwRoAAACwAMEaAAAAsADB\nGgAAALAAwRoAAACwAMEaAAAAsADBGgAAALAAwRoAAACwAMEaAAAAsADBGgAAALAAwRoAAACwgM3X\nBaDmyj+V7+sSAACotPJP5Uu3+roKXA/DNE3T10WgZtq3b7/y8gp9XUaVFBZWm955gP55hv5VHL3z\nTE3sX2xsfdls1syDOhxBysk5Z8mxaqKoqNBrjmHGGj6TkJDAF3gF8c3RM/TPM/Sv4uidZ+gfKjvW\nWAMAAAAWIFgDAAAAFiBYAwAAABYgWAMAAAAWIFgDAAAAFiBYAwAAABZguz34zKFDh2rcfqRWyc2t\neXu5Won+eYb+VRy980x16J+V+1Kj8uGThc+sTx2r6JAQX5cBAMANkVlQoHapLys+vqGvS4GXEKzh\nM9EhIYoNC/N1GQAAAJZgjTUAAABgAYI1AAAAYAGCNQAAAGABgjUAAABgAYI1AAAAYAGCNQAAAGAB\ngjUAAABgAYI1AAAAYAGCNQAAAGABgjUAAABgAYI1AAAAYAGCNQAAAGABgjUAAABgAYI1AAAAYAGC\ndQ01btw4zZo167rfd/ToUSUmJnqhIgAAgKrN5usCcOMcPnxYI0aMkM1mU3Fxsc6dO6dBgwapqKhI\nffv2VYMGDbR06VItWrRIL730khwOhzp16qQpU6bINE398pe/VKdOnVzHS09P16xZs+Tv768nnnhC\nHTp00P33369OnTrphx9+0CuvvKJu3br58IoBAABuHGasa5DFixerVatWSk9PV0REhGw2m06ePCmn\n06mFCxeqZ8+eOnDggHbv3q01a9bokUce0RtvvKGCggKVlJTo3XfflWEYkqSCggKNHz9eH3zwgebO\nnasJEybo/PnzKiws1Msvv6xnn31WM2fO9PEVAwAA3DjMWNcgfn5+Mk1TkmSapkpLS/Xggw9q6NCh\n+vTTTxUSEqIHH3xQL7zwgtq2bavY2FiVlZXpqaeeUlJSkr7//nvX+y8cwzRNOZ1O+fn5uUJ3cXGx\nTNOUnx9/bwMAADUHyacGefTRR7Vr1y498MADKikpUWlpqdavX69BgwapoKBAkvSLX/xC//nPfzR4\n8GBJ0pgxYzR37lw9/vjjrlBtGIZCQkI0duxYPfHEExo2bJheeeUVBQQESJImTZqkN954QyNHjvTN\nhQIAAPiAYV48BQl44OjRo+rVq5d2797t1vj0X/1KsWFhXq4KAIDK4XhenhJSnlN8fEOfnN/hCFJO\nzjmfnLs6iIoKveYYZqxhmbi4OLdDNQAAQHVDsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLAG\nAAAALECwBgAAACxAsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLAGAAAALECwBgAAACxg83UB\nqLkyCwp8XQIAADdMZkGBEnxdBLzKME3T9HURqJn27duvvLxCX5dRJYWF1aZ3HqB/nqF/FUfvPFMd\n+hcbW182m2/mNR2OIOXknPPJuauDqKjQa45hxho+k5CQwBd4BfHN0TP0zzP0r+LonWfoHyo71lgD\nAAAAFiBYAwAAABYgWAMAAAAWIFgDAAAAFiBYAwAAABYgWAMAAAAWYLs9+MyhQ4eq/H6kvpKbW/X3\ncvUl+ucZ+ldx9M4z9M8zN6J/vtynuzKouVcOn/vo9VWKCIv0dRkAAMACp/OydM8TyYqPb+jrUnyG\nYA2fiQiLVHR4jK/LAAAAsARrrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKwBAAAACxCsAQAA\nAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKxRTnFx\nsTIzM31dBgAAQJVDsPaCxMREHTt2zGvHnzlzplJTU7Vz50499thjlhyzT58+OnnypFJSUrR58+ar\nnvdqtm3bpuTkZEtqAgAAqEpsvi7AF9LS0jRv3jwFBQUpKytLgwYN0rJly+R0OjVs2DA1adJEzz77\nrMLDw/Xcc89pxYoV2rt3ryIjI/XWW29p6tSpOn78uE6cOKGYmBi9//77+uijjzRr1iy1aNFChmHI\nNE0lJycrOjpajRs31k033aRFixbJNE2NHz9eubm5mjdvnux2u8rKypSYmKhNmzbpqaee0uDBgzVp\n0iRt2LBBISEhmjRpkho2bKgnn3xSBQUFstvtuu2223T+/HkdPnz4ste4fPlyzZgxo9w1jRs3TnFx\ncTp+/Lg6d+6sL7/8UgMGDNDo0aN18OBBnTx5Ulu3btU///lPde7cWSNHjlROTo5CQ0P1zjvvyDAM\n/fDDD+rfv7/8/f314YcfauHChVq8eLHrukJDQ3X27Fn95je/0d69ezV79mw1b978Bn/CAAAAN16N\nnbEuKyvTkiVLVKdOHTmdTqWkpKht27Zau3atDMPQ2bNn9de//lWGYWj9+vVyOp06cOCA6/WEhASl\npaVp27ZtyszM1PTp0/XGG2/oxRdflGmarvMMHjxYU6ZMUVJSkp5++mk1btxYGzZscIXvZcuWKSsr\nS127dtWIESO0Zs0affXVV/ryyy+VkZGhIUOGaOrUqVq1apUCAwP1ySef6Lbbbrvm9TVv3vyy1/Te\ne+8pIiJCcXFxevXVV7Vq1SrXeyIiInT77bfr2WefVUlJiY4fP67+/ftr0KBBql27tkzTVHR0tJYv\nX64TJ05oz549ateuXbnrkiSn06m3335brVu31saNG63/8AAAACqhGhusIyIiJEnBwcGaM2eOjh07\npsTERJWVlUmSwsPDXbPJkZGR+vjjj5WSkqKOHTtKkqKjoxUcHCxJKi0tlb+/v0zTlNPpLHeemJgY\nSVJqaqpKSkrUpEkT15jw8HAZhiG73a7IyEgFBATI6XS6Xr8Q0P39/WUYhuuYFwf3K/mf//kfHTt2\nTE2bNnVdU0hIiGrVqiW73a7o6GjX+S52IfAHBgZqzJgxatSokRYsWKBVq1bJMAxFRUXJMAwFBgaq\nrKzsstcVGhoqu92uoKAg17kBAACquxq5FMQwjHJB1W63a+nSpUpMTNSZM2dcYyTprrvuUsuWLdWr\nVy/Vr19f99xzz2WP9fzzz2vMmDFq2bKlK3BffJwmTZpo9uzZatSokWrVqlXutYuPYxiGunTponbt\n2um+++5TYGCgJk+erISEBK1atUr33XefwsPDFRcXd8kxLnbTTTdpyZIlatq06SXXdLk+XPh9ixYt\nNHPmTN16661asWKFjh49qqCgILVu3Vpr1qy55DxXu64r1QYAAFAdGaY705+o1CZMmKDt27e7Hjdo\n0EBz5871YUXumfP8YkWHx/i6DAAAYIHMMyeU9Mjtio9v6OtSvCIqKvSaY2rkjHV1M3HiRF+XAAAA\nUOPV2DXWAAAAgJUI1gAAAIAFCNYAAACABTwO1mfOnNHXX3+tgwcPWlAOAAAAUDVdV7BesWKFHnro\nIRUXF0uStm7dquTkZP36179W3759lZqaesm+yAAAAEBN4Haw/uyzzzR27Fj961//UlZWlqSfdqM4\nf/68Bg4cqA4dOig9PV0LFy70WrEAAABAZeV2sP7www8VGRmpjIwM1a9fX7t27dKBAwfUu3dvTZky\nRe+//75atGihtLQ0b9YLAAAAVEpuB+s9e/aoT58+qlevniTpiy++kCT16tXLNaZdu3bav3+/tRUC\nAAAAVYDbwdo0TdntdtfjjRs3yjAMde7c2fVcUVGRateubW2FAAAAQBXg9p0XGzVqpG3btsnpdOrw\n4cPatWuXWrRoobp160qScnNzlZGRoUaNGnmrVgAAAKDScnvG+oEHHtAPP/ygvn376sEHH5TT6dTD\nDz8sSVq+fLn69eunU6dO6ZFHHvFasQAAAEBl5faM9ZAhQ1RYWKh3331X/v7+GjZsmAYNGiRJOnDg\ngHJycjRmzBj179/fa8UCAAAAlZVhmqbp6UFOnTql4OBgBQUFWVETaoipT8xURFikr8sAAAAWOJ2X\npXueSFZ8fENfl+IVUVGh1xxjSbAGKmLfvv3Kyyv0dRlVUlhYbXrnAfrnGfpXcfTOM/TPMzeif7Gx\n9WWzub0gokrxKFinpqZW+MRTp06t8HtRc5SUlCkn55yvy6iSHI4geucB+ucZ+ldx9M4z9M8z9M8z\n7gTrK/6VIj09vcInJlgDAACgprlisF6zZk25x9nZ2UpJSVHdunU1atQotWnTRnXq1FFhYaF27typ\nmTNnKjs7W++8847XiwYAAAAqmysG64SEhHKP//SnP8lms2n+/PlyOByu50NDQ3XnnXeqVatWGjBg\ngF5//XXNmjXLexUDAAAAlZDb+1h//vnnuvvuu8uF6ouFhISoe/fu+vrrry0rDgAAAKgq3A7Wfn5+\nysnJueqYkydPKiAgwOOiAAAAgKrG7WCdlJSkNWvWaMuWLZd9fc2aNVq3bp26dOliWXEAAABAVeH2\nPtZ79+7VI488ovPnz6tLly5q2bKlQkJClJ+fr2+//VZbt25VZGSklixZogYNGni7blQD7GNdcezl\n6hn65xn6V3H0zjM1tX9W7Q3NdnuesfwGMbt379bkyZO1Y8eO8gcxDN11110aP3684uPjr79S1Eh/\nnPiwIute+39SAABqqqzsfHW/f7wldzMkWHvGo32s/9vRo0fVtGlTLViwQCdPntSePXuUl5ensLAw\nNW/eXJGR3Joa1yeybqjqRYX5ugwAAABLuB2shw4dqpYtW+qtt95SvXr1VK9ePW/WBQAAAFQpbv/w\n4qlTp1jmAQAAAFyB28G6ffv2+vrrr1VUVOTNegAAAIAqye2lIA899JAmTZqkPn366K677lJcXJwC\nAwMvO3bo0KGWFQgAAABUBW4H62eeecb1+6VLl15xnGEYBGsAAADUOG4H6ylTprg1zjCMChcDAAAA\nVFVuB+uBAwd6sw4AAACgSrvu2/gUFBQoIyND//rXv1RYWCiHw6FbbrlFPXr0UHBwsDdqBAAAACq9\n6wrW69evV2pqqvLy8i55rU6dOpo6daqSk5MtKw4AAACoKtwO1rt27dLTTz8tm82mX//612rbtq2i\no6OVl5enb775RgsWLNDo0aO1ZMkSJSYmerNmAAAAoNJxO1i//fbb8vPz06JFi9SsWbNyr3Xp0kW9\ne/fWI488or/85S964403LC8UAAAAqMzcvkHMt99+q549e14Sqi9o3ry5evbsqW+++cay4gAAAICq\nwu1gfe7cOUVFRV11TEREhHJzcz0uCgAAAKhq3A7W8fHx2rJli5xO52VfLysr07Zt2xQXF2dZcbh+\niYmJOnbsmNeOP3PmTKWmpmrnzp167LHHLjtm+vTpWrhw4VXHAAAAVDdur7Hu16+f3nzzTb344ot6\n8cUXFRQU5HotOztbU6dO1d69ezVq1CivFFpdpKWlad68eQoKClJWVpYGDRqkZcuWyel0atiwYWrS\npImeffZZhYeH67nnntOKFSu0d+9eRUZG6q233tLUqVN1/PhxnThxQjExMXr//ff10UcfadasWWrR\nooUMw5BpmkpOTlZ0dLQaN26sm266SYsWLZJpmho/frxyc3M1b9482e12lZWVKTExUZs2bdJTTz2l\nwYMHa9KkSdqwYYNCQkI0adIkNWzYUE8++aQKCgpkt9t122236fz58zp8+PBlrzErK0sBAQFXHQMA\nAFDduB2sf/3rX2vjxo1KS0vT6tWr1axZM4WGhurkyZM6cOCAzp8/rzZt2ujxxx/3Zr3VQllZmZYs\nWaKBAwfK6XQqJSVFX331ldauXaunnnpKZ8+e1YYNG7R161atX79eDRo00IEDB7R27VoZhqGEhAS9\n/fbbuuOOO5SZmanp06fr7bffVmxsrDZs2OA6z+DBg9WvXz/97W9/U1RUlFauXKkNGzYoKSlJpmlq\n2bJluuuuu9S1a1e1atVKn332meLj4/Xll18qIyNDaWlpmjp1qu677z4FBgbqf//3f5WamurDzgEA\nAFRebi8FsdvtmjdvnlJSUhQREaFvv/1WX3zxhXbv3q3IyEilpKTogw8+UEBAgDfrrRYiIiIkScHB\nwZozZ46OHTumxMRElZWVSZLCw8Nds8mRkZH6+OOPlZKSoo4dO0qSoqOjXTfjKS0tlb+/v0zTvGSZ\nTkxMjCQpNTVVJSUlatKkiWtMeHi4DMOQ3W5XZGSkAgIC5HQ6Xa+bpilJ8vf3L3eb+gvPAwAAoLzr\nukFMQECARowYoREjRqigoEBnz55VcHCwQkJCvFVftWMYRrmgarfbtXTpUiUmJurMmTOuMZJ01113\nqWXLlurVq5fq16+ve+6557LHev755zVmzBi1bNmy3N0vLxynSZMmmj17tho1aqRatWqVe+3i4xiG\noS5duqhdu3auWerJkycrISFBq1at0n333afw8HDXOvqLj3Gx4uJi+fn5XXUMAABAdWOYbk5BJicn\nq3v37urWrZs6deoku93u7dpQBUyYMEHbt293PT5y5IiCg4M1Y8YMdejQ4arvnT/zt6oXFebtEgEA\nqLJOnspTizufUXx8Q4+P5XAEKSfnnAVV1UxRUaHXHOP2jHVoaKgWL16sRYsWqXbt2urQoYO6d++u\n7t27u5YcoOaZOHGir0sAAACoFNwO1itWrNCpU6f01VdfadOmTdq8ebO++OILSdKtt96qHj16qFu3\nbmrTpg3//A8AAIAax+2lIP/N6XTqH//4hyto/+Mf/1BZWZnq1Kmjbdu2WV0nqiGWggAAcHUsBak8\n3FkK4vauIP/NNE2ZpqmAgACFhYW5dgPhzosAAACoidxeClJUVKS///3v+uabb7Rjxw59//33Kiws\nlCRFRkaqW7duat++/TV/YA0AAACojtwO1klJSSotLZVpmqpfv766d++udu3aqX379rr55pu9WSMA\nAABQ6bm9FKSsrEymaSooKEjNmzfXHXfcoaSkJEI1AAAAoOuYsd62bZu2bdumrVu3atu2bVq3bp1M\n01R4eLiSkpLUvn17tW/fXrfddps36wUAAAAqpevax7pnz57q2bOnJOn06dOusP3dd9+5grbD4dDW\nrVu9VjAAAABQGV3XLc0vFhERoS5duqhWrVqy2WwqKCjQ8ePHlZOTY2V9AAAAQJVwXcH6/Pnz+vbb\nb7VlyxZt2bJFu3fvltPpVK1atXTHHXdo6NCh6tq1q7dqBQAAACott4P1kCFD9P3336u4uFiSFBMT\nowcffFBdu3ZVx44dFRIS4rUiAQAAgMrO7WD93XffqU2bNuratau6devGDykCAAAAF3E7WG/dulWh\node+lSPgrqzsfF+XAABApcaflVWLYZqm6esiUDPt27dfeXmFvi6jSgoLq03vPED/PEP/Ko7eeaam\n9i82tr5stgrvN+HicAQpJ+ecBRXVTFFR155g9vxTAiooISGBL/AK4pujZ+ifZ+hfxdE7z9A/VHZu\n33kRAAAAwJURrAEAAAALuB2sP/vsM508edKbtQAAAABVltvB+uWXX9aECRO8WQsAAABQZbkdrM+f\nP6/GjRt7sxYAAACgynI7WD/44INauXKl9u7d6816AAAAgCrJ7e32wsLCJEkDBgxQw4YNFRcXp8DA\nwMuOnTVrljXVoVo7dOhQjdyP1Aq5uTVzL1er0D/P0L+Ko3eeoX+XZ9U+1/Cc2zeISUxMdPuge/bs\nqXBBqDlMSO43AAAgAElEQVSGvfG+wiKjfV0GAABVVl5Wpp7s1k7x8Q2vOZZ9wD1j6Q1i1q1b51Ex\nwH8Li4xWeL36vi4DAADAEm4H67i4OG/WAQAAAFRp170g5+DBg8rOzpbT6dSFVSSmaaq0tFRnzpzR\nxo0b9dprr1leKAAAAFCZuR2ss7OzNWzYMO3ateuyrxuG4QraBGsAAADUNG5vt/fWW29p165duvXW\nW/Xwww8rJCRErVq10i9+8Qu1a9dOpmmqc+fOSk9P92a9AAAAQKXk9oz1V199pUaNGik9PV3+/v46\nffq0ioqKNHHiREnS8uXL9eKLL3qtUAAAAKAyc3vGOjMzU126dJG/v78kqWnTpvr+++9drw8YMEBt\n2rTR7Nmzra8SAAAAqOTcDtaBgYEKCAhwPW7YsKFyc3N18uRJ13MtW7bU9u3bra0QAAAAqALcDtaN\nGzcuN0N90003SZJ++OEH13Nnz55VUVGRheUBAAAAVYPbwfree+/Vjh079MILL+jo0aO67bbbFBUV\npRkzZug///mPtm7dqlWrVrkCNwAAAFCTuB2sBw8erN69e2vlypXasWOHbDabRowYoT179ujee+/V\nY489poKCAv3mN7/xZr0AAABApeT2riC1atXSjBkz9Pe//12xsbGSpIcfflh16tTRJ598ooCAAPXv\n31/dunXzWrEAAABAZXXdd15s3bp1ucd9+/ZV3759LSsIAAAAqIquGKwLCgoqfNCQkJAKvxcAAACo\niq4YrJOSkmQYxnUdzDRNGYah3bt3e1yYlUzT1PHjx1W/fv3rfu+RI0cUHx/vhaoAAABQnVwxWLdr\n1+5G1uFVr776qurWrauRI0de9vXExERt2LDhkuD92WefadGiRZo/f76mT5+umJgYPfroozei5AoZ\nMmSIBg4cqAceeMArx9+2bZtSU1O1YcMG9enTR/Pnz1d0dHS5MRkZGVq3bp1ee+21K44BAACojq4Y\nrD/88EOvn/z48eN6+umndfr0aTVv3lw9evTQrFmz5O/vryeeeEKDBg1SYmKi7r33Xm3dulUjR47U\nQw89pJEjR+rgwYOKjY1VaWmpUlJSNGbMGIWHh+u5557TnDlzdOrUKYWEhGj27NlasWKF7Ha7unbt\nqp///Odav369tm3bpvT0dNd1mqapV199VZ9//rkk6c0339ScOXO0f/9+LVy4UFlZWQoICFBeXp5S\nUlJ0/PhxNWjQQH/84x+1YMECbd68WWfPnpWfn58WLlx4yXKYo0ePql+/frrzzju1Y8cOTZkyRfXr\n19eoUaNUUlKipKQk/eEPf1BiYqKSkpLUvn17hYSEaNmyZQoMDNTLL7+sffv2ad68eQoKClJWVpbm\nz5+v06dPa8yYMYqMjFRmZqYkady4cfrhhx9ks9n07LPP6uWXX1ZZWZn69eunn//85+rXr5/atWun\nf/7zn+rZs6e++OILtWvXTq+99prS09Mv+Qx+97vfadu2bWrQoIHrXzEOHjyo0tLSSz7T/Px8HT9+\n/KpjAAAAqiO3t9vzhg8//FBNmzbV+vXrlZycrN/97nf64IMPNHfuXE2YMEGFhYWSfpqJHT58uDIy\nMrR582YdOHBAn332mdq0aeM61tmzZ/XXv/5VHTt21KOPPqrf/va3Onr0qI4cOaLevXvr0Ucf1e23\n3y5JrnB48VIXwzDUrVs3PfPMM3I4HNq0aZOGDBmi22+/vdws9Zw5cxQbG6u1a9cqMjJS77//vgzD\nUHBwsFauXKlTp07p3//+92Wv99y5c3rppZc0YMAAbdiwQVFRURo+fLgGDhyoTz75xDVu9OjR+u1v\nf6tp06bJNE3l5uZq8eLFMgxDZWVlWrJkierUqaPvvvtOc+fO1aBBg7Ro0SLZbDbXtbRq1Urp6em6\n6aabNGLECCUnJ+vTTz919WrKlClKSkpSWVmZ3nnnHa1cuVIFBQUaP358uc9gz549WrNmjVatWqWB\nAwda8bEDAABUS1ecsR4xYoTuvfde/exnP3M9dnfN9axZs9wadyEomqapo0ePys/PT6Zpyul0ys/P\nT35+P+X+6OhoBQUFqaSkRKZpSvq/9dwXhIeHy26369tvv9Vbb72ladOmKTg4WE6ns9w5/fz8VFhY\nqOzsbNexJKmwsFDPP/+8/vCHPyguLk5Op1OGYZQbc+G8F9fg7+/vqtEwDAUGBl51ljYqKkpBQUHK\nycnRsmXL9P3332vw4MHl6oyJiVFZWZkk6S9/+YsOHz6swMBAHT58WBEREZKk4OBglZaWluvZxerV\nq+d6v2EYatOmjWs2XpLq1q0ru92uqKgoBQQElLumiz+DC2FdkpxO5yX9uBx3xgAAAFQ3VwzW69ev\nV9OmTcs9ttqQIUOUkpKiu+++Wy1atNDYsWP1xBNPqLS0VK+88ooCAgLKzS4bhqEuXbropptuUt++\nfRUeHq7g4GDX65LkcDh0/vx5TZw4USEhIcrOzlazZs30zjvvqFOnTurXr59GjRqlhg0blju2zWZT\nQkKCpkyZoujoaGVnZ6tr167697//rfnz57tqHjp0qJ5//nn16dNHDRo00Pjx491eNvPfM+UNGjTQ\nvHnzVFpaqtDQUGVnZ7teDwkJ0TPPPKNf/epXstvtmjZtmqsHFx9v2LBheuaZZ7Rx40YFBgZecq5G\njRrp3Xff1enTp1VQUKDS0tJL6rhw3JCQkEs+g5tvvln333+/7r33Xt16663X/MtVaWmp6y8bAAAA\nNYlhXmF68ejRo6pTp45CQ0Ndj90VFxdnTXWXkZ2drZSUFOXk5KikpETPPfecevfu7bXzVcTmzZs1\nadKkcs/98Y9/LPcXleogLS1N77zzjuvxgQMHFBgYqKeeekrDhg275vuf+/BThde7/p1aAADAT86c\nPKbBzRMUH9/wmmMdjiDl5Jy7AVVVT1FRodccc8VgDXgbwRoAAM8QrG8cd4L1dd95saioSD/++KOK\ni4uvOCYxMfF6DwsAAABUaW4H6zNnzmj8+PFav379VX84rTLeIAYAAADwNreD9ZQpU7Ru3To1bNhQ\nzZs3V0BAwGXHXe/dGgEAAIDqwO1gvXnzZrVu3VqLFi1ybYMHAAAA4CduJ+SioiLdcccdhGoAAADg\nMtxOyXfddZe+/fZbb9YCAAAAVFluB+vU1FRlZmZq9OjR2rlzp7Kzs1VQUHDZXwAAAEBN4/Ya6zp1\n6qhFixZavXq1Vq9efdkfUrxwm3F2BQEAAEBNc127gqxdu1a1a9dW48aNFRQU5M26AAAAgCrF7WC9\ndu1a3XLLLVq0aJHrNucAAAAAfnJdu4J07dqVUA0AAABchtvBum3bttqzZ483awEAAACqLLeXgrzw\nwgsaPHiwpk6dqscee0yxsbHerAs1QF5Wpq9LAACgSvvpz9IEX5eB/59hmqbpzsBf/epXOnr0qI4c\nOSLDMGSz2VS7du3Ljt2+fbulRaJ62rdvv/LyCn1dRpUUFlab3nmA/nmG/lUcvfMM/bu82Nj6stmu\nPVfqcAQpJ+fcDaioeoqKuvZyaLdnrA8dOiRJql+/fsUrAi6SkJDAF3gF8c3RM/TPM/Sv4uidZ+gf\nKju3g/WGDRu8WQcAAABQpbn9w4sAAAAAruyKM9bz589X69atdfvtt0uSPvjgg8vebfFyhg4dak11\nAAAAQBVxxWA9ZcoUjRw50hWsp06d6tYBDcMgWAMAAKDGuWqwbtasWbnH7nB3VhsAAACoTq4YrAcO\nHHjVxwAAAAD+j9u7glxOUVGRTpw4ocjISAUHB1tVE2qIQ4cOsR9pBeXmsperJ+ifZ+hfxdE7z9C/\nK3N3L2t41zU/gfXr12vdunX65S9/qcTEREmSaZqaPn26FixYoPPnz8vf3189e/bUyy+/rPDwcK8X\njeph+ORVCgqN9HUZAABUaefys/RaSrLi4xv6upQa76rB+qWXXtLSpUslSd26dXMF6zfeeENz586V\nYRi68847JUkZGRnat2+f0tPTZbfbvVw2qoOg0EgFO2J8XQYAAIAlrriP9YYNG7R06VI1a9ZM7777\nrnr06CFJOnnypN577z1J0iuvvKJ3331X7777rmbMmKH//Oc/+uCDD25M5QAAAEAlcsVgvWzZMtWp\nU0fz58/XnXfeqYCAAEnSZ599ptLSUiUkJOihhx5yje/Zs6dat26tNWvWeL9qAAAAoJK5YrDeuXOn\nunfvrpCQkHLPf/3115Kk5OTkS97TqlUrHTp0yOISAQAAgMrvisE6NzdXMTHl1786nU7t2LFDhmGo\nY8eOl7ynVq1aKi4utr5KAAAAoJK7YrAOCQnRmTNnyj23c+dOnT17VjabTe3atbvkPYcPH2ZXEAAA\nANRIVwzWt99+u77++ms5nU7Xc5988okkqWPHjgoKCio3Pjs7W5s2bXLdAh0AAACoSa4YrH/+85/r\n6NGjGj16tL755hstWLBAS5YskST9v//3/8qNzc/P13PPPadz586pX79+3q0YAAAAqISuuI/13Xff\nrUcffVQLFy4st9PHI488om7durkejx49Wl9++aXOnTune+65Rz179vRuxQAAAEAldNUbxIwfP169\ne/fWF198oZKSEnXp0kXdu3cvN+aHH35QYGCgHn/8cT355JPerBUAAACotK55S/MOHTqoQ4cOV3w9\nLS3tki35AAAAgJrmimus3UWoBgAAACwI1gAAAAAI1gAAAIAlCNY1zMyZM5Wamup6/MILL2jdunXX\ndYyMjAyNHTvW6tIAAACqNIJ1DWMYhnbu3Kl+/frpwQcf1O7du5Wfn6+ZM2fqoYceUv/+/fWLX/xC\nOTk5uuOOO1RUVKRBgwZp2rRp2rJliwYOHKiCggIdO3ZMP/74o9q2bauUlBR16tRJn3/+uf7+97/r\nnnvuUXJyssaMGePrywUAALhhCNY1jGmaiomJ0cqVKxUcHKzMzExJPwXusLAwrVixQkFBQVq1apVa\nt26tTz/9VJmZmdqyZYs2bNigvn37ljveuXPn9NJLL2nAgAHasGGDjh07Jj8/Pw0ZMkQ9evSQaZq+\nuEwAAIAbjmBdA5WWlkqS/Pz8ZLP9346LxcXFkn4K335+frrnnnv05ptvqnfv3iopKdGaNWvUp0+f\nS8JyVFSUgoKCVFpaqptvvllPPvmkAgIC9NJLL+nQoUM37sIAAAB86Jr7WKN6MQxDRUVF6t+/vwID\nAxUeHi7DMCRJ2dnZuv/++xUcHKz7779fxcXFeuWVV9SlSxfZbDZ98803io+P144dO1zv+e//FhcX\na86cOSosLFTr1q0VExPjmwsFAAC4wQyTf6uvsV5//XWtWLFCH3zwgVavXq0ff/xRU6dOvWHn7z9q\nsYIdBG8AADxxNueEJjx2u+LjG151nMMRpJycczeoquonKir0mmMI1vAZgjUAAJ4jWN8Y7gRr1lgD\nAAAAFiBYAwAAABYgWAMAAAAWIFgDAAAAFiBYAwAAABYgWAMAAAAWIFgDAAAAFiBYAwAAABYgWAMA\nAAAWIFgDAAAAFiBYAwAAABYgWAMAAAAWIFgDAAAAFrD5ugDUXOfys3xdAgAAVR5/nlYehmmapq+L\nQM20b99+5eUV+rqMKiksrDa98wD98wz9qzh65xn6d2WxsfVls119vtThCFJOzrkbVFH1ExUVes0x\nzFjDZxISEvgCryC+OXqG/nmG/lUcvfMM/UNlxxprAAAAwAIEawAAAMACBGsAAADAAgRrAAAAwAIE\nawAAAMACBGsAAADAAmy3B585dOgQ+5FWUG4ue7l6gv55hv5VHL3zDP3zzI3onzv7aVdnNffK4XMT\nVv9OoW5stg4AACq//FP5evbO8YqPb+jrUnyGYA2fCY0KVZ2YMF+XAQAAYAnWWAMAAAAWIFgDAAAA\nFiBYAwAAABYgWAMAAAAWIFgDAAAAFiBYAwAAABYgWAMAAAAWIFgDAAAAFiBYAwAAABYgWAMAAAAW\nIFgDAAAAFiBYAwAAABYgWAMAAAAWsPm6AFQt48aNU1xcnBITE5WRkaHXXnvtkjEvvPCCevfuLdM0\ntW7dusuOAQAAqG4I1jXUzJkztXHjRhUWFqpu3bpyOBz67rvvNHHiRH388cfatWuX6tatq2nTpkmS\nRowYIZvNpuLiYsXFxSk/P1/Hjh277LGPHz+u/Px8SbriGAAAgOqGpSA1WHh4uNLS0rR9+3Y9/vjj\nGjBggEaMGKHTp09r3bp16ty5s2bMmKHFixerVatWSk9PV0REhK/LBgAAqJQI1jVYRESE7Ha7JCky\nMlIBAQGqW7euJMk0TZmmKT8/P/n5+ck0TdfzAAAAuBRLQWoowzDK/f7Cr6SkJJWVlalv375yOBya\nNm2a/Pz8NHz4cD3wwAMKCAi47DEuVlpaKj8/PzmdziuOAQAAqG4MkylIeGD48OE6ePCg63GbNm20\nceNGffDBB2rSpMlV3/vk//5WdWLCvFwhAAC4EXJP5GnYrc8oPr6hr0vxiqio0GuOYcYaHpk9e7av\nSwAAAKgUWGMNAAAAWIBgDQAAAFiAYA0AAABYgGANAAAAWIBgDQAAAFiAYA0AAABYgGANAAAAWIBg\nDQAAAFiAYA0AAABYgGANAAAAWIBgDQAAAFiAYA0AAABYwObrAlBz5Z/K93UJAADAIvmn8qVbfV2F\nbxmmaZq+LgI10759+5WXV+jrMqqksLDa9M4D9M8z9K/i6J1n6J9nbkT/YmPry2arnvO2UVGh1xxD\nsIbPlJSUKSfnnK/LqJIcjiB65wH65xn6V3H0zjP0zzP0zzPuBGvWWAMAAAAWIFgDAAAAFiBYAwAA\nABYgWAMAAAAWIFgDAAAAFiBYAwAAABaonhsNoko4dOgQ+5FWUG4ue7l6gv55hv5VHL3zTHXvX3Xe\nA7qm4NODz6xPHavokBBflwEAgM9lFhSoXerLio9v6OtS4AGCNXwmOiREsWFhvi4DAADAEqyxBgAA\nACxAsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLAGAAAA\nLECwBgAAACxAsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLCGW2bOnKnU1FRflwEAAFBpEazh\nFsMwtHPnTvXr108PPfSQdu3apZ/97Gfq1auXXn75Ze3Zs0fJycmSpM6dO2vx4sX66KOPNGrUKB9X\nDgAAcGMQrOEW0zQVExOjlStXKigoSI8//rh+85vfaPXq1dq0aZOys7NVq1YtLV++XH5+ftqyZYs+\n//xz9enTx9elAwAA3BAEa7ittLRUkuTn5yd/f3+ZpinTNF3P9enTR2+++aaGDh2qXbt26W9/+5t6\n9Ojhy5IBAABuGII13GIYhoqKitS/f38VFhbq1Vdf1Ycffqh7771X3bt3V8eOHdW7d2+dPHlS3bt3\nV7NmzdSuXTvVrl3b16UDAADcEIZ5YcoRuMHSf/UrxYaF+boMAAB87nhenhJSnlN8fEOvncPhCFJO\nzjmvHb+6i4oKveYYZqwBAAAACxCsAQAAAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKwB\nAAAACxCsAQAAAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKwBAAAAC9h8XQBqrsyCAl+X\nAABApZBZUKAEXxcBjxmmaZq+LgI10759+5WXV+jrMqqksLDa9M4D9M8z9K/i6J1nqnv/YmPry2bz\n3pynwxGknJxzXjt+dRcVFXrNMcxYw2cSEhL4Aq8gvjl6hv55hv5VHL3zDP1DZccaawAAAMACBGsA\nAADAAgRrAAAAwAIEawAAAMACBGsAAADAAgRrAAAAwAJstwefOXToULXej9SbcnOr916u3kb/PEP/\nKo7eeaYq9s/be1OjcuGThs989PoqRYRF+roMAAC84nRelu55Ilnx8Q19XQpuEII1fCYiLFLR4TG+\nLgMAAMASrLEGAAAALECwBgAAACxAsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLAGAAAALECw\nBgAAACxAsAYAAAAsQLAGAAAALECwBgAAACxAsAYAAAAsQLAGAAAALECwvgFOnjypPn36VOi9Q4YM\nUXp6usUV/SQjI0Njx461/LjJycnavn27pk+froULF1p+fAAAgMrI5usCqoO0tDTNmzdPQUFBysrK\n0qBBg7Rs2TI5nU4NGzZMXbt21cGDByVJiYmJSkpKUvv27TVq1KhyxykoKFBKSoqOHDmi+vXra/bs\n2a7jz5o1Sx06dNCUKVM0ZcoUff311woJCdHrr7+u5cuXa/PmzTp79qz8/Py0cOFCTZo0ScePH9eJ\nEycUExOj999/X5MmTdLnn38uSXrzzTeVn5+vY8eOXfaahgwZIrvdrgMHDqh9+/bav3+/cnJy9N57\n78kwDKWkpCg/P19NmzbVtGnTtHnzZk2cOFGNGjVSQUGBJCkrK0sBAQFe6joAAEDlwoy1RcrKyrRk\nyRLVqVNHTqdTKSkpatu2rdauXSvDMMqNHT169CWhWpJWrFghPz8/rVu3TkOHDlVRUZEk6a677tKf\n//xnrVixQvv379eCBQvkdDqVmZmp5cuXyzAMBQcHa+XKlTp16pT27t0rwzCUkJCgtLQ0bdu2TZmZ\nmerWrZueeeYZORwObdq06ZK6/lunTp00ceJErV+/XgsWLJDD4dCOHTs0bdo09ejRQxkZGcrOztaK\nFSs0a9YsjRkzRm+//bZKS0utaywAAEAVQbC2SEREhCQpODhYc+bM0bFjx5SYmKiysrJLxsbExFz2\nGIZhyOl0SpIyMzN19uxZSVJ0dLRq166tsrIylZWVKSAgQEuXLtULL7ygXr16yTRNRUdHyzAMBQYG\nuoJtdHS0goODJf00G/7888+rTp06iouLc53nWtdkt9sVGhoqu92ugIAAmaZZ7teFuv38/Mo9BwAA\nUNMQrC1gGEa52V+73a6lS5fq22+/1ZkzZ1xjLh5/Of369ZMk3X333Vq9erXCw8MvOc8tt9yiQYMG\nqV+/fvrzn/+ssLCwa848G4Yhm82mhIQETZkyRWfOnFF2dvZVa7n4uv679hEjRmjTpk3q06ePoqKi\n1L9/fz399NN68803NWLECDkcjqvWAwAAUB0ZJlOMPvHXv/5Vc+fOLffcwoULVbdu3Rtey/Dhw11r\nwCWpbdu2mjx5stfPO+f5xYoOv/zsPQAAVV3mmRNKeuR2xcc39HUpkiSHI0g5Oed8XUaVFRUVes0x\n/PCijwwaNEiDBg3ydRmS5PohSQAAAFQcS0EAAAAACxCsAQAAAAsQrAEAAAALEKwBAAAACxCsAQAA\nAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKwBAAAACxCsAQAAAAsQrAEAAAALEKwBAAAA\nC9h8XQBqrtN5Wb4uAQAAr+HPuZrHME3T9HURqJn27duvvLxCX5dRJYWF1aZ3HqB/nqF/FUfvPFMV\n+xcbW182W+WYx3Q4gpSTc87XZVRZUVGh1xxTOT5p1EgJCQl8gVcQ3xw9Q/88Q/8qjt55hv6hsmON\nNQAAAGABgjUAAABgAdZYAwAAAP9fe3ceFcWV/g382zRLgEYwohAjKBrtJig0CIoCEhs8ahRB3FhE\nQnAbFpUompwThHGLjoOgqLhG3DK4jBEwI+6CRgVkwqYEE9RR5ICIgLKJDfX+4ds1tOzdHTo9v+dz\nTk7iperWU09fzMPl1i0FoBlrQgghhBBCFIAKa0IIIYQQQhSACmtCCCGEEEIUgAprQgghhBBCFIAK\na0IIIYQQQhSACmtCCCGEEEIUgN68SHpVdnY2ysvLYWxsDBsbG2WHozLy8/MxfPhwnD17FlwuFzNm\nzICWlpayw1IpNPZkR+NPPjT2ZEdjT340/mQny/ijfaxJr1m+fDkKCwvRv39/VFRU4NNPP0VsbKyy\nw1IJU6dOxbBhw1BTUwMNDQ3o6uoiLi5O2WGpDBp78qHxJzsae/KhsScfGn/ykWX80Yw16TX5+fm4\ncuUKOBwOWlpaMGnSJGWHpDKamprw+PFjJCcng8PhQCQSKTsklUJjTz40/mRHY08+NPbkQ+NPPrKM\nPyqsSa8ZOXIkJk+ejAEDBqCiogIjR45Udkgqo1+/frh//z7u3LmDa9euQSAQKDsklUJjTz40/mRH\nY08+NPbkQ+NPPrKMP1oKQnrV3bt3UV5eDiMjI9ja2io7HJVSV1cHNTU1lJeXY+DAgdDU1FR2SCqD\nYRhkZ2ejrKwMRkZGsLOzU3ZIKqe2thZcLhdlZWX4+OOPafz1gOTvvQEDBtDYk4Hk7z4ae7K5e/cu\nysrKYGxsTP/flUFP/99Lu4KQXpORkYFdu3Zh586d2L17NzIzM5UdksrIyMhASEgIPD09sW7dOuTk\n5Cg7JJXC4XBga2uL6dOnU2EjIx6PB21tbZiZmVFh0wOJiYlYv349amtrYWdnh4CAAGWHpFISExPh\n4+OD5ORkmJmZYcmSJcoOSaXk5OTg2rVrGDhwIDZu3IiUlBRlh6RScnJysHv3bhQWFiIsLAwXLlzo\n8hxaCkJ6TUREBIKCgmBkZITy8nJERER0a5ASyp28RCIROBwOJL+g43A4uHLlipKjUh2UP9nFx8dj\n9erV2Lt3LzQ1NVFWVqbskFRKfHw8wsPDsW/fPsqfDNasWQNbW1sEBATg22+/RUxMDNzc3JQdlsp4\nP3+xsbFd5o8Ka9JrGIYBh8OBmpoa1NTolyU9QbmTj5+fH9LT0/GXv/wFtPqt5yh/suNyuTAzM8Oe\nPXvg4+ODmpoaZYekUrhcLoYOHUr5k1FLSwsCAwMxcuRITJgwAfHx8coOSaXIkj9uVFRU1B8fGiHA\niBEjcPToUZw7dw5PnjxBeHg4Bg0apOywVALlTj5CoRAFBQWYM2cOTE1NKXc9RPmTnaGhIX777Tc4\nOTlh3LhxuHPnDnx8fJQdlsqg/MnH0NAQL168gKenJzIzM/HJJ5/A0tJS2WGpDFnyRw8vEqXJy8uj\nb3Y1KHUAABSjSURBVHAZUe7kk5+fj1GjRik7DJVF+ZMdfe/Kh/InH8qffLqTP/qdMulVLS0tqKys\nRHNzM7Zt26bscFQK5U4+rfMXHR2t7HBUDuVPdvS9Kx/Kn3wof/Lpaf6osCa95tChQxAKhXBwcIC1\ntTU+++wzZYekMih38qH8yYfyJzvKnXwof/Kh/MlHpvwxhPSSiRMnMqWlpUxzczPz7NkzRiQSKTsk\nlUG5kw/lTz6UP9lR7uRD+ZMP5U8+suSPdgUhvcbAwAA7d+6EsbExysvL0bdvX2WHpDIod/Kh/MmH\n8ic7yp18KH/yofzJR5b80cOLpNc8f/4cp06dYt+8OGfOHAwYMEDZYakEyp18KH/yofzJjnInH8qf\nfCh/8pElf1RYE0IIIYQQogD08CIhhBBCCCEKQIU1IYQQQgghCkCFNSGEEEIIIQpAhTUhhHTTlStX\nsGTJEowbNw6jRo2Co6MjgoKCcPXq1TbHnjlzBgKBAEeOHFHY9UtKSiAQCBAcHMy2+fn5QSAQoLa2\nVmHXATqO/9y5c3j69KlCr/V/0c2bN5Gfn6/sMDrU1NSE6dOnIyEhgW0rLi6Gt7c3rKys4Obm1u64\nBwAvLy8sW7as3a/dunULdnZ2qKio+CPCJkTpqLAmhJBuWL9+PYKDg1FcXIxJkybhyy+/hIODA7Kz\nsxEUFIS1a9dKHf/pp58iJCQEQqFQYTHo6+sjJCQE06ZNk2rncDgKu4ZEe/Fv3boVq1atQl1dncKv\n93/JDz/8gIULF+L58+fKDqVDe/bswZs3bzB//nwAAMMwCAsLw8OHD+Ht7Q1tbW2EhoaiqKhI6rxr\n164hLy8Py5cvb7ff8ePHw9raGuvWrfvD74EQZaB9rAkhpAsZGRk4fvw4Jk+ejJiYGKip/XdOora2\nFgsWLMDJkyfh7OwMFxcXAIBAIIBAIFBoHHp6eggJCVFonx1pL/7Kyspeufb/uj97Hh8/fox9+/Zh\n/fr1UFd/Vybk5+fjwYMHiImJwdSpU9HY2AhnZ2ecOnUK3377LYB3xff27dsxbdo0DBs2rMP+w8LC\nMHPmTFy/fp3eBEj+59CMNSGEdOH69esAgPnz50sV1QDA4/GwcuVKAMDly5d7OzSiwv6su91+//33\n0NPTg5ubG9tWUlICAOwPWx988AGGDBnCtgPA+fPn8fvvv3e4DETC3NwcNjY22LNnzx8QPSHKRYU1\nIYR04e3btwDQ5tfeEra2toiNjYW/vz/bJlmjfPjwYbZNJBIhICAARUVFCAwMhLW1Nezt7bF27Vo0\nNjaivLwcK1aswOjRozF+/HiEh4ejqqqKPb+9NdYdxXv48GHMnTsXtra2GDlyJEQiESIjI/Hy5cs2\n/e3YsQMbNmyAUCiEvb09UlNT26yxFolEOHv2LADAw8MDIpEId+/ehUAgQHh4eLtxuLq6YuLEiZ3G\nKhKJ4OPjg19//RV+fn4QCoVwdnbGhg0bUFNT0+b4iooKREVFYcKECRg1ahRcXFzw97//vc3yFD8/\nP4hEIqSlpUEkEkEoFGLFihXs17OysrBkyRKMHTsWtra28PLywpUrV9pc7969ewgKCsLYsWNhZWUF\nDw8PJCYmtnsffn5+KC4uxtKlSzF69GjY2Nhg8eLF+PXXX6Xi2rVrFwAgJCRE6rcCdXV12LVrF9zd\n3WFjYwNLS0tMnjwZW7duRUNDQ5trJiYmws3NDUKhEK6urjhw4ADOnj0LgUCArKwsme6jqqoKSUlJ\nmDJlCjtbDbxbhiSJUeL169fQ09MDADQ3NyMuLg4zZ86EiYlJm37f5+bmhpycHOTk5HR5LCGqhApr\nQgjpgqOjIwBgy5Yt2LBhA3JyctDS0sJ+XUtLC1OmTGl36cf7659LSkrg4+MDAPDx8UH//v1x8uRJ\nrF69Gt7e3igrK4OXlxdMTU2RkpKCiIiILvt838qVK/Hdd99BU1MT8+bNg5eXFzQ1NXHixAksXry4\nzfEnT55EamoqfHx8IBQKYW1t3eYYf39/9v68vLzwxRdfwNbWFoMGDcLVq1fR2Ngodfy///1vlJSU\nYMaMGZ3GCrx7u5m/vz/q6uowf/58mJiY4NixY5g/fz7q6+vZ40pLSzF79mycOHECo0aNQkBAAMzM\nzHDgwAH4+fm1KT6rq6sRFhYGW1tbeHp6ws7ODgCQlJQEf39/ZGdn47PPPsPs2bNRVlaG4OBgnDlz\nhj0/LS0NXl5eyMzMZAvnlpYWREVFtVlTDwBlZWXw9vZGVVUVvLy8MGbMGKSnp2PBggXsDzSt45g2\nbRq7tEcsFiMgIAA7d+6EkZERfH19MWvWLDQ2NuLgwYNYs2aN1LU2bdqEqKgoNDU1Ye7cuRAKhYiN\njWWL9tZ6ch+XL1/Gmzdv2DEvYW5uDi0tLRw6dAi1tbW4dOkSHj58CBsbGzanJSUlXf7QJyHp/9y5\nc906nhCVwRBCCOlSVFQUw+fz2X9sbGyYxYsXMwkJCUxZWVmb4//5z38yfD6fOXz4MNs2ceJEhs/n\nM5s2bWLbXr16xQiFQobP5zMrVqxg25ubm5lJkyYxAoGAaWxsZBiGYZ4+fcrw+XwmODiYPW7+/PmM\nQCBgXr9+zTAMw/zyyy8Mn89nwsPDpeIRi8WMm5sbw+fzmUePHkn1Z25uzhQVFXUZ/5o1axg+n88U\nFhaybXFxcQyfz2d++umndvP1+++/d5pXSU6CgoKYlpYWtn39+vUMn89n4uLi2LZFixYx5ubmzPXr\n16X6OHLkCMPn85m//e1vUnnh8/nM5s2bpY6trq5mRo8ezTg4ODCPHz9m21++fMk4OTkx9vb2jFgs\nZurr6xl7e3vGwcGBefbsGXtcS0sLs2zZMobP50vFIbmP9evXS10vIiKC4fP5zD/+8Q+2bceOHQyf\nz2cuX77Mtp07d47h8/lMbGys1Pm1tbWMg4MDY2FhwY6DvLw8hs/nM/PmzWPq6+vZY69fv87w+XxG\nIBAwmZmZDMMwPb6PVatWMXw+v90xfeDAAUYgELDfAz4+PoxYLGaampqYiRMnSt1768+yI2PGjGHc\n3Ny6PI4QVUIz1oQQ0g2RkZHYu3cvnJycoKGhgfr6eqSlpeG7776Di4sLtm3b1q01sxwOB1988QX7\nZz09PQwdOhQAEBAQwLarqanBwsICDMPg2bNn3Y7zo48+wubNm9usc+VyuezsYuvlIABgamqKESNG\ndPsarbm7uwOQnnl8+/Ytzp8/DwsLi04fYmsd29dffy01E79ixQro6OggJSUFwLtZ7fT0dEyYMAHO\nzs5S5/v6+sLY2Bg//vhjm74nT54s9ee0tDT2gdPBgwez7X379sU333yDhQsXoq6uDlevXkVVVRUC\nAwMxcOBA9jgOh4OvvvoKAKRmtyVfW7RokVTbhAkTALybbe+MhYUFNm7cKLWcCAB0dXVhbm4OsViM\n6upqAO9mh4F3DwFqa2uzxzo7O8PBwUFqHPb0Pu7fvw8ejwcjI6M2MQYGBuLEiRP4+uuvERcXh6NH\nj4LL5eLkyZN4+fIlli5dioaGBqxcuRKWlpbsEqmODBs2DL/99hvEYnGnuSFEldCuIIQQ0k3Ozs5w\ndnZGfX09srKycOfOHVy9ehX/+c9/sG/fPrS0tGDVqlWd9qGuro6PPvpIqk1HRwccDgeDBg2SatfS\n0gLwbk/h7jIyMoKHhwfEYjHu3buHR48e4cmTJygsLMTt27cBQGoZC4A21+0JExMTjB49Gjdu3MCr\nV6/Qp08f3Lx5E9XV1QgKCup2zO+vy+XxeBgyZAgKCwvR2NiI+/fvA3i3vCMuLq5NHxoaGigrK8Pz\n588xYMAAAGg3p5L1zu1tgzh16lT2vwsKCth/t3c9NTU1qbXTwLvP6/2ClMfjAej6MxwyZAiGDBmC\nN2/eIDc3l/3c7t27h6ysLHA4HPZzy8/PB4fDgaWlZZt+rK2t8fPPP8t8H5WVlejbt2+HcVpaWkpd\nt7GxEfHx8fD19YWhoSG2bt2K9PR0bN68GTU1Ndi0aRNMTEwwa9asNn317dsXDMOgqqoK/fv37zQ/\nhKgKKqwJIaSHdHR02CJ7zZo1OHXqFNauXYtjx44hNDSULYjb03qG8X2ampoKiS8xMRG7du1iX8Kh\nr68PKysrDBs2DLm5uW1m1j/44AO5rufh4YHs7GxcuHABc+bMQXJyMtTV1TF9+vRund/e7CgAGBoa\nAni3peGrV68AoNMH3jgcDmpqatjCGmh7b5J+JAVvR16/fg0A+Omnnzq9VmvtfX6SWfiufpvBMAz2\n7NmDQ4cOsTEaGhrC2toaH3/8MYqLi9k+qqqqoK2t3e5Yan3vstxHbW1tj4rc48ePo7GxkZ2pP336\nNGbPns3utX779m388MMP7RbWkvhfvXpFhTX5n0GFNSGEdKK2thaenp6wsLBATExMu8fMmTMHqamp\n+Pnnn1FWVia1xKC3nT9/HlFRURAIBPjrX/8KCwsLtnCNjIxEbm6uwq85depUbNiwAampqXB3d8e1\na9fg6OiIDz/8sFvnv3nzpt12SYFpYGAAHR0dAEBwcDBCQ0NljlXST3svuWlqaoKamhrU1dXZ4w4f\nPoyxY8fKfL3uOnjwILZv346xY8di0aJFMDc3R79+/QAACxcuRHFxMXssj8dDaWkpmpubweVypfp5\n/w2cPb0PfX39br/Fs7a2Fvv378eCBQtgYGCAqqoq1NTUYMiQIewxgwcPRkZGRrvnS4r+zn4QJUTV\n0BprQgjpBI/HQ21tLdLS0thCoCNcLpedZVUWyVrn6OhoiEQiqdnghw8fApB9/+SOdiPh8XhwcXFB\nZmYmLl26hMbGxm7tBtI6rta7fwBAQ0MDioqKYG5uDnV1dfD5fADo8DXgu3fvxoEDB9itETsi6ae9\nHzAOHjwIoVDIbiPY0fVev36NzZs3Izk5ueuba0d7eTx37hzU1dWxe/duODo6skU1wzB4+PAhOBwO\n+7mNHDkSYrGYXebR2vv31dP76N+/P7uWuysJCQlgGAZffvklgHdb7gGQWjP95s2bDsdNVVUVuFxu\nh7+xIEQVUWFNCCFd8PX1RX19PZYvX97mwT/g3RZlt2/fhqurK3R1dZUQ4X9JZv8ky0Akzp49y67V\nlfVhMcm+xu2tF/bw8MDbt28RHR0NHo8HV1fXbvfb2NiIbdu2sX9mGAbR0dFoaGhglxCYmJjAzs4O\n6enpuHDhgtT5ycnJ2LFjB9LT06GhodHptVxdXaGtrY0jR45IPVBYXV2NxMRE6OrqwsrKCpMmTQKP\nx8P+/fvx+PFjqT62bNmChIQEPHnypNv32Fp7edTS0oJYLG4zvnbt2sXGKfncPD09AQAxMTFS2xze\nuXMHly9flipke3ofw4cPR0NDA54+fdrpPVRXVyMhIQGBgYHsspp+/fpBX19faqlObm4uzMzM2pzf\n0tKC4uJimJmZdfmZEaJKaCkIIYR0YenSpXjw4AEuXLgAV1dXODo6wtTUFG/fvkVubi5ycnIwbNgw\nREVFyXwNWWeR3z/X3d0d//rXvxASEoJp06ZBV1cX+fn5+OWXXzB+/HjcunVL6qUzPSGZWdyyZQvG\njRsn9Xp1R0dHGBoaorS0FLNmzerRenENDQ2cPn0aBQUFsLKyYnNqb2/P7vkNAOvWrYOvry+WL1+O\nCRMm4JNPPsGjR4+QlpYGAwMDREZGdpgXCX19fURGRuKbb77BzJkz4eLiAh0dHaSmpqKyshJxcXHQ\n0NCAhoYGNmzYgFWrVmHmzJlwdXVF//79kZWVhfz8fFhaWiIwMLCnKQQAGBsbAwDi4+Nx7949LFu2\nDDNmzEBubi68vb0xZcoUaGhoICMjA48ePYKtrS3u3r2LqqoqDB48GEKhEF5eXkhMTIS7uzucnJxQ\nWVmJS5cuoU+fPqiqqmLfEKqnp9ej+5g4cSJSUlKQnZ3d6YteDhw4AC0tLSxYsIBt43A48PT0REJC\nArhcLqqrq5GXl4fo6Og25z948AB1dXUYP368TDkk5M+KZqwJIaQLXC4X27dvx86dO+Ho6Ii8vDwc\nPXoUZ86cgVgsxsqVK/Hjjz9K7abA4XC6fJFLa+0d290+Wh/j7OyMbdu2wdTUFMnJyThz5gz69u2L\nU6dOsW9ITE9P71af71/b19cXDg4OKCgoYB9ak1BTU2NnqSVb8HUXj8fDoUOHwDAMEhMT8fLlS4SG\nhmL//v1SMZiZmeHMmTOYO3cuioqKcPToUTx48ADu7u44ffp0m639Osqdh4cHvv/+e5ibm+PChQs4\nffo0TE1NsXfvXqmZ9ilTpuDYsWOwt7dHeno6jh8/jvr6egQHB+PQoUOdPojamc8//xxTp07F06dP\nceLECZSWlsLX1xcREREwMDDAqVOnkJKSghEjRiApKYndnrH157Z27VqsXr0aHA4HJ06cQEFBAVav\nXs3O8LeOrSf34eTkBE1NTamdRd734sULHD9+HIsWLWrzcOhXX32FefPm4eLFi8jPz0dYWBj7IGNr\nN2/eBIBuP+BKiKrgMPJMkxBCCCH/37x581BRUYGrV692+xyRSISGhgZ2K0DStRcvXkBdXR0GBgZt\nvrZmzRokJSXh1q1b3X549H2RkZFISkrCzZs3u9w9RVaff/45PvzwQxw7duwP6Z8QZaEZa0IIIXJL\nT09Hbm4uZs+erexQ/uclJSXB3t4eZ8+elWp/8uQJLl26hOHDh8tcVAPA4sWLIRaLZX44syvZ2dl4\n+PAhli5d+of0T4gy0Yw1IYQQmW3cuBHZ2dkoKiqCvr4+UlNT0adPn26fTzPWPVdeXg43Nzc0NDTA\nxcUFJiYmePHiBS5evAixWIz9+/djzJgxcl0jOjoaKSkpuHjxosL2V5fw9/eHtrY29uzZo9B+Cfkz\noBlrQgghMjMyMsKjR48wdOhQxMfH96ioJrIxMjLC6dOnMWPGDOTn5+Pw4cO4ceMGnJyckJiYKHdR\nDQChoaHQ1dXF0aNHFRDxf924cQOFhYVYt26dQvsl5M+CZqwJIYQQQghRAJqxJoQQQgghRAGosCaE\nEEIIIUQBqLAmhBBCCCFEAaiwJoQQQgghRAGosCaEEEIIIUQBqLAmhBBCCCFEAf4fSOmJOxIqGa4A\nAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x113a055d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"get_related_terms(u'narendramodi')\n",
"data_dict = listToDict(word2vec.similar_by_word('narendramodi'))\n",
"sns.set_style(\"darkgrid\")\n",
"\n",
"plt.figure(figsize=(10,8),dpi=500) # does not affect the following plot\n",
"plt.xlabel(\"Similarity percentage(%)\",size=20)\n",
"plt.ylabel(\"Similar words\",size=20)\n",
"bar_plot = sns.barplot(x=data_dict.values(),y=data_dict.keys(),\n",
" palette=\"muted\",\n",
" x_order=data_dict.keys().sort(reverse=True))\n",
"plt.xticks(rotation=90)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 511,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"punjabpolls2017 0.378\n",
"goaelections2017 0.338\n",
"punjab 0.336\n",
"lambi 0.335\n",
"parkash_singh_badal 0.335\n",
"overconfidence 0.327\n",
"aamaadmipa_arvindkejriwal 0.307\n",
"delhites 0.283\n",
"cross_halfway_mark 0.279\n",
"wittyfeedlive 0.274\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAH5CAYAAACCrPhQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4lPXdv/1zICSQkBAkYRMIhVZBBEVZbEWWgLIoqChW\nwYCtN5QKiEJV8CcqVqHobS0SEbHaWqGItUEEqSLgUrSCaBXxVqkLyGYChAAhLFnm+aMPOYwZdIhJ\nJoHzdRweMJPvXNd7PmF59+rFdwLBYDCIJEmSdJKrEekAkiRJUlVgMZYkSZKwGEuSJEmAxViSJEkC\nLMaSJEkSYDGWJEmSAIiKdABVTwcPHiE393CkY1Q5devGOJcQnEtpziQ05xKacwnNuZTmTEJLTo4P\na51XjFUmUVE1Ix2hSnIuoTmX0pxJaM4lNOcSmnMpzZn8MBZjSZIkCW+lUBlt3ryZffsORjpGlbN3\nbx3nEoJzKc2ZhOZcQnMuoZ0Ic2nSpClRUdaxqsLvhMrk1/e9SGx8UqRjSJJUbeXt38WMcak0b94i\n0lH0/7MYq0xi45OIS2wc6RiSJEnlxnuMJUmSJCzGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJ\nkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFuMT\nUkZGBmlpacf1mrS0NBYtWlTiuREjRrB+/fryjCZJklRlRUU6gMpfIBAgKyuLyy67jNzcXJo1a8aT\nTz5Jnz59OP300/n444/p3r077733HtHR0Tz11FMALFy4kNmzZ3Puuefyu9/9ji1btnD48OEIvxtJ\nkqTK4RXjE1AwGCQuLo7rr7+e6667jrVr15KVlQXAoEGDGD16NOvWrWPJkiVkZWXx6aefAtCrVy+W\nLFnC8uXL2bhxYyTfgiRJUqWzGJ+g8vLymDdvHh06dCAqKorCwkIAGjRoQHR0NA0aNCAQCBAdHU1R\nUREABQUFANSoUYOaNWtGLLskSVIkeCvFCSgQCLBp0yYaNGjAAw88QFJSErt37y7+2tH/vu3f//43\ngwYNon///rRu3bqyY0uSJEVUIBgMBiMdQtXPpTcuIC6xcaRjSJJUbR3I+Zq7rutA8+Ytyu2YiYmx\n5OTkldvxThTJyfFhrfNWCkmSJAmLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJ\nAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJgKhIB1D1lLd/V6QjSJJUrfl3\nadUTCAaDwUiHUPXz2WdfsG/fwUjHqHISEuo4lxCcS2nOJDTnEppzCe1EmEuTJk2Jiiq/65SJibHk\n5OSV2/FOFMnJ8WGt84qxyiQlJcXfeCH4B1JozqU0ZxKacwnNuYTmXFTevMdYkiRJwmIsSZIkARZj\nSZIkCbAYS5IkSYDFWJIkSQIsxpIkSRLgdm0qo82bN1f7vSMrwt691X9PzYrgXEpzJqE5l9CcS2jh\nzqW89wrWictfJSqTu/5xO/FhbpYtSVKk7N+5n4nnT6F58xaRjqJqwGKsMolPjqde44RIx5AkSSo3\n3mMsSZIkYTGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkS\nYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEnUTFu06YN27dv/841Dz74IPPnz6+kRHDrrbeyYsWK\n712XmprK2rVrSUtLY9GiRd+5dsSIEaxfv77Ec6+88gq33XbbcWWbNWsWkydPPq7XSJIkVWdRkTz5\nW2+9xZ133klhYSEXXXQRH330EVlZWdStW5c///nPjBkzhujoaL788ku6dOnCF198QU5ODk8++STr\n1q3j4YcfpqioiFGjRtG7d29GjRrFgQMHaNasGU8++STPPfcc6enpnHnmmQQCAYLBIKmpqZx++ul8\n/PHHdO/enffee4/o6Gieeuopdu3aRUxMDOnp6bz++uscOXKE2rVr88c//pEFCxawYMECgsEgU6ZM\noXfv3qXez29/+1teffVVAP7whz/w+uuvs2zZMgoLC+nUqRMNGzbkpptuol+/ftxxxx3s2LGD/fv3\nM2vWLN58800OHDhAjRo1mD9/Pu+88w5Tp06lZcuW5ObmFp/j0KFDDB06lE6dOvGrX/2K8ePH8/XX\nX9OyZUseeughtmzZwqFDh5g0aRIfffQRUVFRDBs2jO3bt/O73/2OuLg42rdvz9ixY1mzZg0jR45k\n5MiR/P3vf+fTTz+lZs2aPP744wQCgUr7dSBJklQVRPSKcUpKCmPGjCE1NZVVq1YxdOhQRo4cydat\nW9m4cSMAP/3pT5k6dSorV65k3rx5JCYmsm7dOtq1a8e4ceM455xzWL58OXFxcVx//fVcd911rF27\nlqysLB588EEeeugh7rjjDoLBYPF5Bw0axOjRo1m3bh1LliwhKyuLTz/9tES2hIQEFi9eTGxsLC+8\n8AKdO3dm/PjxtGrVilWrVoV8Pz169OCmm24iMTGR1atXEwgEaNy4McuXL2fYsGE8//zzrFu3jmAw\nSLdu3YpfFwgEiIuL44UXXmDnzp1s3LiRWbNmMWHCBGbPnk1BQUHx2pkzZ1JUVMSECRN44YUX+Pe/\n/01RUREffPABa9euLXHMs846i0WLFlGjxn+/zX379uX1119n9erVJCYm8vLLL/P555/TrVs3Bg0a\nxNixY8nPz+e999774d9cSZKkaiaixfixxx7j/fffp3379mzfvp2ZM2fSpk0b4uLiKCoqAqBBgwZE\nR0cTHx9PdHQ0MTExBINBZsyYwfbt22nbti2FhYW88cYbzJ8/nw4dOhAVFUVhYSE1a9YkGAwWH+uo\no8ds0KABgUCA6OjoUmuOHDlS/PNAIMDtt99Ofn4+rVu3LrUW4ODBg9xyyy3Uq1ePZs2aFa9p1KgR\nAO3ataNRo0ZMnTqVa665ptTrGzZsSCAQoHbt2hQUFBRn/2ahB+jWrRuZmZmsX7+eoqIi2rRpw7Jl\nyxg5ciRt27YtsfbouY/q2LEju3btYsWKFdxwww3MnDmTnj17kpmZyV133UWLFi1ISkoK+f4kSZJO\ndBEtxi1btmTFihWsWLGCmjVrcujQIaZOnUrdunXZvXs38N9SevS/b7924cKFrFu3jj179pCcnMyW\nLVt44IEHSEpKYvfu3dxyyy1MmDCB6dOnExcXV/zaYx3zm7Kzsxk4cCAHDx5k4MCBtGrVikcffZTP\nP/+c7OzsUuujoqJISUlh2rRp7Nmzp3jNN88xdOhQtm7dyuDBg0tk+bZAIMD48eP5wx/+wJgxY0hM\nTCz+Wrdu3ZgwYQJTp07l4osvJjo6ml69erF27Vri4+MpKCgovkJ89NjffK99+vThlFNO4ZJLLmHn\nzp3069ePuLg46tWrx5133kkwGCyevSRJ0skkEPz2JUmRnp7Otm3bmD59+jHXDB48mIMHDxY/7t+/\nPzfeeGNlxDum8ePH88knn/DMM89Qv379Cj3X6GdGUq9xQoWeQ5KkH2rv1/sYddpNNG/eItJRKkVi\nYiw5OXmRjlHlJCfHh7XOYqwysRhLkqoDi7Eg/GJ80mzXJkmSJH0Xi7EkSZKExViSJEkCLMaSJEkS\nYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSAFGRDqDq\naf/O/ZGOIEnS99q/cz+cFukUqi4CwWAwGOkQqn4+++wL9u07GOkYVU5CQh3nEoJzKc2ZhOZcQnMu\noYU7lyZNmhIVdXJcC0xMjCUnJy/SMaqc5OT4sNadHL9KVO5SUlL8jReCfyCF5lxKcyahOZfQnEto\nzkXlzXuMJUmSJCzGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBbtemMtq8ebN7aoawd697\njYbiXEpzJqE5l9Cq41xOpr2DdeLwV6zKZOXk22hYt26kY0iSqqCs3Fw6T76b5s1bRDqKdFwsxiqT\nhnXr0iQhIdIxJEmSyo33GEuSJElYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJ\nEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMX4pBQMBtm+fXukY0iSJFUp\nFuNqatKkSaSnp5d6vk2bNmzbto20tDQWLVpU4msjRoxg/fr1/Pa3vyUjI6OyokqSJFULUZEOoPB9\n9dVXjBkzhqioKI4cOUJeXh5XXHEFhw4dYsCAAYwZM6bE+oyMDNLT0+natSvTpk1jy5YtbN68mRde\neIFatWrRvXt3li5dyltvvUXdunV54IEHWL16NXPnzgXguuuuY8SIEZF4q5IkSZXOK8bVyIIFCzjr\nrLNYtGgRDRo0ICoqiszMTILBIPPnzycvL6/E+gsuuIA5c+awePHi4ucaNWrEhRdeyLBhw6hbty7z\n5s2jqKiIrKwsnn/+eT799FNatWrF8OHDad++fWW/RUmSpIjxinE1UqNGDYLBIPDf+4QLCgq48sor\nGT58OMuWLSM2NrbE+oYNG1KnTh0KCwtDHq+goICYmBieffZZVq9eTcuWLdmzZw+7d+9mw4YN3HTT\nTbzxxhsV/r4kSZKqAq8YVyPDhg1jw4YNXH755eTn51NQUMDKlSu54ooryM3NBSAQCJR63TefCwQC\nnHHGGTz77LPs37+fK664gkGDBjFnzhwSEhLYvn07v//971m+fDkXX3xxpb03SZKkSAsEj16ClI7D\nol/8giYJCZGOIUmqgnbs20fKuN/QvHmLCj1PYmIsOTl537/wJOJMQktOjg9rnVeMJUmSJCzGkiRJ\nEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJEmAxliRJ\nkgCLsSRJkgRYjCVJkiQAoiIdQNVTVm5upCNIkqqorNxcUiIdQioDi7HKpPf0GezbdzDSMaqchIQ6\nziUE51KaMwnNuYRW3eaSAjRp0jTSMaTjZjFWmaSkpJCTkxfpGFVOYmKscwnBuZTmTEJzLqE5F6ly\neI+xJEmShMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTA7dpURps3b65We2pWlr17q9de\no5XFuZTmTEJzLqE5l9Cq4lyaNGlKVJT1qrryO6cy+dsDL9IgISnSMSRJqjJ279tF31+l0rx5i0hH\nURlZjFUmDRKSaFi/caRjSJIklRvvMZYkSZKwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmS\nBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIiKdAAdn9zcXC69\n9FISExO5/PLLycrKYsKECcVfnzVrFtu3b2f69OkRTClJklT9WIzLaO/evdx4443s2LGDpk2bsn37\ndqZOnUqrVq3o378/q1at4p577mHjxo0kJSUxc+ZMxo4dy4EDB2jQoAETJ07klltuITc3l969e3PH\nHXcwd+5cnnnmGWJiYpg0aRKtW7dm0KBBnH/++axbt45p06axbNkytm3bxumnn05OTg47d+5k7969\n/OpXvyI3N5fo6GhOP/10MjMzmTBhAnv37uWcc87hnnvuITU1lTPOOIMPP/yQyy67jJtvvpn77ruP\nV199lVq1avGHP/yB7Oxspk2bRjAYZMSIEQwZMiTSo5YkSaoU3kpRRo8//jhNmjRh+fLlJCUlkZmZ\nyXPPPUdGRgYDBgzgww8/ZOXKlRQVFfHll1+yfPlyAC688EIef/xxHn30UQYOHMhLL73EOeecw3/+\n8x/mzJnDkiVLuPPOO5kyZQqBQIC8vDzuvPNOLrvsMlatWsVNN90EwOzZswkGgwAsXbqUOnXqsHTp\nUk4//XQAnn76aT777DOKiopYuXIln3/+OQD9+/fn7rvv5qWXXuLzzz9n0aJFLFu2jHvvvZeoqCge\neughcnNzyc/P54knnojAZCVJkiLDYlxGwWCwuJgCDBkyhDfffJOMjAyGDh1KYWEhSUlJLFmyhHHj\nxnHeeecB0LhxYwACgQCFhYUUFRWxZcsWatSoUeK4NWvWLD52cnIysbGxFBQUlDjnUYFAoPj5oz8W\nFhbSvXt3nn/+ea6//nqaNWsGQMOGDYmNjSU/P7/E+fbv38+uXbsoLCzkhhtuYM6cOYwePbq8xyZJ\nklRlWYzLaPjw4ezYsYN+/fqxZ88exo0bR+/evTnllFM444wz6NatG+3bt+fCCy/k+eefJzExEfhv\niQUYPXo0y5YtY8CAAWRlZdG6dWuGDRvGkCFDuPfee7nnnnsIBoPF67/547efGzRoEPn5+VxyySVs\n27YNgLS0NDZt2kTfvn356quviImJKc5+9BitW7dm8ODBDBgwgPvvv5969eoxYcIE/vjHP3L99deH\nLOGSJEknqkDQ9qMymHvLAhrWbxzpGJIkVRlZe76m0zUdaN68RcQyJCbGkpOTF7HzV1XJyfFhrfOK\nsSRJkoTFWJIkSQIsxpIkSRJgMZYkSZIAi7EkSZIElEMx3rNnD2+99RabNm0qhziSJElSZBxXMV68\neDFDhgzhyJEjALz99tukpqbyy1/+kv79+zN58mSKiooqJKgkSZJUkcIuxi+99BK33XYbn376Kbt2\n7QJg6tSpHDp0iMGDB9O1a1cWLVrE/PnzKyysJEmSVFHCLsZPP/00SUlJvPLKKzRt2pQNGzbw5Zdf\nctFFFzFt2jT+/Oc/c+aZZ5KRkVGReSVJkqQKEXYx/uSTT+jXrx+NGjUC4LXXXgPgwgsvLF7TuXNn\nvvjii/JNKEmSJFWCsItxMBgkOjq6+PEbb7xBIBDgZz/7WfFzhw8fpk6dOuWbUJIkSaoEUeEubNmy\nJWvWrKGoqIivvvqKDRs2cOaZZ3LKKacAsHfvXl555RVatmxZUVklSZKkChP2FePLL7+cjz76iP79\n+3PllVdSVFTE1VdfDcDzzz/PoEGD2LlzJ9dcc02FhZUkSZIqSthXjNPS0jh48CBPPPEENWvWZNSo\nUVxxxRUAfPnll+Tk5DBhwgQuvfTSCgsrSZIkVZRAMBgM/tCD7Ny5k7i4OGJjY8sjk6qB6b+aRYOE\npEjHkCSpyti9bxd9f5VK8+YtIpYhMTGWnJy8iJ2/qkpOjg9rXbkUY518PvvsC/btOxjpGFVOQkId\n5xKCcynNmYTmXEJzLqFVxbk0adKUqKiw/w/5cmcxDi3cYnzM79zkyZPLfPLp06eX+bWqHlJSUvyN\nF4J/IIXmXEpzJqE5l9CcS2jOReXtmMV40aJFZT6oxViSJEnVzTGL8csvv1zicXZ2NuPGjeOUU07h\nxhtvpGPHjtSrV4+DBw+yfv16Zs2aRXZ2No8//niFh5YkSZLK2zGLcUpKSonHjzzyCFFRUfzlL38h\nMTGx+Pn4+HjOP/98zjrrLC677DIeeOAB0tPTKy6xJEmSVAHC3sf41VdfpXfv3iVK8TfVrVuXnj17\n8tZbb5VbOEmSJKmyhF2Ma9SoQU5OzneuyczMJCYm5geHkiRJkipb2MW4U6dOvPzyy/zrX/8K+fWX\nX36ZFStW0K1bt3ILJ0mSJFWWsPcx3rhxI9dccw2HDh2iW7dutG/fnrp167J//37effdd3n77bZKS\nkli4cCGnnnpqRedWhLmPcWhVcU/NqsC5lOZMQnMuoTmX0E6UuZTn3sduYRdahXzAx8cff8x9993H\nunXrSh4kEOCCCy5gypQpNG/e/PiSqlr6/dSrSTolvF9kkiQptF3Z++k5cEq5fVqexTi0H/wBH9+2\ndetW2rZty7x588jMzOSTTz5h3759JCQk0K5dO5KS/Hjgk0nSKfE0Sk6IdAxJkqRyE3YxHj58OO3b\nt2fmzJk0atSIRo0aVWQuSZIkqVKF/Y/vdu7c6W0SkiRJOmGFXYy7dOnCW2+9xeHDhysyjyRJkhQR\nYd9KMWTIEO6991769evHBRdcQLNmzahdu3bItcOHDy+3gJIkSVJlCLsY33TTTcU/f/bZZ4+5LhAI\nWIwlSZJU7YRdjKdNmxbWukAgUOYwkiRJUqSEXYwHDx5ckTkkSZKkiDruj1nJzc3llVde4dNPP+Xg\nwYMkJibyk5/8hF69ehEXF1cRGSVJkqQKd1zFeOXKlUyePJl9+/aV+lq9evWYPn06qamp5RZOkiRJ\nqixhF+MNGzYwfvx4oqKi+OUvf8k555xDw4YN2bdvH++88w7z5s3j5ptvZuHChbRp06YiM0uSJEnl\nLuxiPHv2bGrUqMFf//pXzjjjjBJf69atGxdddBHXXHMNjz32GA899FC5B5UkSZIqUtgf8PHuu+/S\np0+fUqX4qHbt2tGnTx/eeeedcgsnSZIkVZawi3FeXh7JycnfuaZBgwbs3bv3B4eSJEmSKlvYxbh5\n8+b861//oqioKOTXCwsLWbNmDc2aNSu3cKoY/fr1Iysrq9TzGRkZpKWlRSCRJElS5IVdjAcNGsTG\njRu54447yMvLK/G17OxsJk2axMaNGxk4cGC5h1Ros2bNYsiQIVx66aVcddVVXHbZZSxatIitW7cW\n/wPItLQ0Ro4cSWpqKrfeeisAmzZtoqCggLlz59KrVy969uzJypUrCQQCbNu2jauuuooBAwbw1Vdf\nRfLtSZIkVaqwi/HRnSgyMjI4//zzGTZsGKNHj+byyy8nNTWVJUuW0LFjR66//vqKzKtvSUhIYPHi\nxcTGxpKZmRnykwc7d+7MnDlzWLZsWannx48fT6tWrVi1ahUA0dHRPPvss3Ts2JEFCxZUynuQJEmq\nCsIuxtHR0fzpT39i3LhxNGjQgHfffZfXXnuNjz/+mKSkJMaNG8dTTz1FTExMRebVtxw5cqT453v2\n7OHgwYNkZ2eXWNOwYUNiY2MpKCgofi4YDDJ58mTy8/Np3bp18S0ywWCQwsJCAoEAUVHH/fkvkiRJ\n1dZxNZ+YmBjGjBnDmDFjyM3N5cCBA8TFxVG3bt2KyqfvkZ2dzcCBA4mLi2PChAnMnTuX8847L+SV\n40AgQH5+PgA1atSgdevWPProo7Rs2ZJatWoB//0eDx06lLy8PB577LFKfS+SJEmRFAgGg8FwFqam\nptKzZ0969OjBT3/6U6Kjoys6m75Heno627ZtY/r06WG/5sorryQYDLJw4cIfdEX4L7NG0ig5ocyv\nlyRJkLlzH2eefxPNm7col+MlJsaSk5P3/QtPMsnJ8WGtC7sZxcfHs2DBAv76179Sp04dunbtSs+e\nPenZsyeNGzcuc1CV3dixY4/7Nc8991wFJJEkSar+wi7GixcvZufOnfzzn/9k9erVvPnmm7z22msA\nnHbaafTq1YsePXrQsWPHkP83viRJklSVhX0rxbcVFRXx4YcfFhflDz/8kMLCQurVq8eaNWvKO6eq\nGG+lkCTph/NWisoR7q0UYe9K8W3BYJBgMEhMTAwJCQnFu1H4yXeSJEmqjsK+leLw4cO8//77vPPO\nO6xbt44PPviAgwcPApCUlESPHj3o0qULXbt2rbCwkiRJUkUJuxh36tSJgoICgsEgTZs2pWfPnnTu\n3JkuXbrw4x//uCIzSpIkSRUu7FspCgsLCQaDxMbG0q5dO84991w6depkKZYkSdIJIewrxmvWrGHN\nmjW8/fbbrFmzhhUrVhAMBqlfvz6dOnWiS5cudOnShdNPP70i80qSJEkV4rj2Me7Tpw99+vQBYPfu\n3cVl+b333isuyomJibz99tsVFliSJEmqCGX+6LMGDRrQrVs3atWqRVRUFLm5uezYsYOcnJzyzCdJ\nkiRViuMqxocOHeLdd9/lX//6F//617/4+OOPKSoqolatWpx77rkMHz6c7t27V1RWSZIkqcKEXYzT\n0tL44IMPOHLkCACNGzfmyiuvpHv37px33nnUrVu3wkJKkiRJFS3sYvzee+/RsWNHunfvTo8ePfxH\ndpIkSTqhhF2M3377beLjw/s4PZ34dmXvj3QESZKqPf8+rVoCwWAwGOkQqn4+++wL9u07GOkYVU5C\nQh3nEoJzKc2ZhOZcQnMuoZ0oc2nSpClRUWXeD6GExMRYcnLyyuVYJ5Lk5PAu7pbPd0EnnZSUFH/j\nheAfSKE5l9KcSWjOJTTnEppzUXkL+5PvJEmSpBOZxViSJEniOIrxSy+9RGZmZkVmkSRJkiIm7GJ8\n9913c9ddd1VkFkmSJCliwi7Ghw4dolWrVhWZRZIkSYqYsIvxlVdeyQsvvMDGjRsrMo8kSZIUEWFv\n15aQkADAZZddRosWLWjWrBm1a9cOuTY9Pb180qnK2rx58wmxd2R527v3xNhTs7w5l9KcSWjOJbSq\nPpfy3IdXiqSwfxXPnj27+OebNm1i06ZNFZFH1cT9S94gIalhpGNIkiJs364sRvfoTPPmLSIdRfrB\nwi7GK1asqMgcqmYSkhpSv1HTSMeQJEkqN2EX42bNmlVkDkmSJCmijvuGoE2bNpGdnU1RURHBYBCA\nYDBIQUEBe/bs4Y033mDGjBnlHlSSJEmqSGEX4+zsbEaNGsWGDRtCfj0QCBQXZYuxJEmSqpuwt2ub\nOXMmGzZs4LTTTuPqq6+mbt26nHXWWfz85z+nc+fOBINBfvazn7Fo0aKKzCtJkiRViLCvGP/zn/+k\nZcuWLFq0iJo1a7J7924OHz7M1KlTAXj++ee54447KiyoJEmSVJHCvmKclZVFt27dqFmzJgBt27bl\ngw8+KP76ZZddRseOHXn00UfLP6UkSZJUwcIuxrVr1yYmJqb4cYsWLdi7dy+ZmZnFz7Vv3561a9eW\nb0JJkiSpEoRdjFu1alXiCvGPfvQjAD766KPi5w4cOMDhw4fLMZ4kSZJUOcIuxhdffDHr1q3j1ltv\nZevWrZx++ukkJyfz8MMP8/nnn/P222/z4osvFhdmSZIkqToJuxgPHTqUiy66iBdeeIF169YRFRXF\nmDFj+OSTT7j44ou57rrryM3N5X/+538qMq8kSZJUIcLelaJWrVo8/PDDvP/++zRp0gSAq6++mnr1\n6rF06VIf6RVVAAAgAElEQVRiYmK49NJL6dGjR4WFlSRJkirKcX/y3dlnn13icf/+/enfv3+5BZIk\nSZIi4ZjFODc3t8wHrVu3bplfK0mSJEXCMYtxp06dCAQCx3WwYDBIIBDg448//sHBJEmSpMp0zGLc\nuXPnysxxQsjIyGDRokU8/fTTx1yzdetW+vTpwyeffMK9997LqlWrmDJlCr169arEpMfWpk0bVq1a\nRdOmTSMdRZIkqVIdsxh/V7mrjnbs2MH48ePZvXs37dq1Y/ny5XTq1IkuXbpwzjnnFH+09eDBgxk1\nahSjRo1i8+bNREdHM2vWLL788kumTZtGMBikf//+3Hrrrcc8zzXXXMPu3bt56qmnWLNmDQ8//DBF\nRUWMGjWK7t27A/Dqq6/yt7/9jYSEBP7+97+zYcMG2rdvz9ixY1mzZg0jR45k5MiR/P3vf+fTTz+l\nZs2aPP7444wePZpbb72VH/3oR1x55ZW8/vrr1KlTp0SGSZMmsW3bNrKysjjttNM4cOAA//nPf3jk\nkUc4cOAAU6ZMobCwkEGDBnHVVVdx8cUXc9pppzFkyBAANm3axNChQ7n77rvp2bNnxX1TJEmSqpCw\nt2ur7p5++mnatm3LypUr6du3LwA333wzN954I7fddhv33nsvGRkZzJ07l//85z988sknDBgwgJ//\n/OeccsopfPnllyQlJTF8+HC6du16zPPExMSwYMEC4uPjeeedd2jXrh3jxo3jnHPOYfny5cW3p/Tq\n1YsOHTowceJErr/+el5//XVWr15NYmIiL7/8Mp9//jndunVj0KBBjB07lvz8fN577z2uu+46nnnm\nGf7+978zePDgUqUYIBAI8OMf/5hHH32UV155hfvvv59OnTrxz3/+kxYtWjBmzBhSU1NZtmwZAIcO\nHWLWrFnFxXjChAkMGjTIUixJkk4qx7xiPGbMGC6++GIGDBhQ/Djce47T09PLJ105CgQCFBYWEgwG\n2bFjBwCNGzcG/ntvdDAYLF4XCASYOHEisbGx/OlPfyI7O5vU1FQaNWrE119/zfjx43nzzTeJi4sr\ndZ5TTjkFgNjYWAoLC5kxYwYdO3akTZs2/POf/wyZrWPHjuzatYsVK1Zwww03MHPmTHr27ElmZiZ3\n3XUXs2fPJikpiWAwyKWXXsrMmTNZv349zzzzzDHfb4MGDYiOjgYgKSmJmJgYgsEgc+fOLT7nq6++\nWry+UaNGxT8fPHgwixcvZtSoUf5DSkmSdNI4ZjFeuXIlbdu2LfG4OktLS2PcuHH07t2bdu3aFRdg\ngClTpnDfffdx6NAhRo8eTatWrXjkkUfYsGEDtWrV4mc/+xk5OTmkp6dTUFBAampqyFL8zWMefdyy\nZUsWLlxI27Zt2bNnT/Hz39anTx/ee+89LrnkEu6991769etHXFwc9erV484776ROnTrs3r2b6Oho\nunfvTnZ2Ns2bN//O9/zNPEd/TElJ4YknnmD37t3k5uZSUFBQKvO1117L/v37SU9PZ9KkScc5aUmS\npOopEDx6qfRbtm7dSr169YiPjy9+HK5mzZqVT7oqbPbs2SxZsqT4cVRUVInHFeX2229n9erVPPbY\nY7Rt25a77rqLtWvXFn/91FNP5Y9//GOF5/jN08uo38h/oCdJJ7s9mdsZ2i6F5s1bVPq5ExNjycnJ\nq/TzVmXOJLTk5Piw1h2zGEvfxWIsSQKLcVXjTEILtxgf9yffHT58mG3btnHkyJFjrmnTps3xHlaS\nJEmKqLCL8Z49e5gyZQorV67kuy4y+wEfkiRJqo7CLsbTpk1jxYoVtGjRgnbt2hETExNy3fF+Wp4k\nSZJUFYRdjN98803OPvts/vrXv1Kjxkmz/bEkSZJOEmE33MOHD3PuuedaiiVJknRCCrvlXnDBBbz7\n7rsVmUWSJEmKmLCL8eTJk8nKyuLmm29m/fr1ZGdnk5ubG/I/SZIkqboJ+x7jevXqceaZZ/KPf/yD\nf/zjHyH/kV0wGHRXCkmSJFVLx7UrxfLly6lTpw6tWrUiNja2InNJkiRJlSrsYrx8+XJ+8pOf8Ne/\n/rX4Y6IlSZKkE8Vx7UrRvXt3S7EkSZJOSGEX43POOYdPPvmkIrNIkiRJERP2rRS33norQ4cOZfr0\n6Vx33XU0adKkInOpitu3KyvSESRJVcB//z5IiXQMqVwEgsFgMJyFv/jFL9i6dStbtmwhEAgQFRVF\nnTp1Qq5du3ZtuYZU1fPZZ1+wb9/BSMeochIS6jiXEJxLac4kNOcSWlWfS5MmTYmKCvtaW7lJTIwl\nJyev0s9blTmT0JKTw7sVOOxfxZs3bwagadOmZUukE0pKSoq/8ULwD6TQnEtpziQ05xKac5EqR9jF\neNWqVRWZQ5IkSYqosP/xnSRJknQiO+YV47/85S+cffbZdOjQAYCnnnoq5KfdhTJ8+PDySSdJkiRV\nkmMW42nTpjF27NjiYjx9+vSwDhgIBCzGkiRJqna+sxifccYZJR6HI9yrypIkSVJVcsxiPHjw4O98\nLEmSJJ1IftCmg4cPH+brr78mKSmJuLi48sqkamDz5s1Vek/NSNm7t2rvNRopzqU0ZxKacwnNuYRW\n3ecSqf2fdWzf+91YuXIlK1asYMSIEbRp0waAYDDIgw8+yLx58zh06BA1a9akT58+3H333dSvX7/C\nQyvyfn3fi8TGJ0U6hiRJ1VLe/l3MGJdK8+YtIh1F3/CdxfjOO+/k2WefBaBHjx7Fxfihhx7ij3/8\nI4FAgPPPPx+AV155hc8++4xFixYRHR1dwbEVabHxScQlNo50DEmSpHJzzH2MV61axbPPPssZZ5zB\nE088Qa9evQDIzMzkySefBOCee+7hiSee4IknnuDhhx/m888/56mnnqqc5JIkSVI5OmYxfu6556hX\nrx5/+ctfOP/884mJiQHgpZdeoqCggJSUFIYMGVK8vk+fPpx99tm8/PLLFZ9akiRJKmfHLMbr16+n\nZ8+e1K1bt8Tzb731FgCpqamlXnPWWWexefPmco4oSZIkVbxjFuO9e/fSuHHJe0iLiopYt24dgUCA\n8847r9RratWqxZEjR8o/pSRJklTBjlmM69aty549e0o8t379eg4cOEBUVBSdO3cu9ZqvvvrKXSkk\nSZJULR2zGHfo0IG33nqLoqKi4ueWLl0KwHnnnUdsbGyJ9dnZ2axevbr4I6QlSZKk6uSYxfiqq65i\n69at3HzzzbzzzjvMmzePhQsXAnDttdeWWLt//35+85vfkJeXx6BBgyo2sSRJklQBjrmPce/evRk2\nbBjz588vsdPENddcQ48ePYof33zzzbz++uvk5eXRt29f+vTpU7GJJUmSpArwnR/wMWXKFC666CJe\ne+018vPz6datGz179iyx5qOPPqJ27dpcf/31jB49uiKzSpIkSRXmez8SumvXrnTt2vWYX8/IyCi1\npZskSZJU3RzzHuNwWYolSZJ0IvjBxViSJEk6EViMJUmSJCzGJaxZsybkR11/n7S0NBYtWnTcrxsx\nYgTr168v1/PMmjWLyZMnh33M71qfmprK2rVrwz6WJElSdXbCF+NZs2YxZMgQLr30Un7+85/z+OOP\n06tXL3r27MnKlSvJyMigd+/eXHjhhXzxxRcArFixgtTUVLZs2cLcuXNLrH///ffp27cvqampTJw4\nsfg8R49z++23h8xx9Ji9evXi/vvvB2DLli0cOnSISZMmMWLECPr27cuIESMIBoM899xz9OjRg3Hj\nxtGhQwe2bdsW1nkCgQDr169n0KBBDBkyhJycnFLvIScnh6uvvppLLrmEV199FYBPP/20+H3deuut\nJY4nSZJ0MjjhizFAQkICixcvJjY2lsLCQsaPH0+rVq1YtWoVgUCAmjVr8sorr9CqVSuys7OZOHEi\n99xzD82bN6dz584l1m/fvp0aNWqQlpZGz549CQaDAFxwwQXMmTOHxYsXh8zw5ZdfkpSUxPDhw0vt\n8hEIBEhJSSEjI4M1a9aQlZXFgw8+yO9//3tuvfVWjhw5Urz2+84TDAZp3LgxL7zwAnFxcSxdurTU\ne1i6dCl16tRh6dKlnH766QAkJyfz61//msGDBxd/wqEkSdLJ5KQoxkeLZTAYJD09nfz8fFq3bl38\ncdeNGjUqXhsIBBgyZAhPP/00AJMnTy6x/sc//jGjR48mJiaGO++8k02bNgHQsGFD6tSpQ2FhYcgM\nXbp04dprryU/P5/x48eTm5tb4usNGzYkLi4OgIKCAoLBIMFgsNQV2+87z9HXA9SoUYOaNWty++23\nl3gPNWrUKC70R3987rnneOWVV+jYsWOJjwGXJEk6WXzvPsYnguzsbAYOHEhcXBw9e/bk0UcfpWXL\nltSqVQsoebvAKaecwuTJkxk0aBArV66kdevWJdYfOXKEuXPncvDgQc4++2waN25c4lzHuvUgJyeH\n9PR0CgoKSE1NPeY2d4FAgEAgwG9+8xsmTJhAhw4dCAQCREdHh3WeQCDA4cOHufTSS6lTpw6XXHIJ\nq1evLvEeBg0axIsvvsgll1xC/fr1adasGaeeeip/+tOfKCgoID4+nuzs7LDnK0mSdCIIBI9eMjxB\npaens23bNqZPn15p55w9ezZLliwpfhwVFVXicTgefPBBVq5cSUFBAWeffXbxfcnlfZ6yuvTGBcQl\nNv7+hZIkqZQDOV9z13UdaN68RbkeNzExlpycvHI95okgOTk+rHUnfDFWxbAYS5JUdhbjyhVuMT4p\n7jGWJEmSvo/FWJIkScJiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmS\nBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEkAREU6gKqnvP27Ih1BkqRqy79Hq6ZAMBgMRjqEqp/P\nPvuCffsORjpGlZOQUMe5hOBcSnMmoTmX0JxLaNV9Lk2aNCUqqnyvUSYmxpKTk1euxzwRJCfHh7XO\nK8Yqk5SUFH/jheAfSKE5l9KcSWjOJTTnEppzUXnzHmNJkiQJi7EkSZIEWIwlSZIkwGIsSZIkARZj\nSZIkCbAYS5IkSYDbtamMNm/eXK33jqwoe/dW7z01K4pzKc2ZhOZcQnMuoTmX0qr6TCpi7+byVHWT\nqUq76x+3Ex/mZtmSJEn7d+5n4vlTaN68RaSjHJPFWGUSnxxPvcYJkY4hSZJUbrzHWJIkScJiLEmS\nJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mS\nJAmwGEuSJEmAxViSJEkCLMaVol+/fmRlZZV6PiMjg7S0tDIdMzU1lbVr1zJp0iTS09NDrpkxYwY9\nevSgb9++vP/++2RlZTF48GBSU1P505/+BMChQ4cYP348kydPBuB3v/sd/fv3p2fPnpx99tkcOnSo\nTPkkSZKqm6hIB6hOZs2axRtvvMGRI0eIiYnhyJEjjBgxgs6dO9OnTx8++eQT0tLSqF27Np9//jmd\nOnXi/vvvZ9OmTRQUFDB37lwWLFhAMBhkypQpBAIBtm3bxlVXXUVubi5z5sxh9uzZbN26lT179tCs\nWTMeeeQR3n77baZOnQrA4MGD+fWvf12cKRAIALBixQqmTZtGMBikf//+TJgwgSNHjvDSSy8xffp0\nXnzxRerXr0/btm0ZO3Ysffv2Zfjw4YwYMQKAVq1aATBp0iQmTZrEuHHj6N+/P7Vr167kKUuSJEWG\nV4yPU0JCAosXLyY2NpbMzMziYvpNnTt3Zs6cOSxbtqzU8+PHj6dVq1asWrUKgOjoaJ599lk6duzI\nggULCAQCtGrViqVLl7Jp0ybefPNNbrvtNu69914yMjKYO3cumzZtKnXOL7/8kqSkJIYPH07Xrl2J\niopiypQpfPDBB7z22mtcccUVfP311zRu3JhGjRpx5MgRcnJymD9/PhdccEGJY61Zs4Zt27YxYMCA\n8hucJElSFWcxPk5Hjhwp/vmePXs4ePAg2dnZJdY0bNiQ2NhYCgoKip8LBoNMnjyZ/Px8WrduTVFR\nUfHzhYWFBAIBatasWXyOYDBY4rVHHwcCAWrUKP1t69KlC9deey35+fmMHz+e3NxcXnjhBSZPnszs\n2bNp06YNjRo1IjMzk6+//pro6Gjq169PVFRUiXPBf2/xuPbaa3/gpCRJkqoXb6U4TtnZ2QwcOJC4\nuDgmTJjA3LlzOe+880JeOQ4EAuTn5wNQo0YNWrduzaOPPkrLli2pVasWADExMQwdOpS8vDzmzJnD\nrFmz2LhxIwMGDOBHP/oR3bp1Y8qUKdx3330cOnSI0aNH06JFi1LnysnJIT09nYKCAlJTUzlw4AD/\n7//9P+Lj47nlllu46KKLGDZsGDfccANpaWlMmDChuGB/O/v//d//MXLkyPIenSRJUpUWCH77cqGO\nKT09nW3btjF9+vSwX3PllVcSDAZZuHAhUVHf/79DJk+ezKmnnsrYsWN/SNQKN/qZkdRrnBDpGJIk\nqZrY+/U+Rp12E82bl77AV9GSk+PDWmcxVplYjCVJ0vGoDsXYe4wlSZIkLMaSJEkSYDGWJEmSAIux\nJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBEBU\npAOoetq/c3+kI0iSpGpk/879cFqkU3y3QDAYDEY6hKqfzz77gn37DkY6RpWTkFDHuYTgXEpzJqE5\nl9CcS2jOpbSqPpMmTZoSFVX512WTk+PDWmcxVpnk5xeSk5MX6RhVTmJirHMJwbmU5kxCcy6hOZfQ\nnEtpziS0cIux9xhLkiRJWIwlSZIkwGIsSZIkARZjSZIkCbAYS5IkSYDFWJIkSQL8gA+V0ebNm6v0\nPomRsndv1d4/MlKcS2nOJDTnElpVmEuk9p+VKpO/wlUmKyffRsO6dSMdQ5JUCbJyc+k8+W6aN28R\n6ShShbIYq0wa1q1Lk4SESMeQJEkqN95jLEmSJGExliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJ\nkiQJsBhLkiRJgMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFuOIy83NJScn\nB4AtW7ZEOI0kSdLJy2IcAZmZmfTv3x+Aq6++mo0bN5Z4LpR7772X1NRUXnvtteM616RJk0hPTycj\nI4O0tDQyMzPp16/fD4kvSZJ0QrIYV7DBgwezZs0aZsyYwVVXXcXBgwfp378/mzZtYsWKFWzatInb\nbruNP//5zxQUFHDbbbcxcuRI5s+fT25uLueeey7z5s3jb3/7G/n5+TRu3Jj/+Z//4ZJLLmHs2LHk\n5+fz5JNPMmDAAAYPHsz69ev56quvGDhwIJdffjkffvghAIFAAICCggI2bdrEunXr6NWrF8FgkMce\ne4yJEyeyceNGrrjiCi655BIeeeSRSI5NkiSp0lmMK1jfvn15/fXXeeutt8jMzOSll17inHPOAaBP\nnz40bNiQ+++/n2uvvRaAGTNm8Mtf/pKFCxfy4osv8rOf/Yxrr72WDh06MHHiRP7973/z73//m6Ki\nIj744APeeOMN/vd//5dgMMjevXtZsGABCxYs4KyzzmLRokU0aNAgZK5OnTpRt25d3nzzTTIyMhg6\ndCiPPvoomZmZFBUVMX/+fA4ePFhpc5IkSYo0i3EF69u3L0uXLqWoqIjevXszc+ZM+vXrRzAYBP57\nJffoz4/66U9/SiAQYNasWcWFGSAYDFJUVESbNm1YtmwZI0eOpG3btgA89thjTJ06lSuuuIIaNWoU\nH/Pbx/6mYcOGMWPGDGrXrs25555LYWEhV155JfPmzeOGG26gTp065T0OSZKkKstiXMFatmxJYmIi\n3bp14/zzz2fXrl20bdu2+NaG9u3bc8cdd5CUlMSpp57KxIkTAbjooouoX78+Xbt2LT5WIBBg4MCB\nREdH06tXL9auXUvDhg256aab+MUvfsF9991HbGwsw4YNY8OGDVx++eXk5+eXeP03fxw4cCA7duzg\nmmuuAeDXv/41K1eu5IorriA3N7dS5iNJklRVBILfdUlRETFr1iwWLFjA7373O7p37x7pOCEt+sUv\naJKQEOkYkqRKsGPfPlLG/YbmzVtEOkoJiYmx5OTkRTpGleJMQktOjg9rXVQF51AZjBs3jnHjxkU6\nhiRJ0knFWykkSZIkLMaSJEkSYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmA\nxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBEBUpAOoesrKzY10BElSJcnKzSUl0iGkSmAxVpn0nj6D\nffsORjpGlZOQUMe5hOBcSnMmoTmX0CI9lxSgSZOmETu/VFksxiqTlJQUcnLyIh2jyklMjHUuITiX\n0pxJaM4lNOciVQ7vMZYkSZKwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBLhdm8po8+bN\n7jUawt697sEainMpzZmE5lxCcy6hnWhzadKkKVFRVrNIcvoqk7898CINEpIiHUOSpBPC7n276Pur\nVJo3bxHpKCc1i7HKpEFCEg3rN450DEmSpHLjPcaSJEkSFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJ\nEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGVUowGGT79u2R\njiFJknRSshhXsLS0NBYtWhTW2t/+9rdkZGQAMGLECNavX1/m827cuJEBAwbQvXt3Jk+eDMATTzxB\namoqgwcPZufOnQCsW7eOs846i+3bt7Nlyxb69+9P//79Ofvss0lPTy/z+SVJkqqbqEgHqKq2bNnC\nDTfcQK1atahRowYdO3Zk48aN7Nixg1NPPZXf//73/197dx5WVbU+cPx7OIAig2AqWoKY5QEHRMUc\nQAnE1BRnE8Ehc8jrkBqidZ9UUjOtixOa5pCYWjgmas6akjlTIs7lkNMFJ1AREIH9+8Mf+3I8G0Wy\nDur7eZ6eZLP32u9+zwLes87aa7Nr1y5mzJhBbm4u/fv3p127dgwdOpSkpCTc3NyYOnUqADqdjr17\n9zJx4kQURaFXr1507NiRsLAwjh49ioODAzNnziQ2NhZra2uaNm3KxYsXuXfvHidOnCAsLIz79+/j\n4+NDREQEPXr0oGTJkpw5cwZvb28+//xz+vfvz59//om1tTVRUVFcvnyZwYMHU79+fZo0aUJ4eDjT\np09ny5YtzJgxg5UrV+Li4sLatWvJysoCwMXFhY0bN3L06FEiIiJ4//33zfkSCCGEEEL8o2TEuADf\nf/89tWvXZvXq1djY2FCyZEkqVqzIli1bKFu2LNHR0dSoUYMhQ4ZQt25dtmzZwrp16/jtt9/Izc0l\nISGBAwcOAA+mSEydOpW0tDTu37/PggUL2L17N6dPn2bbtm2EhYUB8NZbbxEaGoqnp6d63NixY+nb\nty8bN25k9+7d7NmzB4D69eszZ84cNmzYQFZWFidPnuTtt9+ma9eulClTBn9/f5o1a8bEiRNp3bo1\nOTk5ZGVl4ezsTPny5UlKSqJVq1bMnTsXRVGMrn3y5MkMGjQIKyurfzDjQgghhBDmJYVxARRFMSoY\nc3Nz1a8VRcHCwoLJkydz5coVPDw8yMnJIScnB3d3dzZs2EC/fv3w8PBQj8/JyWHgwIHMmTOHAQMG\nqNsUReHmzZukpqY+Mo68c+t0OgDKly9PqVKlyM7OJicnh7CwMKpXr86GDRuIjo4mLS2NXr164eDg\nwBdffIGjoyNWVlZcvXqV5ORkKlasiF6vNznfxYsXuXz5Mv7+/k8nkUIIIYQQzwgpjAvQvXt3EhIS\n6NSpEzdv3sTe3p7//ve/tGzZkpSUFN59913c3NxYtmwZhw4dIiUlhaCgIKytrfH39+fAgQM4ODgA\nD4rZDz/8kPnz59OnTx8URcHX15fq1asTGBjIwoULcXJyonr16ixfvpz4+Hj1uPDwcBYvXkzr1q15\n8803adSokVGcOp2OEiVKsHPnTr744gtSU1Np3LgxU6ZMUUet27Rpw82bNxk+fDghISGcPn2azp07\nG7WR58SJE9SqVesfyLAQQgghRPGiUx7+HF0AD25KGz9+PNnZ2ej1embMmIGbm5u5wyo25oZ/T3mn\nCuYOQwghhHguXE1JwrubJy4urn+pHUfHUqSmpj+lqJ4f5crZF2o/ufmuAN7e3sTGxpo7DCGEEEII\n8Q+RqRRCCCGEEEIghbEQQgghhBCAFMZCCCGEEEIAUhgLIYQQQggBSGEshBBCCCEEIIWxEEIIIYQQ\ngBTGQgghhBBCAFIYCyGEEEIIAUhhLIQQQgghBCCFsRBCCCGEEIAUxkIIIYQQQgBSGAshhBBCCAFI\nYSyEEEIIIQQAluYOQDybbty+bu4QhBBCiOeG/F0tHnSKoijmDkI8e/744yy3b2eYO4xix8HBRvKi\nQfJiSnKiTfKiTfKi7XnLS8WKL2Np+dfGLB0dS5Gamv6UInp+lCtnX6j9ZMRYFEnlypXlB0+D/ELS\nJnkxJTnRJnnRJnnRJnkRT5vMMRZCCCGEEAIpjIUQQgghhABkjrEQQgghhBCAjBgLIYQQQggBSGEs\nhBBCCCEEIIWxEEIIIYQQgBTGQgghhBBCAFIYCyGEEEIIAUhhLIQQQgghBCBPvhNPID4+nuTkZCpU\nqEDdunXNHU6xkJiYyOuvv86aNWvQ6/W0bduWEiVKmDusYkH6izHpKwWTvmJK+kvBpL8Yk75SsKL0\nFVnHWBTK0KFDOXHiBOXKlePatWtUr16dadOmmTsss2vVqhVVq1bl1q1bWFlZYWtrS1RUlLnDMjvp\nL6akr2iTvqJN+os26S+mpK9oK2pfkRFjUSiJiYls374dnU5Hbm4uzZs3N3dIxUJWVhbnz59n7dq1\n6HQ6AgICzB1SsSD9xZT0FW3SV7RJf9Em/cWU9BVtRe0rUhiLQqlZsyYtWrSgfPnyXLt2jZo1a5o7\npFcdylgAABetSURBVGLhpZde4vjx4+zbt4+ffvoJd3d3c4dULEh/MSV9RZv0FW3SX7RJfzElfUVb\nUfuKTKUQhXbo0CGSk5NxdnbG29vb3OEUG3fv3sXCwoLk5GRefvllrK2tzR2S2SmKQnx8PElJSTg7\nO1O/fn1zh1QspKWlodfrSUpK4pVXXpG+8v/yfreUL19e+ko+eb9bpL8YO3ToEElJSVSoUEH+Fv0/\n+TukrSh1iz4iIiLi7w1LPA/279/P7Nmz2bFjBydPnqRixYq88sor5g7L7Pbv38+4ceNYsGABv/76\nK5UqVZK8ADqdjpdffplq1apJPvKxtrbGysoKJycn9Hq9ucMpFmJiYpg1axYGg4G33nqL3r170759\ne3OHZXYxMTF8+umnWFtb4+vrS9++fSUvwOHDh9m+fTu1a9dmwoQJ2NraYjAYzB2WWR0+fJhly5Zh\nb2/Pv//9bxwcHF74nACsWbOG27dvk5OTQ0REBGXKlCnUaLpMpRCFMnr0aAYOHIizszPJycmMHj2a\nzZs3mzsss5O8aAsICECn05H3gZROp2P79u1mjsq8JCfaZs+ezciRI/n666+xtrYmKSnJ3CEVC7Nn\nzyY8PJy5c+dKXvIZNWoU3t7e9O7dm08++YSpU6cSFBRk7rDM6uGcTJs27YXPCUBkZCQWFha4urpy\n584dVq1aVag3l1IYi0JRFAWdToeFhQUWFrL8dR7Ji7YePXoQFxfHv/71L2S21gOSE216vZ4qVaow\nZ84cQkJCuHXrlrlDKhb0ej2vvvqq5OUhubm59OnTh5o1a9K0aVNmz55t7pDMTnKibdWqVYSFhdGm\nTRuuX7/O4sWLC3WcTKUQhVKtWjUWL17M+vXruXDhAuHh4VSqVMncYZmd5EWbl5cXR48epUuXLri6\nukpOkJwUpGzZsvz+++80adKERo0asW/fPkJCQswdltlJXrSVLVuW69ev07FjRw4cOMBrr72Gp6en\nucMyK8mJNltbW9q0acOqVas4fvw4ffv2LdRxcvOdKJIjR47ID54GyYu2xMREatWqZe4wihXJiTb5\nGdImedEmeTElOTGVlpbGuXPnCvU7Vz77FYWWm5vLjRs3yMnJYcqUKeYOp9iQvGjLn5fIyEhzh1Ms\nSE60yc+QNsmLNsmLKcmJtry82NjYFPp3rhTGolAWLlyIl5cXPj4+1KlThzfffNPcIRULkhdtkhdT\nkhNtkhdtkhdtkhdTkhNtRc6LIkQh+Pv7K1euXFFycnKUy5cvKwEBAeYOqViQvGiTvJiSnGiTvGiT\nvGiTvJiSnGgral5kVQpRKI6OjsycOZMKFSqQnJyMk5OTuUMqFiQv2iQvpiQn2iQv2iQv2iQvpiQn\n2oqaF7n5ThTK1atXWbFihfoEmS5dulC+fHlzh2V2khdtkhdTkhNtkhdtkhdtkhdTkhNtRc2LFMZC\nCCGEEEIgN98JIYQQQggBSGEshBBCCCEEIIWxEEIIIYQQgBTGQogXyPbt23n//fdp1KgRtWrVwtfX\nl4EDB7Jjxw6TfVevXo27uzvffvvtUzv/pUuXcHd3Z9CgQeq2Hj164O7uTlpa2lM7DxQc//r167l4\n8eJTPdeLaPfu3SQmJpo7jAJlZWXRpk0boqOj1W1nzpyhW7du1K5dm6CgIM1+DxAcHMwHH3yg+b09\ne/ZQv359rl279neELYTZSWEshHghjB8/nkGDBnHmzBmaN2/Oe++9h4+PD/Hx8QwcOJAxY8YY7V+9\nenUGDx6Ml5fXU4uhdOnSDB48mNatWxtt1+l0T+0cebTi//LLLxkxYgR379596ud7kXz33Xf07duX\nq1evmjuUAs2ZM4d79+7RvXt3ABRFYfjw4Zw9e5Zu3bphY2PDkCFDOHXqlNFxP/30E0eOHGHo0KGa\n7TZu3Jg6deowbty4v/0ahDAHWcdYCPHc279/P0uXLqVFixZMnToVC4v/jQmkpaXRs2dPli9fjp+f\nH82aNQPA3d0dd3f3pxqHvb09gwcPfqptFkQr/hs3bvwj537eFfc8nj9/nrlz5zJ+/HgsLR/8mU9M\nTOT06dNMnTqVVq1akZmZiZ+fHytWrOCTTz4BHhTP06dPp3Xr1lStWrXA9ocPH06HDh3YuXOnPGVN\nPHdkxFgI8dzbuXMnAN27dzcqigHs7OwICwsDYNu2bf90aOIZVlxXO/3mm2+wt7cnKChI3Xbp0iUA\n9c1SyZIlcXNzU7cDbNy4kT/++KPAaRR5PDw8qFu3LnPmzPkbohfCvKQwFkI89+7fvw9g8rFxHm9v\nb6ZNm0avXr3UbXlzdBctWqRuCwgIoHfv3pw6dYo+ffpQp04dGjZsyJgxY8jMzCQ5OZlhw4ZRr149\nGjduTHh4OCkpKerxWnOMC4p30aJFvPPOO3h7e1OzZk0CAgIYO3YsN2/eNGlvxowZTJgwAS8vLxo2\nbMimTZtM5hgHBASwZs0aANq3b09AQACHDh3C3d2d8PBwzTgCAwPx9/d/ZKwBAQGEhIRw8uRJevTo\ngZeXF35+fkyYMIFbt26Z7H/t2jUiIiJo2rQptWrVolmzZvznP/8xmd7Ro0cPAgIC2LVrFwEBAXh5\neTFs2DD1+wcPHuT999+nQYMGeHt7ExwczPbt203Od+zYMQYOHEiDBg2oXbs27du3JyYmRvM6evTo\nwZkzZxgwYAD16tWjbt269O/fn5MnTxrFNWvWLAAGDx5sNCp/9+5dZs2aRbt27ahbty6enp60aNGC\nL7/8koyMDJNzxsTEEBQUhJeXF4GBgcyfP581a9bg7u7OwYMHi3QdKSkpxMbG0rJlS3W0GB5M48mL\nMc+dO3ewt7cHICcnh6ioKDp06ICLi4tJuw8LCgri8OHDHD58+LH7CvEskcJYCPHc8/X1BWDy5MlM\nmDCBw4cPk5ubq36/RIkStGzZUnPqxMPzfy9dukRISAgAISEhlCtXjuXLlzNy5Ei6detGUlISwcHB\nuLq6sm7dOkaPHv3YNh8WFhbG559/jrW1NV27diU4OBhra2uWLVtG//79TfZfvnw5mzZtIiQkBC8v\nL+rUqWOyT69evdTrCw4O5t1338Xb25tKlSqxY8cOMjMzjfb/9ddfuXTpEm3btn1krPDgCVO9evXi\n7t27dO/eHRcXF5YsWUL37t1JT09X97ty5QqdO3dm2bJl1KpVi969e1OlShXmz59Pjx49TIrH1NRU\nhg8fjre3Nx07dqR+/foAxMbG0qtXL+Lj43nzzTfp3LkzSUlJDBo0iNWrV6vH79q1i+DgYA4cOKAW\nvrm5uURERJjMKQdISkqiW7dupKSkEBwczBtvvEFcXBw9e/ZU35Dkj6N169bq1Jjs7Gx69+7NzJkz\ncXZ2JjQ0lE6dOpGZmcmCBQsYNWqU0bkmTpxIREQEWVlZvPPOO3h5eTFt2jS16M7vSa5j27Zt3Lt3\nT+3zeTw8PChRogQLFy4kLS2NrVu3cvbsWerWravm9NKlS49905Ynr/3169cXan8hnhmKEEK8ACIi\nIhSDwaD+V7duXaV///5KdHS0kpSUZLL/qlWrFIPBoCxatEjd5u/vrxgMBmXixInqttu3byteXl6K\nwWBQhg0bpm7PyclRmjdvrri7uyuZmZmKoijKxYsXFYPBoAwaNEjdr3v37oq7u7ty584dRVEU5bff\nflMMBoMSHh5uFE92drYSFBSkGAwG5dy5c0bteXh4KKdOnXps/KNGjVIMBoNy4sQJdVtUVJRiMBiU\nH3/8UTNff/zxxyPzmpeTgQMHKrm5uer28ePHKwaDQYmKilK39evXT/Hw8FB27txp1Ma3336rGAwG\n5YsvvjDKi8FgUCZNmmS0b2pqqlKvXj3Fx8dHOX/+vLr95s2bSpMmTZSGDRsq2dnZSnp6utKwYUPF\nx8dHuXz5srpfbm6u8sEHHygGg8EojrzrGD9+vNH5Ro8erRgMBuX7779Xt82YMUMxGAzKtm3b1G3r\n169XDAaDMm3aNKPj09LSFB8fH6VGjRpqPzhy5IhiMBiUrl27Kunp6eq+O3fuVAwGg+Lu7q4cOHBA\nURTlia9jxIgRisFg0OzT8+fPV9zd3dWfgZCQECU7O1vJyspS/P39ja49/2tZkDfeeEMJCgp67H5C\nPEtkxFgI8UIYO3YsX3/9NU2aNMHKyor09HR27drF559/TrNmzZgyZUqh5ozqdDreffdd9Wt7e3te\nffVVAHr37q1ut7CwoEaNGiiKwuXLlwsdZ8WKFZk0aZLJPE+9Xq+O7uWfTgHg6upKtWrVCn2O/Nq1\nawcYj/zdv3+fjRs3UqNGjUfehJU/to8++shoJHzYsGGUKlWKdevWAQ9GlePi4mjatCl+fn5Gx4eG\nhlKhQgV++OEHk7ZbtGhh9PWuXbvUGyYrV66sbndycuLjjz+mb9++3L17lx07dpCSkkKfPn14+eWX\n1f10Oh0ffvghgNHoct73+vXrZ7StadOmwIPR7kepUaMGn332mdF0HABbW1s8PDzIzs4mNTUVeDA6\nCw9uYrOxsVH39fPzw8fHx6gfPul1HD9+HDs7O5ydnU1i7NOnD8uWLeOjjz4iKiqKxYsXo9frWb58\nOTdv3mTAgAFkZGQQFhaGp6enOsWoIFWrVuX3338nOzv7kbkR4lkiq1IIIV4Yfn5++Pn5kZ6ezsGD\nB9m3bx87duzgzz//ZO7cueTm5jJixIhHtmFpaUnFihWNtpUqVQqdTkelSpWMtpcoUQJ4sKZsYTk7\nO9O+fXuys7M5duwY586d48KFC5w4cYK9e/cCGE0DAUzO+yRcXFyoV68eP//8M7dv38bBwYHdu3eT\nmprKwIEDCx3zw/NS7ezscHNz48SJE2RmZnL8+HHgwfSIqKgokzasrKxISkri6tWrlC9fHkAzp3nz\nfbWW0WvVqpX676NHj6r/1zqfhYWF0dxhePB6PVxQ2tnZAY9/Dd3c3HBzc+PevXskJCSor9uxY8c4\nePAgOp1Ofd0SExPR6XR4enqatFOnTh1++eWXIl/HjRs3cHJyKjBOT09Po/NmZmYye/ZsQkNDKVu2\nLF9++SVxcXFMmjSJW7duMXHiRFxcXOjUqZNJW05OTiiKQkpKCuXKlXtkfoR4VkhhLIR44ZQqVUot\nkkeNGsWKFSsYM2YMS5YsYciQIWpBqyX/CN/DrK2tn0p8MTExzJo1S32IQunSpalduzZVq1YlISHB\nZGS7ZMmSf+l87du3Jz4+ns2bN9OlSxfWrl2LpaUlbdq0KdTxWqOTAGXLlgUeLIl3+/ZtgEfesKXT\n6bh165ZaGIPpteW1k1ewFuTOnTsA/Pjjj488V35ar1/eKPjjPk1QFIU5c+awcOFCNcayZctSp04d\nXnnlFc6cOaO2kZKSgo2NjWZfyn/tRbmOtLS0JypSly5dSmZmpjpSvnLlSjp37qyutb13716+++47\nzcI4L/7bt29LYSyeG1IYCyGea2lpaXTs2JEaNWowdepUzX26dOnCpk2b+OWXX0hKSjL6iP6ftnHj\nRiIiInB3d+fTTz+lRo0aauE5duxYEhISnvo5W7VqxYQJE9i0aRPt2rXjp59+wtfXlzJlyhTq+Hv3\n7mluzysQHR0dKVWqFACDBg1iyJAhRY41rx2th5RkZWVhYWGBpaWlut+iRYto0KBBkc9XWAsWLGD6\n9Ok0aNCAfv364eHhwUsvvQRA3759OXPmjLqvnZ0dV65cIScnB71eb9TOw09AfNLrKF26dKGfopiW\nlsa8efPo2bMnjo6OpKSkcOvWLdzc3NR9KleuzP79+zWPzyvaH/VGUohnjcwxFkI81+zs7EhLS2PX\nrl3qH/KC6PV6dZTTXPLm+kZGRhIQEGA0Gnv27Fmg6OvnFrQahp2dHc2aNePAgQNs3bqVzMzMQq1G\nkT+u/KtPAGRkZHDq1Ck8PDywtLTEYDAAFPgY5a+++or58+erS+sVJK8drTcICxYswMvLS12GrqDz\n3blzh0mTJrF27drHX5wGrTyuX78eS0tLvvrqK3x9fdWiWFEUzp49i06nU1+3mjVrkp2drU6TyO/h\n63rS6yhXrpw6l/lxoqOjURSF9957D3iwZBtgNGf43r17BfablJQU9Hp9gZ8YCPEsksJYCPHcCw0N\nJT09naFDh5rcuAYPlrjau3cvgYGB2NramiHC/8kbfcubRpFnzZo16lzVot7slLeurdZ82fbt23P/\n/n0iIyOxs7MjMDCw0O1mZmYyZcoU9WtFUYiMjCQjI0P9CN7FxYX69esTFxfH5s2bjY5fu3YtM2bM\nIC4uDisrq0eeKzAwEBsbG7799lujG+JSU1OJiYnB1taW2rVr07x5c+zs7Jg3bx7nz583amPy5MlE\nR0dz4cKFQl9jflp5LFGiBNnZ2Sb9a9asWWqcea9bx44dAZg6darRMnn79u1j27ZtRoXok17H66+/\nTkZGBhcvXnzkNaSmphIdHU2fPn3UaSkvvfQSpUuXNprqkpCQQJUqVUyOz83N5cyZM1SpUuWxr5kQ\nzxKZSiGEeO4NGDCA06dPs3nzZgIDA/H19cXV1ZX79++TkJDA4cOHqVq1KhEREUU+R1FHcR8+tl27\ndmzYsIHBgwfTunVrbG1tSUxM5LfffqNx48bs2bPH6KEhTyJvZG/y5Mk0atTI6PHUvr6+lC1blitX\nrtCpU6cnmi9tZWXFypUrOXr0KLVr11Zz2rBhQ3XNZ4Bx48YRGhrK0KFDadq0Ka+99hrnzp1j165d\nODo6Mnbs2ALzkqd06dKMHTuWjz/+mA4dOtCsWTNKlSrFpk2buHHjBlFRUVhZWWFlZcWECRMYMWIE\nHTp0IDAwkHLlynHw4EESExPx9PSkT58+T5pCACpUqADA7NmzOXbsGB988AFt27YlISGBbt260bJl\nS6ysrNi/fz/nzp3D29ubQ4cOkZKSQuXKlfHy8iI4OJiYmBjatWtHkyZNuHHjBlu3bsXBwYGUlBT1\nCY329vZPdB3+/v6sW7eO+Pj4Rz6oY/78+ZQoUYKePXuq23Q6HR07diQ6Ohq9Xk9qaipHjhwhMjLS\n5PjTp09z9+5dGjduXKQcClFcyYixEOK5p9frmT59OjNnzsTX15cjR46wePFiVq9eTXZ2NmFhYfzw\nww9Gd/PrdLrHPogjP619C9tG/n38/PyYMmUKrq6urF27ltWrV+Pk5MSKFSvUJ9TFxcUVqs2Hzx0a\nGoqPjw9Hjx5Vb7rKY2FhoY4S5y3hVlh2dnYsXLgQRVGIiYnh5s2bDBkyhHnz5hnFUKVKFVavXs07\n77zDqVOnWLx4MadPn6Zdu3asXLnSZGm4gnLXvn17vvnmGzw8PNi8eTMrV67E1dWVr7/+2miku2XL\nlixZsoSGDRsSFxfH0qVLSU9PZ9CgQSxcuPCRN1I+yttvv02rVq24ePEiy5Yt48qVK4SGhjJ69Ggc\nHR1ZsWIF69ato1q1asTGxqrL++V/3caMGcPIkSPR6XQsW7aMo0ePMnLkSHWEPX9sT3IdTZo0wdra\n2mhli4ddv36dpUuX0q9fP5ObGz/88EO6du3Kli1bSExMZPjw4eqNePnt3r0boNA3aArxrNApf2WY\nQwghxHOja9euXLt2jR07dhT6mICAADIyMtSl5MTjXb9+HUtLSxwdHU2+N2rUKGJjY9mzZ0+hb358\n2NixY4mNjWX37t2PXb2jqN5++23KlCnDkiVL/pb2hTAXGTEWQghBXFwcCQkJdO7c2dyhPPdiY2Np\n2LAha9asMdp+4cIFtm7dyuuvv17kohigf//+ZGdnF/nmwseJj4/n7NmzDBgw4G9pXwhzkhFjIYR4\ngX322WfEx8dz6tQpSpcuzaZNm3BwcCj08TJi/OSSk5MJCgoiIyODZs2a4eLiwvXr19myZQvZ2dnM\nmzePN9544y+dIzIyknXr1rFly5antr52nl69emFjY8OcOXOeartCFAcyYiyEEC8wZ2dnzp07x6uv\nvsrs2bOfqCgWRePs7MzKlStp27YtiYmJLFq0iJ9//pkmTZoQExPzl4tigCFDhmBra8vixYufQsT/\n8/PPP3PixAnGjRv3VNsVoriQEWMhhBBCCCGQEWMhhBBCCCEAKYyFEEIIIYQApDAWQgghhBACkMJY\nCCGEEEIIQApjIYQQQgghACmMhRBCCCGEAOD/ACFCMuFaajiBAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11422e110>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"get_related_terms(u'punjabelection2017')\n",
"data_dict = listToDict(word2vec.similar_by_word('punjabelection2017'))\n",
"sns.set_style(\"darkgrid\")\n",
"\n",
"plt.figure(figsize=(10,8),dpi=500) # does not affect the following plot\n",
"plt.xlabel(\"Similarity percentage(%)\",size=20)\n",
"plt.ylabel(\"Similar words\",size=20)\n",
"bar_plot = sns.barplot(x=data_dict.values(),y=data_dict.keys(),\n",
" palette=\"muted\",\n",
" x_order=data_dict.keys().sort(reverse=True))\n",
"plt.xticks(rotation=90)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 510,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAH5CAYAAAC8iZceAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVAX+//H3AEIiIAqomIhZG5ipaIiV99FU1rxubYpi\nqdlFLHMr0/1larVSX7tLWZa75TVr89KW3cDUyltqZvbNzHtU4AUREBSB8/ujr7MRUiMxcw6c1/Px\n8CFz5syZ94cZ5O2ZM2cchmEYAgAAACzAx+wAAAAAwDmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAA\nYBmUUwAAAFiGn9kBUHVFRcUqKDhjdgyvCwoKYG4bYW57YW57YW57iYgIdms99pzWYH5+vmZHMAVz\n2wtz2wtz2wtz43wopwAAALAMXtavwQ4dOqS8vCKzY3jdyZN1mdtGmNtemFuKjGwqPz9+PcO+ePbX\nYHf+410FBoebHQMAUE0K84/p8buciopqbnYUwDSU0xosMDhc9UKbmB0DAACg2nDMKQAAACyDcgoA\nAADLoJwCAADAMiinAAAAsAzKKQAAACyDcgoAAADLoJwCAADAMiinAAAAsAzKKQAAACyDcgoAAADL\noJwCAADAMiinAAAAsAzKKQAAACyDcgoAAADLoJxWs+XLl6tPnz5KTEyUJMXGxuqHH36o8vY2b94s\np9NZXfEAAAAszc/sALWNw+FQSUmJvv/+e9ey6dOna8+ePbrzzjs1cOBATZw4UVlZWWrRooWefvpp\n9e3bV40aNVLLli11ySWXaMmSJTIMQ9OmTVNQUJCJ0wAAAHgX5dQLUlJSVFpaqpSUFDkcDn3xxRdq\n3LixvvzyS23ZskWSlJSUpIEDB+qLL75QRESE3n77ba1Zs0aDBg0yOT0AAID38LJ+NTMMo8Ky0tJS\nORwO+fn5qbS0VLGxsVq9erXGjRunVq1aSZKaNGkiSZo6darOnj2rSy+9VGVlZV7NDgAAYDbKaTVz\nOBwVli1atEj33nuv/va3v2nAgAHy9/dXz549tWXLFoWEhJS73aWXXqq5c+dq3759ysnJqXSbAAAA\ntZHDON+uPtQIg+5eqnqhTcyOAQCoJqdyszT9lraKimpudhSvCA0NVG5uodkxvM6uc0dEBLu1HntO\nAQAAYBmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAAYBmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAA\nYBmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAAYBl+ZgdA1RXmHzM7AgCgGvHvOkA5rdHm/r/+yssr\nMjuG14WE1GVuG2Fue2FuKTKyqclpAHNRTmuw6Oho5eYWmh3D60JDA5nbRpjbXpgbAMecAgAAwDIo\npwAAALAMyikAAAAsg3IKAAAAy6CcAgAAwDIopwAAALAMTiVVgx06dMiW5wM8edKe50Fkbnthbns5\n39yRkU3l58evadgPz/oabPp7f1dwRLDZMQAA1Sz/aL7u7TxNUVHNzY4CeB3ltAYLjghW/SYhZscA\nAACoNhxzCgAAAMugnAIAAMAyKKcAAACwDMopAAAALINyCgAAAMugnAIAAMAyKKcAAACwDMopAAAA\nLINyCgAAAMugnAIAAMAyKKcAAACwDMopAAAALINyCgAAAMugnHrIlClTNHDgQD3wwAPnvf7JJ5/U\n4sWLK9wmLS3NG/EAAAAsyc/sALXJ4cOHlZKSIj8/PxUXF6uoqEg//vijnn/+eR08eFCzZ8/W2LFj\n1adPHx07dkwBAQEVbtOsWTN9++23+vvf/64zZ84oMTFRKSkpZo8GAADgFew5rUZLly5Vu3bttGLF\nCjVs2FCS5HA4dNNNN+njjz/Wnj17tGvXLg0aNOi8twkLC5Mkvfjii8rOzlZZWZkWL16soqIiU+YB\nAADwNvacViMfHx8ZhlFheXh4uLp166Z7771XAwYM0EUXXXTe25z7u7S0VDfccINGjRql1atXq27d\nut4ZAAAAwGTsOa1GI0aM0K5duzRkyBAVFxeXuy4pKUl79+5VUlJSpbc5e/asJOnOO+9URkaG/vKX\nv6igoMBr+QEAAMzmMM63qw81wh2vj1P9JiFmxwAAVLOTWXm67fJ7FBXV3OwoHhUaGqjc3EKzY3id\nXeeOiAh2az32nAIAAMAyKKcAAACwDMopAAAALINyCgAAAMugnAIAAMAyKKcAAACwDMopAAAALINy\nCgAAAMugnAIAAMAyKKcAAACwDMopAAAALINyCgAAAMugnAIAAMAy/MwOgKrLP5pvdgQAgAfkH82X\nLjc7BWAOh2EYhtkhUDV79+5XXl6R2TG8LiSkLnPbCHPbC3P/V2RkU/n51e59SKGhgcrNLTQ7htfZ\nde6IiGC31qvdz/paLjo62pZPbrv+UDO3vTC3vdh1buB8OOYUAAAAlkE5BQAAgGVQTgEAAGAZlFMA\nAABYBuUUAAAAlkE5BQAAgGVwKqka7NChQ7Y8H+DJk/Y8DyJz2wtz24td5w4KuszsCLAgymkNljH1\nATUKCjI7BgAAF+xIQYFCUh9X/foRZkeBxVBOa7BGQUGKDAkxOwYAAEC14ZhTAAAAWAblFAAAAJZB\nOQUAAIBlUE4BAABgGZRTAAAAWAblFAAAAJZBOQUAAIBlUE4BAABgGZRTAAAAWAblFAAAAJZBOQUA\nAIBlUE4BAABgGZRTAAAAWAbl1EIyMzPNjgAAAGAqyqmHTZkyRWlpaRWWx8bG6ocfftDkyZOVnp6u\n+fPn6/nnnzchIQAAgHX4mR2gNjp8+LBSUlLk5+en4uJiHT58WKtWrVJJSYkGDhyoSZMmudb96aef\nlJ+fr5dfflmlpaXq1auX0tPTtWXLFvn6+io1NVXx8fEmTgMAAOA97Dn1gKVLl6pdu3ZasWKFwsLC\nFB0drfHjx8vpdGr16tXnvc3IkSPVu3dv9e7dWzt37lS3bt00YsQINW3a1MvpAQAAzEM59QAfHx8Z\nhiFJMgxD/v7+2rFjh9q0aaPS0tLfvO3Zs2d1++2365prrtHGjRv11FNPeSMyAACAJfCyvgeMGDFC\nd955p4YMGSJ/f3+9/fbbqlevno4fP66CggKVlJTI4XC41nc4HIqNjdWSJUuUkZGhHTt2aO3atfLx\n8dHf/vY3EycBAADwLodxbhcfapwVo0crMiTE7BgAAFywn/Ly1Ob/TVP9+hFmR/G60NBA5eYWmh3D\n6yIigt1aj5f1AQAAYBmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAAYBmUUwAAAFgG5RQAAACWQTkF\nAACAZVBOAQAAYBmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAAYBl+ZgdA1R0pKDA7AgAAVcLvMFTG\nYRiGYXYIVM3evfuVl1dkdgyvCwmpy9w2wtz2wtz20qrVZSooKDY7hteFhgYqN7fQ7BheFxER7NZ6\n7DmtwaKjo2355LbrDzVz2wtz24td5/bz85Nkv3KK38YxpwAAALAMyikAAAAsg3IKAAAAy6CcAgAA\nwDIopwAAALAMyikAAAAsg1NJ1WCHDh2y5XnxTp605/kAmdtemNte7Dx3vXoN/u+UUsDPeDbUYG/O\nfldhIeFmxwAAoEqO5x1T39udiopqbnYUWAjltAYLCwlXowZNzI4BAABQbTjmFAAAAJZBOQUAAIBl\nUE4BAABgGZRTAAAAWAblFAAAAJZBOQUAAIBlUE4BAABgGZRTAAAAWAblFAAAAJZBOQUAAIBlUE4B\nAABgGZRTAAAAWAbl1OIyMzPNjgAAAOA1lFMTTJkyRWlpaRWWx8bG6ocfftDkyZOVnp6u+fPn6/nn\nnzchIQAAgDn8zA5gF4cPH1ZKSor8/PxUXFysw4cPa9WqVSopKdHAgQM1adIk17o//fST8vPz9fLL\nL6ukpES9evVS7969TUwPAADgHew59ZKlS5eqXbt2WrFihcLCwhQdHa3x48fL6XRq9erV573NyJEj\ndd1111FMAQCAbVBOvcTHx0eGYUiSDMOQv7+/duzYoTZt2qi0tNTkdAAAANZAOfWSESNGaNeuXRoy\nZIiKi4v19ttvKyMjQ+np6SooKFBJSYkcDodrfYfDodjYWK1bt04ffPCBickBAAC8x2Gc252HGmfe\n/UvVqEETs2MAAFAlR05kKX54W0VFNTc7ileFhgYqN7fQ7BheFxER7NZ67DkFAACAZVBOAQAAYBmU\nUwAAAFgG5RQAAACWQTkFAACAZfzhcnrixAlt2LBBBw8erIY4AAAAsLMLKqerVq3SjTfeqOLiYknS\npk2b5HQ6NWbMGCUmJmrq1KkqKyvzSFAAAADUfm6X0/fff18PPPCAvv32Wx07dkySNHPmTJ0+fVpD\nhw5Vp06dtGLFCi1evNhjYQEAAFC7uV1OFy5cqPDwcH300Udq2rSpdu3apQMHDqhPnz6aNWuWXn31\nVV155ZVavny5J/MCAACgFnO7nO7evVv9+vVT48aNJUlr166VJF133XWudTp27Kj9+/dXb0IAAADY\nhtvl1DAM+fv7uy6vX79eDodD1157rWvZmTNnVLdu3epNCAAAANvwc3fFFi1aaPPmzSorK9Phw4e1\na9cuXXnllWrYsKEk6eTJk/roo4/UokULT2UFAABALef2ntMhQ4bo66+/VmJiom644QaVlZVp2LBh\nkqSVK1dq4MCBOnr0qIYPH+6xsAAAAKjd3N5zmpycrKKiIs2fP1++vr667bbb9Je//EWSdODAAeXm\n5upvf/ubBg0a5LGwAAAAqN0chmEYf3QjR48eVb169RQYGFgdmeCm1NvnKCwk3OwYAABUyfG8Y+p7\nu1NRUc3NjuJVoaGBys0tNDuG10VEBLu1XrWUU5hj7979yssrMjuG14WE1GVuG2Fue2FuewkJqat6\n9RrIz8/tF3JrBcrpb6v02TB16tQq33lqamqVbwv3RUdH2/LJbdcfaua2F+a2F+YG/qvScrpixYoq\nb5RyCgAAgKqotJx+8MEH5S7n5OTorrvuUsOGDXX33Xerffv2ql+/voqKirRz507NmTNHOTk5evnl\nlz0eGgAAALVTpeU0Ojq63OXnn39efn5+WrBggUJDQ13Lg4OD1blzZ7Vr106DBw/W7NmzlZaW5rnE\nAAAAqLXcPs/pxx9/rF69epUrpr8UFBSkHj16aMOGDdUWDgAAAPbidjn18fFRbm7ub66TnZ2tgICA\nPxwKAAAA9uR2OY2Pj9cHH3ygjRs3nvf6Dz74QOnp6erSpUu1hQMAAIC9uH2e0z179mj48OE6ffq0\nunTpojZt2igoKEj5+fnatm2bNm3apPDwcC1btkwXX3yxp3NDnOfUbpjbXpjbXpjbXiqbOzKyaa0+\n56tHTsL/zTff6B//+Ie2bt1afiMOh7p27app06YpKirqwpKiyp6aOUzhDd17oAEAgHUdy8lXjwHT\navWnZf3hk/D/WmZmplq1aqVFixYpOztbu3fvVl5enkJCQtS6dWuFh/Mxmt4W3jBYjSNCzI4BAABQ\nbdwup6NGjVKbNm307LPPqnHjxmrcuLEncwEAAMCG3H5D1NGjR3nJHgAAAB7ldjlNSEjQhg0bdObM\nGU/mAQAAgI25/bL+jTfeqEcffVT9+vVT165d1axZM1100UXnXXfUqFHVFhAAAAD24XY5veeee1xf\nv/HGG5Wu53A4KKcAAACoErfL6axZs9xaz+FwVDkMAAAA7M3tcjp06FBP5gAAAADcL6fnFBQU6KOP\nPtK3336roqIihYaG6k9/+pN69uypevXqeSIjAAAAbOKCymlGRoamTp2qvLy8CtfVr19fqampcjqd\n1RYOAAAA9uJ2Od21a5cmTpwoPz8/jRkzRh06dFCjRo2Ul5enzz//XIsWLdKkSZO0bNkyxcbGejIz\nAAAAaim3y+kLL7wgHx8fLVmyRFdccUW567p06aI+ffpo+PDheumll/T0009Xe1AAAADUfm6fhH/b\ntm3q3bt3hWJ6TuvWrdW7d299/vnn1RYOAAAA9uJ2OS0sLFRERMRvrhMWFqaTJ0/+4VAAAACwJ7fL\naVRUlDZu3KiysrLzXl9aWqrNmzerWbNm1RautnM6ndqyZYuefPJJLV682Ow4AAAApnP7mNOBAwfq\nmWee0YMPPqgHH3xQgYGBrutycnKUmpqqPXv26O677/ZIUCuaM2eO1q9fr6KiIjVs2FChoaHavn27\nxo0bp/T0dC1cuFDJyckaOnSogoODNWvWLBmGocTERE2ePNm1nWPHjikgIEBpaWlat25dhe3NnDlT\nvXr1MnFSAAAA73C7nI4ZM0br16/X8uXL9d577+mKK65QcHCwsrOzdeDAAZ0+fVrt27fX2LFjPZnX\ncho0aKDFixerbdu2WrZsmZo3b67U1FQlJCSUW+/AgQMKDw9XYmKiWrZseUHby8jIoJwCAABbcLuc\n+vv761//+pdeeeUVrVixQtu2bXNd16xZMw0ZMkTjxo2Tv7+/R4JaVVhYmGvm8PBwBQQEyMfHR2fO\nnJEknThxQpKUkJCgxo0bKysrSxMnTtSnn37q9vYMw/DCJAAAAOa7oJPwBwQEKCUlRSkpKSooKNCp\nU6dUr149BQUFeSqfpTkcjgpfOxwODRo0SFu3btWYMWPk6+srh8Oh3NxcpaWlqaSkRE6n83e/Zw6H\nw/UHAADALhyGm7vlnE6nevTooe7du+uaa66x3R5SK1owZ5waR4SYHQMAAPxB2UfzdGXnexQV1dzs\nKB4TERHs1npu7zkNDg7W0qVLtWTJEtWtW1edOnVSjx491KNHDzVp0qTKQQEAAIBz3C6nq1at0tGj\nR/XJJ5/o008/1Weffaa1a9dKki6//HL17NlT3bt3V/v27XkpGgAAAFXi9sv6v1ZWVqavvvrKVVa/\n+uorlZaWqn79+tq8eXN158R58LI+AAC1Ay/r/5fbJ+H/NcMwZBiGAgICFBISooCAAEniE6IAAABQ\nZW6/rH/mzBnt2LFDn3/+ubZu3aovv/xSRUVFkn4+5VH37t2VkJCgTp06eSwsAAAAaje3y2l8fLxK\nSkpkGIaaNm2qHj16qGPHjkpISNBll13myYwAAACwCbdf1i8tLZVhGAoMDFTr1q111VVXKT4+nmIK\nAACAauP2ntPNmzdr8+bN2rRpkzZv3qz09HQZhqEGDRooPj5eCQkJSkhIUExMjCfzAgAAoBa7oPOc\n9u7dW71795YkHT9+3FVYt2/f7iqroaGh2rRpk8cCAwAAoPa6oI8v/aWwsDB16dJFderUkZ+fnwoK\nCvTTTz8pNze3OvMBAADARi6onJ4+fVrbtm3Txo0btXHjRn3zzTcqKytTnTp1dNVVV2nUqFHq1q2b\np7ICAACglnO7nCYnJ+vLL79UcXGxJKlJkya64YYb1K1bN1199dUKCgryWEgAAADYg9vldPv27Wrf\nvr26deum7t2788YnAAAAVDu3y+mmTZsUHOzex07BO47l5JsdAQAAVAN+p/+XwzAMw+wQqJq9e/cr\nL6/I7BheFxJSl7lthLnthbnthbnLi4xsKj+/Kr9X3fIiItzbyUk5rcHOni1Vbm6h2TG8LjQ0kLlt\nhLnthbnthbntxd1y6vYnRAEAAACeRjkFAACAZbhdTt9//31lZ2d7MgsAAABszu1yOmPGDE2fPt2T\nWQAAAGBzbpfT06dPq2XLlp7MAgAAAJtzu5zecMMNevvtt7Vnzx5P5gEAAICNuX0yrZCQEEnS4MGD\n1bx5czVr1kwXXXTReddNS0urnnT4TYcOHbLl+eFOnrTnefGY216Y215q+ty1/fyc8C63n0kvvPCC\n6+uDBw/q4MGDnsiDC/A//1mvkPBGZscAANhY3rEjuqN7R0VFNTc7CmoJt8tpenq6J3OgCkLCG6lB\n46ZmxwAAAKg2bpfTZs2aeTIHAAAA4H45PefgwYPKyclRWVmZzn3yqWEYKikp0YkTJ7R+/Xo9/vjj\n1R4UAAAAtZ/b5TQnJ0e33Xabdu3add7rHQ6Hq6xSTgEAAFAVbp9K6tlnn9WuXbt0+eWXa9iwYQoK\nClK7du100003qWPHjjIMQ9dee61WrFjhybwAAACoxdzec/rJJ5+oRYsWWrFihXx9fXX8+HGdOXNG\nM2fOlCStXLlSDz74oMeCAgAAoPZze8/pkSNH1KVLF/n6+kqSWrVqpS+//NJ1/eDBg9W+fXvNnTu3\n+lMCAADAFtwupxdddJECAgJcl5s3b66TJ08qOzvbtaxNmzbasmVL9SYEAACAbbhdTlu2bFluT+kl\nl1wiSfr6669dy06dOqUzZ85UYzwAAADYidvltH///tq6dasmT56szMxMxcTEKCIiQs8995z27dun\nTZs26d1333WVVgAAAOBCuV1Ok5KS1KdPH7399tvaunWr/Pz8lJKSot27d6t///665ZZbVFBQoFtv\nvdWTeQEAAFCLuf1u/Tp16ui5557Tjh07FBkZKUkaNmyY6tevr3feeUcBAQEaNGiQunfv7rGwAAAA\nqN0u+BOi4uLiyl1OTExUYmJitQUCAACAfVVaTgsKCqq80aCgoCrfFgAAAPZVaTmNj4+Xw+G4oI0Z\nhiGHw6FvvvnmDwezo++//15RUVFmxwAAADBNpeW0Y8eO3sxhaU6nU4899pg++eQTNWnSRCNGjKj2\n+3j//fe1ZMkSLViwoNq3DQAAUFNUWk4XLlzozRweNWfOHK1fv15FRUVq2LChQkNDtX37do0bN07p\n6elauHChkpOTNXToUAUHB2vWrFkyDEOJiYmaPHmyazvHjh1TQECA0tLStG7dugrbmzlzpnr16lXu\nvjMzMzVw4ECtX79ea9eu1aJFi7RgwQJNnjxZu3btUsOGDfXEE09o3rx52r9/vxYvXqz69evrhRde\nUJ06dTRp0iT16NHDy98xAAAAc7h9KqmarkGDBlq+fLm2bNmisWPHavDgwUpNTa1w6MKBAwcUHh6u\nUaNGqVOnThe0vYyMjArrNWvWTAkJCVq9erWWL1+upKQkvfXWWzp+/LjS09N17bXX6rnnnlNycrLa\ntm2rESNGKDU1VWfPnlVRURF7UgEAgK1Uuuc0JSVF/fv315///GfXZXePQU1LS6uedNUoLCxM/v7+\nkqTw8HAFBATIx8fH9YlWJ06ckCQlJCSocePGysrK0sSJE/Xpp5+6vT3DMM677rnCmZeXp8TERL35\n5puSfj5G1zAM+fr6yuFwuG5fWlqqhx9+WPXq1dOxY8eq75sAAABgcZWW04yMDLVq1arc5Zrql6X6\n3NcOh0ODBg3S1q1bNWbMGFdBzM3NVVpamkpKSuR0On/3zAMOh8P1pzJdu3bVo48+qiFDhqhOnToa\nNGiQPvvsMyUmJio0NFRPPPGEcnJy9N1332nhwoWaMmWKpk2bJkmaPn16NXwHAAAAagaHUcnuvszM\nTNWvX1/BwcGuy+5q1qxZ9aSrgYYOHaqioiLX5cTERN19990eua/7Fq5Wg8ZNPbJtAADccSL7RyW1\njlZUVPMLvm1oaKBycws9kMra7Dp3RESwW+tVuuf01wXTzoXzQixfvtzsCAAAADXWBX9C1JkzZ/TD\nDz+ouLi40nViY2P/UCgAAADYk9vl9MSJE5o2bZoyMjIqfeOPJE7CDwAAgCpzu5zOmjVL6enpat68\nuVq3bq2AgIDzrnehnyoFAAAAnON2Of3ss88UFxenJUuWyMfHNqdHBQAAgBe53TLPnDmjq666imIK\nAAAAj3G7aXbt2lXbtm3zZBYAAADYnNvldOrUqTpy5IgmTZqknTt3KicnRwUFBef9AwAAAFSF28ec\n1q9fX1deeaXee+89vffee+d945NhGLxbHwAAAFV2Qe/W//DDD1W3bl21bNlSgYGBnswFAAAAG3K7\nnH744Yf605/+pCVLlrg+0hQAAACoThf0bv1u3bpRTAEAAOAxbpfTDh06aPfu3Z7MAgAAAJtz+2X9\nyZMnKykpSampqbrlllsUGRnpyVxwQ96xI2ZHAADY3M+/i6LNjoFaxGEYhuHOiqNHj1ZmZqa+//57\nORwO+fn5qW7duuddd8uWLdUaEue3d+9+5eUVmR3D60JC6jK3jTC3vTB3zRQZ2VR+fm7v73IJDQ1U\nbm6hBxJZm13njohw79BQt59Jhw4dkiQ1bdq0aolQ7aKjo2355LbrDzVz2wtz24td5wbOx+1yumbN\nGk/mAAAAANx/QxQAAADgaZXuOV2wYIHi4uLUtm1bSdJrr7123k+FOp9Ro0ZVTzoAAADYSqXldNas\nWZowYYKrnKamprq1QYfDQTkFAABAlfxmOb3iiivKXXaHu3tXAQAAgF+rtJwOHTr0Ny8DAAAA1e3C\nT0r2C2fOnFFWVpbCw8NVr1696soENx06dKhGnxevqk6erNnnA6wq5rYX5rYX5q6dqnr+V7v73e9Y\nRkaG0tPTdfPNNys2NlaSZBiGnnzySS1atEinT5+Wr6+vevfurRkzZqhBgwYeD42f3fmPdxUYHG52\nDAAA8CuF+cf0+F1ORUU1NztKjfOb5fShhx7SG2+8IUnq3r27q5w+/fTTeuWVV+RwONS5c2dJ0kcf\nfaS9e/dqxYoV8vf393BsSFJgcLjqhTYxOwYAAEC1qfQ8p2vWrNEbb7yhK664QvPnz1fPnj0lSdnZ\n2frnP/8pSXr44Yc1f/58zZ8/X88995z27dun1157zTvJAQAAUOtUWk7//e9/q379+lqwYIE6d+6s\ngIAASdL777+vkpISRUdH68Ybb3St37t3b8XFxemDDz7wfGoAAADUSpWW0507d6pHjx4KCgoqt3zD\nhg2SJKfTWeE27dq106FDh6o5IgAAAOyi0nJ68uRJNWlS/njGsrIybd26VQ6HQ1dffXWF29SpU0fF\nxcXVnxIAAAC2UGk5DQoK0okTJ8ot27lzp06dOiU/Pz917Nixwm0OHz7Mu/UBAABQZZWW07Zt22rD\nhg0qKytzLXvnnXckSVdffbUCAwPLrZ+Tk6NPP/3U9XGnAAAAwIWqtJz+9a9/VWZmpiZNmqTPP/9c\nixYt0rJlyyRJI0eOLLdufn6+7rvvPhUWFmrgwIGeTQwAAIBaq9LznPbq1UsjRozQ4sWLy70Df/jw\n4erevbtqb54PAAAgAElEQVTr8qRJk7Ru3ToVFhaqb9++6t27t2cTAwAAoNb6zZPwT5s2TX369NHa\ntWt19uxZdenSRT169Ci3ztdff62LLrpIY8eO1R133OHJrAAAAKjlfvfjSzt16qROnTpVev3y5csr\nnG4KAAAAqIpKjzl1F8UUAAAA1eUPl1MAAACgulBOAQAAYBmU0z9o+fLlSk5Odl1etGiRnnrqqd+9\n3ZQpU5SWlubJaAAAADXO774hCr/vp59+0vDhw3X8+HHFx8fLMAxt2bJFU6ZMUYsWLbRnzx7NnTtX\n9evXV0pKivz8/FRcXKxmzZppzpw5+vHHH5Wamiqn06nHHntM+/bt07x58yRJt9xyi26++WaTJwQA\nAPAO9pxWg4CAAC1dulTBwcHaunWra3l+fr7mzp2rDh066LPPPtPSpUvVrl07rVixQmFhYZIkh8NR\nYXvffvutWrZsqVGjRqlNmzZemwMAAMBslNNq0LBhQ0lSYGCgSkpKXMuDg4MVEBDgWu7j4yPDMCTJ\n9bePj49Onz6t4uJiFRQUSJL69u2rIUOGKDs7W/fcc4+XpwEAADAP5fQPcjgc5fZ+nu/rc3+PGDFC\nu3bt0pAhQ3T27FlJUteuXbV9+3ZNmjRJwcHBcjgc+vHHH/XUU0/pww8/VP/+/b04DQAAgLkcxrld\neKhxBt29VPVCm5gdAwAA/Mqp3CxNv6WtoqKaV7guNDRQubmFJqQyV0REsFvrsecUAAAAlkE5BQAA\ngGVQTgEAAGAZlFMAAABYBuUUAAAAlkE5BQAAgGVQTgEAAGAZlFMAAABYBuUUAAAAlkE5BQAAgGVQ\nTgEAAGAZlFMAAABYBuUUAAAAlkE5BQAAgGX4mR0AVVeYf8zsCAAA4Dz4HV11DsMwDLNDoGr27t2v\nvLwis2N4XUhIXea2Eea2F+a2l9o+d2RkU/n5VdwPGBoaqNzcQhMSmSsiItit9dhzWoNFR0fb8slt\n1x9q5rYX5rYX5gb+i2NOAQAAYBmUUwAAAFgG5RQAAACWQTkFAACAZVBOAQAAYBmUUwAAAFgGp5Kq\nwQ4dOlSrzw9XmZMna/d58SrD3PbC3PYRGdnU7AiApVBOa7Dp7/1dwW6e0BYAYD35R/N1b+dpCg8P\nMTsKYBmU0xosOCJY9ZvwDxoAAKg9OOYUAAAAlkE5BQAAgGVQTgEAAGAZlFMAAABYBuUUAAAAlkE5\nBQAAgGVQTgEAAGAZlFMAAABYBuUUAAAAlkE5BQAAgGVQTgEAAGAZlFMAAABYBuUUAAAAlmHrcup0\nOrVlyxY9+eSTWrx4sdlxAAAAbM/P7AB/xJw5c7R+/XoVFRWpYcOGCg0N1fbt2zVu3Dilp6dr4cKF\nSk5O1tChQxUcHKxZs2bJMAwlJiZq8uTJru0cO3ZMAQEBSktL07p16ypsb+bMmerVq1e5+969e7fG\njx+vNWvW6Nprr9Vdd90lPz8/ffLJJ5oyZYomTJig/Px8tWrVSk888YTGjh0rf39/HThwQAkJCdq/\nf79yc3P1z3/+U1u3btVzzz2nsrIy3XbbberWrZsGDhyozp07a+vWrZo1a5Z69uzp7W8vAACA19X4\nPacNGjTQ8uXLtWXLFo0dO1aDBw9WamqqHA5HufUOHDig8PBwjRo1Sp06dbqg7WVkZFRYLzY2VnXq\n1NGqVavk4+OjjRs36uOPP1a/fv00e/Zs9ezZUx999JFycnK0atUqSdI111yjmTNnKiMjQ4sWLVJo\naKi2bt2q1q1b66677lKHDh304YcfyuFwqLCwUA899JAGDx6sNWvWVO83DQAAwKJqfDkNCwuTv7+/\nJCk8PFwBAQHy8fHRmTNnJEknTpyQJCUkJGjkyJE6e/asJk6cqIKCAre3ZxjGedft16+fnn76aY0a\nNUq7du3SF198oR49esgwDNcfSa6ifG7bwcHB8vf3d2378ccf148//qjY2FiVlpa6th8REaHAwECV\nlJRUw3cKAADA+mp0Of3l3tFzXzscDg0aNEg5OTkaM2aMfH195XA4lJubq7S0NL3++utyOp0KCgr6\n3W2f+1OZPn36KDs7Wz169NAVV1yhjh07KjAwUCkpKfr000/Vr18/RUREaODAgb+5zRYtWmjZsmXa\ntm2bq0z/ch4AAAC7cBiV7RZEOUOHDlVRUZHrcmJiou6++24TE0l3vD5O9ZuEmJoBAFB1J7PydNvl\n96hNm1jl5haaHcfrQkMDmdtGIiKC3VqvRr8hypuWL19udgQAAIBar0a/rA8AAIDahXIKAAAAy6Cc\nAgAAwDIopwAAALAMyikAAAAsg3IKAAAAy6CcAgAAwDIopwAAALAMyikAAAAsg3IKAAAAy6CcAgAA\nwDIopwAAALAMP7MDoOryj+abHQEA8AfkH82XLjc7BWAtlNMabGbiLOXlFZkdw+tCQuoyt40wt73Y\nbu7LpcjIpmanACyFclqDRUdHKze30OwYXhcaGsjcNsLc9mLXuQH8F8ecAgAAwDIopwAAALAMyikA\nAAAsg3IKAAAAy6CcAgAAwDIopwAAALAMTiVVgx06dMhe5wP8PydP2uw8iP+Hue2Fue3F03NHRjaV\nnx+/8lEz8EytwTKmPqBGQUFmxwAAWNiRggJ1nDpDUVHNzY4CuIVyWoM1CgpSZEiI2TEAAACqDcec\nAgAAwDIopwAAALAMyikAAAAsg3IKAAAAy6CcAgAAwDIopwAAALAMyikAAAAsg3IKAAAAy6CcAgAA\nwDIopwAAALAMyikAAAAsg3IKAAAAy6CcAgAAwDIopwAAALAMyqmXOJ1ObdmyRU8++aQWL15sdhwA\nAABL8jM7QE0xZ84crV+/XkVFRWrYsKFCQ0O1fft2jRs3Tunp6Vq4cKGSk5M1dOhQBQcHa9asWTIM\nQ4mJiZo8ebJrO8eOHVNAQIDS0tK0bt26CtubOXOmwsLC9MADD+js2bOKi4vTU089ZeLkAAAA3kM5\nvQANGjTQ4sWL1bZtWy1btkzNmzdXamqqEhISyq134MABhYeHKzExUS1btryg7WVkZKhLly7y8fFR\ncnKywsPDZRiGHA6Hp8cDAAAwHS/rX4CwsDD5+/tLksLDwxUQECAfHx+dOXNGknTixAlJUkJCgkaO\nHKmzZ89q4sSJKigocHt7hmHosssu0x133KGAgAA99NBDOnTokBemAwAAMB97Tt30yz2X5752OBwa\nNGiQtm7dqjFjxsjX11cOh0O5ublKS0tTSUmJnE6ngoKCfnfb5/5IUnFxsebNm6eioiLFxcWpSZMm\nnhsMAADAQhyGYRhmh0DVrBg9WpEhIWbHAABY2E95eYq+6z5FRTU3O0oFoaGBys0tNDuG19l17oiI\nYLfW42V9AAAAWAblFAAAAJZBOQUAAIBlUE4BAABgGZRTAAAAWAblFAAAAJZBOQUAAIBlUE4BAABg\nGZRTAAAAWAblFAAAAJZBOQUAAIBlUE4BAABgGZRTAAAAWIaf2QFQdUcKCsyOAACwuCMFBYo2OwRw\nASinNViv1MeVl1dkdgyvCwmpy9w2wtz2wtzVL1pSZGRTj2wb8ATKaQ0WHR2t3NxCs2N4XWhoIHPb\nCHPbC3MD4JhTAAAAWAblFAAAAJZBOQUAAIBlUE4BAABgGZRTAAAAWAblFAAAAJbBqaRqsEOHDtny\nfIAnT9rzPIjMbS/MbR+cgxQoj3Jag705+12FhYSbHQMAUEXH846p7+1OhYeHmB0FsAzKaQ0WFhKu\nRg2amB0DAACg2nDMKQAAACyDcgoAAADLoJwCAADAMiinAAAAsAzKKQAAACyDcgoAAADLoJwCAADA\nMiinAAAAsAzKKQAAACyDcgoAAADLoJwCAADAMiinAAAAsAzKKQAAACzD0uV0zpw5mjp1qkfvY8qU\nKUpLS/PofVyIfv366ciRI2bHAAAAMIWfmXeenp6uWbNmyTAM9evXT6WlpdqwYYOCgoI0e/ZsORwO\nff311xo0aJB8fX2VlpamAQMGaMOGDUpKStI111yjzp07a/bs2br//vs1bdo0lZaWauDAgZo0aZKm\nTZumjRs36tJLL9V3332nNWvWVMjgcDhUVlamiRMnyt/fXw8//LBuvfVWHT16VEFBQXr11VeVkpKi\nU6dOqWHDhoqIiNDFF1+sCRMmKDY2VhkZGZozZ45++uknZWVlqUmTJnr11VflcDjK3c/mzZs1depU\ntWjRQnv27NHcuXNVUFBQIfPBgwd19uxZOZ1ONWrUSJdeeqn+8Y9/eOshAQAAMJWpe04PHDig8PBw\njRo1Ss2aNdPixYtVVlamI0eOaOXKlZKkRo0aaeXKlcrKytJPP/2kuLg4rV69WkeOHNHGjRu1Zs0a\nJSYmqnnz5kpJSZHT6dTq1au1b98+rV69Wu+++6769OlTaQbDMLRkyRJ9+eWXevzxx+Xj46MRI0Zo\n3LhxyszM1J49eyRJ1113nV555ZXzbsPhcCg6OlrLly/X5s2bdfTo0fOul5+fr7lz56pDhw767LPP\nKmT+taSkJIopAACwFVPLaUJCgkaOHKmzZ8/qkUceUVlZmd544w1NnjxZ1113nQzDUEREhBwOhy66\n6CKVlpaqb9++euaZZ9SnTx+dPXtWH3zwgfr166eXXnpJO3bsUJs2bVRaWqqysjJJP5fPX+/F/LVW\nrVopLCxMH374oXbt2qVnn31WsbGxqlevnms7TZo0kST5+Pjo9OnTysnJcd3eMAw1atRI9erVkySV\nlJSc936Cg4MVEBCgevXqqaSkRPPmzSuX+dfO3ScAAIBdmPqyfm5urtLS0lRSUqI///nPatiwoQYO\nHKiQkBC98MILFUqlw+FQ79699fDDD6tLly7y8/PT559/rqioKLVo0ULz58/X8ePHVVBQoEsuuUSJ\niYm6/vrrdfHFFysgIOC8GRwOh6666ipde+21uvfee/Xyyy/r9OnTmjlzpoKCgnT8+HHXepLUu3dv\nTZ8+XdnZ2QoKCip33a+/Pt99/VJ0dHS5zCUlJW5vCwAAoDZyGIZhmB3CE4qLizVhwgRlZmaquLhY\no0eP1nfffafNmze71rn44osrfan+j1i+fLlefvnlcssWL16shg0bVuv9zLt/qRo1YO8qANRUR05k\nKX54W7VpE6vc3EKz43hdaGggc9tIRESwW+uZuufUk/z9/TVv3jxT7nvo0KEaOnSoKfcNAABQk1n6\nVFIAAACwF8opAAAALINyCgAAAMugnAIAAMAyKKcAAACwDMopAAAALINyCgAAAMugnAIAAMAyKKcA\nAACwDMopAAAALINyCgAAAMugnAIAAMAyKKcAAACwDD+zA6DqjucdMzsCAOAP4N9xoCLKaQ124/39\nlZdXZHYMrwsJqcvcNsLc9mLHuSMjm5odAbAUymkNFh0drdzcQrNjeF1oaCBz2whz24td5wbwXxxz\nCgAAAMugnAIAAMAyHIZhGGaHAAAAACT2nAIAAMBCKKcAAACwDMopAAAALINyCgAAAMugnAIAAMAy\nKKcAAACwDN8ZM2bMMDsE3Ldt2zbt2LFD+fn5ioyMNDuOV3z11VeqX7++/v3vf+ubb77RZZddJj8/\ne3y4GY83j3dtx+PN483jXXtV9fHmPKc1yMSJE/XNN98oIiJCR48e1RVXXKFnnnnG7Fgel5iYqEsv\nvVQnT55UnTp1VK9ePc2ZM8fsWB7H483jzeNde/F483jzeFfOHv9dqSW++uorZWRkyOFwqKysTNdd\nd53ZkbyiuLhYBw8e1Ntvvy2HwyGn02l2JK/g8ebxtgMebx5vO+DxvrDHm3Jag1x55ZXq27evGjVq\npKNHj+rKK680O5JXhIWF6X//93+1adMmffzxx4qNjTU7klfwePN42wGPN4+3HfB4X9jjzcv6NczW\nrVuVnZ2txo0bKz4+3uw4XnPq1Cn5+PgoOztbTZs2lb+/v9mRPM4wDG3btk1ZWVlq3LixOnbsaHYk\nrykoKJCvr6+ysrJ08cUX2+Lxlv77892oUSNbPd7nfr7t+HhnZWWpSZMm/HtuA3b//f3dd98pNjbW\nrcebN0TVIJs3b9bcuXO1Zs0a7d69W5GRkbr44ovNjuVxmzdv1sMPP6z58+dr+/btatasmS3mdjgc\natq0qS6//HJbzPtL/v7+qlOnjho0aCBfX1+z43jF66+/rueff14xMTHq06ePRo8ercGDB5sdy+Ne\nf/11zZw5U/7+/urSpYtuvfVWW8y9Y8cOZWRkqF27dnr00UdVr149xcTEmB3L43bs2KFly5YpODhY\nf//73xUSEmKLuVeuXKm8vDyVlpZqxowZatiwoS32Gq9cuVL79+/X3r17NW3aNEVERLg1N3tOa5A+\nffpo/Pjxaty4sbKzszV37lx98MEHZsfyOLvO7XQ65XA4dO5H1OFwKCMjw+RUnmfXubt3767Jkyfr\npZde0ujRozVv3jy99957ZsfyuO7du+v+++/XvHnzbDV33759FR8fr3feeUcPPviga8dDbffruV98\n8UVb/Hx37dpVPj4+at68ub766iu1adNGCxcuNDuWx3Xt2lUOh0PR0dEXNDfHnNYghmHI4XDIx8dH\nPj72OUWtXedOTk7W+vXrdeedd8pO/4e069y+vr665JJL9OKLLyopKUknT540O5JX+Pr6qmXLlrab\nu6ysTGPHjtWVV16pbt26ae7cuWZH8gq7zv3WW2/p3nvv1fXXX69jx47ZophKVZ+bl/VrkMsvv1wL\nFy7UO++8o8OHD+v+++9Xs2bNzI7lcXadOy4uTrt27dKNN96o5s2b22Jmyb5zh4eH67vvvlPXrl11\nzTXXaNOmTUpKSjI7lsfZee5jx45p6NCh2rJliy677DK1bdvW7FgeZ9e569Wrp+uvv15vvfWW/vd/\n/1e33nqr2ZG8oqpz87J+DbZz505b/FD/ml3nPveSiN3YdW67Ps+Z217sOHdBQYEOHDhgu3/XLmRu\n+7xGWkuUlZXp+PHjKi0t1VNPPWV2HK9h7lI9+eSTZsfxGua27/OcuWs/u89dt25dW/67diFzU05r\nkH/961+Ki4tT586d1b59e/Xo0cPsSF7B3MxtB8zN3HbA3MztFgM1Rs+ePY0ff/zRKC0tNX744QfD\n6XSaHckrmJu57YC5mdsOmJu53cG79WuQ0NBQpaWlqUmTJsrOzlaDBg3MjuQVzM3cdsDczG0HzM3c\n7uANUTXIkSNH9Oabb7o+YeLGG29Uo0aNzI7lcczN3MxdezE3czN37VXVuSmnAAAAsAzeEAUAAADL\noJwCAADAMiinAAAAsAzKKQCvysjI0O23365rrrlGbdq0UZcuXTR+/HitWbOmwrrLly9XbGysFixY\nUG33n5mZqdjYWKWkpLiWJScnKzY2VgUFBdV2P1Ll+d955x19//331XpfdvTpp5/qq6++MjtGpYqL\ni3X99dfr1VdfdS3bt2+fhg8frnbt2mnAgAHnfd5L0rBhw3T33Xef97oNGzaoY8eOOnr0qCdiA6aj\nnALwmkceeUQpKSnat2+frrvuOo0ZM0adO3fWtm3bNH78eD300EPl1r/iiis0YcIExcXFVVuG+vXr\na8KECerfv3+55Q6Ho9ru45zz5Z89e7buu+8+nTp1qtrvz06WLFmiW2+9VUeOHDE7SqVefPFFnTlz\nRiNHjpQkGYahSZMmaf/+/Ro+fLjq1q2ru+66S99++22523388cfauXOnJk6ceN7tXnvttWrfvr0e\nfvhhj88AmIHznALwis2bN2vx4sXq27evnn76afn4/Pf/xgUFBRo1apTeeOMNde/eXb169ZIkxcbG\nKjY2tlpzBAcHa8KECdW6zcqcL//x48e9ct+1ndW/jwcPHtS8efP0yCOPyM/v51+1X331lfbs2aOn\nn35aiYmJOn36tLp3764333xTDz74oKSfC+yzzz6r/v3769JLL610+5MmTdKQIUO0du1a23zaEOyD\nPacAvGLt2rWSpJEjR5YrppIUFBSke++9V5KUnp7u7Wiowax6NsR//vOfCg4O1oABA1zLMjMzJcn1\nH5aLLrpILVq0cC2XpPfee0979+6t9CX9c1q1aqUOHTroxRdf9EB6wFyUUwBecfbsWUmq8BLmOfHx\n8XrmmWd08803u5adO2bztddecy1zOp0aPXq0vv32W40dO1bt27fX1VdfrYceekinT59Wdna27rnn\nHl111VW69tprdf/99+vEiROu25/vmNPK8r722mv661//qvj4eF155ZVyOp2aPn26cnJyKmzvueee\n06OPPqq4uDhdffXVev/99yscc+p0OrVy5UpJ0uDBg+V0OrV161bFxsbq/vvvP2+O3r17q2fPnr+Z\n1el0KikpSbt371ZycrLi4uLUvXt3Pfroozp58mSF9Y8ePaoZM2aoW7duatOmjXr16qUnnniiwqEG\nycnJcjqdWrdunZxOp+Li4nTPPfe4rv/88891++23q1OnToqPj9ewYcOUkZFR4f6+/vprjR8/Xp06\ndVK7du00ePBgvf766+edIzk5Wfv27dMdd9yhq666Sh06dNBtt92m3bt3l8v1/PPPS5ImTJhQbu/0\nqVOn9Pzzz2vQoEHq0KGD2rZtq759+2r27NkqKiqqcJ+vv/66BgwYoLi4OPXu3VuvvPKKVq5cqdjY\nWH3++edVmuPEiRNatWqV+vXr59prKv18SMm5jOfk5+crODhYklRaWqo5c+ZoyJAhioqKqrDdXxsw\nYIB27NihHTt2/O66QE1COQXgFV26dJEkPf7443r00Ue1Y8cOlZWVua4PCAhQv379zvsy/q+PB83M\nzFRSUpIkKSkpSREREXrjjTc0efJkDR8+XFlZWRo2bJiaN2+u//znP5o2bdrvbvPX7r33XqWmpsrf\n31833XSThg0bJn9/fy1btky33XZbhfXfeOMNvf/++0pKSlJcXJzat29fYZ2bb77ZNd+wYcN0yy23\nKD4+Xs2aNdOaNWt0+vTpcutv375dmZmZGjhw4G9mlX7+JJabb75Zp06d0siRIxUVFaVFixZp5MiR\nKiwsdK33448/6oYbbtCyZcvUpk0bjR49WpdccoleeeUVJScnVyhwubm5mjRpkuLj4zV06FB17NhR\nkrRq1SrdfPPN2rZtm3r06KEbbrhBWVlZSklJ0fLly123X7dunYYNG6YtW7a4ymdZWZlmzJhR4Rhj\nScrKytLw4cN14sQJDRs2TAkJCVq/fr1GjRrl+k/BL3P079/fdZhGSUmJRo8erbS0NDVu3FgjRozQ\nX/7yF50+fVrz58/XAw88UO6+Zs2apRkzZqi4uFh//etfFRcXp2eeecZVfH/pQuZIT0/XmTNnXM/5\nc1q1aqWAgAD961//UkFBgT766CPt379fHTp0cH1PMzMzf/c/Tuec2/4777zj1vpAjWEAgJfMmDHD\niImJcf3p0KGDcdtttxmvvvqqkZWVVWH9t956y4iJiTFee+0117KePXsaMTExxqxZs1zL8vLyjLi4\nOCMmJsa45557XMtLS0uN6667zoiNjTVOnz5tGIZhfP/990ZMTIyRkpLiWm/kyJFGbGyskZ+fbxiG\nYXzxxRdGTEyMcf/995fLU1JSYgwYMMCIiYkxDhw4UG57rVq1Mr799tvfzf/AAw8YMTExxjfffONa\nNmfOHCMmJsZ49913z/v92rt3729+X899T8aPH2+UlZW5lj/yyCNGTEyMMWfOHNeycePGGa1atTLW\nrl1bbhsLFiwwYmJijP/5n/8p932JiYkxHnvssXLr5ubmGldddZXRuXNn4+DBg67lOTk5RteuXY2r\nr77aKCkpMQoLC42rr77a6Ny5s/HDDz+41isrKzPuvvtuIyYmplyOc3M88sgj5e5v2rRpRkxMjLF0\n6VLXsueee86IiYkx0tPTXcveeecdIyYmxnjmmWfK3b6goMDo3Lmz0bp1a9fzYOfOnUZMTIxx0003\nGYWFha51165da8TExBixsbHGli1bDMMwLniO++67z4iJiTnvc/qVV14xYmNjXT8DSUlJRklJiVFc\nXGz07Nmz3Oy/fCwrk5CQYAwYMOB31wNqEvacAvCa6dOn66WXXlLXrl1Vp04dFRYWat26dUpNTVWv\nXr301FNPuXUMocPh0C233OK6HBwcrJYtW0qSRo8e7Vru4+Oj1q1byzAM/fDDD27njIyM1GOPPVbh\nuD9fX1/XXq5fvrQvSc2bN9fll1/u9n380qBBgySV3wN29uxZvffee2rduvVvvjHml9mmTJlSbo/w\nPffco8DAQP3nP/+R9PPe1fX/v717j6my/gM4/j4ckIATF4WwC7fIitFA10VSLktoiZUgatbYbAtp\nLCOXOs0/EnPadA2dkWKhgQENgqFAFy6NxgFFI1ZHQAYNKNyYFXgAUSBPnt8f7Dxx4HDVFH/7vP5R\nHp7ne3mes/nxc77fz6PVEhoaSlhYmNn1sbGxzJ8/n5MnT45p+4UXXjD7ubKyUtnE5uXlpRx3cXFh\nx44dbNiwgatXr1JRUYFerycuLo4HHnhAOU+lUrF582YAsyyr6Xfx8fFmx0JDQ4HhrO9E/P392bt3\nr9nSEAAHBwf8/PwwGAz09PQAw1lKGN5YZGdnp5wbFhbG0qVLzT6H053HhQsX0Gg0uLu7jxljXFwc\nubm5vPfee6SkpJCZmYlarearr77i8uXLJCQkMDAwwJYtWwgICFCWu4zH19eXX3/9FYPBMOG9EeJu\nIrv1hRC3VVhYGGFhYVy7do3a2lrOnj1LRUUFv//+O5999hk3btxg69atE7ZhbW3N/fffb3bM3t4e\nlUrFQw89ZHbc1tYWGK45OVXu7u5ER0djMBhobGykvb2djo4OmpqaqKmpATBbkgCM6Xc6PDw8ePLJ\nJ6mqqqKvrw9HR0eqq6vp6enhrbfemvKYR69T1Gg0eHt709TUxODgIBcuXACGv6pPSUkZ04aNjQ2X\nLl3izz//5L777gOweE9N6z8tlfiKjIxU/t7Q0KD8aak/Kysrs7WkMPy8Rgd1Go0GmPwZent74+3t\nzRMKzpIAAAkOSURBVNDQEDqdTnlujY2N1NbWolKplOdWX1+PSqUiICBgTDuLFi3i9OnTM55Hd3c3\nLi4u444zICDArN/BwUFSU1OJjY3F1dWVjz76CK1Wy759++jt7eXDDz/Ew8OD1atXj2nLxcUFo9GI\nXq/Hzc1twvsjxN1CglMhxB1hb2+vBKrbt28nLy+PnTt3kpWVRWJiohJUWjIy0zXanDlzbsn4cnJy\nOHz4sFLo3MnJicDAQHx9fdHpdGMyvPfcc89N9RcdHU1dXR2lpaWsXbuWoqIirK2teemll6Z0vaUs\nHYCrqyswXK6rr68PYMJNNCqVit7eXiU4hbFzM7VjChrHc+XKFQC++eabCfsaydLzM2WDJ8uqG41G\njh49Snp6ujJGV1dXFi1axIMPPkhra6vShl6vx87OzuJnaeTcZzKP/v7+aQWK2dnZDA4OKhnj/Px8\n1qxZo9Tiramp4csvv7QYnJrG39fXJ8Gp+L8hwakQ4j/X399PTEwM/v7+HDx40OI5a9eupaSkhNOn\nT3Pp0iWzr4tvt++++45du3bx+OOP88EHH+Dv768Ef0lJSeh0ulveZ2RkJHv27KGkpISoqCh++OEH\ngoODmTt37pSuHxoasnjcFKQ5Oztjb28PwMaNG0lMTJzxWE3tWHqRwN9//42VlRXW1tbKeSdOnGDx\n4sUz7m+qjh8/zqFDh1i8eDHx8fH4+fkxb948ADZs2EBra6tyrkajobOzk3/++Qe1Wm3Wzug3hU13\nHk5OTlN+21h/fz9paWmsX78eZ2dn9Ho9vb29eHt7K+d4eXlx7tw5i9ebAueJ/jMnxN1G1pwKIf5z\nGo2G/v5+KisrlX9Mx6NWq5Vs351iWvuZnJzMsmXLzLKSbW1twMzra45XJUCj0RAeHs6PP/5IeXk5\ng4ODU9qlP3JcI3flAwwMDNDc3Iyfnx/W1tY89thjAOO+8vPIkSMcO3ZMKfs1HlM7loL048ePs3Dh\nQqVE1nj9XblyhX379lFUVDT55CywdB+//vprrK2tOXLkCMHBwUpgajQaaWtrQ6VSKc/tiSeewGAw\nKF/ZjzR6XtOdh5ubm7K2dTIZGRkYjUbeeOMNYLicFGC2hnRoaGjcz41er0etVo+bORfibiTBqRDi\ntoiNjeXatWts2rRpzGYiGC6/U1NTQ0REBA4ODndghP8yZaFGv7v81KlTytrFmW5AMdW9tLR+Mjo6\nmuvXr5OcnIxGoyEiImLK7Q4ODnLgwAHlZ6PRSHJyMgMDA8rXwR4eHjz99NNotVpKS0vNri8qKuLj\njz9Gq9ViY2MzYV8RERHY2dnxxRdfmG1S6unpIScnBwcHBwIDA3n++efRaDSkpaXx22+/mbWxf/9+\nMjIy6OjomPIcR7J0H21tbTEYDGM+X4cPH1bGaXpuMTExABw8eNCshNfZs2f5/vvvzYLB6c5jwYIF\nDAwMcPHixQnn0NPTQ0ZGBnFxccoSiXnz5uHk5GS27EKn0+Hj4zPm+hs3btDa2oqPj8+kz0yIu4l8\nrS+EuC0SEhJoaWmhtLSUiIgIgoOD8fT05Pr16+h0On755Rd8fX3ZtWvXjPuYaTZz9LVRUVF8++23\nvP3227z44os4ODhQX1/Pzz//zJIlSzhz5oxZYf/pMGW49u/fz7PPPmv2KtXg4GBcXV3p7Oxk9erV\n01o/a2NjQ35+Pg0NDQQGBir3NCgoSKkJC7B7925iY2PZtGkToaGhPPLII7S3t1NZWYmzszNJSUnj\n3hcTJycnkpKS2LFjB6tWrSI8PBx7e3tKSkro7u4mJSUFGxsbbGxs2LNnD1u3bmXVqlVERETg5uZG\nbW0t9fX1BAQEEBcXN91bCMD8+fMBSE1NpbGxkXfeeYeVK1ei0+l47bXXWL58OTY2Npw7d4729nae\neuopfvrpJ/R6PV5eXixcuJBXX32VnJwcoqKiCAkJobu7m/LychwdHdHr9cqbzO69995pzeO5556j\nuLiYurq6CYvpHzt2DFtbW9avX68cU6lUxMTEkJGRgVqtpqenh/Pnz5OcnDzm+paWFq5evcqSJUtm\ndA+FmK0kcyqEuC3UajWHDh3ik08+ITg4mPPnz5OZmUlBQQEGg4EtW7Zw8uRJs13OKpVq0mL5I1k6\nd6ptjDwnLCyMAwcO4OnpSVFREQUFBbi4uJCXl6e8yUmr1U6pzdF9x8bGsnTpUhoaGpSNMCZWVlZK\nttRUXmqqNBoN6enpGI1GcnJyuHz5MomJiaSlpZmNwcfHh4KCAl555RWam5vJzMykpaWFqKgo8vPz\nx5StGu/eRUdH8/nnn+Pn50dpaSn5+fl4enry6aefmmV8ly9fTlZWFkFBQWi1WrKzs7l27RobN24k\nPT19ws1tE1mxYgWRkZFcvHiR3NxcOjs7iY2N5f3338fZ2Zm8vDyKi4t59NFHKSwsVEqPjXxuO3fu\nZNu2bahUKnJzc2loaGDbtm1Kpnnk2KYzj5CQEObMmWO243+0rq4usrOziY+PH7PhbPPmzaxbt46y\nsjLq6+t59913lc1RI1VXVwNMedOcEHcLlfFmUg1CCCFuqXXr1vHXX39RUVEx5WuWLVvGwMCAUuZK\nTK6rqwtra2ucnZ3H/G779u0UFhZy5syZKW9IGy0pKYnCwkKqq6snrWowUytWrGDu3LlkZWX9J+0L\ncadI5lQIIWYJrVaLTqdjzZo1d3oo//cKCwsJCgri1KlTZsc7OjooLy9nwYIFMw5MAd58800MBsOM\nN3xNpq6ujra2NhISEv6T9oW4kyRzKoQQd9jevXupq6ujubkZJycnSkpKcHR0nPL1kjmdvj/++IOX\nX36ZgYEBwsPD8fDwoKuri7KyMgwGA2lpaTzzzDM31UdycjLFxcWUlZXdsvq7Jq+//jp2dnYcPXr0\nlrYrxGwgmVMhhLjD3N3daW9v5+GHHyY1NXVagamYGXd3d/Lz81m5ciX19fWcOHGCqqoqQkJCyMnJ\nuenAFCAxMREHBwcyMzNvwYj/VVVVRVNTE7t3776l7QoxW0jmVAghhBBCzBqSORVCCCGEELOGBKdC\nCCGEEGLWkOBUCCGEEELMGhKcCiGEEEKIWUOCUyGEEEIIMWtIcCqEEEIIIWaN/wH0jBNb6YB1xwAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x114fd6350>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"muslim 0.404\n",
"hindus 0.395\n",
"dalit 0.351\n",
"dalits 0.35\n",
"muslim_vote 0.339\n",
"muslims 0.319\n",
"divide 0.303\n",
"liberal 0.302\n",
"muslim_woman 0.299\n",
"sehwag_karun_nair 0.299\n"
]
}
],
"source": [
"data_dict = listToDict(word2vec.similar_by_word('hindu'))\n",
"sns.set_style(\"darkgrid\")\n",
"\n",
"plt.figure(figsize=(10,8),dpi=500) # does not affect the following plot\n",
"plt.xlabel(\"Similarity percentage(%)\",size=20)\n",
"plt.ylabel(\"Similar words\",size=20)\n",
"bar_plot = sns.barplot(x=data_dict.values(),y=data_dict.keys(),\n",
" palette=\"muted\",\n",
" x_order=data_dict.keys().sort(reverse=True))\n",
"plt.xticks(rotation=90)\n",
"plt.show()\n",
"get_related_terms(u'hindu')"
]
},
{
"cell_type": "code",
"execution_count": 509,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"punjabpolls2017 0.378\n",
"goaelections2017 0.338\n",
"punjab 0.336\n",
"lambi 0.335\n",
"parkash_singh_badal 0.335\n",
"overconfidence 0.327\n",
"aamaadmipa_arvindkejriwal 0.307\n",
"delhites 0.283\n",
"cross_halfway_mark 0.279\n",
"wittyfeedlive 0.274\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAH5CAYAAACCrPhQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4lPXdv/1zICSQkBAkYRMIhVZBBEVZbEWWgLIoqChW\nwYCtN5QKiEJV8CcqVqHobS0SEbHaWqGItUEEqSLgUrSCaBXxVqkLyGYChAAhLFnm+aMPOYwZdIhJ\nJoHzdRweMJPvXNd7PmF59+rFdwLBYDCIJEmSdJKrEekAkiRJUlVgMZYkSZKwGEuSJEmAxViSJEkC\nLMaSJEkSYDGWJEmSAIiKdABVTwcPHiE393CkY1Q5devGOJcQnEtpziQ05xKacwnNuZTmTEJLTo4P\na51XjFUmUVE1Ix2hSnIuoTmX0pxJaM4lNOcSmnMpzZn8MBZjSZIkCW+lUBlt3ryZffsORjpGlbN3\nbx3nEoJzKc2ZhOZcQnMuoZ0Ic2nSpClRUdaxqsLvhMrk1/e9SGx8UqRjSJJUbeXt38WMcak0b94i\n0lH0/7MYq0xi45OIS2wc6RiSJEnlxnuMJUmSJCzGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJ\nkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFuMT\nUkZGBmlpacf1mrS0NBYtWlTiuREjRrB+/fryjCZJklRlRUU6gMpfIBAgKyuLyy67jNzcXJo1a8aT\nTz5Jnz59OP300/n444/p3r077733HtHR0Tz11FMALFy4kNmzZ3Puuefyu9/9ji1btnD48OEIvxtJ\nkqTK4RXjE1AwGCQuLo7rr7+e6667jrVr15KVlQXAoEGDGD16NOvWrWPJkiVkZWXx6aefAtCrVy+W\nLFnC8uXL2bhxYyTfgiRJUqWzGJ+g8vLymDdvHh06dCAqKorCwkIAGjRoQHR0NA0aNCAQCBAdHU1R\nUREABQUFANSoUYOaNWtGLLskSVIkeCvFCSgQCLBp0yYaNGjAAw88QFJSErt37y7+2tH/vu3f//43\ngwYNon///rRu3bqyY0uSJEVUIBgMBiMdQtXPpTcuIC6xcaRjSJJUbR3I+Zq7rutA8+Ytyu2YiYmx\n5OTkldvxThTJyfFhrfNWCkmSJAmLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJ\nAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJgKhIB1D1lLd/V6QjSJJUrfl3\nadUTCAaDwUiHUPXz2WdfsG/fwUjHqHISEuo4lxCcS2nOJDTnEppzCe1EmEuTJk2Jiiq/65SJibHk\n5OSV2/FOFMnJ8WGt84qxyiQlJcXfeCH4B1JozqU0ZxKacwnNuYTmXFTevMdYkiRJwmIsSZIkARZj\nSZIkCbAYS5IkSYDFWJIkSQIsxpIkSRLgdm0qo82bN1f7vSMrwt691X9PzYrgXEpzJqE5l9CcS2jh\nzqW89wrWictfJSqTu/5xO/FhbpYtSVKk7N+5n4nnT6F58xaRjqJqwGKsMolPjqde44RIx5AkSSo3\n3mMsSZIkYTGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkS\nYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEnUTFu06YN27dv/841Dz74IPPnz6+kRHDrrbeyYsWK\n712XmprK2rVrSUtLY9GiRd+5dsSIEaxfv77Ec6+88gq33XbbcWWbNWsWkydPPq7XSJIkVWdRkTz5\nW2+9xZ133klhYSEXXXQRH330EVlZWdStW5c///nPjBkzhujoaL788ku6dOnCF198QU5ODk8++STr\n1q3j4YcfpqioiFGjRtG7d29GjRrFgQMHaNasGU8++STPPfcc6enpnHnmmQQCAYLBIKmpqZx++ul8\n/PHHdO/enffee4/o6Gieeuopdu3aRUxMDOnp6bz++uscOXKE2rVr88c//pEFCxawYMECgsEgU6ZM\noXfv3qXez29/+1teffVVAP7whz/w+uuvs2zZMgoLC+nUqRMNGzbkpptuol+/ftxxxx3s2LGD/fv3\nM2vWLN58800OHDhAjRo1mD9/Pu+88w5Tp06lZcuW5ObmFp/j0KFDDB06lE6dOvGrX/2K8ePH8/XX\nX9OyZUseeughtmzZwqFDh5g0aRIfffQRUVFRDBs2jO3bt/O73/2OuLg42rdvz9ixY1mzZg0jR45k\n5MiR/P3vf+fTTz+lZs2aPP744wQCgUr7dSBJklQVRPSKcUpKCmPGjCE1NZVVq1YxdOhQRo4cydat\nW9m4cSMAP/3pT5k6dSorV65k3rx5JCYmsm7dOtq1a8e4ceM455xzWL58OXFxcVx//fVcd911rF27\nlqysLB588EEeeugh7rjjDoLBYPF5Bw0axOjRo1m3bh1LliwhKyuLTz/9tES2hIQEFi9eTGxsLC+8\n8AKdO3dm/PjxtGrVilWrVoV8Pz169OCmm24iMTGR1atXEwgEaNy4McuXL2fYsGE8//zzrFu3jmAw\nSLdu3YpfFwgEiIuL44UXXmDnzp1s3LiRWbNmMWHCBGbPnk1BQUHx2pkzZ1JUVMSECRN44YUX+Pe/\n/01RUREffPABa9euLXHMs846i0WLFlGjxn+/zX379uX1119n9erVJCYm8vLLL/P555/TrVs3Bg0a\nxNixY8nPz+e999774d9cSZKkaiaixfixxx7j/fffp3379mzfvp2ZM2fSpk0b4uLiKCoqAqBBgwZE\nR0cTHx9PdHQ0MTExBINBZsyYwfbt22nbti2FhYW88cYbzJ8/nw4dOhAVFUVhYSE1a9YkGAwWH+uo\no8ds0KABgUCA6OjoUmuOHDlS/PNAIMDtt99Ofn4+rVu3LrUW4ODBg9xyyy3Uq1ePZs2aFa9p1KgR\nAO3ataNRo0ZMnTqVa665ptTrGzZsSCAQoHbt2hQUFBRn/2ahB+jWrRuZmZmsX7+eoqIi2rRpw7Jl\nyxg5ciRt27YtsfbouY/q2LEju3btYsWKFdxwww3MnDmTnj17kpmZyV133UWLFi1ISkoK+f4kSZJO\ndBEtxi1btmTFihWsWLGCmjVrcujQIaZOnUrdunXZvXs38N9SevS/b7924cKFrFu3jj179pCcnMyW\nLVt44IEHSEpKYvfu3dxyyy1MmDCB6dOnExcXV/zaYx3zm7Kzsxk4cCAHDx5k4MCBtGrVikcffZTP\nP/+c7OzsUuujoqJISUlh2rRp7Nmzp3jNN88xdOhQtm7dyuDBg0tk+bZAIMD48eP5wx/+wJgxY0hM\nTCz+Wrdu3ZgwYQJTp07l4osvJjo6ml69erF27Vri4+MpKCgovkJ89NjffK99+vThlFNO4ZJLLmHn\nzp3069ePuLg46tWrx5133kkwGCyevSRJ0skkEPz2JUmRnp7Otm3bmD59+jHXDB48mIMHDxY/7t+/\nPzfeeGNlxDum8ePH88knn/DMM89Qv379Cj3X6GdGUq9xQoWeQ5KkH2rv1/sYddpNNG/eItJRKkVi\nYiw5OXmRjlHlJCfHh7XOYqwysRhLkqoDi7Eg/GJ80mzXJkmSJH0Xi7EkSZKExViSJEkCLMaSJEkS\nYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSAFGRDqDq\naf/O/ZGOIEnS99q/cz+cFukUqi4CwWAwGOkQqn4+++wL9u07GOkYVU5CQh3nEoJzKc2ZhOZcQnMu\noYU7lyZNmhIVdXJcC0xMjCUnJy/SMaqc5OT4sNadHL9KVO5SUlL8jReCfyCF5lxKcyahOZfQnEto\nzkXlzXuMJUmSJCzGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBbtemMtq8ebN7aoawd697\njYbiXEpzJqE5l9Cq41xOpr2DdeLwV6zKZOXk22hYt26kY0iSqqCs3Fw6T76b5s1bRDqKdFwsxiqT\nhnXr0iQhIdIxJEmSyo33GEuSJElYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJ\nEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMX4pBQMBtm+fXukY0iSJFUp\nFuNqatKkSaSnp5d6vk2bNmzbto20tDQWLVpU4msjRoxg/fr1/Pa3vyUjI6OyokqSJFULUZEOoPB9\n9dVXjBkzhqioKI4cOUJeXh5XXHEFhw4dYsCAAYwZM6bE+oyMDNLT0+natSvTpk1jy5YtbN68mRde\neIFatWrRvXt3li5dyltvvUXdunV54IEHWL16NXPnzgXguuuuY8SIEZF4q5IkSZXOK8bVyIIFCzjr\nrLNYtGgRDRo0ICoqiszMTILBIPPnzycvL6/E+gsuuIA5c+awePHi4ucaNWrEhRdeyLBhw6hbty7z\n5s2jqKiIrKwsnn/+eT799FNatWrF8OHDad++fWW/RUmSpIjxinE1UqNGDYLBIPDf+4QLCgq48sor\nGT58OMuWLSM2NrbE+oYNG1KnTh0KCwtDHq+goICYmBieffZZVq9eTcuWLdmzZw+7d+9mw4YN3HTT\nTbzxxhsV/r4kSZKqAq8YVyPDhg1jw4YNXH755eTn51NQUMDKlSu54ooryM3NBSAQCJR63TefCwQC\nnHHGGTz77LPs37+fK664gkGDBjFnzhwSEhLYvn07v//971m+fDkXX3xxpb03SZKkSAsEj16ClI7D\nol/8giYJCZGOIUmqgnbs20fKuN/QvHmLCj1PYmIsOTl537/wJOJMQktOjg9rnVeMJUmSJCzGkiRJ\nEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJEmAxliRJ\nkgCLsSRJkgRYjCVJkiQAoiIdQNVTVm5upCNIkqqorNxcUiIdQioDi7HKpPf0GezbdzDSMaqchIQ6\nziUE51KaMwnNuYRW3eaSAjRp0jTSMaTjZjFWmaSkpJCTkxfpGFVOYmKscwnBuZTmTEJzLqE5F6ly\neI+xJEmShMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTA7dpURps3b65We2pWlr17q9de\no5XFuZTmTEJzLqE5l9Cq4lyaNGlKVJT1qrryO6cy+dsDL9IgISnSMSRJqjJ279tF31+l0rx5i0hH\nURlZjFUmDRKSaFi/caRjSJIklRvvMZYkSZKwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmS\nBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIiKdAAdn9zcXC69\n9FISExO5/PLLycrKYsKECcVfnzVrFtu3b2f69OkRTClJklT9WIzLaO/evdx4443s2LGDpk2bsn37\ndqZOnUqrVq3o378/q1at4p577mHjxo0kJSUxc+ZMxo4dy4EDB2jQoAETJ07klltuITc3l969e3PH\nHXcwd+5cnnnmGWJiYpg0aRKtW7dm0KBBnH/++axbt45p06axbNkytm3bxumnn05OTg47d+5k7969\n/OpXvyI3N5fo6GhOP/10MjMzmTBhAnv37uWcc87hnnvuITU1lTPOOIMPP/yQyy67jJtvvpn77ruP\nV199lVq1avGHP/yB7Oxspk2bRjAYZMSIEQwZMiTSo5YkSaoU3kpRRo8//jhNmjRh+fLlJCUlkZmZ\nyXPPPUdGRgYDBgzgww8/ZOXKlRQVFfHll1+yfPlyAC688EIef/xxHn30UQYOHMhLL73EOeecw3/+\n8x/mzJnDkiVLuPPOO5kyZQqBQIC8vDzuvPNOLrvsMlatWsVNN90EwOzZswkGgwAsXbqUOnXqsHTp\nUk4//XQAnn76aT777DOKiopYuXIln3/+OQD9+/fn7rvv5qWXXuLzzz9n0aJFLFu2jHvvvZeoqCge\neughcnNzyc/P54knnojAZCVJkiLDYlxGwWCwuJgCDBkyhDfffJOMjAyGDh1KYWEhSUlJLFmyhHHj\nxnHeeecB0LhxYwACgQCFhYUUFRWxZcsWatSoUeK4NWvWLD52cnIysbGxFBQUlDjnUYFAoPj5oz8W\nFhbSvXt3nn/+ea6//nqaNWsGQMOGDYmNjSU/P7/E+fbv38+uXbsoLCzkhhtuYM6cOYwePbq8xyZJ\nklRlWYzLaPjw4ezYsYN+/fqxZ88exo0bR+/evTnllFM444wz6NatG+3bt+fCCy/k+eefJzExEfhv\niQUYPXo0y5YtY8CAAWRlZdG6dWuGDRvGkCFDuPfee7nnnnsIBoPF67/547efGzRoEPn5+VxyySVs\n27YNgLS0NDZt2kTfvn356quviImJKc5+9BitW7dm8ODBDBgwgPvvv5969eoxYcIE/vjHP3L99deH\nLOGSJEknqkDQ9qMymHvLAhrWbxzpGJIkVRlZe76m0zUdaN68RcQyJCbGkpOTF7HzV1XJyfFhrfOK\nsSRJkoTFWJIkSQIsxpIkSRJgMZYkSZIAi7EkSZIElEMx3rNnD2+99RabNm0qhziSJElSZBxXMV68\neDFDhgzhyJEjALz99tukpqbyy1/+kv79+zN58mSKiooqJKgkSZJUkcIuxi+99BK33XYbn376Kbt2\n7QJg6tSpHDp0iMGDB9O1a1cWLVrE/PnzKyysJEmSVFHCLsZPP/00SUlJvPLKKzRt2pQNGzbw5Zdf\nctFFFzFt2jT+/Oc/c+aZZ5KRkVGReSVJkqQKEXYx/uSTT+jXrx+NGjUC4LXXXgPgwgsvLF7TuXNn\nvvjii/JNKEmSJFWCsItxMBgkOjq6+PEbb7xBIBDgZz/7WfFzhw8fpk6dOuWbUJIkSaoEUeEubNmy\nJWvWrKGoqIivvvqKDRs2cOaZZ3LKKacAsHfvXl555RVatmxZUVklSZKkChP2FePLL7+cjz76iP79\n+3PllVdSVFTE1VdfDcDzzz/PoEGD2LlzJ9dcc02FhZUkSZIqSthXjNPS0jh48CBPPPEENWvWZNSo\nUVxxxRUAfPnll+Tk5DBhwgQuvfTSCgsrSZIkVZRAMBgM/tCD7Ny5k7i4OGJjY8sjk6qB6b+aRYOE\npEjHkCSpyti9bxd9f5VK8+YtIpYhMTGWnJy8iJ2/qkpOjg9rXbkUY518PvvsC/btOxjpGFVOQkId\n5xKCcynNmYTmXEJzLqFVxbk0adKUqKiw/w/5cmcxDi3cYnzM79zkyZPLfPLp06eX+bWqHlJSUvyN\nF4J/IIXmXEpzJqE5l9CcS2jOReXtmMV40aJFZT6oxViSJEnVzTGL8csvv1zicXZ2NuPGjeOUU07h\nxhtvpGPHjtSrV4+DBw+yfv16Zs2aRXZ2No8//niFh5YkSZLK2zGLcUpKSonHjzzyCFFRUfzlL38h\nMTGx+Pn4+HjOP/98zjrrLC677DIeeOAB0tPTKy6xJEmSVAHC3sf41VdfpXfv3iVK8TfVrVuXnj17\n8tZbb5VbOEmSJKmyhF2Ma9SoQU5OzneuyczMJCYm5geHkiRJkipb2MW4U6dOvPzyy/zrX/8K+fWX\nX36ZFStW0K1bt3ILJ0mSJFWWsPcx3rhxI9dccw2HDh2iW7dutG/fnrp167J//37effdd3n77bZKS\nkli4cCGnnnpqRedWhLmPcWhVcU/NqsC5lOZMQnMuoTmX0E6UuZTn3sduYRdahXzAx8cff8x9993H\nunXrSh4kEOCCCy5gypQpNG/e/PiSqlr6/dSrSTolvF9kkiQptF3Z++k5cEq5fVqexTi0H/wBH9+2\ndetW2rZty7x588jMzOSTTz5h3759JCQk0K5dO5KS/Hjgk0nSKfE0Sk6IdAxJkqRyE3YxHj58OO3b\nt2fmzJk0atSIRo0aVWQuSZIkqVKF/Y/vdu7c6W0SkiRJOmGFXYy7dOnCW2+9xeHDhysyjyRJkhQR\nYd9KMWTIEO6991769evHBRdcQLNmzahdu3bItcOHDy+3gJIkSVJlCLsY33TTTcU/f/bZZ4+5LhAI\nWIwlSZJU7YRdjKdNmxbWukAgUOYwkiRJUqSEXYwHDx5ckTkkSZKkiDruj1nJzc3llVde4dNPP+Xg\nwYMkJibyk5/8hF69ehEXF1cRGSVJkqQKd1zFeOXKlUyePJl9+/aV+lq9evWYPn06qamp5RZOkiRJ\nqixhF+MNGzYwfvx4oqKi+OUvf8k555xDw4YN2bdvH++88w7z5s3j5ptvZuHChbRp06YiM0uSJEnl\nLuxiPHv2bGrUqMFf//pXzjjjjBJf69atGxdddBHXXHMNjz32GA899FC5B5UkSZIqUtgf8PHuu+/S\np0+fUqX4qHbt2tGnTx/eeeedcgsnSZIkVZawi3FeXh7JycnfuaZBgwbs3bv3B4eSJEmSKlvYxbh5\n8+b861//oqioKOTXCwsLWbNmDc2aNSu3cKoY/fr1Iysrq9TzGRkZpKWlRSCRJElS5IVdjAcNGsTG\njRu54447yMvLK/G17OxsJk2axMaNGxk4cGC5h1Ros2bNYsiQIVx66aVcddVVXHbZZSxatIitW7cW\n/wPItLQ0Ro4cSWpqKrfeeisAmzZtoqCggLlz59KrVy969uzJypUrCQQCbNu2jauuuooBAwbw1Vdf\nRfLtSZIkVaqwi/HRnSgyMjI4//zzGTZsGKNHj+byyy8nNTWVJUuW0LFjR66//vqKzKtvSUhIYPHi\nxcTGxpKZmRnykwc7d+7MnDlzWLZsWannx48fT6tWrVi1ahUA0dHRPPvss3Ts2JEFCxZUynuQJEmq\nCsIuxtHR0fzpT39i3LhxNGjQgHfffZfXXnuNjz/+mKSkJMaNG8dTTz1FTExMRebVtxw5cqT453v2\n7OHgwYNkZ2eXWNOwYUNiY2MpKCgofi4YDDJ58mTy8/Np3bp18S0ywWCQwsJCAoEAUVHH/fkvkiRJ\n1dZxNZ+YmBjGjBnDmDFjyM3N5cCBA8TFxVG3bt2KyqfvkZ2dzcCBA4mLi2PChAnMnTuX8847L+SV\n40AgQH5+PgA1atSgdevWPProo7Rs2ZJatWoB//0eDx06lLy8PB577LFKfS+SJEmRFAgGg8FwFqam\nptKzZ0969OjBT3/6U6Kjoys6m75Heno627ZtY/r06WG/5sorryQYDLJw4cIfdEX4L7NG0ig5ocyv\nlyRJkLlzH2eefxPNm7col+MlJsaSk5P3/QtPMsnJ8WGtC7sZxcfHs2DBAv76179Sp04dunbtSs+e\nPenZsyeNGzcuc1CV3dixY4/7Nc8991wFJJEkSar+wi7GixcvZufOnfzzn/9k9erVvPnmm7z22msA\nnHbaafTq1YsePXrQsWPHkP83viRJklSVhX0rxbcVFRXx4YcfFhflDz/8kMLCQurVq8eaNWvKO6eq\nGG+lkCTph/NWisoR7q0UYe9K8W3BYJBgMEhMTAwJCQnFu1H4yXeSJEmqjsK+leLw4cO8//77vPPO\nO6xbt44PPviAgwcPApCUlESPHj3o0qULXbt2rbCwkiRJUkUJuxh36tSJgoICgsEgTZs2pWfPnnTu\n3JkuXbrw4x//uCIzSpIkSRUu7FspCgsLCQaDxMbG0q5dO84991w6depkKZYkSdIJIewrxmvWrGHN\nmjW8/fbbrFmzhhUrVhAMBqlfvz6dOnWiS5cudOnShdNPP70i80qSJEkV4rj2Me7Tpw99+vQBYPfu\n3cVl+b333isuyomJibz99tsVFliSJEmqCGX+6LMGDRrQrVs3atWqRVRUFLm5uezYsYOcnJzyzCdJ\nkiRViuMqxocOHeLdd9/lX//6F//617/4+OOPKSoqolatWpx77rkMHz6c7t27V1RWSZIkqcKEXYzT\n0tL44IMPOHLkCACNGzfmyiuvpHv37px33nnUrVu3wkJKkiRJFS3sYvzee+/RsWNHunfvTo8ePfxH\ndpIkSTqhhF2M3377beLjw/s4PZ34dmXvj3QESZKqPf8+rVoCwWAwGOkQqn4+++wL9u07GOkYVU5C\nQh3nEoJzKc2ZhOZcQnMuoZ0oc2nSpClRUWXeD6GExMRYcnLyyuVYJ5Lk5PAu7pbPd0EnnZSUFH/j\nheAfSKE5l9KcSWjOJTTnEppzUXkL+5PvJEmSpBOZxViSJEniOIrxSy+9RGZmZkVmkSRJkiIm7GJ8\n9913c9ddd1VkFkmSJCliwi7Ghw4dolWrVhWZRZIkSYqYsIvxlVdeyQsvvMDGjRsrMo8kSZIUEWFv\n15aQkADAZZddRosWLWjWrBm1a9cOuTY9Pb180qnK2rx58wmxd2R527v3xNhTs7w5l9KcSWjOJbSq\nPpfy3IdXiqSwfxXPnj27+OebNm1i06ZNFZFH1cT9S94gIalhpGNIkiJs364sRvfoTPPmLSIdRfrB\nwi7GK1asqMgcqmYSkhpSv1HTSMeQJEkqN2EX42bNmlVkDkmSJCmijvuGoE2bNpGdnU1RURHBYBCA\nYDBIQUEBe/bs4Y033mDGjBnlHlSSJEmqSGEX4+zsbEaNGsWGDRtCfj0QCBQXZYuxJEmSqpuwt2ub\nOXMmGzZs4LTTTuPqq6+mbt26nHXWWfz85z+nc+fOBINBfvazn7Fo0aKKzCtJkiRViLCvGP/zn/+k\nZcuWLFq0iJo1a7J7924OHz7M1KlTAXj++ee54447KiyoJEmSVJHCvmKclZVFt27dqFmzJgBt27bl\ngw8+KP76ZZddRseOHXn00UfLP6UkSZJUwcIuxrVr1yYmJqb4cYsWLdi7dy+ZmZnFz7Vv3561a9eW\nb0JJkiSpEoRdjFu1alXiCvGPfvQjAD766KPi5w4cOMDhw4fLMZ4kSZJUOcIuxhdffDHr1q3j1ltv\nZevWrZx++ukkJyfz8MMP8/nnn/P222/z4osvFhdmSZIkqToJuxgPHTqUiy66iBdeeIF169YRFRXF\nmDFj+OSTT7j44ou57rrryM3N5X/+538qMq8kSZJUIcLelaJWrVo8/PDDvP/++zRp0gSAq6++mnr1\n6rF06VIf6RVVAAAgAElEQVRiYmK49NJL6dGjR4WFlSRJkirKcX/y3dlnn13icf/+/enfv3+5BZIk\nSZIi4ZjFODc3t8wHrVu3bplfK0mSJEXCMYtxp06dCAQCx3WwYDBIIBDg448//sHBJEmSpMp0zGLc\nuXPnysxxQsjIyGDRokU8/fTTx1yzdetW+vTpwyeffMK9997LqlWrmDJlCr169arEpMfWpk0bVq1a\nRdOmTSMdRZIkqVIdsxh/V7mrjnbs2MH48ePZvXs37dq1Y/ny5XTq1IkuXbpwzjnnFH+09eDBgxk1\nahSjRo1i8+bNREdHM2vWLL788kumTZtGMBikf//+3Hrrrcc8zzXXXMPu3bt56qmnWLNmDQ8//DBF\nRUWMGjWK7t27A/Dqq6/yt7/9jYSEBP7+97+zYcMG2rdvz9ixY1mzZg0jR45k5MiR/P3vf+fTTz+l\nZs2aPP7444wePZpbb72VH/3oR1x55ZW8/vrr1KlTp0SGSZMmsW3bNrKysjjttNM4cOAA//nPf3jk\nkUc4cOAAU6ZMobCwkEGDBnHVVVdx8cUXc9pppzFkyBAANm3axNChQ7n77rvp2bNnxX1TJEmSqpCw\nt2ur7p5++mnatm3LypUr6du3LwA333wzN954I7fddhv33nsvGRkZzJ07l//85z988sknDBgwgJ//\n/OeccsopfPnllyQlJTF8+HC6du16zPPExMSwYMEC4uPjeeedd2jXrh3jxo3jnHPOYfny5cW3p/Tq\n1YsOHTowceJErr/+el5//XVWr15NYmIiL7/8Mp9//jndunVj0KBBjB07lvz8fN577z2uu+46nnnm\nGf7+978zePDgUqUYIBAI8OMf/5hHH32UV155hfvvv59OnTrxz3/+kxYtWjBmzBhSU1NZtmwZAIcO\nHWLWrFnFxXjChAkMGjTIUixJkk4qx7xiPGbMGC6++GIGDBhQ/Djce47T09PLJ105CgQCFBYWEgwG\n2bFjBwCNGzcG/ntvdDAYLF4XCASYOHEisbGx/OlPfyI7O5vU1FQaNWrE119/zfjx43nzzTeJi4sr\ndZ5TTjkFgNjYWAoLC5kxYwYdO3akTZs2/POf/wyZrWPHjuzatYsVK1Zwww03MHPmTHr27ElmZiZ3\n3XUXs2fPJikpiWAwyKWXXsrMmTNZv349zzzzzDHfb4MGDYiOjgYgKSmJmJgYgsEgc+fOLT7nq6++\nWry+UaNGxT8fPHgwixcvZtSoUf5DSkmSdNI4ZjFeuXIlbdu2LfG4OktLS2PcuHH07t2bdu3aFRdg\ngClTpnDfffdx6NAhRo8eTatWrXjkkUfYsGEDtWrV4mc/+xk5OTmkp6dTUFBAampqyFL8zWMefdyy\nZUsWLlxI27Zt2bNnT/Hz39anTx/ee+89LrnkEu6991769etHXFwc9erV484776ROnTrs3r2b6Oho\nunfvTnZ2Ns2bN//O9/zNPEd/TElJ4YknnmD37t3k5uZSUFBQKvO1117L/v37SU9PZ9KkScc5aUmS\npOopEDx6qfRbtm7dSr169YiPjy9+HK5mzZqVT7oqbPbs2SxZsqT4cVRUVInHFeX2229n9erVPPbY\nY7Rt25a77rqLtWvXFn/91FNP5Y9//GOF5/jN08uo38h/oCdJJ7s9mdsZ2i6F5s1bVPq5ExNjycnJ\nq/TzVmXOJLTk5Piw1h2zGEvfxWIsSQKLcVXjTEILtxgf9yffHT58mG3btnHkyJFjrmnTps3xHlaS\nJEmKqLCL8Z49e5gyZQorV67kuy4y+wEfkiRJqo7CLsbTpk1jxYoVtGjRgnbt2hETExNy3fF+Wp4k\nSZJUFYRdjN98803OPvts/vrXv1Kjxkmz/bEkSZJOEmE33MOHD3PuuedaiiVJknRCCrvlXnDBBbz7\n7rsVmUWSJEmKmLCL8eTJk8nKyuLmm29m/fr1ZGdnk5ubG/I/SZIkqboJ+x7jevXqceaZZ/KPf/yD\nf/zjHyH/kV0wGHRXCkmSJFVLx7UrxfLly6lTpw6tWrUiNja2InNJkiRJlSrsYrx8+XJ+8pOf8Ne/\n/rX4Y6IlSZKkE8Vx7UrRvXt3S7EkSZJOSGEX43POOYdPPvmkIrNIkiRJERP2rRS33norQ4cOZfr0\n6Vx33XU0adKkInOpitu3KyvSESRJVcB//z5IiXQMqVwEgsFgMJyFv/jFL9i6dStbtmwhEAgQFRVF\nnTp1Qq5du3ZtuYZU1fPZZ1+wb9/BSMeochIS6jiXEJxLac4kNOcSWlWfS5MmTYmKCvtaW7lJTIwl\nJyev0s9blTmT0JKTw7sVOOxfxZs3bwagadOmZUukE0pKSoq/8ULwD6TQnEtpziQ05xKac5EqR9jF\neNWqVRWZQ5IkSYqosP/xnSRJknQiO+YV47/85S+cffbZdOjQAYCnnnoq5KfdhTJ8+PDySSdJkiRV\nkmMW42nTpjF27NjiYjx9+vSwDhgIBCzGkiRJqna+sxifccYZJR6HI9yrypIkSVJVcsxiPHjw4O98\nLEmSJJ1IftCmg4cPH+brr78mKSmJuLi48sqkamDz5s1Vek/NSNm7t2rvNRopzqU0ZxKacwnNuYRW\n3ecSqf2fdWzf+91YuXIlK1asYMSIEbRp0waAYDDIgw8+yLx58zh06BA1a9akT58+3H333dSvX7/C\nQyvyfn3fi8TGJ0U6hiRJ1VLe/l3MGJdK8+YtIh1F3/CdxfjOO+/k2WefBaBHjx7Fxfihhx7ij3/8\nI4FAgPPPPx+AV155hc8++4xFixYRHR1dwbEVabHxScQlNo50DEmSpHJzzH2MV61axbPPPssZZ5zB\nE088Qa9evQDIzMzkySefBOCee+7hiSee4IknnuDhhx/m888/56mnnqqc5JIkSVI5OmYxfu6556hX\nrx5/+ctfOP/884mJiQHgpZdeoqCggJSUFIYMGVK8vk+fPpx99tm8/PLLFZ9akiRJKmfHLMbr16+n\nZ8+e1K1bt8Tzb731FgCpqamlXnPWWWexefPmco4oSZIkVbxjFuO9e/fSuHHJe0iLiopYt24dgUCA\n8847r9RratWqxZEjR8o/pSRJklTBjlmM69aty549e0o8t379eg4cOEBUVBSdO3cu9ZqvvvrKXSkk\nSZJULR2zGHfo0IG33nqLoqKi4ueWLl0KwHnnnUdsbGyJ9dnZ2axevbr4I6QlSZKk6uSYxfiqq65i\n69at3HzzzbzzzjvMmzePhQsXAnDttdeWWLt//35+85vfkJeXx6BBgyo2sSRJklQBjrmPce/evRk2\nbBjz588vsdPENddcQ48ePYof33zzzbz++uvk5eXRt29f+vTpU7GJJUmSpArwnR/wMWXKFC666CJe\ne+018vPz6datGz179iyx5qOPPqJ27dpcf/31jB49uiKzSpIkSRXmez8SumvXrnTt2vWYX8/IyCi1\npZskSZJU3RzzHuNwWYolSZJ0IvjBxViSJEk6EViMJUmSJCzGJaxZsybkR11/n7S0NBYtWnTcrxsx\nYgTr168v1/PMmjWLyZMnh33M71qfmprK2rVrwz6WJElSdXbCF+NZs2YxZMgQLr30Un7+85/z+OOP\n06tXL3r27MnKlSvJyMigd+/eXHjhhXzxxRcArFixgtTUVLZs2cLcuXNLrH///ffp27cvqampTJw4\nsfg8R49z++23h8xx9Ji9evXi/vvvB2DLli0cOnSISZMmMWLECPr27cuIESMIBoM899xz9OjRg3Hj\nxtGhQwe2bdsW1nkCgQDr169n0KBBDBkyhJycnFLvIScnh6uvvppLLrmEV199FYBPP/20+H3deuut\nJY4nSZJ0MjjhizFAQkICixcvJjY2lsLCQsaPH0+rVq1YtWoVgUCAmjVr8sorr9CqVSuys7OZOHEi\n99xzD82bN6dz584l1m/fvp0aNWqQlpZGz549CQaDAFxwwQXMmTOHxYsXh8zw5ZdfkpSUxPDhw0vt\n8hEIBEhJSSEjI4M1a9aQlZXFgw8+yO9//3tuvfVWjhw5Urz2+84TDAZp3LgxL7zwAnFxcSxdurTU\ne1i6dCl16tRh6dKlnH766QAkJyfz61//msGDBxd/wqEkSdLJ5KQoxkeLZTAYJD09nfz8fFq3bl38\ncdeNGjUqXhsIBBgyZAhPP/00AJMnTy6x/sc//jGjR48mJiaGO++8k02bNgHQsGFD6tSpQ2FhYcgM\nXbp04dprryU/P5/x48eTm5tb4usNGzYkLi4OgIKCAoLBIMFgsNQV2+87z9HXA9SoUYOaNWty++23\nl3gPNWrUKC70R3987rnneOWVV+jYsWOJjwGXJEk6WXzvPsYnguzsbAYOHEhcXBw9e/bk0UcfpWXL\nltSqVQsoebvAKaecwuTJkxk0aBArV66kdevWJdYfOXKEuXPncvDgQc4++2waN25c4lzHuvUgJyeH\n9PR0CgoKSE1NPeY2d4FAgEAgwG9+8xsmTJhAhw4dCAQCREdHh3WeQCDA4cOHufTSS6lTpw6XXHIJ\nq1evLvEeBg0axIsvvsgll1xC/fr1adasGaeeeip/+tOfKCgoID4+nuzs7LDnK0mSdCIIBI9eMjxB\npaens23bNqZPn15p55w9ezZLliwpfhwVFVXicTgefPBBVq5cSUFBAWeffXbxfcnlfZ6yuvTGBcQl\nNv7+hZIkqZQDOV9z13UdaN68RbkeNzExlpycvHI95okgOTk+rHUnfDFWxbAYS5JUdhbjyhVuMT4p\n7jGWJEmSvo/FWJIkScJiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmS\nBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEkAREU6gKqnvP27Ih1BkqRqy79Hq6ZAMBgMRjqEqp/P\nPvuCffsORjpGlZOQUMe5hOBcSnMmoTmX0JxLaNV9Lk2aNCUqqnyvUSYmxpKTk1euxzwRJCfHh7XO\nK8Yqk5SUFH/jheAfSKE5l9KcSWjOJTTnEppzUXnzHmNJkiQJi7EkSZIEWIwlSZIkwGIsSZIkARZj\nSZIkCbAYS5IkSYDbtamMNm/eXK33jqwoe/dW7z01K4pzKc2ZhOZcQnMuoTmX0qr6TCpi7+byVHWT\nqUq76x+3Ex/mZtmSJEn7d+5n4vlTaN68RaSjHJPFWGUSnxxPvcYJkY4hSZJUbrzHWJIkScJiLEmS\nJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mS\nJAmwGEuSJEmAxViSJEkCLMaVol+/fmRlZZV6PiMjg7S0tDIdMzU1lbVr1zJp0iTS09NDrpkxYwY9\nevSgb9++vP/++2RlZTF48GBSU1P505/+BMChQ4cYP348kydPBuB3v/sd/fv3p2fPnpx99tkcOnSo\nTPkkSZKqm6hIB6hOZs2axRtvvMGRI0eIiYnhyJEjjBgxgs6dO9OnTx8++eQT0tLSqF27Np9//jmd\nOnXi/vvvZ9OmTRQUFDB37lwWLFhAMBhkypQpBAIBtm3bxlVXXUVubi5z5sxh9uzZbN26lT179tCs\nWTMeeeQR3n77baZOnQrA4MGD+fWvf12cKRAIALBixQqmTZtGMBikf//+TJgwgSNHjvDSSy8xffp0\nXnzxRerXr0/btm0ZO3Ysffv2Zfjw4YwYMQKAVq1aATBp0iQmTZrEuHHj6N+/P7Vr167kKUuSJEWG\nV4yPU0JCAosXLyY2NpbMzMziYvpNnTt3Zs6cOSxbtqzU8+PHj6dVq1asWrUKgOjoaJ599lk6duzI\nggULCAQCtGrViqVLl7Jp0ybefPNNbrvtNu69914yMjKYO3cumzZtKnXOL7/8kqSkJIYPH07Xrl2J\niopiypQpfPDBB7z22mtcccUVfP311zRu3JhGjRpx5MgRcnJymD9/PhdccEGJY61Zs4Zt27YxYMCA\n8hucJElSFWcxPk5Hjhwp/vmePXs4ePAg2dnZJdY0bNiQ2NhYCgoKip8LBoNMnjyZ/Px8WrduTVFR\nUfHzhYWFBAIBatasWXyOYDBY4rVHHwcCAWrUKP1t69KlC9deey35+fmMHz+e3NxcXnjhBSZPnszs\n2bNp06YNjRo1IjMzk6+//pro6Gjq169PVFRUiXPBf2/xuPbaa3/gpCRJkqoXb6U4TtnZ2QwcOJC4\nuDgmTJjA3LlzOe+880JeOQ4EAuTn5wNQo0YNWrduzaOPPkrLli2pVasWADExMQwdOpS8vDzmzJnD\nrFmz2LhxIwMGDOBHP/oR3bp1Y8qUKdx3330cOnSI0aNH06JFi1LnysnJIT09nYKCAlJTUzlw4AD/\n7//9P+Lj47nlllu46KKLGDZsGDfccANpaWlMmDChuGB/O/v//d//MXLkyPIenSRJUpUWCH77cqGO\nKT09nW3btjF9+vSwX3PllVcSDAZZuHAhUVHf/79DJk+ezKmnnsrYsWN/SNQKN/qZkdRrnBDpGJIk\nqZrY+/U+Rp12E82bl77AV9GSk+PDWmcxVplYjCVJ0vGoDsXYe4wlSZIkLMaSJEkSYDGWJEmSAIux\nJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBEBU\npAOoetq/c3+kI0iSpGpk/879cFqkU3y3QDAYDEY6hKqfzz77gn37DkY6RpWTkFDHuYTgXEpzJqE5\nl9CcS2jOpbSqPpMmTZoSFVX512WTk+PDWmcxVpnk5xeSk5MX6RhVTmJirHMJwbmU5kxCcy6hOZfQ\nnEtpziS0cIux9xhLkiRJWIwlSZIkwGIsSZIkARZjSZIkCbAYS5IkSYDFWJIkSQL8gA+V0ebNm6v0\nPomRsndv1d4/MlKcS2nOJDTnElpVmEuk9p+VKpO/wlUmKyffRsO6dSMdQ5JUCbJyc+k8+W6aN28R\n6ShShbIYq0wa1q1Lk4SESMeQJEkqN95jLEmSJGExliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJ\nkiQJsBhLkiRJgMVYkiRJAizGkiRJEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFuOIy83NJScn\nB4AtW7ZEOI0kSdLJy2IcAZmZmfTv3x+Aq6++mo0bN5Z4LpR7772X1NRUXnvtteM616RJk0hPTycj\nI4O0tDQyMzPp16/fD4kvSZJ0QrIYV7DBgwezZs0aZsyYwVVXXcXBgwfp378/mzZtYsWKFWzatInb\nbruNP//5zxQUFHDbbbcxcuRI5s+fT25uLueeey7z5s3jb3/7G/n5+TRu3Jj/+Z//4ZJLLmHs2LHk\n5+fz5JNPMmDAAAYPHsz69ev56quvGDhwIJdffjkffvghAIFAAICCggI2bdrEunXr6NWrF8FgkMce\ne4yJEyeyceNGrrjiCi655BIeeeSRSI5NkiSp0lmMK1jfvn15/fXXeeutt8jMzOSll17inHPOAaBP\nnz40bNiQ+++/n2uvvRaAGTNm8Mtf/pKFCxfy4osv8rOf/Yxrr72WDh06MHHiRP7973/z73//m6Ki\nIj744APeeOMN/vd//5dgMMjevXtZsGABCxYs4KyzzmLRokU0aNAgZK5OnTpRt25d3nzzTTIyMhg6\ndCiPPvoomZmZFBUVMX/+fA4ePFhpc5IkSYo0i3EF69u3L0uXLqWoqIjevXszc+ZM+vXrRzAYBP57\nJffoz4/66U9/SiAQYNasWcWFGSAYDFJUVESbNm1YtmwZI0eOpG3btgA89thjTJ06lSuuuIIaNWoU\nH/Pbx/6mYcOGMWPGDGrXrs25555LYWEhV155JfPmzeOGG26gTp065T0OSZKkKstiXMFatmxJYmIi\n3bp14/zzz2fXrl20bdu2+NaG9u3bc8cdd5CUlMSpp57KxIkTAbjooouoX78+Xbt2LT5WIBBg4MCB\nREdH06tXL9auXUvDhg256aab+MUvfsF9991HbGwsw4YNY8OGDVx++eXk5+eXeP03fxw4cCA7duzg\nmmuuAeDXv/41K1eu5IorriA3N7dS5iNJklRVBILfdUlRETFr1iwWLFjA7373O7p37x7pOCEt+sUv\naJKQEOkYkqRKsGPfPlLG/YbmzVtEOkoJiYmx5OTkRTpGleJMQktOjg9rXVQF51AZjBs3jnHjxkU6\nhiRJ0knFWykkSZIkLMaSJEkSYDGWJEmSAIuxJEmSBFiMJUmSJMBiLEmSJAEWY0mSJAmwGEuSJEmA\nxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBEBUpAOoesrKzY10BElSJcnKzSUl0iGkSmAxVpn0nj6D\nffsORjpGlZOQUMe5hOBcSnMmoTmX0CI9lxSgSZOmETu/VFksxiqTlJQUcnLyIh2jyklMjHUuITiX\n0pxJaM4lNOciVQ7vMZYkSZKwGEuSJEmAxViSJEkCLMaSJEkSYDGWJEmSAIuxJEmSBLhdm8po8+bN\n7jUawt697sEainMpzZmE5lxCcy6hnWhzadKkKVFRVrNIcvoqk7898CINEpIiHUOSpBPC7n276Pur\nVJo3bxHpKCc1i7HKpEFCEg3rN450DEmSpHLjPcaSJEkSFmNJkiQJsBhLkiRJgMVYkiRJAizGkiRJ\nEmAxliRJkgCLsSRJkgRYjCVJkiTAYixJkiQBFmNJkiQJsBhLkiRJgMVYkiRJAizGVUowGGT79u2R\njiFJknRSshhXsLS0NBYtWhTW2t/+9rdkZGQAMGLECNavX1/m827cuJEBAwbQvXt3Jk+eDMATTzxB\namoqgwcPZufOnQCsW7eOs846i+3bt7Nlyxb69+9P//79Ofvss0lPTy/z+SVJkqqbqEgHqKq2bNnC\nDTfcQK1atahRowYdO3Zk48aN7Nixg1NPPZXf//73/197dx5WVbU+cPx7OIAig2AqWoKY5QEHRMUc\nQAnE1BRnE8Ehc8jrkBqidZ9UUjOtixOa5pCYWjgmas6akjlTIs7lkNMFJ1AREIH9+8Mf+3I8G0Wy\nDur7eZ6eZLP32u9+zwLes87aa7Nr1y5mzJhBbm4u/fv3p127dgwdOpSkpCTc3NyYOnUqADqdjr17\n9zJx4kQURaFXr1507NiRsLAwjh49ioODAzNnziQ2NhZra2uaNm3KxYsXuXfvHidOnCAsLIz79+/j\n4+NDREQEPXr0oGTJkpw5cwZvb28+//xz+vfvz59//om1tTVRUVFcvnyZwYMHU79+fZo0aUJ4eDjT\np09ny5YtzJgxg5UrV+Li4sLatWvJysoCwMXFhY0bN3L06FEiIiJ4//33zfkSCCGEEEL8o2TEuADf\nf/89tWvXZvXq1djY2FCyZEkqVqzIli1bKFu2LNHR0dSoUYMhQ4ZQt25dtmzZwrp16/jtt9/Izc0l\nISGBAwcOAA+mSEydOpW0tDTu37/PggUL2L17N6dPn2bbtm2EhYUB8NZbbxEaGoqnp6d63NixY+nb\nty8bN25k9+7d7NmzB4D69eszZ84cNmzYQFZWFidPnuTtt9+ma9eulClTBn9/f5o1a8bEiRNp3bo1\nOTk5ZGVl4ezsTPny5UlKSqJVq1bMnTsXRVGMrn3y5MkMGjQIKyurfzDjQgghhBDmJYVxARRFMSoY\nc3Nz1a8VRcHCwoLJkydz5coVPDw8yMnJIScnB3d3dzZs2EC/fv3w8PBQj8/JyWHgwIHMmTOHAQMG\nqNsUReHmzZukpqY+Mo68c+t0OgDKly9PqVKlyM7OJicnh7CwMKpXr86GDRuIjo4mLS2NXr164eDg\nwBdffIGjoyNWVlZcvXqV5ORkKlasiF6vNznfxYsXuXz5Mv7+/k8nkUIIIYQQzwgpjAvQvXt3EhIS\n6NSpEzdv3sTe3p7//ve/tGzZkpSUFN59913c3NxYtmwZhw4dIiUlhaCgIKytrfH39+fAgQM4ODgA\nD4rZDz/8kPnz59OnTx8URcHX15fq1asTGBjIwoULcXJyonr16ixfvpz4+Hj1uPDwcBYvXkzr1q15\n8803adSokVGcOp2OEiVKsHPnTr744gtSU1Np3LgxU6ZMUUet27Rpw82bNxk+fDghISGcPn2azp07\nG7WR58SJE9SqVesfyLAQQgghRPGiUx7+HF0AD25KGz9+PNnZ2ej1embMmIGbm5u5wyo25oZ/T3mn\nCuYOQwghhHguXE1JwrubJy4urn+pHUfHUqSmpj+lqJ4f5crZF2o/ufmuAN7e3sTGxpo7DCGEEEII\n8Q+RqRRCCCGEEEIghbEQQgghhBCAFMZCCCGEEEIAUhgLIYQQQggBSGEshBBCCCEEIIWxEEIIIYQQ\ngBTGQgghhBBCAFIYCyGEEEIIAUhhLIQQQgghBCCFsRBCCCGEEIAUxkIIIYQQQgBSGAshhBBCCAFI\nYSyEEEIIIQQAluYOQDybbty+bu4QhBBCiOeG/F0tHnSKoijmDkI8e/744yy3b2eYO4xix8HBRvKi\nQfJiSnKiTfKiTfKi7XnLS8WKL2Np+dfGLB0dS5Gamv6UInp+lCtnX6j9ZMRYFEnlypXlB0+D/ELS\nJnkxJTnRJnnRJnnRJnkRT5vMMRZCCCGEEAIpjIUQQgghhABkjrEQQgghhBCAjBgLIYQQQggBSGEs\nhBBCCCEEIIWxEEIIIYQQgBTGQgghhBBCAFIYCyGEEEIIAUhhLIQQQgghBCBPvhNPID4+nuTkZCpU\nqEDdunXNHU6xkJiYyOuvv86aNWvQ6/W0bduWEiVKmDusYkH6izHpKwWTvmJK+kvBpL8Yk75SsKL0\nFVnHWBTK0KFDOXHiBOXKlePatWtUr16dadOmmTsss2vVqhVVq1bl1q1bWFlZYWtrS1RUlLnDMjvp\nL6akr2iTvqJN+os26S+mpK9oK2pfkRFjUSiJiYls374dnU5Hbm4uzZs3N3dIxUJWVhbnz59n7dq1\n6HQ6AgICzB1SsSD9xZT0FW3SV7RJf9Em/cWU9BVtRe0rUhiLQqlZsyYtWrSgfPnyXLt2jZo1a5o7\npFcdylgAABetSURBVGLhpZde4vjx4+zbt4+ffvoJd3d3c4dULEh/MSV9RZv0FW3SX7RJfzElfUVb\nUfuKTKUQhXbo0CGSk5NxdnbG29vb3OEUG3fv3sXCwoLk5GRefvllrK2tzR2S2SmKQnx8PElJSTg7\nO1O/fn1zh1QspKWlodfrSUpK4pVXXpG+8v/yfreUL19e+ko+eb9bpL8YO3ToEElJSVSoUEH+Fv0/\n+TukrSh1iz4iIiLi7w1LPA/279/P7Nmz2bFjBydPnqRixYq88sor5g7L7Pbv38+4ceNYsGABv/76\nK5UqVZK8ADqdjpdffplq1apJPvKxtrbGysoKJycn9Hq9ucMpFmJiYpg1axYGg4G33nqL3r170759\ne3OHZXYxMTF8+umnWFtb4+vrS9++fSUvwOHDh9m+fTu1a9dmwoQJ2NraYjAYzB2WWR0+fJhly5Zh\nb2/Pv//9bxwcHF74nACsWbOG27dvk5OTQ0REBGXKlCnUaLpMpRCFMnr0aAYOHIizszPJycmMHj2a\nzZs3mzsss5O8aAsICECn05H3gZROp2P79u1mjsq8JCfaZs+ezciRI/n666+xtrYmKSnJ3CEVC7Nn\nzyY8PJy5c+dKXvIZNWoU3t7e9O7dm08++YSpU6cSFBRk7rDM6uGcTJs27YXPCUBkZCQWFha4urpy\n584dVq1aVag3l1IYi0JRFAWdToeFhQUWFrL8dR7Ji7YePXoQFxfHv/71L2S21gOSE216vZ4qVaow\nZ84cQkJCuHXrlrlDKhb0ej2vvvqq5OUhubm59OnTh5o1a9K0aVNmz55t7pDMTnKibdWqVYSFhdGm\nTRuuX7/O4sWLC3WcTKUQhVKtWjUWL17M+vXruXDhAuHh4VSqVMncYZmd5EWbl5cXR48epUuXLri6\nukpOkJwUpGzZsvz+++80adKERo0asW/fPkJCQswdltlJXrSVLVuW69ev07FjRw4cOMBrr72Gp6en\nucMyK8mJNltbW9q0acOqVas4fvw4ffv2LdRxcvOdKJIjR47ID54GyYu2xMREatWqZe4wihXJiTb5\nGdImedEmeTElOTGVlpbGuXPnCvU7Vz77FYWWm5vLjRs3yMnJYcqUKeYOp9iQvGjLn5fIyEhzh1Ms\nSE60yc+QNsmLNsmLKcmJtry82NjYFPp3rhTGolAWLlyIl5cXPj4+1KlThzfffNPcIRULkhdtkhdT\nkhNtkhdtkhdtkhdTkhNtRc6LIkQh+Pv7K1euXFFycnKUy5cvKwEBAeYOqViQvGiTvJiSnGiTvGiT\nvGiTvJiSnGgral5kVQpRKI6OjsycOZMKFSqQnJyMk5OTuUMqFiQv2iQvpiQn2iQv2iQv2iQvpiQn\n2oqaF7n5ThTK1atXWbFihfoEmS5dulC+fHlzh2V2khdtkhdTkhNtkhdtkhdtkhdTkhNtRc2LFMZC\nCCGEEEIgN98JIYQQQggBSGEshBBCCCEEIIWxEEIIIYQQgBTGQogXyPbt23n//fdp1KgRtWrVwtfX\nl4EDB7Jjxw6TfVevXo27uzvffvvtUzv/pUuXcHd3Z9CgQeq2Hj164O7uTlpa2lM7DxQc//r167l4\n8eJTPdeLaPfu3SQmJpo7jAJlZWXRpk0boqOj1W1nzpyhW7du1K5dm6CgIM1+DxAcHMwHH3yg+b09\ne/ZQv359rl279neELYTZSWEshHghjB8/nkGDBnHmzBmaN2/Oe++9h4+PD/Hx8QwcOJAxY8YY7V+9\nenUGDx6Ml5fXU4uhdOnSDB48mNatWxtt1+l0T+0cebTi//LLLxkxYgR379596ud7kXz33Xf07duX\nq1evmjuUAs2ZM4d79+7RvXt3ABRFYfjw4Zw9e5Zu3bphY2PDkCFDOHXqlNFxP/30E0eOHGHo0KGa\n7TZu3Jg6deowbty4v/0ahDAHWcdYCPHc279/P0uXLqVFixZMnToVC4v/jQmkpaXRs2dPli9fjp+f\nH82aNQPA3d0dd3f3pxqHvb09gwcPfqptFkQr/hs3bvwj537eFfc8nj9/nrlz5zJ+/HgsLR/8mU9M\nTOT06dNMnTqVVq1akZmZiZ+fHytWrOCTTz4BHhTP06dPp3Xr1lStWrXA9ocPH06HDh3YuXOnPGVN\nPHdkxFgI8dzbuXMnAN27dzcqigHs7OwICwsDYNu2bf90aOIZVlxXO/3mm2+wt7cnKChI3Xbp0iUA\n9c1SyZIlcXNzU7cDbNy4kT/++KPAaRR5PDw8qFu3LnPmzPkbohfCvKQwFkI89+7fvw9g8rFxHm9v\nb6ZNm0avXr3UbXlzdBctWqRuCwgIoHfv3pw6dYo+ffpQp04dGjZsyJgxY8jMzCQ5OZlhw4ZRr149\nGjduTHh4OCkpKerxWnOMC4p30aJFvPPOO3h7e1OzZk0CAgIYO3YsN2/eNGlvxowZTJgwAS8vLxo2\nbMimTZtM5hgHBASwZs0aANq3b09AQACHDh3C3d2d8PBwzTgCAwPx9/d/ZKwBAQGEhIRw8uRJevTo\ngZeXF35+fkyYMIFbt26Z7H/t2jUiIiJo2rQptWrVolmzZvznP/8xmd7Ro0cPAgIC2LVrFwEBAXh5\neTFs2DD1+wcPHuT999+nQYMGeHt7ExwczPbt203Od+zYMQYOHEiDBg2oXbs27du3JyYmRvM6evTo\nwZkzZxgwYAD16tWjbt269O/fn5MnTxrFNWvWLAAGDx5sNCp/9+5dZs2aRbt27ahbty6enp60aNGC\nL7/8koyMDJNzxsTEEBQUhJeXF4GBgcyfP581a9bg7u7OwYMHi3QdKSkpxMbG0rJlS3W0GB5M48mL\nMc+dO3ewt7cHICcnh6ioKDp06ICLi4tJuw8LCgri8OHDHD58+LH7CvEskcJYCPHc8/X1BWDy5MlM\nmDCBw4cPk5ubq36/RIkStGzZUnPqxMPzfy9dukRISAgAISEhlCtXjuXLlzNy5Ei6detGUlISwcHB\nuLq6sm7dOkaPHv3YNh8WFhbG559/jrW1NV27diU4OBhra2uWLVtG//79TfZfvnw5mzZtIiQkBC8v\nL+rUqWOyT69evdTrCw4O5t1338Xb25tKlSqxY8cOMjMzjfb/9ddfuXTpEm3btn1krPDgCVO9evXi\n7t27dO/eHRcXF5YsWUL37t1JT09X97ty5QqdO3dm2bJl1KpVi969e1OlShXmz59Pjx49TIrH1NRU\nhg8fjre3Nx07dqR+/foAxMbG0qtXL+Lj43nzzTfp3LkzSUlJDBo0iNWrV6vH79q1i+DgYA4cOKAW\nvrm5uURERJjMKQdISkqiW7dupKSkEBwczBtvvEFcXBw9e/ZU35Dkj6N169bq1Jjs7Gx69+7NzJkz\ncXZ2JjQ0lE6dOpGZmcmCBQsYNWqU0bkmTpxIREQEWVlZvPPOO3h5eTFt2jS16M7vSa5j27Zt3Lt3\nT+3zeTw8PChRogQLFy4kLS2NrVu3cvbsWerWravm9NKlS49905Ynr/3169cXan8hnhmKEEK8ACIi\nIhSDwaD+V7duXaV///5KdHS0kpSUZLL/qlWrFIPBoCxatEjd5u/vrxgMBmXixInqttu3byteXl6K\nwWBQhg0bpm7PyclRmjdvrri7uyuZmZmKoijKxYsXFYPBoAwaNEjdr3v37oq7u7ty584dRVEU5bff\nflMMBoMSHh5uFE92drYSFBSkGAwG5dy5c0bteXh4KKdOnXps/KNGjVIMBoNy4sQJdVtUVJRiMBiU\nH3/8UTNff/zxxyPzmpeTgQMHKrm5uer28ePHKwaDQYmKilK39evXT/Hw8FB27txp1Ma3336rGAwG\n5YsvvjDKi8FgUCZNmmS0b2pqqlKvXj3Fx8dHOX/+vLr95s2bSpMmTZSGDRsq2dnZSnp6utKwYUPF\nx8dHuXz5srpfbm6u8sEHHygGg8EojrzrGD9+vNH5Ro8erRgMBuX7779Xt82YMUMxGAzKtm3b1G3r\n169XDAaDMm3aNKPj09LSFB8fH6VGjRpqPzhy5IhiMBiUrl27Kunp6eq+O3fuVAwGg+Lu7q4cOHBA\nURTlia9jxIgRisFg0OzT8+fPV9zd3dWfgZCQECU7O1vJyspS/P39ja49/2tZkDfeeEMJCgp67H5C\nPEtkxFgI8UIYO3YsX3/9NU2aNMHKyor09HR27drF559/TrNmzZgyZUqh5ozqdDreffdd9Wt7e3te\nffVVAHr37q1ut7CwoEaNGiiKwuXLlwsdZ8WKFZk0aZLJPE+9Xq+O7uWfTgHg6upKtWrVCn2O/Nq1\nawcYj/zdv3+fjRs3UqNGjUfehJU/to8++shoJHzYsGGUKlWKdevWAQ9GlePi4mjatCl+fn5Gx4eG\nhlKhQgV++OEHk7ZbtGhh9PWuXbvUGyYrV66sbndycuLjjz+mb9++3L17lx07dpCSkkKfPn14+eWX\n1f10Oh0ffvghgNHoct73+vXrZ7StadOmwIPR7kepUaMGn332mdF0HABbW1s8PDzIzs4mNTUVeDA6\nCw9uYrOxsVH39fPzw8fHx6gfPul1HD9+HDs7O5ydnU1i7NOnD8uWLeOjjz4iKiqKxYsXo9frWb58\nOTdv3mTAgAFkZGQQFhaGp6enOsWoIFWrVuX3338nOzv7kbkR4lkiq1IIIV4Yfn5++Pn5kZ6ezsGD\nB9m3bx87duzgzz//ZO7cueTm5jJixIhHtmFpaUnFihWNtpUqVQqdTkelSpWMtpcoUQJ4sKZsYTk7\nO9O+fXuys7M5duwY586d48KFC5w4cYK9e/cCGE0DAUzO+yRcXFyoV68eP//8M7dv38bBwYHdu3eT\nmprKwIEDCx3zw/NS7ezscHNz48SJE2RmZnL8+HHgwfSIqKgokzasrKxISkri6tWrlC9fHkAzp3nz\nfbWW0WvVqpX676NHj6r/1zqfhYWF0dxhePB6PVxQ2tnZAY9/Dd3c3HBzc+PevXskJCSor9uxY8c4\nePAgOp1Ofd0SExPR6XR4enqatFOnTh1++eWXIl/HjRs3cHJyKjBOT09Po/NmZmYye/ZsQkNDKVu2\nLF9++SVxcXFMmjSJW7duMXHiRFxcXOjUqZNJW05OTiiKQkpKCuXKlXtkfoR4VkhhLIR44ZQqVUot\nkkeNGsWKFSsYM2YMS5YsYciQIWpBqyX/CN/DrK2tn0p8MTExzJo1S32IQunSpalduzZVq1YlISHB\nZGS7ZMmSf+l87du3Jz4+ns2bN9OlSxfWrl2LpaUlbdq0KdTxWqOTAGXLlgUeLIl3+/ZtgEfesKXT\n6bh165ZaGIPpteW1k1ewFuTOnTsA/Pjjj488V35ar1/eKPjjPk1QFIU5c+awcOFCNcayZctSp04d\nXnnlFc6cOaO2kZKSgo2NjWZfyn/tRbmOtLS0JypSly5dSmZmpjpSvnLlSjp37qyutb13716+++47\nzcI4L/7bt29LYSyeG1IYCyGea2lpaXTs2JEaNWowdepUzX26dOnCpk2b+OWXX0hKSjL6iP6ftnHj\nRiIiInB3d+fTTz+lRo0aauE5duxYEhISnvo5W7VqxYQJE9i0aRPt2rXjp59+wtfXlzJlyhTq+Hv3\n7mluzysQHR0dKVWqFACDBg1iyJAhRY41rx2th5RkZWVhYWGBpaWlut+iRYto0KBBkc9XWAsWLGD6\n9Ok0aNCAfv364eHhwUsvvQRA3759OXPmjLqvnZ0dV65cIScnB71eb9TOw09AfNLrKF26dKGfopiW\nlsa8efPo2bMnjo6OpKSkcOvWLdzc3NR9KleuzP79+zWPzyvaH/VGUohnjcwxFkI81+zs7EhLS2PX\nrl3qH/KC6PV6dZTTXPLm+kZGRhIQEGA0Gnv27Fmg6OvnFrQahp2dHc2aNePAgQNs3bqVzMzMQq1G\nkT+u/KtPAGRkZHDq1Ck8PDywtLTEYDAAFPgY5a+++or58+erS+sVJK8drTcICxYswMvLS12GrqDz\n3blzh0mTJrF27drHX5wGrTyuX78eS0tLvvrqK3x9fdWiWFEUzp49i06nU1+3mjVrkp2drU6TyO/h\n63rS6yhXrpw6l/lxoqOjURSF9957D3iwZBtgNGf43r17BfablJQU9Hp9gZ8YCPEsksJYCPHcCw0N\nJT09naFDh5rcuAYPlrjau3cvgYGB2NramiHC/8kbfcubRpFnzZo16lzVot7slLeurdZ82fbt23P/\n/n0iIyOxs7MjMDCw0O1mZmYyZcoU9WtFUYiMjCQjI0P9CN7FxYX69esTFxfH5s2bjY5fu3YtM2bM\nIC4uDisrq0eeKzAwEBsbG7799lujG+JSU1OJiYnB1taW2rVr07x5c+zs7Jg3bx7nz583amPy5MlE\nR0dz4cKFQl9jflp5LFGiBNnZ2Sb9a9asWWqcea9bx44dAZg6darRMnn79u1j27ZtRoXok17H66+/\nTkZGBhcvXnzkNaSmphIdHU2fPn3UaSkvvfQSpUuXNprqkpCQQJUqVUyOz83N5cyZM1SpUuWxr5kQ\nzxKZSiGEeO4NGDCA06dPs3nzZgIDA/H19cXV1ZX79++TkJDA4cOHqVq1KhEREUU+R1FHcR8+tl27\ndmzYsIHBgwfTunVrbG1tSUxM5LfffqNx48bs2bPH6KEhTyJvZG/y5Mk0atTI6PHUvr6+lC1blitX\nrtCpU6cnmi9tZWXFypUrOXr0KLVr11Zz2rBhQ3XNZ4Bx48YRGhrK0KFDadq0Ka+99hrnzp1j165d\nODo6Mnbs2ALzkqd06dKMHTuWjz/+mA4dOtCsWTNKlSrFpk2buHHjBlFRUVhZWWFlZcWECRMYMWIE\nHTp0IDAwkHLlynHw4EESExPx9PSkT58+T5pCACpUqADA7NmzOXbsGB988AFt27YlISGBbt260bJl\nS6ysrNi/fz/nzp3D29ubQ4cOkZKSQuXKlfHy8iI4OJiYmBjatWtHkyZNuHHjBlu3bsXBwYGUlBT1\nCY329vZPdB3+/v6sW7eO+Pj4Rz6oY/78+ZQoUYKePXuq23Q6HR07diQ6Ohq9Xk9qaipHjhwhMjLS\n5PjTp09z9+5dGjduXKQcClFcyYixEOK5p9frmT59OjNnzsTX15cjR46wePFiVq9eTXZ2NmFhYfzw\nww9Gd/PrdLrHPogjP619C9tG/n38/PyYMmUKrq6urF27ltWrV+Pk5MSKFSvUJ9TFxcUVqs2Hzx0a\nGoqPjw9Hjx5Vb7rKY2FhoY4S5y3hVlh2dnYsXLgQRVGIiYnh5s2bDBkyhHnz5hnFUKVKFVavXs07\n77zDqVOnWLx4MadPn6Zdu3asXLnSZGm4gnLXvn17vvnmGzw8PNi8eTMrV67E1dWVr7/+2miku2XL\nlixZsoSGDRsSFxfH0qVLSU9PZ9CgQSxcuPCRN1I+yttvv02rVq24ePEiy5Yt48qVK4SGhjJ69Ggc\nHR1ZsWIF69ato1q1asTGxqrL++V/3caMGcPIkSPR6XQsW7aMo0ePMnLkSHWEPX9sT3IdTZo0wdra\n2mhli4ddv36dpUuX0q9fP5ObGz/88EO6du3Kli1bSExMZPjw4eqNePnt3r0boNA3aArxrNApf2WY\nQwghxHOja9euXLt2jR07dhT6mICAADIyMtSl5MTjXb9+HUtLSxwdHU2+N2rUKGJjY9mzZ0+hb358\n2NixY4mNjWX37t2PXb2jqN5++23KlCnDkiVL/pb2hTAXGTEWQghBXFwcCQkJdO7c2dyhPPdiY2Np\n2LAha9asMdp+4cIFtm7dyuuvv17kohigf//+ZGdnF/nmwseJj4/n7NmzDBgw4G9pXwhzkhFjIYR4\ngX322WfEx8dz6tQpSpcuzaZNm3BwcCj08TJi/OSSk5MJCgoiIyODZs2a4eLiwvXr19myZQvZ2dnM\nmzePN9544y+dIzIyknXr1rFly5antr52nl69emFjY8OcOXOeartCFAcyYiyEEC8wZ2dnzp07x6uv\nvsrs2bOfqCgWRePs7MzKlStp27YtiYmJLFq0iJ9//pkmTZoQExPzl4tigCFDhmBra8vixYufQsT/\n8/PPP3PixAnGjRv3VNsVoriQEWMhhBBCCCGQEWMhhBBCCCEAKYyFEEIIIYQApDAWQgghhBACkMJY\nCCGEEEIIQApjIYQQQgghACmMhRBCCCGEAOD/ACFCMuFaajiBAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1153e1510>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"get_related_terms(u'punjabelection2017')\n",
"data_dict = listToDict(word2vec.similar_by_word('punjabelection2017'))\n",
"sns.set_style(\"darkgrid\")\n",
"\n",
"plt.figure(figsize=(10,8),dpi=500) # does not affect the following plot\n",
"plt.xlabel(\"Similarity percentage(%)\",size=20)\n",
"plt.ylabel(\"Similar words\",size=20)\n",
"bar_plot = sns.barplot(x=data_dict.values(),y=data_dict.keys(),\n",
" palette=\"muted\",\n",
" x_order=data_dict.keys().sort(reverse=True))\n",
"plt.xticks(rotation=90)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 512,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" <th>7</th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>...</th>\n",
" <th>190</th>\n",
" <th>191</th>\n",
" <th>192</th>\n",
" <th>193</th>\n",
" <th>194</th>\n",
" <th>195</th>\n",
" <th>196</th>\n",
" <th>197</th>\n",
" <th>198</th>\n",
" <th>199</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>electionresults</th>\n",
" <td>0.038593</td>\n",
" <td>0.065232</td>\n",
" <td>0.130983</td>\n",
" <td>0.009477</td>\n",
" <td>-0.018893</td>\n",
" <td>0.056132</td>\n",
" <td>-0.068405</td>\n",
" <td>-0.022548</td>\n",
" <td>0.030052</td>\n",
" <td>0.090498</td>\n",
" <td>...</td>\n",
" <td>0.121614</td>\n",
" <td>0.001951</td>\n",
" <td>-0.014015</td>\n",
" <td>0.001160</td>\n",
" <td>0.037758</td>\n",
" <td>-0.031155</td>\n",
" <td>-0.050242</td>\n",
" <td>0.150196</td>\n",
" <td>0.018113</td>\n",
" <td>0.100890</td>\n",
" </tr>\n",
" <tr>\n",
" <th>bjp</th>\n",
" <td>-0.023424</td>\n",
" <td>-0.023021</td>\n",
" <td>0.045584</td>\n",
" <td>0.026587</td>\n",
" <td>-0.013147</td>\n",
" <td>0.020020</td>\n",
" <td>0.009653</td>\n",
" <td>0.007908</td>\n",
" <td>-0.022853</td>\n",
" <td>-0.029902</td>\n",
" <td>...</td>\n",
" <td>0.009916</td>\n",
" <td>-0.029126</td>\n",
" <td>-0.028172</td>\n",
" <td>-0.123596</td>\n",
" <td>-0.107109</td>\n",
" <td>0.052286</td>\n",
" <td>-0.052555</td>\n",
" <td>0.083021</td>\n",
" <td>0.053085</td>\n",
" <td>-0.008552</td>\n",
" </tr>\n",
" <tr>\n",
" <th>win</th>\n",
" <td>-0.029219</td>\n",
" <td>-0.085240</td>\n",
" <td>0.027453</td>\n",
" <td>0.104936</td>\n",
" <td>-0.063723</td>\n",
" <td>-0.030763</td>\n",
" <td>0.064524</td>\n",
" <td>0.036528</td>\n",
" <td>-0.090418</td>\n",
" <td>-0.146715</td>\n",
" <td>...</td>\n",
" <td>-0.056088</td>\n",
" <td>-0.013934</td>\n",
" <td>0.076431</td>\n",
" <td>-0.078700</td>\n",
" <td>0.039870</td>\n",
" <td>-0.044035</td>\n",
" <td>-0.071660</td>\n",
" <td>-0.020569</td>\n",
" <td>-0.039647</td>\n",
" <td>-0.033876</td>\n",
" </tr>\n",
" <tr>\n",
" <th>congress</th>\n",
" <td>-0.126363</td>\n",
" <td>-0.194618</td>\n",
" <td>-0.027479</td>\n",
" <td>0.032964</td>\n",
" <td>0.062613</td>\n",
" <td>-0.019236</td>\n",
" <td>-0.083040</td>\n",
" <td>-0.039329</td>\n",
" <td>0.014001</td>\n",
" <td>-0.084960</td>\n",
" <td>...</td>\n",
" <td>0.055513</td>\n",
" <td>-0.140310</td>\n",
" <td>-0.007756</td>\n",
" <td>-0.077056</td>\n",
" <td>-0.116416</td>\n",
" <td>0.127231</td>\n",
" <td>-0.139047</td>\n",
" <td>0.052605</td>\n",
" <td>0.053434</td>\n",
" <td>0.040970</td>\n",
" </tr>\n",
" <tr>\n",
" <th>punjab</th>\n",
" <td>0.068467</td>\n",
" <td>-0.142689</td>\n",
" <td>-0.019247</td>\n",
" <td>0.010518</td>\n",
" <td>0.061997</td>\n",
" <td>-0.067995</td>\n",
" <td>-0.042101</td>\n",
" <td>0.015361</td>\n",
" <td>-0.013578</td>\n",
" <td>-0.099104</td>\n",
" <td>...</td>\n",
" <td>0.036901</td>\n",
" <td>-0.032342</td>\n",
" <td>-0.135181</td>\n",
" <td>0.080569</td>\n",
" <td>-0.034288</td>\n",
" <td>0.066213</td>\n",
" <td>-0.100044</td>\n",
" <td>-0.097200</td>\n",
" <td>-0.098354</td>\n",
" <td>-0.074190</td>\n",
" </tr>\n",
" <tr>\n",
" <th>upelection2017</th>\n",
" <td>-0.059415</td>\n",
" <td>0.119698</td>\n",
" <td>-0.072613</td>\n",
" <td>-0.007520</td>\n",
" <td>0.009200</td>\n",
" <td>-0.117717</td>\n",
" <td>-0.137367</td>\n",
" <td>-0.038348</td>\n",
" <td>-0.033626</td>\n",
" <td>0.014944</td>\n",
" <td>...</td>\n",
" <td>-0.046908</td>\n",
" <td>-0.078908</td>\n",
" <td>-0.026526</td>\n",
" <td>-0.028114</td>\n",
" <td>0.023593</td>\n",
" <td>-0.008405</td>\n",
" <td>-0.056531</td>\n",
" <td>-0.022312</td>\n",
" <td>0.137108</td>\n",
" <td>-0.029557</td>\n",
" </tr>\n",
" <tr>\n",
" <th>elections2017</th>\n",
" <td>0.000885</td>\n",
" <td>0.026864</td>\n",
" <td>0.056395</td>\n",
" <td>0.138327</td>\n",
" <td>0.023747</td>\n",
" <td>0.029732</td>\n",
" <td>-0.053312</td>\n",
" <td>0.071559</td>\n",
" <td>0.082543</td>\n",
" <td>0.093932</td>\n",
" <td>...</td>\n",
" <td>0.001061</td>\n",
" <td>-0.116691</td>\n",
" <td>-0.008292</td>\n",
" <td>0.013324</td>\n",
" <td>-0.012990</td>\n",
" <td>-0.034696</td>\n",
" <td>0.019054</td>\n",
" <td>0.034339</td>\n",
" <td>0.017413</td>\n",
" <td>-0.008826</td>\n",
" </tr>\n",
" <tr>\n",
" <th>modi</th>\n",
" <td>0.057329</td>\n",
" <td>-0.058722</td>\n",
" <td>0.004947</td>\n",
" <td>0.058037</td>\n",
" <td>-0.066921</td>\n",
" <td>0.039373</td>\n",
" <td>0.026097</td>\n",
" <td>0.093025</td>\n",
" <td>-0.026491</td>\n",
" <td>-0.111197</td>\n",
" <td>...</td>\n",
" <td>-0.092832</td>\n",
" <td>-0.038741</td>\n",
" <td>0.074647</td>\n",
" <td>-0.011324</td>\n",
" <td>0.005478</td>\n",
" <td>0.031353</td>\n",
" <td>-0.047724</td>\n",
" <td>0.129504</td>\n",
" <td>-0.035455</td>\n",
" <td>-0.027849</td>\n",
" </tr>\n",
" <tr>\n",
" <th>narendramodi</th>\n",
" <td>0.106970</td>\n",
" <td>-0.034159</td>\n",
" <td>-0.134925</td>\n",
" <td>0.120943</td>\n",
" <td>0.086266</td>\n",
" <td>-0.051825</td>\n",
" <td>0.051399</td>\n",
" <td>-0.063423</td>\n",
" <td>0.027204</td>\n",
" <td>-0.016370</td>\n",
" <td>...</td>\n",
" <td>0.053611</td>\n",
" <td>-0.144650</td>\n",
" <td>0.122521</td>\n",
" <td>0.005819</td>\n",
" <td>0.079221</td>\n",
" <td>-0.095277</td>\n",
" <td>-0.014294</td>\n",
" <td>0.065366</td>\n",
" <td>-0.032062</td>\n",
" <td>-0.102929</td>\n",
" </tr>\n",
" <tr>\n",
" <th>goa</th>\n",
" <td>0.009466</td>\n",
" <td>-0.100763</td>\n",
" <td>0.051813</td>\n",
" <td>0.074620</td>\n",
" <td>0.080515</td>\n",
" <td>0.001770</td>\n",
" <td>-0.064579</td>\n",
" <td>-0.023309</td>\n",
" <td>0.071276</td>\n",
" <td>-0.127215</td>\n",
" <td>...</td>\n",
" <td>0.124331</td>\n",
" <td>0.059266</td>\n",
" <td>0.043658</td>\n",
" <td>0.045934</td>\n",
" <td>-0.015065</td>\n",
" <td>0.115155</td>\n",
" <td>-0.079758</td>\n",
" <td>-0.007518</td>\n",
" <td>-0.048590</td>\n",
" <td>-0.028523</td>\n",
" </tr>\n",
" <tr>\n",
" <th>people</th>\n",
" <td>-0.039698</td>\n",
" <td>0.033923</td>\n",
" <td>0.060276</td>\n",
" <td>0.024705</td>\n",
" <td>0.227086</td>\n",
" <td>-0.082467</td>\n",
" <td>0.060742</td>\n",
" <td>0.103884</td>\n",
" <td>0.048004</td>\n",
" <td>-0.050993</td>\n",
" <td>...</td>\n",
" <td>0.088357</td>\n",
" <td>-0.205868</td>\n",
" <td>-0.045787</td>\n",
" <td>0.040409</td>\n",
" <td>0.005570</td>\n",
" <td>-0.057884</td>\n",
" <td>0.020583</td>\n",
" <td>0.085420</td>\n",
" <td>0.004435</td>\n",
" <td>-0.060302</td>\n",
" </tr>\n",
" <tr>\n",
" <th>aap</th>\n",
" <td>-0.034824</td>\n",
" <td>-0.055105</td>\n",
" <td>-0.047506</td>\n",
" <td>-0.052748</td>\n",
" <td>-0.075673</td>\n",
" <td>0.051220</td>\n",
" <td>-0.109569</td>\n",
" <td>0.027053</td>\n",
" <td>-0.071330</td>\n",
" <td>-0.088910</td>\n",
" <td>...</td>\n",
" <td>0.015587</td>\n",
" <td>-0.078347</td>\n",
" <td>0.016722</td>\n",
" <td>-0.066571</td>\n",
" <td>0.074345</td>\n",
" <td>0.067832</td>\n",
" <td>-0.132459</td>\n",
" <td>-0.073835</td>\n",
" <td>0.010995</td>\n",
" <td>-0.058810</td>\n",
" </tr>\n",
" <tr>\n",
" <th>seat</th>\n",
" <td>-0.095142</td>\n",
" <td>-0.048568</td>\n",
" <td>0.023420</td>\n",
" <td>0.027419</td>\n",
" <td>-0.042211</td>\n",
" <td>-0.006452</td>\n",
" <td>-0.189088</td>\n",
" <td>-0.023351</td>\n",
" <td>-0.084174</td>\n",
" <td>-0.091096</td>\n",
" <td>...</td>\n",
" <td>-0.062534</td>\n",
" <td>0.016595</td>\n",
" <td>-0.003928</td>\n",
" <td>-0.065256</td>\n",
" <td>-0.037860</td>\n",
" <td>0.039611</td>\n",
" <td>0.100247</td>\n",
" <td>0.079270</td>\n",
" <td>-0.122635</td>\n",
" <td>0.044122</td>\n",
" </tr>\n",
" <tr>\n",
" <th>bjp4india</th>\n",
" <td>0.063929</td>\n",
" <td>0.012793</td>\n",
" <td>0.003649</td>\n",
" <td>0.045386</td>\n",
" <td>-0.021476</td>\n",
" <td>-0.045998</td>\n",
" <td>-0.071840</td>\n",
" <td>0.001270</td>\n",
" <td>-0.026532</td>\n",
" <td>-0.012768</td>\n",
" <td>...</td>\n",
" <td>-0.010398</td>\n",
" <td>-0.088884</td>\n",
" <td>0.141554</td>\n",
" <td>0.016091</td>\n",
" <td>-0.060637</td>\n",
" <td>0.025861</td>\n",
" <td>-0.081247</td>\n",
" <td>-0.018354</td>\n",
" <td>0.020156</td>\n",
" <td>0.073299</td>\n",
" </tr>\n",
" <tr>\n",
" <th>election</th>\n",
" <td>-0.126395</td>\n",
" <td>-0.036746</td>\n",
" <td>-0.027660</td>\n",
" <td>0.033241</td>\n",
" <td>-0.021149</td>\n",
" <td>0.051008</td>\n",
" <td>0.089375</td>\n",
" <td>-0.051359</td>\n",
" <td>0.039666</td>\n",
" <td>0.130272</td>\n",
" <td>...</td>\n",
" <td>0.155409</td>\n",
" <td>-0.030844</td>\n",
" <td>0.077666</td>\n",
" <td>0.041271</td>\n",
" <td>0.083457</td>\n",
" <td>-0.102640</td>\n",
" <td>-0.015524</td>\n",
" <td>-0.006577</td>\n",
" <td>-0.103896</td>\n",
" <td>-0.024485</td>\n",
" </tr>\n",
" <tr>\n",
" <th>vote</th>\n",
" <td>0.075080</td>\n",
" <td>-0.045672</td>\n",
" <td>-0.152598</td>\n",
" <td>0.034740</td>\n",
" <td>-0.083779</td>\n",
" <td>-0.012839</td>\n",
" <td>-0.108461</td>\n",
" <td>-0.018243</td>\n",
" <td>-0.035966</td>\n",
" <td>-0.130858</td>\n",
" <td>...</td>\n",
" <td>-0.025897</td>\n",
" <td>-0.079209</td>\n",
" <td>0.017629</td>\n",
" <td>-0.095567</td>\n",
" <td>-0.035544</td>\n",
" <td>0.061042</td>\n",
" <td>-0.082762</td>\n",
" <td>0.057972</td>\n",
" <td>0.025470</td>\n",
" <td>-0.090255</td>\n",
" </tr>\n",
" <tr>\n",
" <th>lead</th>\n",
" <td>-0.024408</td>\n",
" <td>-0.008424</td>\n",
" <td>-0.024544</td>\n",
" <td>0.032646</td>\n",
" <td>0.089608</td>\n",
" <td>-0.087065</td>\n",
" <td>-0.057443</td>\n",
" <td>0.050723</td>\n",
" <td>-0.010519</td>\n",
" <td>0.009008</td>\n",
" <td>...</td>\n",
" <td>-0.074429</td>\n",
" <td>0.012403</td>\n",
" <td>-0.012009</td>\n",
" <td>0.110392</td>\n",
" <td>0.006180</td>\n",
" <td>0.139540</td>\n",
" <td>0.070745</td>\n",
" <td>0.003855</td>\n",
" <td>0.031885</td>\n",
" <td>0.079737</td>\n",
" </tr>\n",
" <tr>\n",
" <th>india</th>\n",
" <td>0.056050</td>\n",
" <td>-0.037646</td>\n",
" <td>-0.022806</td>\n",
" <td>0.002640</td>\n",
" <td>-0.039420</td>\n",
" <td>-0.032335</td>\n",
" <td>0.081846</td>\n",
" <td>-0.032084</td>\n",
" <td>0.061125</td>\n",
" <td>0.096432</td>\n",
" <td>...</td>\n",
" <td>0.041833</td>\n",
" <td>0.017394</td>\n",
" <td>0.065386</td>\n",
" <td>-0.028952</td>\n",
" <td>0.087125</td>\n",
" <td>0.075055</td>\n",
" <td>0.074320</td>\n",
" <td>0.108562</td>\n",
" <td>-0.174714</td>\n",
" <td>-0.030632</td>\n",
" </tr>\n",
" <tr>\n",
" <th>punjabelection2017</th>\n",
" <td>0.062055</td>\n",
" <td>-0.013855</td>\n",
" <td>0.024407</td>\n",
" <td>0.080090</td>\n",
" <td>0.054993</td>\n",
" <td>0.025438</td>\n",
" <td>0.008611</td>\n",
" <td>-0.027822</td>\n",
" <td>-0.066533</td>\n",
" <td>0.073121</td>\n",
" <td>...</td>\n",
" <td>-0.040618</td>\n",
" <td>-0.082355</td>\n",
" <td>-0.053480</td>\n",
" <td>0.120564</td>\n",
" <td>-0.026865</td>\n",
" <td>-0.067068</td>\n",
" <td>-0.116497</td>\n",
" <td>0.066209</td>\n",
" <td>-0.019966</td>\n",
" <td>-0.025676</td>\n",
" </tr>\n",
" <tr>\n",
" <th>not</th>\n",
" <td>0.099812</td>\n",
" <td>-0.013112</td>\n",
" <td>-0.012298</td>\n",
" <td>-0.009953</td>\n",
" <td>-0.066764</td>\n",
" <td>0.139616</td>\n",
" <td>-0.096990</td>\n",
" <td>0.075979</td>\n",
" <td>-0.012788</td>\n",
" <td>-0.060358</td>\n",
" <td>...</td>\n",
" <td>0.044464</td>\n",
" <td>-0.019485</td>\n",
" <td>0.100505</td>\n",
" <td>0.113914</td>\n",
" <td>-0.014448</td>\n",
" <td>-0.008090</td>\n",
" <td>-0.060805</td>\n",
" <td>-0.045079</td>\n",
" <td>-0.044406</td>\n",
" <td>-0.066812</td>\n",
" </tr>\n",
" <tr>\n",
" <th>result</th>\n",
" <td>0.076679</td>\n",
" <td>0.002745</td>\n",
" <td>-0.034826</td>\n",
" <td>-0.092080</td>\n",
" <td>0.038041</td>\n",
" <td>-0.079494</td>\n",
" <td>-0.012775</td>\n",
" <td>-0.016264</td>\n",
" <td>0.168397</td>\n",
" <td>-0.070314</td>\n",
" <td>...</td>\n",
" <td>0.003131</td>\n",
" <td>-0.094888</td>\n",
" <td>-0.032183</td>\n",
" <td>0.007620</td>\n",
" <td>0.128673</td>\n",
" <td>-0.030522</td>\n",
" <td>-0.024016</td>\n",
" <td>0.050490</td>\n",
" <td>0.006241</td>\n",
" <td>0.159599</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mayawati</th>\n",
" <td>0.136586</td>\n",
" <td>0.027942</td>\n",
" <td>-0.071640</td>\n",
" <td>0.061259</td>\n",
" <td>0.020730</td>\n",
" <td>-0.064309</td>\n",
" <td>-0.137225</td>\n",
" <td>0.052240</td>\n",
" <td>0.013239</td>\n",
" <td>-0.020661</td>\n",
" <td>...</td>\n",
" <td>0.029006</td>\n",
" <td>-0.164574</td>\n",
" <td>0.097879</td>\n",
" <td>-0.067564</td>\n",
" <td>-0.017508</td>\n",
" <td>-0.077931</td>\n",
" <td>-0.109366</td>\n",
" <td>-0.081635</td>\n",
" <td>-0.016363</td>\n",
" <td>0.110366</td>\n",
" </tr>\n",
" <tr>\n",
" <th>today</th>\n",
" <td>-0.009684</td>\n",
" <td>0.053628</td>\n",
" <td>-0.114227</td>\n",
" <td>0.091992</td>\n",
" <td>0.116572</td>\n",
" <td>0.011550</td>\n",
" <td>0.022499</td>\n",
" <td>-0.042905</td>\n",
" <td>-0.036348</td>\n",
" <td>0.035779</td>\n",
" <td>...</td>\n",
" <td>0.036069</td>\n",
" <td>-0.140189</td>\n",
" <td>-0.006895</td>\n",
" <td>-0.050676</td>\n",
" <td>-0.021702</td>\n",
" <td>-0.035698</td>\n",
" <td>-0.116479</td>\n",
" <td>-0.003879</td>\n",
" <td>0.035651</td>\n",
" <td>0.042404</td>\n",
" </tr>\n",
" <tr>\n",
" <th>manipur</th>\n",
" <td>0.023840</td>\n",
" <td>-0.017338</td>\n",
" <td>0.067993</td>\n",
" <td>0.001078</td>\n",
" <td>0.032815</td>\n",
" <td>0.016632</td>\n",
" <td>-0.102225</td>\n",
" <td>0.078326</td>\n",
" <td>0.078213</td>\n",
" <td>-0.024353</td>\n",
" <td>...</td>\n",
" <td>0.126637</td>\n",
" <td>-0.034347</td>\n",
" <td>0.095073</td>\n",
" <td>-0.051953</td>\n",
" <td>0.011405</td>\n",
" <td>0.033644</td>\n",
" <td>0.051250</td>\n",
" <td>-0.022853</td>\n",
" <td>-0.040544</td>\n",
" <td>-0.051701</td>\n",
" </tr>\n",
" <tr>\n",
" <th>time</th>\n",
" <td>0.150224</td>\n",
" <td>0.007678</td>\n",
" <td>0.033943</td>\n",
" <td>-0.007928</td>\n",
" <td>0.163444</td>\n",
" <td>-0.045412</td>\n",
" <td>-0.135379</td>\n",
" <td>0.004417</td>\n",
" <td>0.028392</td>\n",
" <td>0.023189</td>\n",
" <td>...</td>\n",
" <td>-0.043129</td>\n",
" <td>0.057697</td>\n",
" <td>-0.050728</td>\n",
" <td>0.120806</td>\n",
" <td>-0.033045</td>\n",
" <td>-0.021622</td>\n",
" <td>0.103954</td>\n",
" <td>0.084632</td>\n",
" <td>-0.077904</td>\n",
" <td>0.066601</td>\n",
" </tr>\n",
" <tr>\n",
" <th>arvindkejriwal</th>\n",
" <td>-0.054333</td>\n",
" <td>-0.004763</td>\n",
" <td>0.124946</td>\n",
" <td>-0.072454</td>\n",
" <td>0.002282</td>\n",
" <td>0.003564</td>\n",
" <td>0.051566</td>\n",
" <td>0.025033</td>\n",
" <td>-0.040877</td>\n",
" <td>0.005556</td>\n",
" <td>...</td>\n",
" <td>-0.023419</td>\n",
" <td>-0.003268</td>\n",
" <td>-0.030896</td>\n",
" <td>-0.032492</td>\n",
" <td>-0.003914</td>\n",
" <td>0.006729</td>\n",
" <td>-0.066372</td>\n",
" <td>0.001733</td>\n",
" <td>0.055826</td>\n",
" <td>0.070511</td>\n",
" </tr>\n",
" <tr>\n",
" <th>state</th>\n",
" <td>-0.059632</td>\n",
" <td>0.005639</td>\n",
" <td>-0.103978</td>\n",
" <td>-0.023545</td>\n",
" <td>0.048953</td>\n",
" <td>0.029854</td>\n",
" <td>0.023474</td>\n",
" <td>0.024836</td>\n",
" <td>0.023378</td>\n",
" <td>-0.115147</td>\n",
" <td>...</td>\n",
" <td>0.038821</td>\n",
" <td>-0.017290</td>\n",
" <td>-0.040165</td>\n",
" <td>-0.105001</td>\n",
" <td>0.025496</td>\n",
" <td>0.088523</td>\n",
" <td>-0.081328</td>\n",
" <td>-0.016549</td>\n",
" <td>-0.173032</td>\n",
" <td>-0.081411</td>\n",
" </tr>\n",
" <tr>\n",
" <th>say</th>\n",
" <td>0.063084</td>\n",
" <td>-0.086668</td>\n",
" <td>0.015514</td>\n",
" <td>0.043112</td>\n",
" <td>0.087299</td>\n",
" <td>0.002264</td>\n",
" <td>-0.047222</td>\n",
" <td>0.047205</td>\n",
" <td>0.127651</td>\n",
" <td>-0.022330</td>\n",
" <td>...</td>\n",
" <td>-0.068483</td>\n",
" <td>-0.009658</td>\n",
" <td>0.015862</td>\n",
" <td>-0.004461</td>\n",
" <td>0.033136</td>\n",
" <td>-0.109790</td>\n",
" <td>-0.044600</td>\n",
" <td>0.094797</td>\n",
" <td>-0.002640</td>\n",
" <td>-0.035027</td>\n",
" </tr>\n",
" <tr>\n",
" <th>uttarpradesh</th>\n",
" <td>0.043367</td>\n",
" <td>0.054092</td>\n",
" <td>-0.053679</td>\n",
" <td>0.115545</td>\n",
" <td>0.025056</td>\n",
" <td>-0.068364</td>\n",
" <td>-0.123933</td>\n",
" <td>-0.061981</td>\n",
" <td>0.108704</td>\n",
" <td>-0.014090</td>\n",
" <td>...</td>\n",
" <td>0.186138</td>\n",
" <td>-0.007268</td>\n",
" <td>0.017787</td>\n",
" <td>0.034278</td>\n",
" <td>0.023755</td>\n",
" <td>-0.060320</td>\n",
" <td>0.089871</td>\n",
" <td>-0.001383</td>\n",
" <td>-0.010562</td>\n",
" <td>-0.110586</td>\n",
" </tr>\n",
" <tr>\n",
" <th>victory</th>\n",
" <td>0.179940</td>\n",
" <td>0.007479</td>\n",
" <td>0.029669</td>\n",
" <td>0.004491</td>\n",
" <td>0.055226</td>\n",
" <td>-0.059822</td>\n",
" <td>-0.132920</td>\n",
" <td>-0.075399</td>\n",
" <td>0.091894</td>\n",
" <td>-0.033675</td>\n",
" <td>...</td>\n",
" <td>-0.016780</td>\n",
" <td>-0.065449</td>\n",
" <td>-0.040673</td>\n",
" <td>0.051611</td>\n",
" <td>-0.139144</td>\n",
" <td>-0.125057</td>\n",
" <td>-0.054146</td>\n",
" <td>-0.006119</td>\n",
" <td>-0.056002</td>\n",
" <td>-0.026770</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>rajdeep</th>\n",
" <td>0.000572</td>\n",
" <td>-0.139684</td>\n",
" <td>0.067499</td>\n",
" <td>0.025494</td>\n",
" <td>0.085057</td>\n",
" <td>-0.012667</td>\n",
" <td>-0.131865</td>\n",
" <td>0.087055</td>\n",
" <td>0.013715</td>\n",
" <td>0.022383</td>\n",
" <td>...</td>\n",
" <td>-0.073607</td>\n",
" <td>0.017322</td>\n",
" <td>-0.078839</td>\n",
" <td>0.008494</td>\n",
" <td>0.011737</td>\n",
" <td>-0.159414</td>\n",
" <td>0.009522</td>\n",
" <td>0.037300</td>\n",
" <td>0.007489</td>\n",
" <td>-0.001320</td>\n",
" </tr>\n",
" <tr>\n",
" <th>increase</th>\n",
" <td>0.002741</td>\n",
" <td>-0.042367</td>\n",
" <td>0.048650</td>\n",
" <td>0.094575</td>\n",
" <td>-0.059034</td>\n",
" <td>-0.103580</td>\n",
" <td>0.038335</td>\n",
" <td>-0.145551</td>\n",
" <td>0.011547</td>\n",
" <td>-0.051403</td>\n",
" <td>...</td>\n",
" <td>-0.051460</td>\n",
" <td>-0.036290</td>\n",
" <td>0.012811</td>\n",
" <td>-0.006737</td>\n",
" <td>-0.007264</td>\n",
" <td>-0.109139</td>\n",
" <td>0.025313</td>\n",
" <td>0.151042</td>\n",
" <td>0.004530</td>\n",
" <td>0.134056</td>\n",
" </tr>\n",
" <tr>\n",
" <th>hindutva</th>\n",
" <td>0.043134</td>\n",
" <td>0.088895</td>\n",
" <td>-0.081953</td>\n",
" <td>-0.001649</td>\n",
" <td>-0.116976</td>\n",
" <td>0.035731</td>\n",
" <td>0.017499</td>\n",
" <td>-0.129806</td>\n",
" <td>0.044985</td>\n",
" <td>-0.070479</td>\n",
" <td>...</td>\n",
" <td>-0.069209</td>\n",
" <td>-0.179267</td>\n",
" <td>0.052250</td>\n",
" <td>-0.065992</td>\n",
" <td>-0.040703</td>\n",
" <td>0.034155</td>\n",
" <td>-0.075206</td>\n",
" <td>0.018361</td>\n",
" <td>-0.098286</td>\n",
" <td>0.109001</td>\n",
" </tr>\n",
" <tr>\n",
" <th>exactly</th>\n",
" <td>0.019895</td>\n",
" <td>-0.035512</td>\n",
" <td>-0.026814</td>\n",
" <td>0.101532</td>\n",
" <td>-0.069336</td>\n",
" <td>-0.000572</td>\n",
" <td>-0.109778</td>\n",
" <td>-0.036733</td>\n",
" <td>-0.033457</td>\n",
" <td>-0.011201</td>\n",
" <td>...</td>\n",
" <td>0.050013</td>\n",
" <td>-0.019603</td>\n",
" <td>0.122286</td>\n",
" <td>-0.107954</td>\n",
" <td>0.008353</td>\n",
" <td>-0.015783</td>\n",
" <td>0.018979</td>\n",
" <td>0.106707</td>\n",
" <td>0.028863</td>\n",
" <td>0.004645</td>\n",
" </tr>\n",
" <tr>\n",
" <th>expe</th>\n",
" <td>0.015386</td>\n",
" <td>-0.031245</td>\n",
" <td>0.009943</td>\n",
" <td>-0.059035</td>\n",
" <td>0.027866</td>\n",
" <td>0.008620</td>\n",
" <td>-0.002010</td>\n",
" <td>-0.058105</td>\n",
" <td>0.094351</td>\n",
" <td>-0.096780</td>\n",
" <td>...</td>\n",
" <td>-0.019896</td>\n",
" <td>-0.161666</td>\n",
" <td>0.106552</td>\n",
" <td>-0.072747</td>\n",
" <td>-0.009588</td>\n",
" <td>-0.058226</td>\n",
" <td>0.036806</td>\n",
" <td>0.043856</td>\n",
" <td>0.046624</td>\n",
" <td>-0.082276</td>\n",
" </tr>\n",
" <tr>\n",
" <th>self</th>\n",
" <td>-0.057144</td>\n",
" <td>-0.078644</td>\n",
" <td>-0.049909</td>\n",
" <td>0.024160</td>\n",
" <td>-0.089639</td>\n",
" <td>-0.075370</td>\n",
" <td>-0.162126</td>\n",
" <td>-0.028731</td>\n",
" <td>0.121647</td>\n",
" <td>-0.021950</td>\n",
" <td>...</td>\n",
" <td>-0.037909</td>\n",
" <td>-0.203708</td>\n",
" <td>0.018260</td>\n",
" <td>0.070127</td>\n",
" <td>0.048522</td>\n",
" <td>0.013464</td>\n",
" <td>-0.021706</td>\n",
" <td>0.034909</td>\n",
" <td>0.014207</td>\n",
" <td>0.105151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>line</th>\n",
" <td>0.026982</td>\n",
" <td>0.008358</td>\n",
" <td>0.013785</td>\n",
" <td>0.024504</td>\n",
" <td>-0.037684</td>\n",
" <td>-0.058826</td>\n",
" <td>0.019199</td>\n",
" <td>-0.077528</td>\n",
" <td>0.039583</td>\n",
" <td>-0.073356</td>\n",
" <td>...</td>\n",
" <td>0.047194</td>\n",
" <td>-0.123512</td>\n",
" <td>0.004382</td>\n",
" <td>0.040966</td>\n",
" <td>-0.110072</td>\n",
" <td>0.064913</td>\n",
" <td>0.030666</td>\n",
" <td>-0.032984</td>\n",
" <td>-0.091194</td>\n",
" <td>-0.021220</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cross_halfway_mark</th>\n",
" <td>-0.021558</td>\n",
" <td>-0.061889</td>\n",
" <td>0.033273</td>\n",
" <td>0.096349</td>\n",
" <td>0.062784</td>\n",
" <td>-0.010625</td>\n",
" <td>-0.013493</td>\n",
" <td>-0.020203</td>\n",
" <td>-0.022609</td>\n",
" <td>-0.030026</td>\n",
" <td>...</td>\n",
" <td>-0.007541</td>\n",
" <td>0.026947</td>\n",
" <td>-0.096860</td>\n",
" <td>0.067924</td>\n",
" <td>0.078989</td>\n",
" <td>0.056889</td>\n",
" <td>-0.085800</td>\n",
" <td>0.032944</td>\n",
" <td>-0.028633</td>\n",
" <td>0.013812</td>\n",
" </tr>\n",
" <tr>\n",
" <th>congratulation_sir</th>\n",
" <td>0.013797</td>\n",
" <td>0.018192</td>\n",
" <td>0.027101</td>\n",
" <td>-0.015782</td>\n",
" <td>-0.023544</td>\n",
" <td>-0.026581</td>\n",
" <td>-0.022060</td>\n",
" <td>-0.047410</td>\n",
" <td>0.028588</td>\n",
" <td>-0.094107</td>\n",
" <td>...</td>\n",
" <td>0.016904</td>\n",
" <td>-0.033561</td>\n",
" <td>-0.033346</td>\n",
" <td>-0.082044</td>\n",
" <td>0.026074</td>\n",
" <td>-0.009851</td>\n",
" <td>-0.008612</td>\n",
" <td>0.000366</td>\n",
" <td>0.029629</td>\n",
" <td>-0.084629</td>\n",
" </tr>\n",
" <tr>\n",
" <th>local</th>\n",
" <td>0.057909</td>\n",
" <td>-0.050637</td>\n",
" <td>0.021727</td>\n",
" <td>0.001402</td>\n",
" <td>-0.073308</td>\n",
" <td>-0.029511</td>\n",
" <td>0.019499</td>\n",
" <td>0.020546</td>\n",
" <td>0.043304</td>\n",
" <td>0.016321</td>\n",
" <td>...</td>\n",
" <td>0.000168</td>\n",
" <td>-0.075014</td>\n",
" <td>0.142310</td>\n",
" <td>-0.134372</td>\n",
" <td>-0.013498</td>\n",
" <td>-0.073779</td>\n",
" <td>0.000324</td>\n",
" <td>0.027341</td>\n",
" <td>-0.099459</td>\n",
" <td>-0.045796</td>\n",
" </tr>\n",
" <tr>\n",
" <th>expectation</th>\n",
" <td>0.042574</td>\n",
" <td>-0.141244</td>\n",
" <td>-0.075892</td>\n",
" <td>-0.046158</td>\n",
" <td>-0.005300</td>\n",
" <td>0.029256</td>\n",
" <td>0.008429</td>\n",
" <td>-0.013683</td>\n",
" <td>-0.041414</td>\n",
" <td>0.020637</td>\n",
" <td>...</td>\n",
" <td>0.095484</td>\n",
" <td>-0.133989</td>\n",
" <td>0.011314</td>\n",
" <td>0.082593</td>\n",
" <td>-0.075108</td>\n",
" <td>0.012156</td>\n",
" <td>-0.006141</td>\n",
" <td>0.087376</td>\n",
" <td>-0.027974</td>\n",
" <td>0.045746</td>\n",
" </tr>\n",
" <tr>\n",
" <th>common</th>\n",
" <td>0.138926</td>\n",
" <td>0.067191</td>\n",
" <td>-0.147634</td>\n",
" <td>0.047569</td>\n",
" <td>0.026127</td>\n",
" <td>-0.048608</td>\n",
" <td>0.100050</td>\n",
" <td>0.124762</td>\n",
" <td>0.005328</td>\n",
" <td>-0.070907</td>\n",
" <td>...</td>\n",
" <td>-0.032742</td>\n",
" <td>-0.042576</td>\n",
" <td>0.047057</td>\n",
" <td>0.079273</td>\n",
" <td>-0.051876</td>\n",
" <td>0.094442</td>\n",
" <td>0.017851</td>\n",
" <td>0.039200</td>\n",
" <td>-0.020738</td>\n",
" <td>-0.049305</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ban</th>\n",
" <td>-0.060220</td>\n",
" <td>-0.115585</td>\n",
" <td>0.112577</td>\n",
" <td>0.069342</td>\n",
" <td>0.031616</td>\n",
" <td>0.008764</td>\n",
" <td>-0.058356</td>\n",
" <td>-0.030033</td>\n",
" <td>-0.130406</td>\n",
" <td>0.011818</td>\n",
" <td>...</td>\n",
" <td>-0.003338</td>\n",
" <td>-0.073826</td>\n",
" <td>-0.143346</td>\n",
" <td>-0.046458</td>\n",
" <td>0.145053</td>\n",
" <td>0.019136</td>\n",
" <td>0.103405</td>\n",
" <td>-0.070201</td>\n",
" <td>-0.032085</td>\n",
" <td>-0.178364</td>\n",
" </tr>\n",
" <tr>\n",
" <th>electoral</th>\n",
" <td>0.007523</td>\n",
" <td>-0.117843</td>\n",
" <td>0.048318</td>\n",
" <td>0.093463</td>\n",
" <td>0.041712</td>\n",
" <td>-0.089972</td>\n",
" <td>0.002510</td>\n",
" <td>0.016579</td>\n",
" <td>-0.006702</td>\n",
" <td>0.024066</td>\n",
" <td>...</td>\n",
" <td>0.100980</td>\n",
" <td>0.001423</td>\n",
" <td>0.025170</td>\n",
" <td>-0.044179</td>\n",
" <td>-0.101104</td>\n",
" <td>-0.038782</td>\n",
" <td>-0.021458</td>\n",
" <td>0.031113</td>\n",
" <td>-0.056363</td>\n",
" <td>-0.074877</td>\n",
" </tr>\n",
" <tr>\n",
" <th>coz</th>\n",
" <td>0.009905</td>\n",
" <td>0.002019</td>\n",
" <td>-0.046259</td>\n",
" <td>0.022158</td>\n",
" <td>0.047524</td>\n",
" <td>-0.053648</td>\n",
" <td>0.036422</td>\n",
" <td>0.055437</td>\n",
" <td>0.015699</td>\n",
" <td>-0.079241</td>\n",
" <td>...</td>\n",
" <td>-0.092309</td>\n",
" <td>-0.150016</td>\n",
" <td>0.044821</td>\n",
" <td>-0.017710</td>\n",
" <td>0.036217</td>\n",
" <td>-0.022037</td>\n",
" <td>0.022665</td>\n",
" <td>-0.063585</td>\n",
" <td>0.001722</td>\n",
" <td>0.014351</td>\n",
" </tr>\n",
" <tr>\n",
" <th>laugh</th>\n",
" <td>-0.098381</td>\n",
" <td>-0.096486</td>\n",
" <td>0.019137</td>\n",
" <td>-0.014487</td>\n",
" <td>0.097855</td>\n",
" <td>-0.050768</td>\n",
" <td>0.045400</td>\n",
" <td>0.014776</td>\n",
" <td>-0.040167</td>\n",
" <td>-0.104711</td>\n",
" <td>...</td>\n",
" <td>-0.152082</td>\n",
" <td>-0.116488</td>\n",
" <td>0.010465</td>\n",
" <td>0.003475</td>\n",
" <td>0.025192</td>\n",
" <td>0.099849</td>\n",
" <td>-0.046368</td>\n",
" <td>0.057842</td>\n",
" <td>-0.058274</td>\n",
" <td>0.123511</td>\n",
" </tr>\n",
" <tr>\n",
" <th>near</th>\n",
" <td>-0.074969</td>\n",
" <td>0.105880</td>\n",
" <td>-0.048510</td>\n",
" <td>-0.084780</td>\n",
" <td>0.131893</td>\n",
" <td>-0.060494</td>\n",
" <td>0.077748</td>\n",
" <td>-0.040068</td>\n",
" <td>0.038564</td>\n",
" <td>-0.075247</td>\n",
" <td>...</td>\n",
" <td>0.028618</td>\n",
" <td>-0.065068</td>\n",
" <td>-0.015515</td>\n",
" <td>0.052545</td>\n",
" <td>-0.042279</td>\n",
" <td>0.035203</td>\n",
" <td>-0.107615</td>\n",
" <td>0.021339</td>\n",
" <td>-0.013617</td>\n",
" <td>0.113182</td>\n",
" </tr>\n",
" <tr>\n",
" <th>develop</th>\n",
" <td>-0.055676</td>\n",
" <td>0.022227</td>\n",
" <td>-0.016562</td>\n",
" <td>-0.052855</td>\n",
" <td>-0.009292</td>\n",
" <td>0.006036</td>\n",
" <td>0.123389</td>\n",
" <td>0.055140</td>\n",
" <td>0.066402</td>\n",
" <td>-0.050526</td>\n",
" <td>...</td>\n",
" <td>-0.015021</td>\n",
" <td>-0.088237</td>\n",
" <td>-0.000258</td>\n",
" <td>-0.005249</td>\n",
" <td>0.016249</td>\n",
" <td>-0.088044</td>\n",
" <td>0.070216</td>\n",
" <td>0.031028</td>\n",
" <td>0.042927</td>\n",
" <td>-0.113180</td>\n",
" </tr>\n",
" <tr>\n",
" <th>perform</th>\n",
" <td>0.068399</td>\n",
" <td>-0.109243</td>\n",
" <td>0.087984</td>\n",
" <td>-0.089746</td>\n",
" <td>0.076768</td>\n",
" <td>-0.065495</td>\n",
" <td>-0.050097</td>\n",
" <td>-0.026354</td>\n",
" <td>0.019051</td>\n",
" <td>0.089457</td>\n",
" <td>...</td>\n",
" <td>0.134925</td>\n",
" <td>-0.121449</td>\n",
" <td>0.021458</td>\n",
" <td>-0.209780</td>\n",
" <td>0.114002</td>\n",
" <td>-0.062772</td>\n",
" <td>0.048758</td>\n",
" <td>-0.093813</td>\n",
" <td>0.025514</td>\n",
" <td>0.063813</td>\n",
" </tr>\n",
" <tr>\n",
" <th>kyaukhaadlega</th>\n",
" <td>-0.053153</td>\n",
" <td>-0.041528</td>\n",
" <td>-0.060244</td>\n",
" <td>-0.066774</td>\n",
" <td>0.064793</td>\n",
" <td>-0.006858</td>\n",
" <td>-0.046686</td>\n",
" <td>0.045093</td>\n",
" <td>-0.011661</td>\n",
" <td>0.116930</td>\n",
" <td>...</td>\n",
" <td>0.013920</td>\n",
" <td>0.000936</td>\n",
" <td>-0.019011</td>\n",
" <td>-0.019647</td>\n",
" <td>0.110923</td>\n",
" <td>-0.064272</td>\n",
" <td>-0.044606</td>\n",
" <td>0.050543</td>\n",
" <td>0.076061</td>\n",
" <td>-0.017054</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build</th>\n",
" <td>0.073477</td>\n",
" <td>-0.027803</td>\n",
" <td>0.116254</td>\n",
" <td>-0.215213</td>\n",
" <td>0.008742</td>\n",
" <td>-0.063480</td>\n",
" <td>-0.046682</td>\n",
" <td>0.078327</td>\n",
" <td>0.045782</td>\n",
" <td>-0.041363</td>\n",
" <td>...</td>\n",
" <td>-0.030358</td>\n",
" <td>0.002865</td>\n",
" <td>0.046920</td>\n",
" <td>-0.159242</td>\n",
" <td>-0.055738</td>\n",
" <td>-0.115379</td>\n",
" <td>-0.079165</td>\n",
" <td>0.044054</td>\n",
" <td>0.007809</td>\n",
" <td>0.007130</td>\n",
" </tr>\n",
" <tr>\n",
" <th>dat</th>\n",
" <td>-0.041859</td>\n",
" <td>0.051822</td>\n",
" <td>0.077876</td>\n",
" <td>-0.056574</td>\n",
" <td>0.038935</td>\n",
" <td>-0.051600</td>\n",
" <td>-0.016748</td>\n",
" <td>0.043907</td>\n",
" <td>0.000600</td>\n",
" <td>0.010083</td>\n",
" <td>...</td>\n",
" <td>-0.002709</td>\n",
" <td>-0.085736</td>\n",
" <td>0.098313</td>\n",
" <td>0.013040</td>\n",
" <td>-0.059380</td>\n",
" <td>-0.056215</td>\n",
" <td>-0.025118</td>\n",
" <td>0.088603</td>\n",
" <td>-0.123315</td>\n",
" <td>-0.032688</td>\n",
" </tr>\n",
" <tr>\n",
" <th>thought</th>\n",
" <td>-0.020270</td>\n",
" <td>-0.003915</td>\n",
" <td>0.027130</td>\n",
" <td>-0.022510</td>\n",
" <td>-0.001879</td>\n",
" <td>0.037204</td>\n",
" <td>0.045211</td>\n",
" <td>0.150274</td>\n",
" <td>0.036449</td>\n",
" <td>0.017040</td>\n",
" <td>...</td>\n",
" <td>0.058931</td>\n",
" <td>-0.127265</td>\n",
" <td>0.015879</td>\n",
" <td>0.033426</td>\n",
" <td>0.006267</td>\n",
" <td>-0.046305</td>\n",
" <td>-0.020966</td>\n",
" <td>0.027727</td>\n",
" <td>0.100224</td>\n",
" <td>-0.067964</td>\n",
" </tr>\n",
" <tr>\n",
" <th>rahul_akhilesh</th>\n",
" <td>-0.114333</td>\n",
" <td>0.011766</td>\n",
" <td>-0.054500</td>\n",
" <td>0.037149</td>\n",
" <td>-0.012070</td>\n",
" <td>0.037191</td>\n",
" <td>-0.046341</td>\n",
" <td>-0.076965</td>\n",
" <td>-0.035298</td>\n",
" <td>-0.118777</td>\n",
" <td>...</td>\n",
" <td>-0.026322</td>\n",
" <td>-0.137221</td>\n",
" <td>0.111736</td>\n",
" <td>0.074768</td>\n",
" <td>0.085226</td>\n",
" <td>-0.041079</td>\n",
" <td>-0.095149</td>\n",
" <td>0.068541</td>\n",
" <td>0.155929</td>\n",
" <td>0.020803</td>\n",
" </tr>\n",
" <tr>\n",
" <th>shekhargupta</th>\n",
" <td>0.096427</td>\n",
" <td>0.035468</td>\n",
" <td>0.030736</td>\n",
" <td>0.017017</td>\n",
" <td>0.049494</td>\n",
" <td>-0.008830</td>\n",
" <td>-0.063456</td>\n",
" <td>0.075355</td>\n",
" <td>-0.043478</td>\n",
" <td>-0.008048</td>\n",
" <td>...</td>\n",
" <td>0.018096</td>\n",
" <td>-0.034190</td>\n",
" <td>0.105129</td>\n",
" <td>0.009823</td>\n",
" <td>0.049082</td>\n",
" <td>-0.128055</td>\n",
" <td>-0.097915</td>\n",
" <td>-0.006912</td>\n",
" <td>0.039343</td>\n",
" <td>-0.051636</td>\n",
" </tr>\n",
" <tr>\n",
" <th>dalits</th>\n",
" <td>-0.022647</td>\n",
" <td>0.015133</td>\n",
" <td>-0.022348</td>\n",
" <td>0.008382</td>\n",
" <td>-0.038843</td>\n",
" <td>-0.024790</td>\n",
" <td>-0.039074</td>\n",
" <td>0.018119</td>\n",
" <td>-0.089860</td>\n",
" <td>0.007483</td>\n",
" <td>...</td>\n",
" <td>-0.064357</td>\n",
" <td>0.021281</td>\n",
" <td>0.003567</td>\n",
" <td>-0.046159</td>\n",
" <td>0.094281</td>\n",
" <td>0.001393</td>\n",
" <td>0.056063</td>\n",
" <td>0.018718</td>\n",
" <td>-0.058261</td>\n",
" <td>0.053186</td>\n",
" </tr>\n",
" <tr>\n",
" <th>tally</th>\n",
" <td>-0.050746</td>\n",
" <td>0.053442</td>\n",
" <td>0.013369</td>\n",
" <td>-0.162591</td>\n",
" <td>0.016935</td>\n",
" <td>-0.025198</td>\n",
" <td>0.012515</td>\n",
" <td>0.051626</td>\n",
" <td>0.018235</td>\n",
" <td>0.040107</td>\n",
" <td>...</td>\n",
" <td>-0.071195</td>\n",
" <td>0.006373</td>\n",
" <td>0.016522</td>\n",
" <td>-0.104566</td>\n",
" <td>-0.033155</td>\n",
" <td>0.031846</td>\n",
" <td>0.006604</td>\n",
" <td>0.009546</td>\n",
" <td>-0.051816</td>\n",
" <td>0.030673</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ind</th>\n",
" <td>-0.189764</td>\n",
" <td>-0.030724</td>\n",
" <td>-0.060189</td>\n",
" <td>-0.027609</td>\n",
" <td>-0.113397</td>\n",
" <td>0.035910</td>\n",
" <td>-0.085639</td>\n",
" <td>-0.028148</td>\n",
" <td>-0.065998</td>\n",
" <td>0.040376</td>\n",
" <td>...</td>\n",
" <td>0.058363</td>\n",
" <td>0.067316</td>\n",
" <td>-0.065128</td>\n",
" <td>-0.092801</td>\n",
" <td>-0.077179</td>\n",
" <td>0.095876</td>\n",
" <td>-0.007619</td>\n",
" <td>0.040394</td>\n",
" <td>0.089587</td>\n",
" <td>0.057230</td>\n",
" </tr>\n",
" <tr>\n",
" <th>repeat</th>\n",
" <td>-0.038974</td>\n",
" <td>-0.001742</td>\n",
" <td>0.160014</td>\n",
" <td>-0.114607</td>\n",
" <td>-0.075890</td>\n",
" <td>-0.013283</td>\n",
" <td>-0.051917</td>\n",
" <td>0.064910</td>\n",
" <td>-0.001597</td>\n",
" <td>0.004153</td>\n",
" <td>...</td>\n",
" <td>-0.052163</td>\n",
" <td>-0.045921</td>\n",
" <td>0.041476</td>\n",
" <td>-0.002198</td>\n",
" <td>-0.067260</td>\n",
" <td>-0.050876</td>\n",
" <td>0.046228</td>\n",
" <td>0.014761</td>\n",
" <td>0.045161</td>\n",
" <td>-0.050687</td>\n",
" </tr>\n",
" <tr>\n",
" <th>narrative</th>\n",
" <td>0.012858</td>\n",
" <td>0.100006</td>\n",
" <td>0.079361</td>\n",
" <td>-0.106948</td>\n",
" <td>0.019481</td>\n",
" <td>0.022624</td>\n",
" <td>-0.058684</td>\n",
" <td>-0.002876</td>\n",
" <td>0.096466</td>\n",
" <td>-0.002182</td>\n",
" <td>...</td>\n",
" <td>-0.030939</td>\n",
" <td>-0.019613</td>\n",
" <td>0.021866</td>\n",
" <td>0.001329</td>\n",
" <td>0.012298</td>\n",
" <td>-0.108745</td>\n",
" <td>0.039810</td>\n",
" <td>0.005657</td>\n",
" <td>0.085686</td>\n",
" <td>-0.092077</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1007 rows × 200 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 \\\n",
"electionresults 0.038593 0.065232 0.130983 0.009477 -0.018893 \n",
"bjp -0.023424 -0.023021 0.045584 0.026587 -0.013147 \n",
"win -0.029219 -0.085240 0.027453 0.104936 -0.063723 \n",
"congress -0.126363 -0.194618 -0.027479 0.032964 0.062613 \n",
"punjab 0.068467 -0.142689 -0.019247 0.010518 0.061997 \n",
"upelection2017 -0.059415 0.119698 -0.072613 -0.007520 0.009200 \n",
"elections2017 0.000885 0.026864 0.056395 0.138327 0.023747 \n",
"modi 0.057329 -0.058722 0.004947 0.058037 -0.066921 \n",
"narendramodi 0.106970 -0.034159 -0.134925 0.120943 0.086266 \n",
"goa 0.009466 -0.100763 0.051813 0.074620 0.080515 \n",
"people -0.039698 0.033923 0.060276 0.024705 0.227086 \n",
"aap -0.034824 -0.055105 -0.047506 -0.052748 -0.075673 \n",
"seat -0.095142 -0.048568 0.023420 0.027419 -0.042211 \n",
"bjp4india 0.063929 0.012793 0.003649 0.045386 -0.021476 \n",
"election -0.126395 -0.036746 -0.027660 0.033241 -0.021149 \n",
"vote 0.075080 -0.045672 -0.152598 0.034740 -0.083779 \n",
"lead -0.024408 -0.008424 -0.024544 0.032646 0.089608 \n",
"india 0.056050 -0.037646 -0.022806 0.002640 -0.039420 \n",
"punjabelection2017 0.062055 -0.013855 0.024407 0.080090 0.054993 \n",
"not 0.099812 -0.013112 -0.012298 -0.009953 -0.066764 \n",
"result 0.076679 0.002745 -0.034826 -0.092080 0.038041 \n",
"mayawati 0.136586 0.027942 -0.071640 0.061259 0.020730 \n",
"today -0.009684 0.053628 -0.114227 0.091992 0.116572 \n",
"manipur 0.023840 -0.017338 0.067993 0.001078 0.032815 \n",
"time 0.150224 0.007678 0.033943 -0.007928 0.163444 \n",
"arvindkejriwal -0.054333 -0.004763 0.124946 -0.072454 0.002282 \n",
"state -0.059632 0.005639 -0.103978 -0.023545 0.048953 \n",
"say 0.063084 -0.086668 0.015514 0.043112 0.087299 \n",
"uttarpradesh 0.043367 0.054092 -0.053679 0.115545 0.025056 \n",
"victory 0.179940 0.007479 0.029669 0.004491 0.055226 \n",
"... ... ... ... ... ... \n",
"rajdeep 0.000572 -0.139684 0.067499 0.025494 0.085057 \n",
"increase 0.002741 -0.042367 0.048650 0.094575 -0.059034 \n",
"hindutva 0.043134 0.088895 -0.081953 -0.001649 -0.116976 \n",
"exactly 0.019895 -0.035512 -0.026814 0.101532 -0.069336 \n",
"expe 0.015386 -0.031245 0.009943 -0.059035 0.027866 \n",
"self -0.057144 -0.078644 -0.049909 0.024160 -0.089639 \n",
"line 0.026982 0.008358 0.013785 0.024504 -0.037684 \n",
"cross_halfway_mark -0.021558 -0.061889 0.033273 0.096349 0.062784 \n",
"congratulation_sir 0.013797 0.018192 0.027101 -0.015782 -0.023544 \n",
"local 0.057909 -0.050637 0.021727 0.001402 -0.073308 \n",
"expectation 0.042574 -0.141244 -0.075892 -0.046158 -0.005300 \n",
"common 0.138926 0.067191 -0.147634 0.047569 0.026127 \n",
"ban -0.060220 -0.115585 0.112577 0.069342 0.031616 \n",
"electoral 0.007523 -0.117843 0.048318 0.093463 0.041712 \n",
"coz 0.009905 0.002019 -0.046259 0.022158 0.047524 \n",
"laugh -0.098381 -0.096486 0.019137 -0.014487 0.097855 \n",
"near -0.074969 0.105880 -0.048510 -0.084780 0.131893 \n",
"develop -0.055676 0.022227 -0.016562 -0.052855 -0.009292 \n",
"perform 0.068399 -0.109243 0.087984 -0.089746 0.076768 \n",
"kyaukhaadlega -0.053153 -0.041528 -0.060244 -0.066774 0.064793 \n",
"build 0.073477 -0.027803 0.116254 -0.215213 0.008742 \n",
"dat -0.041859 0.051822 0.077876 -0.056574 0.038935 \n",
"thought -0.020270 -0.003915 0.027130 -0.022510 -0.001879 \n",
"rahul_akhilesh -0.114333 0.011766 -0.054500 0.037149 -0.012070 \n",
"shekhargupta 0.096427 0.035468 0.030736 0.017017 0.049494 \n",
"dalits -0.022647 0.015133 -0.022348 0.008382 -0.038843 \n",
"tally -0.050746 0.053442 0.013369 -0.162591 0.016935 \n",
"ind -0.189764 -0.030724 -0.060189 -0.027609 -0.113397 \n",
"repeat -0.038974 -0.001742 0.160014 -0.114607 -0.075890 \n",
"narrative 0.012858 0.100006 0.079361 -0.106948 0.019481 \n",
"\n",
" 5 6 7 8 9 \\\n",
"electionresults 0.056132 -0.068405 -0.022548 0.030052 0.090498 \n",
"bjp 0.020020 0.009653 0.007908 -0.022853 -0.029902 \n",
"win -0.030763 0.064524 0.036528 -0.090418 -0.146715 \n",
"congress -0.019236 -0.083040 -0.039329 0.014001 -0.084960 \n",
"punjab -0.067995 -0.042101 0.015361 -0.013578 -0.099104 \n",
"upelection2017 -0.117717 -0.137367 -0.038348 -0.033626 0.014944 \n",
"elections2017 0.029732 -0.053312 0.071559 0.082543 0.093932 \n",
"modi 0.039373 0.026097 0.093025 -0.026491 -0.111197 \n",
"narendramodi -0.051825 0.051399 -0.063423 0.027204 -0.016370 \n",
"goa 0.001770 -0.064579 -0.023309 0.071276 -0.127215 \n",
"people -0.082467 0.060742 0.103884 0.048004 -0.050993 \n",
"aap 0.051220 -0.109569 0.027053 -0.071330 -0.088910 \n",
"seat -0.006452 -0.189088 -0.023351 -0.084174 -0.091096 \n",
"bjp4india -0.045998 -0.071840 0.001270 -0.026532 -0.012768 \n",
"election 0.051008 0.089375 -0.051359 0.039666 0.130272 \n",
"vote -0.012839 -0.108461 -0.018243 -0.035966 -0.130858 \n",
"lead -0.087065 -0.057443 0.050723 -0.010519 0.009008 \n",
"india -0.032335 0.081846 -0.032084 0.061125 0.096432 \n",
"punjabelection2017 0.025438 0.008611 -0.027822 -0.066533 0.073121 \n",
"not 0.139616 -0.096990 0.075979 -0.012788 -0.060358 \n",
"result -0.079494 -0.012775 -0.016264 0.168397 -0.070314 \n",
"mayawati -0.064309 -0.137225 0.052240 0.013239 -0.020661 \n",
"today 0.011550 0.022499 -0.042905 -0.036348 0.035779 \n",
"manipur 0.016632 -0.102225 0.078326 0.078213 -0.024353 \n",
"time -0.045412 -0.135379 0.004417 0.028392 0.023189 \n",
"arvindkejriwal 0.003564 0.051566 0.025033 -0.040877 0.005556 \n",
"state 0.029854 0.023474 0.024836 0.023378 -0.115147 \n",
"say 0.002264 -0.047222 0.047205 0.127651 -0.022330 \n",
"uttarpradesh -0.068364 -0.123933 -0.061981 0.108704 -0.014090 \n",
"victory -0.059822 -0.132920 -0.075399 0.091894 -0.033675 \n",
"... ... ... ... ... ... \n",
"rajdeep -0.012667 -0.131865 0.087055 0.013715 0.022383 \n",
"increase -0.103580 0.038335 -0.145551 0.011547 -0.051403 \n",
"hindutva 0.035731 0.017499 -0.129806 0.044985 -0.070479 \n",
"exactly -0.000572 -0.109778 -0.036733 -0.033457 -0.011201 \n",
"expe 0.008620 -0.002010 -0.058105 0.094351 -0.096780 \n",
"self -0.075370 -0.162126 -0.028731 0.121647 -0.021950 \n",
"line -0.058826 0.019199 -0.077528 0.039583 -0.073356 \n",
"cross_halfway_mark -0.010625 -0.013493 -0.020203 -0.022609 -0.030026 \n",
"congratulation_sir -0.026581 -0.022060 -0.047410 0.028588 -0.094107 \n",
"local -0.029511 0.019499 0.020546 0.043304 0.016321 \n",
"expectation 0.029256 0.008429 -0.013683 -0.041414 0.020637 \n",
"common -0.048608 0.100050 0.124762 0.005328 -0.070907 \n",
"ban 0.008764 -0.058356 -0.030033 -0.130406 0.011818 \n",
"electoral -0.089972 0.002510 0.016579 -0.006702 0.024066 \n",
"coz -0.053648 0.036422 0.055437 0.015699 -0.079241 \n",
"laugh -0.050768 0.045400 0.014776 -0.040167 -0.104711 \n",
"near -0.060494 0.077748 -0.040068 0.038564 -0.075247 \n",
"develop 0.006036 0.123389 0.055140 0.066402 -0.050526 \n",
"perform -0.065495 -0.050097 -0.026354 0.019051 0.089457 \n",
"kyaukhaadlega -0.006858 -0.046686 0.045093 -0.011661 0.116930 \n",
"build -0.063480 -0.046682 0.078327 0.045782 -0.041363 \n",
"dat -0.051600 -0.016748 0.043907 0.000600 0.010083 \n",
"thought 0.037204 0.045211 0.150274 0.036449 0.017040 \n",
"rahul_akhilesh 0.037191 -0.046341 -0.076965 -0.035298 -0.118777 \n",
"shekhargupta -0.008830 -0.063456 0.075355 -0.043478 -0.008048 \n",
"dalits -0.024790 -0.039074 0.018119 -0.089860 0.007483 \n",
"tally -0.025198 0.012515 0.051626 0.018235 0.040107 \n",
"ind 0.035910 -0.085639 -0.028148 -0.065998 0.040376 \n",
"repeat -0.013283 -0.051917 0.064910 -0.001597 0.004153 \n",
"narrative 0.022624 -0.058684 -0.002876 0.096466 -0.002182 \n",
"\n",
" ... 190 191 192 193 \\\n",
"electionresults ... 0.121614 0.001951 -0.014015 0.001160 \n",
"bjp ... 0.009916 -0.029126 -0.028172 -0.123596 \n",
"win ... -0.056088 -0.013934 0.076431 -0.078700 \n",
"congress ... 0.055513 -0.140310 -0.007756 -0.077056 \n",
"punjab ... 0.036901 -0.032342 -0.135181 0.080569 \n",
"upelection2017 ... -0.046908 -0.078908 -0.026526 -0.028114 \n",
"elections2017 ... 0.001061 -0.116691 -0.008292 0.013324 \n",
"modi ... -0.092832 -0.038741 0.074647 -0.011324 \n",
"narendramodi ... 0.053611 -0.144650 0.122521 0.005819 \n",
"goa ... 0.124331 0.059266 0.043658 0.045934 \n",
"people ... 0.088357 -0.205868 -0.045787 0.040409 \n",
"aap ... 0.015587 -0.078347 0.016722 -0.066571 \n",
"seat ... -0.062534 0.016595 -0.003928 -0.065256 \n",
"bjp4india ... -0.010398 -0.088884 0.141554 0.016091 \n",
"election ... 0.155409 -0.030844 0.077666 0.041271 \n",
"vote ... -0.025897 -0.079209 0.017629 -0.095567 \n",
"lead ... -0.074429 0.012403 -0.012009 0.110392 \n",
"india ... 0.041833 0.017394 0.065386 -0.028952 \n",
"punjabelection2017 ... -0.040618 -0.082355 -0.053480 0.120564 \n",
"not ... 0.044464 -0.019485 0.100505 0.113914 \n",
"result ... 0.003131 -0.094888 -0.032183 0.007620 \n",
"mayawati ... 0.029006 -0.164574 0.097879 -0.067564 \n",
"today ... 0.036069 -0.140189 -0.006895 -0.050676 \n",
"manipur ... 0.126637 -0.034347 0.095073 -0.051953 \n",
"time ... -0.043129 0.057697 -0.050728 0.120806 \n",
"arvindkejriwal ... -0.023419 -0.003268 -0.030896 -0.032492 \n",
"state ... 0.038821 -0.017290 -0.040165 -0.105001 \n",
"say ... -0.068483 -0.009658 0.015862 -0.004461 \n",
"uttarpradesh ... 0.186138 -0.007268 0.017787 0.034278 \n",
"victory ... -0.016780 -0.065449 -0.040673 0.051611 \n",
"... ... ... ... ... ... \n",
"rajdeep ... -0.073607 0.017322 -0.078839 0.008494 \n",
"increase ... -0.051460 -0.036290 0.012811 -0.006737 \n",
"hindutva ... -0.069209 -0.179267 0.052250 -0.065992 \n",
"exactly ... 0.050013 -0.019603 0.122286 -0.107954 \n",
"expe ... -0.019896 -0.161666 0.106552 -0.072747 \n",
"self ... -0.037909 -0.203708 0.018260 0.070127 \n",
"line ... 0.047194 -0.123512 0.004382 0.040966 \n",
"cross_halfway_mark ... -0.007541 0.026947 -0.096860 0.067924 \n",
"congratulation_sir ... 0.016904 -0.033561 -0.033346 -0.082044 \n",
"local ... 0.000168 -0.075014 0.142310 -0.134372 \n",
"expectation ... 0.095484 -0.133989 0.011314 0.082593 \n",
"common ... -0.032742 -0.042576 0.047057 0.079273 \n",
"ban ... -0.003338 -0.073826 -0.143346 -0.046458 \n",
"electoral ... 0.100980 0.001423 0.025170 -0.044179 \n",
"coz ... -0.092309 -0.150016 0.044821 -0.017710 \n",
"laugh ... -0.152082 -0.116488 0.010465 0.003475 \n",
"near ... 0.028618 -0.065068 -0.015515 0.052545 \n",
"develop ... -0.015021 -0.088237 -0.000258 -0.005249 \n",
"perform ... 0.134925 -0.121449 0.021458 -0.209780 \n",
"kyaukhaadlega ... 0.013920 0.000936 -0.019011 -0.019647 \n",
"build ... -0.030358 0.002865 0.046920 -0.159242 \n",
"dat ... -0.002709 -0.085736 0.098313 0.013040 \n",
"thought ... 0.058931 -0.127265 0.015879 0.033426 \n",
"rahul_akhilesh ... -0.026322 -0.137221 0.111736 0.074768 \n",
"shekhargupta ... 0.018096 -0.034190 0.105129 0.009823 \n",
"dalits ... -0.064357 0.021281 0.003567 -0.046159 \n",
"tally ... -0.071195 0.006373 0.016522 -0.104566 \n",
"ind ... 0.058363 0.067316 -0.065128 -0.092801 \n",
"repeat ... -0.052163 -0.045921 0.041476 -0.002198 \n",
"narrative ... -0.030939 -0.019613 0.021866 0.001329 \n",
"\n",
" 194 195 196 197 198 199 \n",
"electionresults 0.037758 -0.031155 -0.050242 0.150196 0.018113 0.100890 \n",
"bjp -0.107109 0.052286 -0.052555 0.083021 0.053085 -0.008552 \n",
"win 0.039870 -0.044035 -0.071660 -0.020569 -0.039647 -0.033876 \n",
"congress -0.116416 0.127231 -0.139047 0.052605 0.053434 0.040970 \n",
"punjab -0.034288 0.066213 -0.100044 -0.097200 -0.098354 -0.074190 \n",
"upelection2017 0.023593 -0.008405 -0.056531 -0.022312 0.137108 -0.029557 \n",
"elections2017 -0.012990 -0.034696 0.019054 0.034339 0.017413 -0.008826 \n",
"modi 0.005478 0.031353 -0.047724 0.129504 -0.035455 -0.027849 \n",
"narendramodi 0.079221 -0.095277 -0.014294 0.065366 -0.032062 -0.102929 \n",
"goa -0.015065 0.115155 -0.079758 -0.007518 -0.048590 -0.028523 \n",
"people 0.005570 -0.057884 0.020583 0.085420 0.004435 -0.060302 \n",
"aap 0.074345 0.067832 -0.132459 -0.073835 0.010995 -0.058810 \n",
"seat -0.037860 0.039611 0.100247 0.079270 -0.122635 0.044122 \n",
"bjp4india -0.060637 0.025861 -0.081247 -0.018354 0.020156 0.073299 \n",
"election 0.083457 -0.102640 -0.015524 -0.006577 -0.103896 -0.024485 \n",
"vote -0.035544 0.061042 -0.082762 0.057972 0.025470 -0.090255 \n",
"lead 0.006180 0.139540 0.070745 0.003855 0.031885 0.079737 \n",
"india 0.087125 0.075055 0.074320 0.108562 -0.174714 -0.030632 \n",
"punjabelection2017 -0.026865 -0.067068 -0.116497 0.066209 -0.019966 -0.025676 \n",
"not -0.014448 -0.008090 -0.060805 -0.045079 -0.044406 -0.066812 \n",
"result 0.128673 -0.030522 -0.024016 0.050490 0.006241 0.159599 \n",
"mayawati -0.017508 -0.077931 -0.109366 -0.081635 -0.016363 0.110366 \n",
"today -0.021702 -0.035698 -0.116479 -0.003879 0.035651 0.042404 \n",
"manipur 0.011405 0.033644 0.051250 -0.022853 -0.040544 -0.051701 \n",
"time -0.033045 -0.021622 0.103954 0.084632 -0.077904 0.066601 \n",
"arvindkejriwal -0.003914 0.006729 -0.066372 0.001733 0.055826 0.070511 \n",
"state 0.025496 0.088523 -0.081328 -0.016549 -0.173032 -0.081411 \n",
"say 0.033136 -0.109790 -0.044600 0.094797 -0.002640 -0.035027 \n",
"uttarpradesh 0.023755 -0.060320 0.089871 -0.001383 -0.010562 -0.110586 \n",
"victory -0.139144 -0.125057 -0.054146 -0.006119 -0.056002 -0.026770 \n",
"... ... ... ... ... ... ... \n",
"rajdeep 0.011737 -0.159414 0.009522 0.037300 0.007489 -0.001320 \n",
"increase -0.007264 -0.109139 0.025313 0.151042 0.004530 0.134056 \n",
"hindutva -0.040703 0.034155 -0.075206 0.018361 -0.098286 0.109001 \n",
"exactly 0.008353 -0.015783 0.018979 0.106707 0.028863 0.004645 \n",
"expe -0.009588 -0.058226 0.036806 0.043856 0.046624 -0.082276 \n",
"self 0.048522 0.013464 -0.021706 0.034909 0.014207 0.105151 \n",
"line -0.110072 0.064913 0.030666 -0.032984 -0.091194 -0.021220 \n",
"cross_halfway_mark 0.078989 0.056889 -0.085800 0.032944 -0.028633 0.013812 \n",
"congratulation_sir 0.026074 -0.009851 -0.008612 0.000366 0.029629 -0.084629 \n",
"local -0.013498 -0.073779 0.000324 0.027341 -0.099459 -0.045796 \n",
"expectation -0.075108 0.012156 -0.006141 0.087376 -0.027974 0.045746 \n",
"common -0.051876 0.094442 0.017851 0.039200 -0.020738 -0.049305 \n",
"ban 0.145053 0.019136 0.103405 -0.070201 -0.032085 -0.178364 \n",
"electoral -0.101104 -0.038782 -0.021458 0.031113 -0.056363 -0.074877 \n",
"coz 0.036217 -0.022037 0.022665 -0.063585 0.001722 0.014351 \n",
"laugh 0.025192 0.099849 -0.046368 0.057842 -0.058274 0.123511 \n",
"near -0.042279 0.035203 -0.107615 0.021339 -0.013617 0.113182 \n",
"develop 0.016249 -0.088044 0.070216 0.031028 0.042927 -0.113180 \n",
"perform 0.114002 -0.062772 0.048758 -0.093813 0.025514 0.063813 \n",
"kyaukhaadlega 0.110923 -0.064272 -0.044606 0.050543 0.076061 -0.017054 \n",
"build -0.055738 -0.115379 -0.079165 0.044054 0.007809 0.007130 \n",
"dat -0.059380 -0.056215 -0.025118 0.088603 -0.123315 -0.032688 \n",
"thought 0.006267 -0.046305 -0.020966 0.027727 0.100224 -0.067964 \n",
"rahul_akhilesh 0.085226 -0.041079 -0.095149 0.068541 0.155929 0.020803 \n",
"shekhargupta 0.049082 -0.128055 -0.097915 -0.006912 0.039343 -0.051636 \n",
"dalits 0.094281 0.001393 0.056063 0.018718 -0.058261 0.053186 \n",
"tally -0.033155 0.031846 0.006604 0.009546 -0.051816 0.030673 \n",
"ind -0.077179 0.095876 -0.007619 0.040394 0.089587 0.057230 \n",
"repeat -0.067260 -0.050876 0.046228 0.014761 0.045161 -0.050687 \n",
"narrative 0.012298 -0.108745 0.039810 0.005657 0.085686 -0.092077 \n",
"\n",
"[1007 rows x 200 columns]"
]
},
"execution_count": 512,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# build a list of the terms, integer indices,\n",
"# and term counts from the food2vec model vocabulary\n",
"ordered_vocab = [(term, voc.index, voc.count)\n",
" for term, voc in word2vec.wv.vocab.iteritems()]\n",
"\n",
"# sort by the term counts, so the most common terms appear first\n",
"ordered_vocab = sorted(ordered_vocab, key=lambda (term, index, count): -count)\n",
"\n",
"# unzip the terms, integer indices, and counts into separate lists\n",
"ordered_terms, term_indices, term_counts = zip(*ordered_vocab)\n",
"\n",
"# create a DataFrame with the word2vec vectors as data,\n",
"# and the terms as row labels\n",
"word_vectors = pd.DataFrame(word2vec.wv.syn0norm[term_indices, :],\n",
" index=ordered_terms)\n",
"\n",
"word_vectors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating the visualization"
]
},
{
"cell_type": "code",
"execution_count": 513,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.manifold import TSNE\n",
"import spacy"
]
},
{
"cell_type": "code",
"execution_count": 514,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"op = list(ordered_terms)"
]
},
{
"cell_type": "code",
"execution_count": 515,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[(u'electionresults', <gensim.models.keyedvectors.Vocab at 0x10914afd0>),\n",
" (u'bjp', <gensim.models.keyedvectors.Vocab at 0x109954cd0>),\n",
" (u'win', <gensim.models.keyedvectors.Vocab at 0x10d748a10>),\n",
" (u'congress', <gensim.models.keyedvectors.Vocab at 0x109059510>),\n",
" (u'punjab', <gensim.models.keyedvectors.Vocab at 0x10d948190>),\n",
" (u'upelection2017', <gensim.models.keyedvectors.Vocab at 0x10982b610>),\n",
" (u'elections2017', <gensim.models.keyedvectors.Vocab at 0x10871a910>),\n",
" (u'modi', <gensim.models.keyedvectors.Vocab at 0x1091ecc10>),\n",
" (u'narendramodi', <gensim.models.keyedvectors.Vocab at 0x10d748c50>),\n",
" (u'goa', <gensim.models.keyedvectors.Vocab at 0x109424550>)]"
]
},
"execution_count": 515,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"word_freq = Counter(word2vec.wv.vocab)\n",
"word_freq.most_common(10)"
]
},
{
"cell_type": "code",
"execution_count": 516,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tsne_input = word_vectors.drop(spacy.en.STOPWORDS, errors=u'ignore')\n",
"tsne_input = tsne_input.head(20)"
]
},
{
"cell_type": "code",
"execution_count": 517,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" <th>7</th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>...</th>\n",
" <th>190</th>\n",
" <th>191</th>\n",
" <th>192</th>\n",
" <th>193</th>\n",
" <th>194</th>\n",
" <th>195</th>\n",
" <th>196</th>\n",
" <th>197</th>\n",
" <th>198</th>\n",
" <th>199</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>electionresults</th>\n",
" <td>0.038593</td>\n",
" <td>0.065232</td>\n",
" <td>0.130983</td>\n",
" <td>0.009477</td>\n",
" <td>-0.018893</td>\n",
" <td>0.056132</td>\n",
" <td>-0.068405</td>\n",
" <td>-0.022548</td>\n",
" <td>0.030052</td>\n",
" <td>0.090498</td>\n",
" <td>...</td>\n",
" <td>0.121614</td>\n",
" <td>0.001951</td>\n",
" <td>-0.014015</td>\n",
" <td>0.001160</td>\n",
" <td>0.037758</td>\n",
" <td>-0.031155</td>\n",
" <td>-0.050242</td>\n",
" <td>0.150196</td>\n",
" <td>0.018113</td>\n",
" <td>0.100890</td>\n",
" </tr>\n",
" <tr>\n",
" <th>bjp</th>\n",
" <td>-0.023424</td>\n",
" <td>-0.023021</td>\n",
" <td>0.045584</td>\n",
" <td>0.026587</td>\n",
" <td>-0.013147</td>\n",
" <td>0.020020</td>\n",
" <td>0.009653</td>\n",
" <td>0.007908</td>\n",
" <td>-0.022853</td>\n",
" <td>-0.029902</td>\n",
" <td>...</td>\n",
" <td>0.009916</td>\n",
" <td>-0.029126</td>\n",
" <td>-0.028172</td>\n",
" <td>-0.123596</td>\n",
" <td>-0.107109</td>\n",
" <td>0.052286</td>\n",
" <td>-0.052555</td>\n",
" <td>0.083021</td>\n",
" <td>0.053085</td>\n",
" <td>-0.008552</td>\n",
" </tr>\n",
" <tr>\n",
" <th>win</th>\n",
" <td>-0.029219</td>\n",
" <td>-0.085240</td>\n",
" <td>0.027453</td>\n",
" <td>0.104936</td>\n",
" <td>-0.063723</td>\n",
" <td>-0.030763</td>\n",
" <td>0.064524</td>\n",
" <td>0.036528</td>\n",
" <td>-0.090418</td>\n",
" <td>-0.146715</td>\n",
" <td>...</td>\n",
" <td>-0.056088</td>\n",
" <td>-0.013934</td>\n",
" <td>0.076431</td>\n",
" <td>-0.078700</td>\n",
" <td>0.039870</td>\n",
" <td>-0.044035</td>\n",
" <td>-0.071660</td>\n",
" <td>-0.020569</td>\n",
" <td>-0.039647</td>\n",
" <td>-0.033876</td>\n",
" </tr>\n",
" <tr>\n",
" <th>congress</th>\n",
" <td>-0.126363</td>\n",
" <td>-0.194618</td>\n",
" <td>-0.027479</td>\n",
" <td>0.032964</td>\n",
" <td>0.062613</td>\n",
" <td>-0.019236</td>\n",
" <td>-0.083040</td>\n",
" <td>-0.039329</td>\n",
" <td>0.014001</td>\n",
" <td>-0.084960</td>\n",
" <td>...</td>\n",
" <td>0.055513</td>\n",
" <td>-0.140310</td>\n",
" <td>-0.007756</td>\n",
" <td>-0.077056</td>\n",
" <td>-0.116416</td>\n",
" <td>0.127231</td>\n",
" <td>-0.139047</td>\n",
" <td>0.052605</td>\n",
" <td>0.053434</td>\n",
" <td>0.040970</td>\n",
" </tr>\n",
" <tr>\n",
" <th>punjab</th>\n",
" <td>0.068467</td>\n",
" <td>-0.142689</td>\n",
" <td>-0.019247</td>\n",
" <td>0.010518</td>\n",
" <td>0.061997</td>\n",
" <td>-0.067995</td>\n",
" <td>-0.042101</td>\n",
" <td>0.015361</td>\n",
" <td>-0.013578</td>\n",
" <td>-0.099104</td>\n",
" <td>...</td>\n",
" <td>0.036901</td>\n",
" <td>-0.032342</td>\n",
" <td>-0.135181</td>\n",
" <td>0.080569</td>\n",
" <td>-0.034288</td>\n",
" <td>0.066213</td>\n",
" <td>-0.100044</td>\n",
" <td>-0.097200</td>\n",
" <td>-0.098354</td>\n",
" <td>-0.074190</td>\n",
" </tr>\n",
" <tr>\n",
" <th>upelection2017</th>\n",
" <td>-0.059415</td>\n",
" <td>0.119698</td>\n",
" <td>-0.072613</td>\n",
" <td>-0.007520</td>\n",
" <td>0.009200</td>\n",
" <td>-0.117717</td>\n",
" <td>-0.137367</td>\n",
" <td>-0.038348</td>\n",
" <td>-0.033626</td>\n",
" <td>0.014944</td>\n",
" <td>...</td>\n",
" <td>-0.046908</td>\n",
" <td>-0.078908</td>\n",
" <td>-0.026526</td>\n",
" <td>-0.028114</td>\n",
" <td>0.023593</td>\n",
" <td>-0.008405</td>\n",
" <td>-0.056531</td>\n",
" <td>-0.022312</td>\n",
" <td>0.137108</td>\n",
" <td>-0.029557</td>\n",
" </tr>\n",
" <tr>\n",
" <th>elections2017</th>\n",
" <td>0.000885</td>\n",
" <td>0.026864</td>\n",
" <td>0.056395</td>\n",
" <td>0.138327</td>\n",
" <td>0.023747</td>\n",
" <td>0.029732</td>\n",
" <td>-0.053312</td>\n",
" <td>0.071559</td>\n",
" <td>0.082543</td>\n",
" <td>0.093932</td>\n",
" <td>...</td>\n",
" <td>0.001061</td>\n",
" <td>-0.116691</td>\n",
" <td>-0.008292</td>\n",
" <td>0.013324</td>\n",
" <td>-0.012990</td>\n",
" <td>-0.034696</td>\n",
" <td>0.019054</td>\n",
" <td>0.034339</td>\n",
" <td>0.017413</td>\n",
" <td>-0.008826</td>\n",
" </tr>\n",
" <tr>\n",
" <th>modi</th>\n",
" <td>0.057329</td>\n",
" <td>-0.058722</td>\n",
" <td>0.004947</td>\n",
" <td>0.058037</td>\n",
" <td>-0.066921</td>\n",
" <td>0.039373</td>\n",
" <td>0.026097</td>\n",
" <td>0.093025</td>\n",
" <td>-0.026491</td>\n",
" <td>-0.111197</td>\n",
" <td>...</td>\n",
" <td>-0.092832</td>\n",
" <td>-0.038741</td>\n",
" <td>0.074647</td>\n",
" <td>-0.011324</td>\n",
" <td>0.005478</td>\n",
" <td>0.031353</td>\n",
" <td>-0.047724</td>\n",
" <td>0.129504</td>\n",
" <td>-0.035455</td>\n",
" <td>-0.027849</td>\n",
" </tr>\n",
" <tr>\n",
" <th>narendramodi</th>\n",
" <td>0.106970</td>\n",
" <td>-0.034159</td>\n",
" <td>-0.134925</td>\n",
" <td>0.120943</td>\n",
" <td>0.086266</td>\n",
" <td>-0.051825</td>\n",
" <td>0.051399</td>\n",
" <td>-0.063423</td>\n",
" <td>0.027204</td>\n",
" <td>-0.016370</td>\n",
" <td>...</td>\n",
" <td>0.053611</td>\n",
" <td>-0.144650</td>\n",
" <td>0.122521</td>\n",
" <td>0.005819</td>\n",
" <td>0.079221</td>\n",
" <td>-0.095277</td>\n",
" <td>-0.014294</td>\n",
" <td>0.065366</td>\n",
" <td>-0.032062</td>\n",
" <td>-0.102929</td>\n",
" </tr>\n",
" <tr>\n",
" <th>goa</th>\n",
" <td>0.009466</td>\n",
" <td>-0.100763</td>\n",
" <td>0.051813</td>\n",
" <td>0.074620</td>\n",
" <td>0.080515</td>\n",
" <td>0.001770</td>\n",
" <td>-0.064579</td>\n",
" <td>-0.023309</td>\n",
" <td>0.071276</td>\n",
" <td>-0.127215</td>\n",
" <td>...</td>\n",
" <td>0.124331</td>\n",
" <td>0.059266</td>\n",
" <td>0.043658</td>\n",
" <td>0.045934</td>\n",
" <td>-0.015065</td>\n",
" <td>0.115155</td>\n",
" <td>-0.079758</td>\n",
" <td>-0.007518</td>\n",
" <td>-0.048590</td>\n",
" <td>-0.028523</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>10 rows × 200 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 5 \\\n",
"electionresults 0.038593 0.065232 0.130983 0.009477 -0.018893 0.056132 \n",
"bjp -0.023424 -0.023021 0.045584 0.026587 -0.013147 0.020020 \n",
"win -0.029219 -0.085240 0.027453 0.104936 -0.063723 -0.030763 \n",
"congress -0.126363 -0.194618 -0.027479 0.032964 0.062613 -0.019236 \n",
"punjab 0.068467 -0.142689 -0.019247 0.010518 0.061997 -0.067995 \n",
"upelection2017 -0.059415 0.119698 -0.072613 -0.007520 0.009200 -0.117717 \n",
"elections2017 0.000885 0.026864 0.056395 0.138327 0.023747 0.029732 \n",
"modi 0.057329 -0.058722 0.004947 0.058037 -0.066921 0.039373 \n",
"narendramodi 0.106970 -0.034159 -0.134925 0.120943 0.086266 -0.051825 \n",
"goa 0.009466 -0.100763 0.051813 0.074620 0.080515 0.001770 \n",
"\n",
" 6 7 8 9 ... 190 \\\n",
"electionresults -0.068405 -0.022548 0.030052 0.090498 ... 0.121614 \n",
"bjp 0.009653 0.007908 -0.022853 -0.029902 ... 0.009916 \n",
"win 0.064524 0.036528 -0.090418 -0.146715 ... -0.056088 \n",
"congress -0.083040 -0.039329 0.014001 -0.084960 ... 0.055513 \n",
"punjab -0.042101 0.015361 -0.013578 -0.099104 ... 0.036901 \n",
"upelection2017 -0.137367 -0.038348 -0.033626 0.014944 ... -0.046908 \n",
"elections2017 -0.053312 0.071559 0.082543 0.093932 ... 0.001061 \n",
"modi 0.026097 0.093025 -0.026491 -0.111197 ... -0.092832 \n",
"narendramodi 0.051399 -0.063423 0.027204 -0.016370 ... 0.053611 \n",
"goa -0.064579 -0.023309 0.071276 -0.127215 ... 0.124331 \n",
"\n",
" 191 192 193 194 195 196 \\\n",
"electionresults 0.001951 -0.014015 0.001160 0.037758 -0.031155 -0.050242 \n",
"bjp -0.029126 -0.028172 -0.123596 -0.107109 0.052286 -0.052555 \n",
"win -0.013934 0.076431 -0.078700 0.039870 -0.044035 -0.071660 \n",
"congress -0.140310 -0.007756 -0.077056 -0.116416 0.127231 -0.139047 \n",
"punjab -0.032342 -0.135181 0.080569 -0.034288 0.066213 -0.100044 \n",
"upelection2017 -0.078908 -0.026526 -0.028114 0.023593 -0.008405 -0.056531 \n",
"elections2017 -0.116691 -0.008292 0.013324 -0.012990 -0.034696 0.019054 \n",
"modi -0.038741 0.074647 -0.011324 0.005478 0.031353 -0.047724 \n",
"narendramodi -0.144650 0.122521 0.005819 0.079221 -0.095277 -0.014294 \n",
"goa 0.059266 0.043658 0.045934 -0.015065 0.115155 -0.079758 \n",
"\n",
" 197 198 199 \n",
"electionresults 0.150196 0.018113 0.100890 \n",
"bjp 0.083021 0.053085 -0.008552 \n",
"win -0.020569 -0.039647 -0.033876 \n",
"congress 0.052605 0.053434 0.040970 \n",
"punjab -0.097200 -0.098354 -0.074190 \n",
"upelection2017 -0.022312 0.137108 -0.029557 \n",
"elections2017 0.034339 0.017413 -0.008826 \n",
"modi 0.129504 -0.035455 -0.027849 \n",
"narendramodi 0.065366 -0.032062 -0.102929 \n",
"goa -0.007518 -0.048590 -0.028523 \n",
"\n",
"[10 rows x 200 columns]"
]
},
"execution_count": 517,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tsne_input.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 518,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tsne_filepath = os.path.join(u'tsne_model')\n",
"\n",
"tsne_vectors_filepath = os.path.join(u'tsne_vectors.npy')"
]
},
{
"cell_type": "code",
"execution_count": 519,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import warnings\n",
"import cPickle as pickle"
]
},
{
"cell_type": "code",
"execution_count": 520,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 5.93 s, sys: 599 ms, total: 6.53 s\n",
"Wall time: 6.96 s\n"
]
}
],
"source": [
"%%time\n",
"tsne = TSNE()\n",
"tsne_vectors = tsne.fit_transform(word_vectors.values)\n",
" \n",
"with open(tsne_filepath, 'w') as f:\n",
" pickle.dump(tsne, f)\n",
" pd.np.save(tsne_vectors_filepath, tsne_vectors)\n",
" \n",
"\n",
"#loading the model\n",
"\n",
"with open(tsne_filepath) as f:\n",
" tsne = pickle.load(f)\n",
" \n",
"tsne_vectors = pd.np.load(tsne_vectors_filepath)\n",
"\n",
"tsne_vectors = pd.DataFrame(tsne_vectors,\n",
" index=pd.Index(word_vectors.index),\n",
" columns=[u'x_coord', u'y_coord'])"
]
},
{
"cell_type": "code",
"execution_count": 521,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tsne_vectors[u'word'] = tsne_vectors.index"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# creating the plot"
]
},
{
"cell_type": "code",
"execution_count": 522,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div class=\"bk-root\">\n",
" <a href=\"http://bokeh.pydata.org\" target=\"_blank\" class=\"bk-logo bk-logo-small bk-logo-notebook\"></a>\n",
" <span id=\"02ce9300-ca92-4d73-8e87-a9cc4311ddb2\">Loading BokehJS ...</span>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"\n",
"(function(global) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" var force = true;\n",
"\n",
" if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n",
" window._bokeh_onload_callbacks = [];\n",
" window._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
"\n",
" \n",
" if (typeof (window._bokeh_timeout) === \"undefined\" || force === true) {\n",
" window._bokeh_timeout = Date.now() + 5000;\n",
" window._bokeh_failed_load = false;\n",
" }\n",
"\n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"<div style='background-color: #fdd'>\\n\"+\n",
" \"<p>\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"</p>\\n\"+\n",
" \"<ul>\\n\"+\n",
" \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
" \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
" \"</ul>\\n\"+\n",
" \"<code>\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"</code>\\n\"+\n",
" \"</div>\"}};\n",
"\n",
" function display_loaded() {\n",
" if (window.Bokeh !== undefined) {\n",
" document.getElementById(\"02ce9300-ca92-4d73-8e87-a9cc4311ddb2\").textContent = \"BokehJS successfully loaded.\";\n",
" } else if (Date.now() < window._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
" function run_callbacks() {\n",
" window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n",
" delete window._bokeh_onload_callbacks\n",
" console.info(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(js_urls, callback) {\n",
" window._bokeh_onload_callbacks.push(callback);\n",
" if (window._bokeh_is_loading > 0) {\n",
" console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" window._bokeh_is_loading = js_urls.length;\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var s = document.createElement('script');\n",
" s.src = url;\n",
" s.async = false;\n",
" s.onreadystatechange = s.onload = function() {\n",
" window._bokeh_is_loading--;\n",
" if (window._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: all BokehJS libraries loaded\");\n",
" run_callbacks()\n",
" }\n",
" };\n",
" s.onerror = function() {\n",
" console.warn(\"failed to load library \" + url);\n",
" };\n",
" console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
" }\n",
" };var element = document.getElementById(\"02ce9300-ca92-4d73-8e87-a9cc4311ddb2\");\n",
" if (element == null) {\n",
" console.log(\"Bokeh: ERROR: autoload.js configured with elementid '02ce9300-ca92-4d73-8e87-a9cc4311ddb2' but no matching script tag was found. \")\n",
" return false;\n",
" }\n",
"\n",
" var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.4.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.4.min.js\"];\n",
"\n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
" \n",
" function(Bokeh) {\n",
" \n",
" document.getElementById(\"02ce9300-ca92-4d73-8e87-a9cc4311ddb2\").textContent = \"BokehJS is loading...\";\n",
" },\n",
" function(Bokeh) {\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.4.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.4.min.css\");\n",
" console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.4.min.css\");\n",
" Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.4.min.css\");\n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" \n",
" if ((window.Bokeh !== undefined) || (force === true)) {\n",
" for (var i = 0; i < inline_js.length; i++) {\n",
" inline_js[i](window.Bokeh);\n",
" }if (force === true) {\n",
" display_loaded();\n",
" }} else if (Date.now() < window._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!window._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" window._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" var cell = $(document.getElementById(\"02ce9300-ca92-4d73-8e87-a9cc4311ddb2\")).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
"\n",
" }\n",
"\n",
" if (window._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(js_urls, function() {\n",
" console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(this));"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from bokeh.plotting import figure, show, output_notebook\n",
"from bokeh.models import HoverTool, ColumnDataSource\n",
"\n",
"output_notebook()"
]
},
{
"cell_type": "code",
"execution_count": 523,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" <div class=\"bk-root\">\n",
" <div class=\"bk-plotdiv\" id=\"27c53e05-278c-4745-879a-29729e40c214\"></div>\n",
" </div>\n",
"<script type=\"text/javascript\">\n",
" \n",
" (function(global) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
" \n",
" var force = false;\n",
" \n",
" if (typeof (window._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n",
" window._bokeh_onload_callbacks = [];\n",
" window._bokeh_is_loading = undefined;\n",
" }\n",
" \n",
" \n",
" \n",
" if (typeof (window._bokeh_timeout) === \"undefined\" || force === true) {\n",
" window._bokeh_timeout = Date.now() + 0;\n",
" window._bokeh_failed_load = false;\n",
" }\n",
" \n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"<div style='background-color: #fdd'>\\n\"+\n",
" \"<p>\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"</p>\\n\"+\n",
" \"<ul>\\n\"+\n",
" \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
" \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
" \"</ul>\\n\"+\n",
" \"<code>\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"</code>\\n\"+\n",
" \"</div>\"}};\n",
" \n",
" function display_loaded() {\n",
" if (window.Bokeh !== undefined) {\n",
" document.getElementById(\"27c53e05-278c-4745-879a-29729e40c214\").textContent = \"BokehJS successfully loaded.\";\n",
" } else if (Date.now() < window._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
" \n",
" function run_callbacks() {\n",
" window._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n",
" delete window._bokeh_onload_callbacks\n",
" console.info(\"Bokeh: all callbacks have finished\");\n",
" }\n",
" \n",
" function load_libs(js_urls, callback) {\n",
" window._bokeh_onload_callbacks.push(callback);\n",
" if (window._bokeh_is_loading > 0) {\n",
" console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" window._bokeh_is_loading = js_urls.length;\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var s = document.createElement('script');\n",
" s.src = url;\n",
" s.async = false;\n",
" s.onreadystatechange = s.onload = function() {\n",
" window._bokeh_is_loading--;\n",
" if (window._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: all BokehJS libraries loaded\");\n",
" run_callbacks()\n",
" }\n",
" };\n",
" s.onerror = function() {\n",
" console.warn(\"failed to load library \" + url);\n",
" };\n",
" console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n",
" }\n",
" };var element = document.getElementById(\"27c53e05-278c-4745-879a-29729e40c214\");\n",
" if (element == null) {\n",
" console.log(\"Bokeh: ERROR: autoload.js configured with elementid '27c53e05-278c-4745-879a-29729e40c214' but no matching script tag was found. \")\n",
" return false;\n",
" }\n",
" \n",
" var js_urls = [];\n",
" \n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" (function() {\n",
" var fn = function() {\n",
" var docs_json = {\"2886f9d2-d825-4ef9-9873-e11890ce1f4f\":{\"roots\":{\"references\":[{\"attributes\":{\"active_drag\":\"auto\",\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"5bc3942d-0edb-495b-ae91-a11dc8610f25\",\"type\":\"PanTool\"},{\"id\":\"e74f7f45-3f7f-4752-9abb-acd4d96a1970\",\"type\":\"WheelZoomTool\"},{\"id\":\"cefa3906-bb4f-499d-977d-16cfc7b5b1a8\",\"type\":\"BoxZoomTool\"},{\"id\":\"630d3f30-ba74-4cb4-8ec3-87bc33d10608\",\"type\":\"BoxSelectTool\"},{\"id\":\"ca297c33-f35d-48e0-b6a8-54b776a67aaa\",\"type\":\"ResizeTool\"},{\"id\":\"400293ba-076d-4b8e-9964-e60911ddbe5b\",\"type\":\"ResetTool\"},{\"id\":\"6c762875-ab29-476f-9b71-cc705283f6eb\",\"type\":\"HoverTool\"}]},\"id\":\"9d940658-88e9-4b06-827d-fc2081a79814\",\"type\":\"Toolbar\"},{\"attributes\":{},\"id\":\"7ea138e8-4c91-4a2c-960e-496ac65e1766\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"callback\":null},\"id\":\"1954eb63-5ba7-4cde-b42e-7783521882c9\",\"type\":\"DataRange1d\"},{\"attributes\":{\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"e74f7f45-3f7f-4752-9abb-acd4d96a1970\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"callback\":null},\"id\":\"1a3d3973-e3ba-4677-b2ae-0bd3fa588edb\",\"type\":\"DataRange1d\"},{\"attributes\":{\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"5bc3942d-0edb-495b-ae91-a11dc8610f25\",\"type\":\"PanTool\"},{\"attributes\":{\"overlay\":{\"id\":\"51567837-2150-44ef-a688-bd8d62cebc8d\",\"type\":\"BoxAnnotation\"},\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"cefa3906-bb4f-499d-977d-16cfc7b5b1a8\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"data_source\":{\"id\":\"ff2f1165-ce88-4e22-b282-6d31ed0ed87e\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"8598ca6f-1b27-4a01-9ccb-084657bca54c\",\"type\":\"Circle\"},\"hover_glyph\":{\"id\":\"6e9a1078-bc11-459f-8f9b-6fa65f286804\",\"type\":\"Circle\"},\"nonselection_glyph\":{\"id\":\"e4e08f7c-85e1-45c1-b2af-b4dad995e149\",\"type\":\"Circle\"},\"selection_glyph\":null},\"id\":\"7485c807-2a3f-48fc-be1a-c7ab5dd0d094\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"823c2c0a-744e-4258-a5d4-8a1426e16de3\",\"type\":\"BasicTicker\"},{\"attributes\":{\"callback\":null,\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"tooltips\":\"@word\"},\"id\":\"6c762875-ab29-476f-9b71-cc705283f6eb\",\"type\":\"HoverTool\"},{\"attributes\":{\"dimension\":1,\"grid_line_color\":{\"value\":null},\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"823c2c0a-744e-4258-a5d4-8a1426e16de3\",\"type\":\"BasicTicker\"}},\"id\":\"40920f73-d2e0-4ccd-9b15-f242bc9dd63e\",\"type\":\"Grid\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"plot\":null,\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"a7b6237b-6713-49e8-9496-c80e88419f39\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"callback\":null,\"column_names\":[\"y_coord\",\"index\",\"word\",\"x_coord\"],\"data\":{\"index\":[\"electionresults\",\"bjp\",\"win\",\"congress\",\"punjab\",\"upelection2017\",\"elections2017\",\"modi\",\"narendramodi\",\"goa\",\"people\",\"aap\",\"seat\",\"bjp4india\",\"election\",\"vote\",\"lead\",\"india\",\"punjabelection2017\",\"not\",\"result\",\"mayawati\",\"today\",\"manipur\",\"time\",\"arvindkejriwal\",\"state\",\"say\",\"uttarpradesh\",\"victory\",\"uttar_pradesh\",\"like\",\"lose\",\"uttarakhand\",\"big\",\"pa\",\"live\",\"sp\",\"get\",\"go\",\"politics\",\"delhi\",\"congratulation\",\"right\",\"incindia\",\"rahul_gandhi\",\"up.\",\"cm\",\"officeofrg\",\"show\",\"bsp\",\"day\",\"come\",\"leader\",\"defeat\",\"amitshah\",\"httweets\",\"think\",\"voter\",\"prove\",\"work\",\"watch\",\"need\",\"yadavakhilesh\",\"development\",\"sir\",\"verdict2017\",\"good\",\"change\",\"2017\",\"best\",\"cong\",\"2019\",\"ndtv\",\"hope\",\"bjp4up\",\"happy\",\"want\",\"trend\",\"sattakagulaal\",\"uttarakhandelection2017\",\"take\",\"akhilesh\",\"kejriwal\",\"new\",\"bingelectionslive\",\"demonetisation\",\"give\",\"congrats\",\"ji\",\"opposition\",\"pa_ie\",\"know\",\"way\",\"namo\",\"tweet\",\"pm\",\"majority\",\"poll\",\"let\",\"sad\",\"country\",\"look\",\"election_result\",\"aamaadmipa\",\"thank\",\"happen\",\"evm\",\"great\",\"man\",\"election2017\",\"better\",\"rahul\",\"hai\",\"bjpsweepsup\",\"thanks\",\"resultswithnews18\",\"campaign\",\"medium\",\"300\",\"loss\",\"modino1\",\"finally\",\"sweep\",\"dear\",\"pappu\",\"2014\",\"wave\",\"ppl\",\"power\",\"suppo\",\"end\",\"pm_narendramodi\",\"raga\",\"amit_shah\",\"indian\",\"goaelection2017\",\"suppo_er\",\"update\",\"bjp.\",\"akhilesh_yadav\",\"ahead\",\"year\",\"call\",\"capt_amarinder\",\"face\",\"candidate\",\"sta\",\"look_like\",\"upresults2017\",\"democracy\",\"lol\",\"modi_wave\",\"upelectionresults\",\"huge\",\"evms\",\"wait\",\"narendramodi_amitshah\",\"thing\",\"manipurelection2017\",\"ur\",\"mandate\",\"holi\",\"talk\",\"news\",\"stop\",\"tell\",\"fight\",\"celebrate\",\"make\",\"alliance\",\"love\",\"can_not\",\"1\",\"singh\",\"office\",\"real\",\"govt\",\"fail\",\"twitter\",\"rahulgandhi\",\"late\",\"clear\",\"see\",\"accept\",\"2\",\"break\",\"political\",\"zeenews\",\"saffron\",\"u\",\"expect\",\"assembly\",\"true\",\"muslim\",\"hea\",\"muslims\",\"reaction\",\"modi_ji\",\"nation\",\"performance\",\"narendramodi_ji\",\"vote_share\",\"bihar\",\"virendersehwag\",\"uttarpradeshelection2017\",\"leadership\",\"modivsall\",\"3\",\"help\",\"feel\",\"sardesairajdeep\",\"place\",\"blame\",\"indiavotesnamo\",\"play\",\"cycle\",\"uk\",\"guy\",\"irom_sharmila\",\"bad\",\"far\",\"history\",\"economictimes\",\"leave\",\"modiwave\",\"aaptards\",\"understand\",\"try\",\"10\",\"demonetization\",\"goa_manipur\",\"question\",\"narendra_modi\",\"rule\",\"mean\",\"caste\",\"team\",\"modiji\",\"post\",\"sp_bsp\",\"hand\",\"government\",\"12\",\"turn\",\"speak\",\"follow\",\"verdict\",\"trail\",\"retweeted\",\"count\",\"exitpolls2017\",\"high\",\"set\",\"livemint\",\"stand\",\"ki\",\"prashant_kishore\",\"resultswithndtv\",\"reason\",\"bdutt\",\"storieswelove\",\"r\",\"pollswithair\",\"verdictwithtimes\",\"away\",\"national\",\"poor\",\"predict\",\"politician\",\"yes\",\"continue\",\"believe\",\"pm_modi\",\"tv\",\"exit_poll\",\"miss\",\"indian_politics\",\"credit\",\"president\",\"tsunamo\",\"bingelectionlive\",\"ndtv_resultswithndtv\",\"future\",\"todayschanakya\",\"celebration\",\"pic\",\"have\",\"read\",\"loose\",\"learn\",\"uttrakhand\",\"strong\",\"mind\",\"word\",\"save\",\"sirjadeja\",\"amethi\",\"communal\",\"11\",\"close\",\"trust\",\"rise\",\"public\",\"pmoindia\",\"clearly\",\"constituency\",\"check\",\"ask\",\"live_update\",\"reject\",\"indians_score_300_sehwag\",\"join\",\"varshasinghmcx\",\"declare\",\"election_2017\",\"triple_century\",\"bring\",\"winner\",\"clean_sweep\",\"indians\",\"claim\",\"timesnow\",\"muslim_vote\",\"htt\",\"long\",\"number\",\"wonder\",\"analysis\",\"akhileshyadav\",\"till\",\"choose\",\"sure\",\"hit\",\"sta_ed\",\"be\",\"head\",\"bspup2017\",\"chennai_sehwag_multan_karun\",\"indiatvnews\",\"secular\",\"lucknow\",\"vs\",\"success\",\"agree\",\"prediction\",\"family\",\"wrong\",\"world\",\"hindu\",\"joke\",\"gujarat\",\"congratulate\",\"mayavati\",\"samajwadipa\",\"chief_minister\",\"write\",\"remember\",\"soon\",\"hv\",\"person\",\"4\",\"nair_chennai_modi\",\"vote_development\",\"media\",\"deserve\",\"ke\",\"trends\",\"divide\",\"electionresults2017\",\"fact\",\"life\",\"speech\",\"wo_not\",\"ko\",\"forget\",\"score\",\"sorry\",\"15\",\"abdullah_omar\",\"300_seat\",\"d\",\"hear\",\"picture\",\"cnnnews18_resultswithnews18\",\"ka\",\"job\",\"comment\",\"liberal\",\"contest\",\"nd\",\"decide\",\"kudos\",\"base\",\"friend\",\"21\",\"respect\",\"moment\",\"money\",\"tsunami\",\"proud\",\"minority\",\"jnu\",\"issue\",\"massive\",\"matter\",\"ho\",\"repubiicofindia\",\"5\",\"reality\",\"se\",\"enjoy\",\"voting\",\"margin\",\"assembly_election\",\"old\",\"possible\",\"stay\",\"resultswithtimesnow\",\"sherryontopp\",\"accept_defeat\",\"mark\",\"20\",\"u.p\",\"yogi_adityanath\",\"repo\",\"strategy\",\"pay\",\"religion\",\"journalist\",\"hi\",\"star_campaigner\",\"welcome\",\"iromsharmila\",\"caste_religion\",\"yadav\",\"form\",\"coverage\",\"bjpwinselectricity4up\",\"22\",\"actually\",\"wow\",\"progress\",\"create\",\"decision\",\"cnbctv18live\",\"hold\",\"buraa_naa_maano_modii_hai\",\"form_govt\",\"mr\",\"final\",\"use\",\"match\",\"gandhi\",\"run\",\"ashutosh83b\",\"chance\",\"instead\",\"news_channel\",\"election_commission\",\"force\",\"dalit\",\"policy\",\"ye\",\"guess\",\"13\",\"plan\",\"despite\",\"rajnathsingh\",\"amazing\",\"keep\",\"ani_new\",\"electionresults2017live\",\"airnewsale\",\"begin\",\"game\",\"lot\",\"legion__group\",\"ht\",\"impo_ant\",\"explain\",\"ranaayyub\",\"landslide_victory\",\"wish\",\"record\",\"uttarpradeshpolls2017\",\"smritiirani\",\"pls\",\"dna\",\"factor\",\"major\",\"minister\",\"ready\",\"position\",\"home\",\"bhakts\",\"hate\",\"past\",\"u.p.\",\"counting\",\"interesting\",\"independent\",\"decision2017\",\"abpresults\",\"pa_y.\",\"pakistan\",\"ab\",\"shame\",\"different\",\"effect\",\"elect\",\"story\",\"track\",\"video\",\"2017_live\",\"arvind_kejriwal\",\"spcongress\",\"beat\",\"late_trend\",\"youth\",\"promise\",\"p\",\"perfect\",\"aajtak\",\"surprise\",\"2024\",\"indianexpress\",\"spokesperson\",\"frm\",\"rest\",\"loser\",\"card\",\"timesofindia\",\"shock\",\"modified\",\"remain\",\"17\",\"ram\",\"able\",\"channel\",\"apna_dal\",\"rally\",\"won\",\"catch\",\"results2017\",\"vote_caste\",\"lesson\",\"level\",\"25\",\"vikas\",\"ground\",\"impact\",\"corruption\",\"surgical_strike\",\"assembly_election_result_2017\",\"gonna\",\"step\",\"mulayam\",\"newsx\",\"mayawati_ji\",\"goaelections2017\",\"saffron_holi\",\"press_conference\",\"woman\",\"second\",\"fall\",\"hop\",\"uttarpradesh_uttarakhand\",\"dream\",\"move\",\"troll\",\"free\",\"listen\",\"cm_candidate\",\"prime_minister\",\"wo\",\"son\",\"shah\",\"term\",\"ne\",\"nt\",\"scoopwhoopnews\",\"proof\",\"hide\",\"fake\",\"seriously\",\"burnol\",\"fast\",\"complete\",\"nahi\",\"finger\",\"point\",\"assembly_election_2017\",\"uppolls2017\",\"100\",\"varanasi\",\"sardanarohit\",\"gain\",\"congratulation_narendramodi\",\"smile\",\"focus\",\"sma\",\"busy\",\"confidence\",\"hour\",\"presstitutes\",\"ec\",\"message\",\"bloombergquint\",\"kick\",\"indiatoday\",\"god\",\"shri\",\"anymore\",\"prashant_kishor\",\"elephant\",\"captain\",\"countingday2017\",\"club\",\"answer\",\"raghav_chadha\",\"return\",\"house\",\"7\",\"tomorrow\",\"people_want\",\"destroy\",\"14\",\"cast\",\"colour\",\"cheer\",\"failure\",\"badly\",\"send\",\"magic\",\"demonitisation\",\"faith\",\"chief\",\"shehla_rashid\",\"evm_machine\",\"hard\",\"fr\",\"drug\",\"reply\",\"share\",\"evm_tamper\",\"wake\",\"fool\",\"timesofindia_verdictwithtimes\",\"tht\",\"eye\",\"congratulations\",\"role\",\"gabbarsanghi\",\"aur\",\"hindus\",\"election_result_2017\",\"kind\",\"governance\",\"figure\",\"er\",\"hard_work\",\"outcome\",\"bhi\",\"zero\",\"truly\",\"scene\",\"2nd\",\"worker\",\"fun\",\"funny\",\"dynasty\",\"hat\",\"maya\",\"reach\",\"navjot_singh_sidhu\",\"trump\",\"agenda\",\"buy\",\"definitely\",\"clean\",\"cry\",\"9\",\"samajwadi_pa\",\"rock\",\"historic_win\",\"introspect\",\"total\",\"journos\",\"breaking\",\"image\",\"tvdforever\",\"harish_rawat\",\"statement\",\"elecciones2017\",\"responsible\",\"accurate\",\"captain_amarinder_singh\",\"unite\",\"add\",\"early\",\"gift\",\"form_government\",\"throw\",\"3rd\",\"positive\",\"doubt\",\"scrap498a\",\"glad\",\"sit\",\"responsibility\",\"retain\",\"bhai\",\"18\",\"lotus\",\"allegation\",\"assemblyelections2017\",\"oneindia\",\"cross\",\"totally\",\"8\",\"march\",\"resign\",\"results\",\"people_cast_vote\",\"favour\",\"behenji\",\"cnnnews18\",\"brain\",\"kejri\",\"et\",\"create_history\",\"watch_live\",\"toh\",\"16\",\"elections\",\"rajya_sabha\",\"bharat\",\"corrupt\",\"chanakya\",\"bjpwins\",\"action\",\"exitpolls\",\"meha_weets\",\"atheist_krishna\",\"ad\",\"polarisation\",\"bcoz\",\"abt\",\"shud\",\"sense\",\"yadavakhilesh_officeofrg\",\"bjp_join_300\",\"truth\",\"caste_politics\",\"note\",\"irom_sharmila_lose\",\"jai\",\"announce\",\"mein\",\"b\",\"deliver\",\"key\",\"situation\",\"rip\",\"follow_upelection2017\",\"live_blog\",\"single\",\"cm.\",\"outside\",\"amitshah_ji\",\"manage\",\"haha\",\"era\",\"muslims_vote\",\"headqua_er\",\"celebrate_victory\",\"drgpradhan\",\"salute\",\"surely\",\"indicate\",\"centre\",\"aap.\",\"financialxpress\",\"effo\",\"sidhu\",\"morning\",\"karnataka\",\"quit_politics\",\"demand\",\"present\",\"finish\",\"touch\",\"hater\",\"epic\",\"bt\",\"officeofrg_yadavakhilesh\",\"realise\",\"hey\",\"wittyfeedlive\",\"punjabpolls2017\",\"massive_victory\",\"not_know\",\"song\",\"include\",\"condition\",\"massive_win\",\"ke_ladke\",\"mp\",\"har_har_modi\",\"discuss\",\"meet\",\"kya\",\"states\",\"aninewsup\",\"20_hilarious_tweet\",\"spot\",\"2012\",\"disappoint\",\"pa_worker\",\"na\",\"law\",\"thoubal\",\"aamaadmipa_arvindkejriwal\",\"ani\",\"nota\",\"pa_y\",\"social_medium\",\"bag\",\"stupid\",\"neck_neck\",\"case\",\"rout\",\"left\",\"mitron\",\"completely\",\"absolutely\",\"good_governance\",\"shit\",\"wipe\",\"modify\",\"appeasement\",\"wid\",\"sehwag\",\"challenge\",\"choice\",\"congratulation_narendramodi_amitshah\",\"yr\",\"congressmuktbharat\",\"delhites\",\"rg\",\"correct\",\"outlookindia\",\"likely\",\"long_live_democracy\",\"upelections2017\",\"battle\",\"spcong\",\"reform\",\"sell\",\"triple\",\"mr.\",\"noida\",\"sehwag_karun_nair\",\"growth\",\"plz\",\"oh\",\"jai_ho\",\"mass\",\"brand\",\"voting_machine\",\"gang\",\"entire\",\"bow\",\"bjp_win_deoband\",\"daily_thanks\",\"map\",\"akali\",\"hell\",\"uttarakhand_cm_harish_rawat\",\"kaur\",\"slap\",\"evms_tamper\",\"class\",\"m\",\"bjp_amp_anti_modi\",\"double\",\"atleast\",\"tough\",\"vacation\",\"rid\",\"deoband\",\"ram_mandir\",\"safe\",\"hain\",\"decimate\",\"rig\",\"test\",\"difference\",\"unexpected\",\"sign\",\"abpnewstv\",\"emerge\",\"credit_go\",\"awesome\",\"fuck\",\"product\",\"mistake\",\"modi_tsunami\",\"mra_kumar\",\"zeenews_sattakagulaal\",\"secularism\",\"little\",\"sp_bsp_congress\",\"crush\",\"overconfidence\",\"probably\",\"retweet\",\"24\",\"mature\",\"color\",\"raise\",\"will\",\"punjab_goa_manipur\",\"30\",\"vote_machine\",\"open\",\"grand\",\"tha\",\"lady\",\"sharma\",\"hit_triple_century\",\"business\",\"saffron_wave\",\"latest_trends\",\"parkash_singh_badal\",\"today_lesson_bihar\",\"star\",\"digvijaya_28\",\"push\",\"historic_victory\",\"father\",\"arrogance\",\"mlas\",\"slogan\",\"current\",\"good_news\",\"rohinisgh_et\",\"40\",\"congratulation_narendramodi_ji\",\"27\",\"dad\",\"realize\",\"shut\",\"beginning\",\"grow\",\"big_loser\",\"cycle_puncture\",\"view\",\"akalis\",\"s\",\"logic\",\"anti\",\"lambi\",\"spread\",\"drama\",\"visit\",\"firstpost\",\"antiincumbency\",\"swamy39\",\"muslim_woman\",\"prashantkishore\",\"kumar\",\"data\",\"npp\",\"masses\",\"main\",\"rajdeep\",\"increase\",\"hindutva\",\"exactly\",\"expe\",\"self\",\"line\",\"cross_halfway_mark\",\"congratulation_sir\",\"local\",\"expectation\",\"common\",\"ban\",\"electoral\",\"coz\",\"laugh\",\"near\",\"develop\",\"perform\",\"kyaukhaadlega\",\"build\",\"dat\",\"thought\",\"rahul_akhilesh\",\"shekhargupta\",\"dalits\",\"tally\",\"ind\",\"repeat\",\"narrative\"],\"word\":[\"electionresults\",\"bjp\",\"win\",\"congress\",\"punjab\",\"upelection2017\",\"elections2017\",\"modi\",\"narendramodi\",\"goa\",\"people\",\"aap\",\"seat\",\"bjp4india\",\"election\",\"vote\",\"lead\",\"india\",\"punjabelection2017\",\"not\",\"result\",\"mayawati\",\"today\",\"manipur\",\"time\",\"arvindkejriwal\",\"state\",\"say\",\"uttarpradesh\",\"victory\",\"uttar_pradesh\",\"like\",\"lose\",\"uttarakhand\",\"big\",\"pa\",\"live\",\"sp\",\"get\",\"go\",\"politics\",\"delhi\",\"congratulation\",\"right\",\"incindia\",\"rahul_gandhi\",\"up.\",\"cm\",\"officeofrg\",\"show\",\"bsp\",\"day\",\"come\",\"leader\",\"defeat\",\"amitshah\",\"httweets\",\"think\",\"voter\",\"prove\",\"work\",\"watch\",\"need\",\"yadavakhilesh\",\"development\",\"sir\",\"verdict2017\",\"good\",\"change\",\"2017\",\"best\",\"cong\",\"2019\",\"ndtv\",\"hope\",\"bjp4up\",\"happy\",\"want\",\"trend\",\"sattakagulaal\",\"uttarakhandelection2017\",\"take\",\"akhilesh\",\"kejriwal\",\"new\",\"bingelectionslive\",\"demonetisation\",\"give\",\"congrats\",\"ji\",\"opposition\",\"pa_ie\",\"know\",\"way\",\"namo\",\"tweet\",\"pm\",\"majority\",\"poll\",\"let\",\"sad\",\"country\",\"look\",\"election_result\",\"aamaadmipa\",\"thank\",\"happen\",\"evm\",\"great\",\"man\",\"election2017\",\"better\",\"rahul\",\"hai\",\"bjpsweepsup\",\"thanks\",\"resultswithnews18\",\"campaign\",\"medium\",\"300\",\"loss\",\"modino1\",\"finally\",\"sweep\",\"dear\",\"pappu\",\"2014\",\"wave\",\"ppl\",\"power\",\"suppo\",\"end\",\"pm_narendramodi\",\"raga\",\"amit_shah\",\"indian\",\"goaelection2017\",\"suppo_er\",\"update\",\"bjp.\",\"akhilesh_yadav\",\"ahead\",\"year\",\"call\",\"capt_amarinder\",\"face\",\"candidate\",\"sta\",\"look_like\",\"upresults2017\",\"democracy\",\"lol\",\"modi_wave\",\"upelectionresults\",\"huge\",\"evms\",\"wait\",\"narendramodi_amitshah\",\"thing\",\"manipurelection2017\",\"ur\",\"mandate\",\"holi\",\"talk\",\"news\",\"stop\",\"tell\",\"fight\",\"celebrate\",\"make\",\"alliance\",\"love\",\"can_not\",\"1\",\"singh\",\"office\",\"real\",\"govt\",\"fail\",\"twitter\",\"rahulgandhi\",\"late\",\"clear\",\"see\",\"accept\",\"2\",\"break\",\"political\",\"zeenews\",\"saffron\",\"u\",\"expect\",\"assembly\",\"true\",\"muslim\",\"hea\",\"muslims\",\"reaction\",\"modi_ji\",\"nation\",\"performance\",\"narendramodi_ji\",\"vote_share\",\"bihar\",\"virendersehwag\",\"uttarpradeshelection2017\",\"leadership\",\"modivsall\",\"3\",\"help\",\"feel\",\"sardesairajdeep\",\"place\",\"blame\",\"indiavotesnamo\",\"play\",\"cycle\",\"uk\",\"guy\",\"irom_sharmila\",\"bad\",\"far\",\"history\",\"economictimes\",\"leave\",\"modiwave\",\"aaptards\",\"understand\",\"try\",\"10\",\"demonetization\",\"goa_manipur\",\"question\",\"narendra_modi\",\"rule\",\"mean\",\"caste\",\"team\",\"modiji\",\"post\",\"sp_bsp\",\"hand\",\"government\",\"12\",\"turn\",\"speak\",\"follow\",\"verdict\",\"trail\",\"retweeted\",\"count\",\"exitpolls2017\",\"high\",\"set\",\"livemint\",\"stand\",\"ki\",\"prashant_kishore\",\"resultswithndtv\",\"reason\",\"bdutt\",\"storieswelove\",\"r\",\"pollswithair\",\"verdictwithtimes\",\"away\",\"national\",\"poor\",\"predict\",\"politician\",\"yes\",\"continue\",\"believe\",\"pm_modi\",\"tv\",\"exit_poll\",\"miss\",\"indian_politics\",\"credit\",\"president\",\"tsunamo\",\"bingelectionlive\",\"ndtv_resultswithndtv\",\"future\",\"todayschanakya\",\"celebration\",\"pic\",\"have\",\"read\",\"loose\",\"learn\",\"uttrakhand\",\"strong\",\"mind\",\"word\",\"save\",\"sirjadeja\",\"amethi\",\"communal\",\"11\",\"close\",\"trust\",\"rise\",\"public\",\"pmoindia\",\"clearly\",\"constituency\",\"check\",\"ask\",\"live_update\",\"reject\",\"indians_score_300_sehwag\",\"join\",\"varshasinghmcx\",\"declare\",\"election_2017\",\"triple_century\",\"bring\",\"winner\",\"clean_sweep\",\"indians\",\"claim\",\"timesnow\",\"muslim_vote\",\"htt\",\"long\",\"number\",\"wonder\",\"analysis\",\"akhileshyadav\",\"till\",\"choose\",\"sure\",\"hit\",\"sta_ed\",\"be\",\"head\",\"bspup2017\",\"chennai_sehwag_multan_karun\",\"indiatvnews\",\"secular\",\"lucknow\",\"vs\",\"success\",\"agree\",\"prediction\",\"family\",\"wrong\",\"world\",\"hindu\",\"joke\",\"gujarat\",\"congratulate\",\"mayavati\",\"samajwadipa\",\"chief_minister\",\"write\",\"remember\",\"soon\",\"hv\",\"person\",\"4\",\"nair_chennai_modi\",\"vote_development\",\"media\",\"deserve\",\"ke\",\"trends\",\"divide\",\"electionresults2017\",\"fact\",\"life\",\"speech\",\"wo_not\",\"ko\",\"forget\",\"score\",\"sorry\",\"15\",\"abdullah_omar\",\"300_seat\",\"d\",\"hear\",\"picture\",\"cnnnews18_resultswithnews18\",\"ka\",\"job\",\"comment\",\"liberal\",\"contest\",\"nd\",\"decide\",\"kudos\",\"base\",\"friend\",\"21\",\"respect\",\"moment\",\"money\",\"tsunami\",\"proud\",\"minority\",\"jnu\",\"issue\",\"massive\",\"matter\",\"ho\",\"repubiicofindia\",\"5\",\"reality\",\"se\",\"enjoy\",\"voting\",\"margin\",\"assembly_election\",\"old\",\"possible\",\"stay\",\"resultswithtimesnow\",\"sherryontopp\",\"accept_defeat\",\"mark\",\"20\",\"u.p\",\"yogi_adityanath\",\"repo\",\"strategy\",\"pay\",\"religion\",\"journalist\",\"hi\",\"star_campaigner\",\"welcome\",\"iromsharmila\",\"caste_religion\",\"yadav\",\"form\",\"coverage\",\"bjpwinselectricity4up\",\"22\",\"actually\",\"wow\",\"progress\",\"create\",\"decision\",\"cnbctv18live\",\"hold\",\"buraa_naa_maano_modii_hai\",\"form_govt\",\"mr\",\"final\",\"use\",\"match\",\"gandhi\",\"run\",\"ashutosh83b\",\"chance\",\"instead\",\"news_channel\",\"election_commission\",\"force\",\"dalit\",\"policy\",\"ye\",\"guess\",\"13\",\"plan\",\"despite\",\"rajnathsingh\",\"amazing\",\"keep\",\"ani_new\",\"electionresults2017live\",\"airnewsale\",\"begin\",\"game\",\"lot\",\"legion__group\",\"ht\",\"impo_ant\",\"explain\",\"ranaayyub\",\"landslide_victory\",\"wish\",\"record\",\"uttarpradeshpolls2017\",\"smritiirani\",\"pls\",\"dna\",\"factor\",\"major\",\"minister\",\"ready\",\"position\",\"home\",\"bhakts\",\"hate\",\"past\",\"u.p.\",\"counting\",\"interesting\",\"independent\",\"decision2017\",\"abpresults\",\"pa_y.\",\"pakistan\",\"ab\",\"shame\",\"different\",\"effect\",\"elect\",\"story\",\"track\",\"video\",\"2017_live\",\"arvind_kejriwal\",\"spcongress\",\"beat\",\"late_trend\",\"youth\",\"promise\",\"p\",\"perfect\",\"aajtak\",\"surprise\",\"2024\",\"indianexpress\",\"spokesperson\",\"frm\",\"rest\",\"loser\",\"card\",\"timesofindia\",\"shock\",\"modified\",\"remain\",\"17\",\"ram\",\"able\",\"channel\",\"apna_dal\",\"rally\",\"won\",\"catch\",\"results2017\",\"vote_caste\",\"lesson\",\"level\",\"25\",\"vikas\",\"ground\",\"impact\",\"corruption\",\"surgical_strike\",\"assembly_election_result_2017\",\"gonna\",\"step\",\"mulayam\",\"newsx\",\"mayawati_ji\",\"goaelections2017\",\"saffron_holi\",\"press_conference\",\"woman\",\"second\",\"fall\",\"hop\",\"uttarpradesh_uttarakhand\",\"dream\",\"move\",\"troll\",\"free\",\"listen\",\"cm_candidate\",\"prime_minister\",\"wo\",\"son\",\"shah\",\"term\",\"ne\",\"nt\",\"scoopwhoopnews\",\"proof\",\"hide\",\"fake\",\"seriously\",\"burnol\",\"fast\",\"complete\",\"nahi\",\"finger\",\"point\",\"assembly_election_2017\",\"uppolls2017\",\"100\",\"varanasi\",\"sardanarohit\",\"gain\",\"congratulation_narendramodi\",\"smile\",\"focus\",\"sma\",\"busy\",\"confidence\",\"hour\",\"presstitutes\",\"ec\",\"message\",\"bloombergquint\",\"kick\",\"indiatoday\",\"god\",\"shri\",\"anymore\",\"prashant_kishor\",\"elephant\",\"captain\",\"countingday2017\",\"club\",\"answer\",\"raghav_chadha\",\"return\",\"house\",\"7\",\"tomorrow\",\"people_want\",\"destroy\",\"14\",\"cast\",\"colour\",\"cheer\",\"failure\",\"badly\",\"send\",\"magic\",\"demonitisation\",\"faith\",\"chief\",\"shehla_rashid\",\"evm_machine\",\"hard\",\"fr\",\"drug\",\"reply\",\"share\",\"evm_tamper\",\"wake\",\"fool\",\"timesofindia_verdictwithtimes\",\"tht\",\"eye\",\"congratulations\",\"role\",\"gabbarsanghi\",\"aur\",\"hindus\",\"election_result_2017\",\"kind\",\"governance\",\"figure\",\"er\",\"hard_work\",\"outcome\",\"bhi\",\"zero\",\"truly\",\"scene\",\"2nd\",\"worker\",\"fun\",\"funny\",\"dynasty\",\"hat\",\"maya\",\"reach\",\"navjot_singh_sidhu\",\"trump\",\"agenda\",\"buy\",\"definitely\",\"clean\",\"cry\",\"9\",\"samajwadi_pa\",\"rock\",\"historic_win\",\"introspect\",\"total\",\"journos\",\"breaking\",\"image\",\"tvdforever\",\"harish_rawat\",\"statement\",\"elecciones2017\",\"responsible\",\"accurate\",\"captain_amarinder_singh\",\"unite\",\"add\",\"early\",\"gift\",\"form_government\",\"throw\",\"3rd\",\"positive\",\"doubt\",\"scrap498a\",\"glad\",\"sit\",\"responsibility\",\"retain\",\"bhai\",\"18\",\"lotus\",\"allegation\",\"assemblyelections2017\",\"oneindia\",\"cross\",\"totally\",\"8\",\"march\",\"resign\",\"results\",\"people_cast_vote\",\"favour\",\"behenji\",\"cnnnews18\",\"brain\",\"kejri\",\"et\",\"create_history\",\"watch_live\",\"toh\",\"16\",\"elections\",\"rajya_sabha\",\"bharat\",\"corrupt\",\"chanakya\",\"bjpwins\",\"action\",\"exitpolls\",\"meha_weets\",\"atheist_krishna\",\"ad\",\"polarisation\",\"bcoz\",\"abt\",\"shud\",\"sense\",\"yadavakhilesh_officeofrg\",\"bjp_join_300\",\"truth\",\"caste_politics\",\"note\",\"irom_sharmila_lose\",\"jai\",\"announce\",\"mein\",\"b\",\"deliver\",\"key\",\"situation\",\"rip\",\"follow_upelection2017\",\"live_blog\",\"single\",\"cm.\",\"outside\",\"amitshah_ji\",\"manage\",\"haha\",\"era\",\"muslims_vote\",\"headqua_er\",\"celebrate_victory\",\"drgpradhan\",\"salute\",\"surely\",\"indicate\",\"centre\",\"aap.\",\"financialxpress\",\"effo\",\"sidhu\",\"morning\",\"karnataka\",\"quit_politics\",\"demand\",\"present\",\"finish\",\"touch\",\"hater\",\"epic\",\"bt\",\"officeofrg_yadavakhilesh\",\"realise\",\"hey\",\"wittyfeedlive\",\"punjabpolls2017\",\"massive_victory\",\"not_know\",\"song\",\"include\",\"condition\",\"massive_win\",\"ke_ladke\",\"mp\",\"har_har_modi\",\"discuss\",\"meet\",\"kya\",\"states\",\"aninewsup\",\"20_hilarious_tweet\",\"spot\",\"2012\",\"disappoint\",\"pa_worker\",\"na\",\"law\",\"thoubal\",\"aamaadmipa_arvindkejriwal\",\"ani\",\"nota\",\"pa_y\",\"social_medium\",\"bag\",\"stupid\",\"neck_neck\",\"case\",\"rout\",\"left\",\"mitron\",\"completely\",\"absolutely\",\"good_governance\",\"shit\",\"wipe\",\"modify\",\"appeasement\",\"wid\",\"sehwag\",\"challenge\",\"choice\",\"congratulation_narendramodi_amitshah\",\"yr\",\"congressmuktbharat\",\"delhites\",\"rg\",\"correct\",\"outlookindia\",\"likely\",\"long_live_democracy\",\"upelections2017\",\"battle\",\"spcong\",\"reform\",\"sell\",\"triple\",\"mr.\",\"noida\",\"sehwag_karun_nair\",\"growth\",\"plz\",\"oh\",\"jai_ho\",\"mass\",\"brand\",\"voting_machine\",\"gang\",\"entire\",\"bow\",\"bjp_win_deoband\",\"daily_thanks\",\"map\",\"akali\",\"hell\",\"uttarakhand_cm_harish_rawat\",\"kaur\",\"slap\",\"evms_tamper\",\"class\",\"m\",\"bjp_amp_anti_modi\",\"double\",\"atleast\",\"tough\",\"vacation\",\"rid\",\"deoband\",\"ram_mandir\",\"safe\",\"hain\",\"decimate\",\"rig\",\"test\",\"difference\",\"unexpected\",\"sign\",\"abpnewstv\",\"emerge\",\"credit_go\",\"awesome\",\"fuck\",\"product\",\"mistake\",\"modi_tsunami\",\"mra_kumar\",\"zeenews_sattakagulaal\",\"secularism\",\"little\",\"sp_bsp_congress\",\"crush\",\"overconfidence\",\"probably\",\"retweet\",\"24\",\"mature\",\"color\",\"raise\",\"will\",\"punjab_goa_manipur\",\"30\",\"vote_machine\",\"open\",\"grand\",\"tha\",\"lady\",\"sharma\",\"hit_triple_century\",\"business\",\"saffron_wave\",\"latest_trends\",\"parkash_singh_badal\",\"today_lesson_bihar\",\"star\",\"digvijaya_28\",\"push\",\"historic_victory\",\"father\",\"arrogance\",\"mlas\",\"slogan\",\"current\",\"good_news\",\"rohinisgh_et\",\"40\",\"congratulation_narendramodi_ji\",\"27\",\"dad\",\"realize\",\"shut\",\"beginning\",\"grow\",\"big_loser\",\"cycle_puncture\",\"view\",\"akalis\",\"s\",\"logic\",\"anti\",\"lambi\",\"spread\",\"drama\",\"visit\",\"firstpost\",\"antiincumbency\",\"swamy39\",\"muslim_woman\",\"prashantkishore\",\"kumar\",\"data\",\"npp\",\"masses\",\"main\",\"rajdeep\",\"increase\",\"hindutva\",\"exactly\",\"expe\",\"self\",\"line\",\"cross_halfway_mark\",\"congratulation_sir\",\"local\",\"expectation\",\"common\",\"ban\",\"electoral\",\"coz\",\"laugh\",\"near\",\"develop\",\"perform\",\"kyaukhaadlega\",\"build\",\"dat\",\"thought\",\"rahul_akhilesh\",\"shekhargupta\",\"dalits\",\"tally\",\"ind\",\"repeat\",\"narrative\"],\"x_coord\":[19.004390219493096,18.445725621613782,10.235873193043174,-10.320635035906228,-11.985889283303402,-10.905837127082826,-8.212694129443527,8.932538394205057,11.281041414264534,-11.942708296755576,13.094636706770023,-12.160485763368898,-0.8389277410947704,18.39833240200451,17.255815840697377,-7.657643342306838,-2.335769133592029,5.4216335101235105,-5.42010158021357,-6.519135374911184,5.414155425870535,8.680789673771944,9.979966998782038,2.476964855389744,-0.2934766394570275,-2.1847818506640597,1.8471219350100196,11.197033228313664,3.4303850456945826,1.005273853341249,-11.141640911618218,-14.452120132233336,-7.357913931190254,-8.904741704223438,7.180554675408039,2.4314110572706364,-2.5323672214747632,-13.044854813246449,3.272075244851268,9.00847927366733,12.095894131452885,-0.15560546308554493,8.483267272132705,-11.607550155090756,-10.503881198926752,-5.976449593386172,-6.305029699367283,3.6317489202799607,-5.166652865350478,0.006301496312497219,-13.15800792720514,10.654557545044051,1.519440186969073,0.827324823776934,-14.656478951305196,-15.307385725265483,-6.980909891706191,11.676523196741849,16.05054682030655,5.80666060171568,0.3834171220491467,-0.22103611289198175,-1.5957915666312443,-11.988915190364146,11.69484790378281,-1.1256616694631796,7.878167295146489,5.69668995138781,12.28262926539254,-7.212512489534618,9.67795377708784,1.5923140795733317,4.061697938105144,-10.321878940355749,11.276749386929165,-12.108543048378811,9.160175144510838,5.701276031730244,0.9300152190764677,-15.477563050900693,2.132673706298718,3.8910947818687442,-9.24144861358448,-2.6215956331064896,7.255996698346842,-0.03784700915866979,9.131385553151285,-8.191625195259505,7.878869066081408,-10.961992121437119,-3.1628502907654763,5.498412454400871,-8.38509791143295,-0.7598473676022678,3.345503372660013,1.17608740601413,-3.6701152420612835,14.749092796962778,-7.111751782600873,11.578154839643174,3.7538301641399316,12.528759414804128,-14.236948100493908,-8.708678458824597,-12.57327674833054,13.7526763698251,10.073927573990636,9.847222135164833,9.385922092099165,10.791459926096403,9.526218013957187,2.1931482360701566,-5.873730290610453,0.5353254464987063,-11.164645972620052,-1.2684921805031695,-6.0052520444002555,4.409441096720323,-9.860659459279933,-7.5417009103474495,-14.582903447985338,-16.860662784468772,-1.2086653142127395,-1.2435451647606983,5.382805949642439,6.587105949581787,-7.293652786328971,-7.073109112376636,14.789721322691667,4.582175971998027,4.556778173865926,7.359782211755527,10.534142142355154,-5.549753803889266,-14.206363065070883,-10.47917887062416,0.735132720498038,8.48101480196603,-5.905531831142852,7.241862226560648,-7.477473274371619,-2.8605358360790847,15.509347594453544,7.041777942641104,-2.1130942808433075,-12.955111056140465,-5.462403225995815,13.144535828543722,-0.9004896187654087,9.60921963215965,12.086868121068887,5.78862659538772,-7.066869147000571,-4.899005903013633,-14.056274440805785,10.588684604798598,-5.54472512711295,10.3406840594825,12.021808793262242,2.5717007279550073,-4.296265409049598,11.531769737508387,8.656644928015023,-14.36844131179036,-1.14680686612927,5.214049334404943,-11.86650228412785,-16.736947192677466,-2.2924644875986946,0.5771751392219853,-13.48598295222856,16.692519256880512,-12.767841648759367,3.230346297303955,-5.806666460747399,-8.571748333032884,7.945911187467152,16.00467364314616,1.4380514873931898,-5.001106532177874,-5.718001808176237,-1.3837549396820288,-4.80155855430677,-8.766658190508608,14.298339776047154,3.2271944747194055,-9.343521436284636,-5.972437790917165,-15.844354939351375,8.105903911032007,-7.76542195501259,-6.783318693854111,-2.928381965540576,2.7161607543044504,15.9661517826378,0.030547329528198164,15.23571173517265,-6.279396259617362,12.897502872842491,4.952064366517668,4.617834482595388,9.856007305361542,-2.0816583929278085,-3.164936197812633,-6.916855926130718,-13.058840447914893,7.696666755830798,-13.275145650221827,2.048607759206796,3.6624408803303306,-2.2910350760029767,-16.57981938458959,-11.53657561581539,10.136514568453114,-16.962239056876815,1.0596701376479145,-11.632950267162439,-8.528310484284825,-8.544966942541542,0.9543155417482277,5.6873848053283895,-2.6162605062182807,-0.7560661806747685,-5.558738199592072,2.542571579200521,3.0106213191861726,-2.9218299245482315,15.218376483821537,15.589262278943085,0.4049745441102497,9.129437874632353,-8.906478223404742,7.001335807652814,-3.7389707284853873,2.8947619725882126,14.411661198170197,14.261031241280959,-2.563800366521815,13.387066303960092,4.360959885380907,11.173802466948388,-11.9531418661246,2.7327614993182765,0.05464379786200314,-13.753471803828736,2.704697272423747,-5.991051092241442,16.50311646831486,-4.347585805169522,-6.4231630999670974,2.012578947892629,-10.288926754684534,-13.381724390195092,-5.255144139229624,-3.269352805870729,-17.724607841565977,-0.8166696670919229,-3.828814308631493,-10.068674737840606,-14.657050766566941,-3.74312658316396,1.6545722470508752,17.856824250477363,-4.635052482543856,-5.976006758277392,-13.821219765178476,2.1707164344906547,16.811441245631357,-9.017375223206164,7.2041718304344124,6.274978433664524,4.767528501595355,13.820227603679227,13.609728652074798,-1.716092724235757,-9.128907111245171,-4.878207742168591,7.505105181938768,5.838414315309432,-6.577371037262032,2.187074164039265,0.5275094700065237,-11.74411704133037,3.5089038181662295,-10.222200638842104,3.032138639399074,-9.704739456634165,3.883528365545505,-4.464019348058275,10.596743499680683,-3.1675629385083393,-9.5855293376988,-6.168648581065388,11.648920705775465,6.067882098267054,4.170524026439456,-6.304727056694081,-8.142404536746449,14.651931965929673,0.6269444206335099,-3.655455953326606,-7.768510061722053,11.931483700336262,12.577299066708092,8.673320744746281,12.780414581276316,-5.6139672200194575,-1.42384795236373,-11.966966506966394,-4.994179495611069,13.048142322286804,-6.339573353598044,4.354141251138036,-4.88197309820943,-16.914340213040482,-2.0754968143290213,-6.188767690918444,-1.832450137967115,-12.205405353457898,-9.635839041412115,-10.424107959643877,5.5775489882427625,-15.418818976392496,17.16538916641826,-10.602848146356552,7.725780046887903,-17.333374076586228,-5.291645820420516,-13.839914676211865,-11.892742831360401,3.8853614822434848,2.2343763637607212,12.14418351384314,-7.06680011269486,-9.765831901953069,-8.552523196627773,-8.666662472766967,-12.929142194867234,-5.623959624070071,-10.04981229672499,14.682341470199908,-10.049157271143537,-10.911536389474156,6.043361581753305,-3.5969368378256927,-9.173789486928412,-1.1805657873177637,-9.57735994342757,-5.555622232505148,15.524969219813213,1.9379348322631191,-0.9078501037587837,0.9531295999252651,8.776686125749423,-12.911367497979692,3.1632643631001116,11.213774128348295,3.5162761895938948,11.861778602961104,12.740127790041933,5.941207568177677,2.3535274267693653,-3.2896331112216926,11.868547216765357,15.80814645916833,9.252409473199263,-1.3114177546891337,-2.296345836632006,14.992984640648134,9.125157642944883,-12.395060070204934,0.6553106756176845,-2.499948386478383,-6.250242116565158,0.550692846768421,15.946034806933477,-6.987985547379762,-4.690514943240063,0.6629924519936967,-15.148909593806046,0.4697018196339936,10.377127995761066,-9.522751660097068,-10.77924098829344,-7.996169969811424,0.24089921669284475,10.681532549286267,5.875448947071032,-3.2443466145035815,-4.045638152543769,-10.422667692064268,1.0192012663046988,9.794706635576492,12.348111850075647,-9.5466501665742,0.07295254436804488,-3.059780660671263,-8.720855212049647,2.3080261412345853,-2.672096151821994,8.113965721759849,15.16460490288187,-2.8272781613772273,13.231810032993392,-14.459415556646686,8.887293813486597,0.8975421150982723,-5.19458907218652,1.6303994657647598,-3.1507176146291522,-0.4376384114653662,8.055350582050362,16.731564298922734,-14.476220238441597,-10.000313628705731,-5.980056022177062,-7.352706751559163,-0.42971901543839935,-11.280712885315296,-3.5476883444657106,12.41630654829008,-8.768290663151873,-0.6655076293777213,-10.051149341886408,9.614751263741878,-1.997323052708766,-3.542966825120247,5.467290300640832,13.761597889197615,-4.326378114721882,0.18879807998203685,5.47967393265335,-3.2485715617718585,0.8497088390465966,12.786999488618601,4.000019621853224,-16.97249130330194,-9.566774796845609,1.2745677846444563,-1.3360745707543384,9.201355765398121,4.6249681876084505,16.02844576579863,12.878847267458786,11.266672556131487,-7.103044400559251,-4.315399411997117,4.597735565987472,-8.341768809227577,-1.2528224747938432,3.0629420953651083,0.4284906223500845,-2.902556928942758,4.494978648665385,-0.8412191235913576,-4.16564851464947,1.394133834787384,11.1636914134636,-5.65977749629129,5.670276444818814,16.71661601735206,14.872832940016565,13.754714560761336,1.0028570644305024,-2.7452314340495505,0.8936582029973384,-0.986930374617187,-15.52831895576567,-10.248558367134217,-1.0628866145594695,-13.867675594810908,-3.8074826318892017,5.683723991741877,-5.14571015032432,15.345972455903302,-5.162963123976553,5.820152996265206,4.505547654793287,-6.645647512494724,8.420253910802254,8.858534175633508,-4.933917219841745,10.121576390014374,12.984755688364501,-14.602908559764806,-8.902009770004925,-11.945421466746211,5.111456377985235,-1.476217605555888,7.02644544880478,2.743738972659899,-9.155828127961033,10.359131398792831,-9.860782327437484,6.7014944057707675,8.71405269744692,5.838278494445982,7.360001280884151,-16.617564048145052,-3.6192323107989357,-16.999947758699573,2.5366289134738653,10.12179740983352,7.762548809780416,6.208990323531103,-2.9164428059559175,0.9873142963745007,7.146017329269741,-10.323882987454823,6.334121618705186,2.205359938796357,5.066371635029955,-7.490625653365318,-3.6782666739756493,-5.396491146874218,-0.7159072994286773,-1.6039426560357064,-7.915345515732588,-2.0283825405427494,14.12615229241497,7.58851003252998,6.120881135900051,-6.5400977182354305,-16.38600117228387,-12.989897998488981,4.02216261312801,-2.1367006947384337,-7.246598695991673,-4.5042951962095445,-4.317146422689294,-11.652871480327626,10.103178121401834,-6.273814260648544,2.857860519551344,0.3806201131178941,-0.4478817733389821,0.4192848391967254,3.477467525182686,-6.8986519410967615,-7.569806071728139,1.2061345644017674,-0.3094371153337038,-1.2286378114703773,-0.6718682486832142,6.984441232755895,12.081085323983894,-0.2321885161011077,12.723163387543778,-1.852845417849513,15.773055613028497,5.705718281660257,-1.925918600271673,11.699549287095124,9.524308480896947,-3.238241103030124,4.5833974962750155,1.3452539989334065,-8.858993132794923,6.9103525998100315,7.93040704179714,-5.837033633206313,2.1559953745513294,-4.857853944835598,11.310819223177011,-14.461286567655264,2.1839332867886156,-2.6112468667024205,6.714148158239504,-0.702664644265367,13.039684233955082,-1.0365459178764307,-5.201459843645923,-9.280591089743313,-10.835580728238135,-3.6009201257953576,1.166428185861446,-10.166168555090914,-14.241888755776143,-0.5439748793471372,-0.15449873086517224,-8.140349693029071,-4.004585154531854,4.2982813777114215,-5.3063883331371065,-1.165249868085207,-1.2210314531676014,0.2040734101996996,0.06429975518987503,-7.861089816045081,0.4802141777899849,10.834802549280946,-2.4260939674667457,-7.608948571546362,1.0830118353013183,-8.063029466370299,-9.43464178170445,-15.74715463295723,13.620464143933912,8.204027788718744,-0.4961152072057625,4.994832978482032,8.626269380903578,-10.065545143193559,-0.8304780799727529,4.483140443094065,-3.454416208453256,3.27556259924964,7.2875600892030095,-2.589313340079675,0.21806655342640496,-15.86417516489032,10.38683395662492,4.758243870283102,-3.543145640905192,-3.4506911694272517,-13.051839484827557,-3.7131128398538014,-6.49047895639812,-5.017488321319649,9.57333410275873,-0.7852962899185951,4.274446708424332,-4.052948360797636,2.852831962759579,-6.339872081429562,-0.8807157120127027,7.345894669031162,-1.139207218862275,14.254023509764277,7.958130615734069,-2.712907191208169,1.435482758657933,9.65594068908647,2.7126508944740575,1.3813558471800678,-13.686452756390725,13.769095592848187,-6.002772415701692,1.7676036769928147,10.292275339560703,-0.17986236755440144,14.210265228094318,0.26706570720461675,1.045749653492352,-7.393493751264897,9.398275602771053,4.582671837994266,13.078276749296187,-5.87798169578269,14.58520399881248,-4.196303643770277,8.409092020124492,1.0330127584057285,-2.059043693224288,0.5477224723855381,14.459419382746816,-1.559245804119469,1.1713399726785556,9.310733838477846,-9.268574021592816,-2.3927769329767075,9.197435214587367,13.957641489509088,-0.3096412022874524,1.6625752744952877,2.0126169400568563,-3.836451949239187,-15.134579803223943,-7.015562481044089,-9.11697957434652,0.17271428263669186,4.7789370022545015,-3.8102800021443928,7.550298809571022,-5.629372950914024,-3.5395445262990815,9.180429104648029,10.791855267326374,4.050656062128181,6.103976347393934,7.3010475505213375,-14.020836842394079,-3.374503128205597,-12.245452537485743,2.399309804893353,8.613899423029975,1.4501857227119594,1.7338083578535506,-3.6293513550310896,3.266245356426837,-6.347278195646995,-0.8355835261772593,-4.942029728686423,7.736803225287302,-14.348311830942407,-3.8412949318216514,-9.22424405437661,-3.4497233948178567,14.137061879014363,-17.750506824414813,3.0238088502565685,13.851476163458756,-8.922001885937703,-5.1714843751981245,-14.76644361716583,15.250444355352492,-11.600731737926427,12.27255768653131,12.989230452520173,-15.420788573567515,12.570556999462573,-11.75486468361295,-1.0952666979185166,-1.5438346468020891,8.37013302625481,7.347970848540542,6.4567891765095595,-3.1164626939995577,-8.407029907990143,5.951935158298228,0.6513638115480649,15.370831203697175,1.6603245260756965,-1.1735934949203537,9.642551248395616,-17.81584398629453,9.575431081870686,-16.067664049912725,3.8792950009333866,3.5772077138492726,-6.495670539071018,-2.114587126326043,-0.7466279685283241,-0.2450538146599528,-2.228183216705056,0.5602067012435199,3.2503850112812613,0.10481287615948254,6.501360692909074,-8.310130698692232,-11.857647356826936,13.984219985947384,-10.290676355615812,5.267126194545231,-4.43029007460003,-8.152865597416111,12.38388610110438,10.949564725398028,-8.197105092589196,5.01110993054512,-5.366900410917436,-5.816957679043142,-4.017164719775333,-12.10162634696071,11.89922427916427,4.302436439472332,0.7773641819133029,-4.198894018261262,-12.163821892978483,1.0540169896991398,4.695980622976925,5.9799176503789475,17.269605831969344,-7.116906573256608,14.83910524954475,-7.130710302519509,-5.027793428374952,7.2072381420681975,3.89451236160868,-10.488820745701682,8.157424884836626,-15.546906240657952,8.493709536678413,-6.971943644081455,9.221840649880203,-8.121938189165574,2.316367814738879,-6.392892376298149,6.763202983823608,-1.3985396333922666,13.655122680161972,1.013535784131851,1.876554451088563,-3.7074357207167172,5.470427433252075,-4.612509330499195,-9.260187350344054,6.970252855831515,-2.117030230961032,-12.056103301921949,-4.486118173956215,-3.77354275398368,-5.227493174314651,3.687054443658104,-9.462131564354461,-8.074603941312548,-9.519903202663768,2.8909299652815794,-3.384958154036472,1.5330515399922486,-5.070766156174674,8.459077507480949,6.100277620259109,-2.3484082637807746,2.7557325678531615,10.311381778889558,7.030912002753056,-4.116087776889429,3.3749682759292536,7.5300241781887385,-14.137744484496748,-6.019448030620449,1.656501774310339,4.931786222217674,-10.006447620883796,-2.1520516622963557,-10.226802451307387,-2.0633846636500572,2.2283836681680764,-3.0643408925515065,-0.6866400564657691,5.350516159089458,0.09710816680194567,-4.376557541851286,-5.124454556166692,1.1385920629924353,5.178303244763854,-5.082912826789664,3.7327215281644617,11.178085514202534,-7.570296526420073,-14.21996789140227,-8.585131994761733,-12.029286483873333,-1.866971166109837,-5.633673410294477,-12.044012098228594,11.299428899330389,6.932508886664707,-8.290929699891375,3.495706372552001,13.98973133401025,2.9266125645452195,-6.21789813149632,3.3577651625285716,9.1346251778538,10.036528131733476,5.893123095140808,0.5910304804037176,0.5698583460355016,-5.004582285397838,-8.449717876495303,-1.993987453170058,-5.901795344238584,2.8634604341683056,-12.633554097501037,-13.107021371293968,-8.643587574090152,6.619227136034344,-1.967070136691889,-5.9162722830795005,-5.129861439948962,-9.966059606964619,-5.509288308363135,11.373298750365464,5.228739112076994,6.583710847958084,1.9477078487579975,4.402145323137679,-6.194682377951659,8.400546415464703,-3.531565677610434,-2.440003969206788,-0.4883614071511593,5.863202009042646,-1.8326600309926524,-7.473752919859085,-0.8488252380075729,-3.1677289622683698,-4.958076259956132,-4.685511437239253,-4.786025948103995,7.599793150386926,9.415377251369128,-16.626409020248857,3.4851750453555064,-10.036777222666505,-1.3605555624535213,10.870666290981147,-2.82328175394559,4.782794587115027,17.18454491388752,2.9512270550712145,-6.200799221389279,1.3131836350749189,-16.8967817228961,12.053675706825265,2.0741714547716787,2.2440585726080715,-7.292674781372502,15.25449352011184,-16.13111649812533,3.56585345089899,7.1300422902533285,-0.8748209534053851,-1.6281218541603026,-3.8287675801081074,-2.503006528613113,3.418724178333302,11.845970772902277,0.5365912843041495,2.2225087989656847,-2.4102779237346117,-13.118641254243272,-7.562090789669205,-2.4507920480758356,9.325507043146652,4.625214908563556,-0.18670166458462112,11.548760065163433,9.266421639995151,12.588810945360683,7.449400058627842,-10.142898689106019,-0.7527759873254033,10.288952077446774,-4.500593272156823,-8.304807509035257,0.18689430760693512,7.248438093352169,-3.029291705529588,-5.853422379929545,7.586829355334134,-1.2120315834180806,-4.811841142698567,-5.142356108224296,-5.671603920199338,-0.7222710452760015,1.827306335897848,6.128611912568312,11.017643402283937,-9.85745307047358,-3.1651684239918128,3.512643808754253,7.1267318785833735,-8.694211093365462,4.096200361588531,-5.241763729838784,-2.1801683028481507,8.69546059560272,-0.3608486972298949,-2.8671978380079555,14.056404142752907,-2.6587962390018016,5.794960537548386,-12.480152094337711,-0.1934083725506432,-11.481934477599111,-6.848524098965178,-9.907788572089693,-6.190406482666451,10.729534820932367,15.751344895382625,-4.450757924913193,7.464649406124119,-2.7819060079095226,-1.07421467111374,-2.3753699071882783,-11.832421802566918,3.3524672176106023,16.55249585454608,-3.02843520087534,-7.294881311170435,-11.523578512388607,2.805719090618062,-11.860474939358772,0.1534699586764502,-14.752545565569742,3.4427429394534004,9.93455763988942,-11.830981523988255,-0.7632754301578528,5.174377577936479,6.784133915207358,-2.8032327481835955,7.798862444887272,-3.5744070927678755,-13.074227378843691,13.019897980801316,4.813059740291741,2.2058235316117196,8.6272578366619,-10.871736472374824,-0.5592289189822657,11.979586557892558,-12.10471907722911,-9.508230894557578,-7.0275999688594055,15.315394491291153,-6.8719333623728245,-8.16070092256029,-3.580724862603664,11.119265223492688,0.37921151035322587,1.7522762121192876,-7.265777253738453,2.728939682849693],\"y_coord\":[0.3368299684158577,1.0218648799579622,4.948152859189612,-11.23679103418069,-11.141062311510531,-5.520871915828322,-4.913272018155179,8.321959791249746,2.2394384932757645,-11.194161743106196,7.483841544743948,-10.914422268735342,-19.627274043206462,1.0613026110274952,4.335241807973508,-20.61539552554203,-19.37800742658522,13.625873002734778,-13.803981967846763,9.26024935662211,-19.376723547536542,-10.372529913903074,-4.480788651798034,-18.54018650006397,15.126063056430201,4.361439010436161,14.610588203685332,-13.779761011796987,-6.9790797904996325,-8.092219004755892,-17.682261636253124,-4.2736443146947565,-19.852826243889755,-8.906616460998222,7.751688657268016,18.358002432802678,-16.794650683300432,-16.288285868584445,-5.355624027679079,7.188239717596775,9.842319055826065,7.8594540850041525,2.698774191818907,13.366840810487929,-11.459605370190967,-6.347513115133747,2.812466746920908,-13.94480938275449,-5.612554369744232,17.42342266646364,-16.23877288499884,-5.082193928881728,4.375307768259679,12.72092637919268,-12.215522677447316,4.855389930751564,-19.028584421021034,-3.851171482917645,8.174209389511576,1.289840933086001,10.339104633465203,-13.345851011095888,9.599267902963549,-4.106502212580395,11.055090094573616,1.4183865769111337,-16.60287823938771,15.346612098755184,-0.3935648061391447,5.004820621726095,16.028235617978016,-22.13617904316167,7.048417110739135,-15.778913452349009,5.9485240529871755,-5.610867391447879,-5.402365512281236,-12.137338413866411,-22.648325222531337,-6.951980464790292,-17.627416609695576,13.936286525993227,-5.037011830684723,4.282400621984927,-1.5763193584962356,-11.860958497504852,11.517789972274741,13.697005054301489,2.5616262142928012,-3.7688574011835043,17.292005696799396,-21.164875918644462,8.283857879678772,11.866809921849772,1.887278082259456,-7.893217372171057,16.207445507422594,-1.9429305177875935,-9.881009497479079,-1.6238772846540979,-18.494077249049084,3.1576495335414303,8.408199462748318,4.93715641941217,-10.409117685479911,-7.556704814217095,-2.3972396287625086,-10.359407910045471,5.438576979760648,-0.6610386649494466,-13.558779711610773,9.47659679959354,-6.558443594201508,-2.3052472583672663,-7.714532226426747,-8.981510747986547,-13.461193837572486,11.875103414680794,10.567773949854168,-0.3215119219815408,-12.276411111711436,-7.549355831505148,15.160007457918711,-7.008006527227121,-5.412190946753787,-4.760388747569197,4.055522222641277,7.066519648193892,-3.8669960797443066,5.101101101981374,17.782403562829433,6.370897564372583,2.525518608783908,-6.090180753926522,4.9743938653037425,7.395589732367256,-17.11588889282788,-5.6333840252074925,-19.521234726596546,9.566139400426632,-5.954528785050397,-20.903954681408532,0.9073409886893267,13.988400176727854,-12.619032218132178,-0.15336752943139087,-18.564702962655662,0.4347784767409247,13.888973730659561,-15.047882511079344,-11.674608397276605,-4.271063972417739,7.121483967529513,-0.7975565013168179,-9.18824709040016,-10.949797818113101,3.778896230821861,2.498133090210949,-6.849395804240165,-17.948165479992987,11.756818041795912,4.488048925162898,-3.8113617762583827,1.1387810946518981,-9.878339330912368,8.202433872183475,-2.199402184366564,6.2793977221429484,-2.7774700718207197,6.034437534806741,-6.693321740858084,-5.884175192916503,1.867917971834635,-20.78259301919873,-18.11472175406692,-16.18689060128997,5.139486904168885,-1.299952570563768,11.615721172501683,1.9703806802943975,-6.954953515192107,-9.845157165957195,10.491812757298874,1.8622635330531818,3.1247220438187266,-20.79347104461335,-3.5991467327663296,4.491372773671252,-7.0056520733761944,-3.5359462966113417,10.85657861862789,-8.255688204166336,-17.818595650007357,3.491475601259796,7.5009495888888,0.9714529117646649,5.600625154956832,1.6316469302925638,3.112375438009853,4.154002002522837,-15.82665687377108,1.9751629117873546,-22.377132060690677,9.416645698797518,-0.18840951488005298,-13.658040876919038,11.486150958418909,-5.260539990517339,-20.045194696430997,5.149965550502163,-0.016842542028987023,1.6960353005856128,5.686414850372375,-7.270311920443072,-7.602750781019101,15.722416731582559,3.208758727707429,-8.135410715107028,7.14727802208813,-16.273770674866455,16.0776296253442,-22.846068578058777,2.073488198844463,-14.905440999604417,10.771007370459634,3.3332155998205764,6.558091874069414,-4.1613329292973305,10.259983739622376,-21.506920518908927,11.666687154968294,-12.76240677072032,-10.933543364777092,16.861030744133412,12.528869711361311,3.1955527335129696,8.831227549410851,10.72895550549471,1.3782590656804081,-13.983743296993511,-8.411046296544036,3.3693281747575488,8.956571774524942,-19.33708867612001,-2.5519174562623874,16.158556208723287,-20.166117492536653,2.2758898910146335,-20.204129261084415,-17.251418503832184,-18.329827126668604,13.714319669120616,6.882048580519697,-9.967721878976263,-16.940244668276787,-4.759307641517871,-1.7432761878952885,-3.6875926686255784,-16.85881137451107,-9.504344293074512,6.481966922205734,-13.76288543147432,-2.74891685415656,-17.78139447617507,-21.510164882292596,2.9675608866083087,13.512816321711178,-5.8291244016728605,15.236087285416257,13.844485102099494,2.812785027885571,2.8600608647493684,-1.1198649878744698,5.137379618648074,2.7294061487161403,15.19408256002454,-4.030680635554081,13.668594175494217,-0.2821834519201578,-11.247607965889285,-5.706161123612043,-13.9523605183976,-16.520181439287406,8.148758282451155,13.019053900315132,-7.216597700147379,1.0466489963780203,-12.930037763900888,-14.084130422814068,-12.288058103396919,9.08092113175013,-8.33250583352359,-12.672937063234714,-7.317866672365925,-6.55609960146335,-10.76863653312355,-4.636570365286389,-18.04104432447628,12.286214331546457,-20.53061583351873,-19.062922326555512,10.890831847181117,6.330064662886819,4.575653112822865,2.400934702976566,13.447294229150122,-16.231735337278078,-11.960701560777233,-3.3288259578594563,-20.491254658383696,7.653179290672441,1.772316934240942,-6.76304208270233,0.04645088920316198,3.95982753595421,-16.183672396480514,-1.637411991474283,11.099564368738822,9.876156886305523,-6.854098011388633,7.291839658508109,-12.176171655502518,-1.476794549391298,7.672411145492615,-12.97389420527703,16.26943811126861,1.8841671376167455,5.160343617447101,-2.414966179685109,-3.9982958790503083,9.419684821277306,9.567491707026893,0.27551989034437147,-1.7324719357669187,10.183194479959363,6.608108160577364,-14.26513633157615,-6.195290370388103,-0.7104493171538855,-14.587596828071959,12.326000824662096,-18.225089467787477,1.7216289635649362,12.280098642857945,1.0976253158775053,15.374918148030275,11.93884674029867,12.590830987817563,17.299933626191432,6.383239729821824,8.788685828664205,6.322047306060207,-8.481206697560198,-10.434734819753315,-6.240650859126505,-12.90035458313169,-2.024323104428583,0.04637275743661509,-0.250566486290517,-9.775756920583314,-2.2422524742515866,-20.197643761389614,1.5306400335536081,7.157643295311229,-3.520773189409113,13.679507937238876,-1.8176899492357292,-19.295116331667117,9.66970717255051,-12.681208721205675,11.633984710292872,3.071743546858566,-10.03721653307363,9.048736907409225,-3.0200275826683383,-8.278200894581706,-0.44274195843164216,0.5700921063319728,-21.445139752307618,-3.1027319061514933,-5.969389446739396,7.200607258722168,-2.533700033744752,-0.512454574815009,-15.975462521310357,-1.4283065614282318,13.129569660170068,-8.974599403162003,7.177115897705285,-19.18345459667094,7.159088291157363,7.738098445314128,2.5017806553698025,12.65624195209867,4.343667952609858,-21.62931822267335,12.336196313757272,6.160524431018247,11.764853681094518,1.2059683973680309,3.9106890312827813,8.07159806215919,6.604302762030815,-10.336372341837405,-9.384908001771903,9.50303852664168,-1.6597305279806627,0.0656625706600911,-20.668124260682248,3.5302537078493064,-2.3404437878970383,9.669552133301126,4.7948605882617334,-7.561770373667786,9.368617487495776,10.984400933714316,3.0133587401391604,-13.032990579424183,-6.795666315579664,-12.26068935677447,-5.941323966474609,-0.11448355951158938,-22.250339486729253,9.018469069878027,-1.0509523823142368,-6.905397746050893,-6.48975183905947,-1.4719409608497798,8.558877398636115,7.196347593504532,-2.6178533722644155,-0.5839280580791429,-0.3494012393238548,-15.973268154450128,8.370089051910277,15.67514357326793,-4.898030547267358,1.6868603250613283,-13.262704113311926,-21.500786583408765,-8.162052449568197,1.4081367092318768,2.5022689517225745,-1.200199402017677,-3.196915335661746,-13.85225230592696,-22.080355443610618,1.074934009802564,-13.237416842736794,1.088304663703078,-17.243081370935702,2.823924196674041,-1.9159589099512635,14.048208601755565,5.825482309082771,2.1517560512418354,7.375642354917043,7.722861348664779,12.774497577436456,-9.593868414752624,10.514009614805152,6.181836255776199,6.041291792171526,-3.3488436257180627,-6.741981524370022,-20.948110073274975,5.80797554479308,8.374477021282905,-19.7872845586694,-4.031786806670202,2.9933332108597153,-15.902233750307758,-14.141415560417894,-18.287237968598227,-9.28749010355978,13.1594388021022,-2.3221382958807837,-4.772772070205011,-16.99013403612975,12.514452551663744,16.034913652624862,6.119492909089014,4.449368588078782,2.3314465812939926,-4.911149663212197,-3.4411244295992445,-13.91244531439484,-7.6354209027728706,-13.92669126701454,8.00130902855833,15.433589589743892,-19.616025826198744,-0.2804913158110495,-10.690631431017394,-8.00727290330097,-5.494247085042965,3.0594669914376893,16.220221048023518,4.012311965681212,-18.639249180065306,-0.1105150052156274,-22.568431500195008,-15.631110909350685,-16.124525334313816,10.445147329404612,-1.6070373735433243,-1.7065355437043543,-9.94039580445791,1.3516314893862218,9.649587260510268,9.948494433645415,16.869320749187754,-15.474547811544676,-9.814722829356777,-15.849747394620092,4.475407450622454,-20.824893069316612,0.4989460432656623,-19.175725161398034,-1.546702523583217,5.084465325927422,-16.56654108992551,-2.562881128287853,-2.2674656432538014,7.859739628306526,7.076604095524182,-14.32620529054832,-11.672053436938496,9.986611177019851,14.121575921509068,-0.2922066064348841,-7.1539928299974305,-21.767567105112025,-4.241500147995935,-6.410205416142157,10.006109052746831,-20.428924145320597,-1.0392790590587475,7.855529246187717,12.258657811132121,-18.949360979415356,-7.5928460101734965,-14.896859019701697,-10.046623589419392,-16.144187672365888,7.6693978688018225,6.098430894018447,13.264894112651218,-21.330676465207667,9.777490224454741,-2.934618058036548,-5.890992669864711,6.665578643320645,10.989017111470181,-17.597109136477407,10.245403735106724,-9.918839473606917,-5.048659457466295,-14.479561813337028,-11.00642343930092,-13.315489114682775,-7.251670032040168,-10.603701536846854,-1.7027435619244518,9.51103447477362,6.08568882570828,1.7324537947834138,1.7690838238024025,8.214683195777738,10.175032120751581,2.585493649737406,9.652897850856258,-1.808168725743642,-13.095484843884968,16.79259915953412,-0.36520475288155274,-19.362809611723915,5.008397165027968,17.265244651282046,-2.9813121684600556,9.058310039819455,-11.688218402793888,-2.9039170846397697,7.8649116662305465,11.44003168088137,7.343050104668438,3.512330379949232,-11.587087749181176,4.146987285243146,-1.9869471234103488,8.199837431706277,13.80871023004432,-14.056530704403416,-6.432798984112128,-3.0269508903532953,-19.538862602623457,-6.876358824547242,-12.539306349633536,3.084779874149315,11.706021578741963,8.25419131924803,6.661391834209555,3.397060588665663,-4.49046318438155,-8.852628244554662,7.538160087620417,-19.078749294131892,-6.440390569827369,-12.129936763301268,6.620561659019934,-0.37486429428808776,-0.3208281793608609,0.7141119733337564,12.354675493248804,-4.9989448210738585,3.9556830726628376,-12.29791723438401,-15.25476036004163,-0.6731226903663565,16.01156573163957,3.7824845879180677,-10.611605360501553,4.629290990181515,-20.309027174548415,-8.538027890555576,-5.042765476535765,-2.0272843665323457,-19.883022742851935,8.72112366662913,1.496914172132243,-5.007084596838792,11.589218217369702,-4.414094546374125,-2.720292095135095,-4.498834966575663,4.87014402311537,-6.669877001486796,-11.714690256120997,2.2180121192148423,-11.432219300934316,5.149612030402886,-5.390229037323311,11.353222448346758,-8.720397388768875,-6.407947296117662,-9.50665218487026,17.65550219453621,-4.125226552402907,-20.52583878649628,-3.997939810963807,-8.08368400387215,1.3607393619927965,15.693149545333666,-6.731748369555441,-2.403623869146565,6.092624886672012,-15.092729101810269,4.521432448670275,13.534236180147918,12.607863235276296,-9.763916775199228,2.9759230884716024,10.528073320952574,0.5097249938951358,-4.460359901421572,2.900121032905626,4.534664240391752,8.47058019195361,-10.00110723566807,-1.6303777248236797,1.4468087972308816,13.70884257879406,12.339040330509134,-10.502406077960481,-2.507753926966087,-12.395490559566541,7.584417046790901,11.77895666927712,10.627555812726172,10.302636625334355,-2.2681724845832854,0.7530994322903357,-18.413977193109293,-16.217462042788245,2.3015779128364047,1.2786071930287957,-12.612780231489475,-21.693812158553165,7.947026992821802,-15.101489189567417,14.7684434693369,-17.13581444271141,-16.21732756966473,-8.35317989117413,-4.83650163223488,-5.712774892647956,15.203454403963644,-15.580164282643468,7.195593806664605,-1.3850160496366466,-11.227193271222353,-7.17617897995013,-13.19815331987282,5.731920886800748,8.600345466913264,2.2345118683841156,0.8632458565739041,0.11267481466702733,-2.7085283942361724,0.0364111471159817,3.282192970170509,8.936939096818497,-1.4612355143050824,-20.434862651281463,-2.457409815740523,-8.45740432210614,-16.29681421549798,-15.792016590895802,-0.15947252951348267,2.5898290236341563,-20.5006547448661,-9.10952022156384,-10.689757054067567,-5.371576455012337,9.83426271640791,-0.8312567411184308,-8.592721578859882,-1.0492671760976267,-4.187021234253881,11.55386659969892,-4.167195046216467,3.942203626263605,-13.37039840813451,-0.8310999680258633,-21.43340285216202,-11.564535149533123,-0.3917421002933239,-0.8956640603696872,6.401012140830731,15.687432900448878,-7.943646689767631,-7.029331377099463,14.602927068472017,-3.3472520219793185,-1.5980776910895744,-2.939223119391307,12.038978185954976,-9.312172432430197,8.61097712570339,11.600516025554038,7.8382167477519396,-3.7465776044216375,-1.2359877595397801,-1.6766611906585187,9.68838019768078,-5.185138076016307,-15.819975006294928,-0.6131522885205836,-13.000579484924787,-2.6673706106836983,12.418663753079382,5.243498193328746,-0.9487957161040292,2.0102471661242407,6.302036723225421,-19.140712734324573,-9.994814176378437,7.726178925564652,-13.99544542528198,5.150866184294138,2.655373147255366,-5.187811428967969,-13.873386057584481,5.2301531685574965,-12.195854003225822,-16.307701932433464,-8.306118281768793,14.777284139880805,0.41601685238319847,14.931931481532969,10.499050382779442,13.63365487343024,7.5259347510042565,-13.801762386364999,-0.8196468993962452,-12.5208920024554,2.2323556980890458,4.036776748740348,4.0292355516095215,-8.299420203474039,-9.600547310739014,-16.78540371524294,-1.8302795438859643,2.1768035590355312,-6.621236820610484,9.190703006713644,-1.9063882945333974,7.190401040953903,0.8753521585240658,-18.946096306179175,-13.887487246778386,4.111128159883366,9.753704851757172,-3.5954925654324335,-11.318270208517973,-2.2043673035604914,-14.20839763040431,-3.0423054136053875,-0.5884664952869089,2.2321910397038587,-0.2944547195996616,-8.850732450204495,-2.162468409204891,8.24696746950023,-18.28108650114219,-16.916010503177304,5.583210591831178,-21.29747415650746,-12.737398385860287,-9.580342253208403,-0.6828174028331007,6.030269112091099,-13.99941459010565,3.7263321837825973,-15.658928727142937,-15.10498970623441,14.812258238342114,2.114707462790569,-17.41233072308571,-4.303659168858682,-14.212046768872568,10.213402416052999,-10.840041847799528,6.0433830673196125,0.023121346915930707,17.3077034238365,14.15110890025081,3.355347225041848,-4.254608268520791,-10.999423559016828,-4.739970585692599,7.054926828662791,4.672811244391876,-1.2829126375777804,-9.026578041348104,0.3554603031824879,3.423597537754067,1.190879144306411,-5.188146725901566,8.293403098841173,-5.845243418015664,13.226903248796626,-14.959884816591309,-9.085893844916242,-8.323234813478946,-8.330893542341446,7.010347329350158,-9.980902057682039,5.572116421884575,7.563077138808884,-0.9533091835684444,-7.497932507246705,-19.344527063683557,-5.2331474261442095,12.149801298331859,-7.748543795433307,-4.512713772357595,-5.554295935927131,-2.7484751832352634,-1.7259063809454438,-10.565262199315738,7.034048874769168,10.766821328934125,0.27297904520615934,-6.432939865440332,-8.518454815099886,-16.726866303877696,-18.730824517062867,14.173306948194114,-16.097861087850696,-17.468283625084602,4.4149321637058945,-12.357208280121737,9.884323605932053,-2.3246379874158767,13.890682732263995,-8.808271199833701,9.180489670106684,13.326928179624028,6.410146490641738,5.9304894683176785,5.386159722809971,-0.8298011994936232,6.02809774332793,-2.310227217703579,-4.972606811726388,-11.634337797906719,2.2811565068028505,0.6995572463822202,-6.990963311067392,2.0655826626279348,-2.5131109743835567,13.430491520487081,0.0638703970269891,-4.426563439198275,4.041202869752905,9.76595788556059,8.506104581156336,4.7931669465640345,-0.7336662581967661,-21.146365964071915,6.3412183933012285,14.593303597107049,-13.752838801317276,-12.450113473528237,3.4801503295842293,-5.910514796484219,3.38674555595988,-19.34159302230703,-4.75198875581119,-2.5507392539716642,-9.962851379173793,-4.8340268619391855,-14.55603065103367,-21.75277392586459,-10.371381253132643,-7.834929167091603,-7.6517354352592655,-1.6164431149437113,-7.948765670643247,-8.47519364442831,-0.9359916242637101,16.203264093973626,-6.771676727893208,-18.2190711837018,-14.074721945641047,0.6162161918309295,-16.841240813842145,-9.864368841505136,6.062589507179838,4.195803565262005,3.4486686052442708,-13.969984813886033,-1.2723003162113566,-1.062093121207554,-17.748537599184285,-10.809934558613866,5.504798960750422,-21.67419339773063,2.8562100206602015,-19.791345499351088,-2.367396255546005,0.7668024781598386,14.467890682314945,5.530632479785217,1.6247069578480664,17.284761491887284,3.145071680287237,-2.6084144636637503,-10.859733901242793,-18.26637861773631,-8.289771463532619,10.012292554143652,-15.015388827326415,-7.100449747666346,-4.5268540283869045,-12.151175187193218,-15.523860298029293,9.070733903667682,-3.1516283708965216,4.862568538505034,-4.593436010210541,-17.839952740458212,15.392692471351912,-18.734406807807922,-3.6260975826463984,10.084702710604098,-0.18139472014260716,5.093327073552608,9.80173030212695,-2.2955709507345103,-9.058923183366728,-12.148893773661985,12.239168977063429,-18.3334186107467,1.6815995336844538,-6.502565350643762,7.3102661000021385,-6.342364691204004,-4.493681927691997,0.15092769136969802,-0.9318042012541622,-0.46819445087908673,-16.62942842050668,2.958977070968151,-16.161674093394815,3.4163658517628113,12.459590859729078,-3.7839292795000294,9.533227824874135,-5.167738366686205,3.798344849342006,9.605029121981538,-18.072234073213,-19.60111249139825,3.3675186207373535,6.98602006137908]}},\"id\":\"ff2f1165-ce88-4e22-b282-6d31ed0ed87e\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"ca297c33-f35d-48e0-b6a8-54b776a67aaa\",\"type\":\"ResizeTool\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"size\":{\"units\":\"screen\",\"value\":10},\"x\":{\"field\":\"x_coord\"},\"y\":{\"field\":\"y_coord\"}},\"id\":\"6e9a1078-bc11-459f-8f9b-6fa65f286804\",\"type\":\"Circle\"},{\"attributes\":{\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"}},\"id\":\"400293ba-076d-4b8e-9964-e60911ddbe5b\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"7ea54370-87b9-475b-8713-1b9570ab63dc\",\"type\":\"ToolEvents\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"size\":{\"units\":\"screen\",\"value\":10},\"x\":{\"field\":\"x_coord\"},\"y\":{\"field\":\"y_coord\"}},\"id\":\"e4e08f7c-85e1-45c1-b2af-b4dad995e149\",\"type\":\"Circle\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"plot\":null,\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"51567837-2150-44ef-a688-bd8d62cebc8d\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"formatter\":{\"id\":\"48af56ee-c239-4c72-b5dd-9387c96898fe\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"823c2c0a-744e-4258-a5d4-8a1426e16de3\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"326f968d-8ea3-4524-bbb1-08f09ebb76bf\",\"type\":\"LinearAxis\"},{\"attributes\":{\"plot\":null,\"text\":\"t-SNE Word Embeddings\"},\"id\":\"12515328-340d-406a-8bdd-7b89c1cab877\",\"type\":\"Title\"},{\"attributes\":{\"grid_line_color\":{\"value\":null},\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"0b50b247-2274-4863-a211-3363ab8da61f\",\"type\":\"BasicTicker\"}},\"id\":\"121ee27d-cf4f-4444-bf4e-72b7f1f36027\",\"type\":\"Grid\"},{\"attributes\":{\"below\":[{\"id\":\"2f36ab71-6f50-4617-baf6-eaf9d50fe32d\",\"type\":\"LinearAxis\"}],\"left\":[{\"id\":\"326f968d-8ea3-4524-bbb1-08f09ebb76bf\",\"type\":\"LinearAxis\"}],\"outline_line_color\":{\"value\":null},\"renderers\":[{\"id\":\"2f36ab71-6f50-4617-baf6-eaf9d50fe32d\",\"type\":\"LinearAxis\"},{\"id\":\"121ee27d-cf4f-4444-bf4e-72b7f1f36027\",\"type\":\"Grid\"},{\"id\":\"326f968d-8ea3-4524-bbb1-08f09ebb76bf\",\"type\":\"LinearAxis\"},{\"id\":\"40920f73-d2e0-4ccd-9b15-f242bc9dd63e\",\"type\":\"Grid\"},{\"id\":\"51567837-2150-44ef-a688-bd8d62cebc8d\",\"type\":\"BoxAnnotation\"},{\"id\":\"a7b6237b-6713-49e8-9496-c80e88419f39\",\"type\":\"BoxAnnotation\"},{\"id\":\"7485c807-2a3f-48fc-be1a-c7ab5dd0d094\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"12515328-340d-406a-8bdd-7b89c1cab877\",\"type\":\"Title\"},\"tool_events\":{\"id\":\"7ea54370-87b9-475b-8713-1b9570ab63dc\",\"type\":\"ToolEvents\"},\"toolbar\":{\"id\":\"9d940658-88e9-4b06-827d-fc2081a79814\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1a3d3973-e3ba-4677-b2ae-0bd3fa588edb\",\"type\":\"DataRange1d\"},\"y_range\":{\"id\":\"1954eb63-5ba7-4cde-b42e-7783521882c9\",\"type\":\"DataRange1d\"}},\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"0b50b247-2274-4863-a211-3363ab8da61f\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"48af56ee-c239-4c72-b5dd-9387c96898fe\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"formatter\":{\"id\":\"7ea138e8-4c91-4a2c-960e-496ac65e1766\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"0b50b247-2274-4863-a211-3363ab8da61f\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"2f36ab71-6f50-4617-baf6-eaf9d50fe32d\",\"type\":\"LinearAxis\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"blue\"},\"line_alpha\":{\"value\":0.2},\"line_color\":{\"value\":\"blue\"},\"size\":{\"units\":\"screen\",\"value\":10},\"x\":{\"field\":\"x_coord\"},\"y\":{\"field\":\"y_coord\"}},\"id\":\"8598ca6f-1b27-4a01-9ccb-084657bca54c\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":null,\"overlay\":{\"id\":\"a7b6237b-6713-49e8-9496-c80e88419f39\",\"type\":\"BoxAnnotation\"},\"plot\":{\"id\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"renderers\":[{\"id\":\"7485c807-2a3f-48fc-be1a-c7ab5dd0d094\",\"type\":\"GlyphRenderer\"}]},\"id\":\"630d3f30-ba74-4cb4-8ec3-87bc33d10608\",\"type\":\"BoxSelectTool\"}],\"root_ids\":[\"92636a3e-e0da-4077-9897-5ebcc4557c15\"]},\"title\":\"Bokeh Application\",\"version\":\"0.12.4\"}};\n",
" var render_items = [{\"docid\":\"2886f9d2-d825-4ef9-9873-e11890ce1f4f\",\"elementid\":\"27c53e05-278c-4745-879a-29729e40c214\",\"modelid\":\"92636a3e-e0da-4077-9897-5ebcc4557c15\"}];\n",
" \n",
" Bokeh.embed.embed_items(docs_json, render_items);\n",
" };\n",
" if (document.readyState != \"loading\") fn();\n",
" else document.addEventListener(\"DOMContentLoaded\", fn);\n",
" })();\n",
" },\n",
" function(Bokeh) {\n",
" }\n",
" ];\n",
" \n",
" function run_inline_js() {\n",
" \n",
" if ((window.Bokeh !== undefined) || (force === true)) {\n",
" for (var i = 0; i < inline_js.length; i++) {\n",
" inline_js[i](window.Bokeh);\n",
" }if (force === true) {\n",
" display_loaded();\n",
" }} else if (Date.now() < window._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!window._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" window._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" var cell = $(document.getElementById(\"27c53e05-278c-4745-879a-29729e40c214\")).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
" \n",
" }\n",
" \n",
" if (window._bokeh_is_loading === 0) {\n",
" console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(js_urls, function() {\n",
" console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
" }(this));\n",
"</script>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# add our DataFrame as a ColumnDataSource for Bokeh\n",
"plot_data = ColumnDataSource(tsne_vectors)\n",
"\n",
"# create the plot and configure the\n",
"# title, dimensions, and tools\n",
"tsne_plot = figure(title=u't-SNE Word Embeddings',\n",
" plot_width = 600,\n",
" plot_height = 600,\n",
" tools= (u'pan, wheel_zoom, box_zoom,'\n",
" u'box_select, resize, reset'),\n",
" #active_scroll=u'wheel_zoom'\n",
" )\n",
"\n",
"# add a hover tool to display words on roll-over\n",
"tsne_plot.add_tools( HoverTool(tooltips = u'@word') )\n",
"\n",
"# draw the words as circles on the plot\n",
"tsne_plot.circle(u'x_coord', u'y_coord', source=plot_data,\n",
" color=u'blue', line_alpha=0.2, fill_alpha=0.1,\n",
" size=10, hover_line_color=u'black')\n",
"\n",
"# configure visual elements of the plot\n",
"#tsne_plot.title.text_font_size = '16pt'\n",
"tsne_plot.xaxis.visible = False\n",
"tsne_plot.yaxis.visible = False\n",
"tsne_plot.grid.grid_line_color = None\n",
"tsne_plot.outline_line_color = None\n",
"\n",
"# engage!\n",
"show(tsne_plot);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment