Created
April 16, 2016 12:21
-
-
Save tanemaki/e864fe34b758898b883cad7238cd524b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 風船に必要となるヘリウムの値段を計算" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<div align=\"center\">\n", | |
"<img src=http://www.balloon-pop.com/images/size.jpg width=400>\n", | |
"http://www.balloon-pop.com/fs/balloons/c/round_s7?sort=04\n", | |
"</div>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.text.Text at 0x11beecd90>" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAEPCAYAAAAJVB3UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVtV97/HPF+9SoGirlkFhvJBoahIxomkufYJFNO1R\n01OV1hQwnt60Spo0jcSSYV7kvJrYXEhttMmpFRQNMWortlQGi9OTtKLgDaMEKQECQ8FELhp6mgj8\nzh97PbB5nMvDMHsemP19v17zmrV/e6+913q4zG/2WmtvRQRmZmZmRRrU6AaYmZnZwOeEw8zMzArn\nhMPMzMwK54TDzMzMCueEw8zMzArnhMPMzMwKV2jCIekuSVskrehk3ycl7ZF0Qi42XdJqSSslXZKL\nj5W0QtIrkmbn4kdLmp/qPCnptNy+Ken4VZIm5+KjJS1N+74p6chiem9mZmZVRd/huBuYWBuUNBKY\nAKzPxc4GrgbOBi4D7pCktPtO4PqIGAOMkVQ95/XA1og4C5gN3JbONRz4LHABcCHQImlYqvMF4Evp\nXNvTOczMzKxAhSYcEfFdYFsnu74CfKomdgUwPyJ2RcQ6YDUwTtIpwJCIWJaOuwe4Mldnbio/CIxP\n5YlAW0TsiIjtQBtwado3HngolecCH+ll98zMzKxO/T6HQ9LlwIaIeLFmVxOwIbfdkWJNwMZcfGOK\n7VcnInYDO9IQTafnknQisC0i9uTONeKgO2VmZmbd6tf5C5KOAz5DNpxSyCX66BgzMzPrQ/09YfIM\nYDTwQpqfMRJ4VtI4srsQp+WOHZliHcCpncTJ7dsk6QhgaERsldQBVGrqPBERr0kaJmlQusuRP9db\nSPKLZszMrFQiopBfzPtjSEXpi4j4XkScEhGnR0Qz2ZDGeRHxKrAAuCatPGkGzgSejojNZEMl41KS\nMhl4JJ17ATAlla8ClqTyImBCSi6Gk91RWZT2PZGOJdWtnqtTEVHar5aWloa3wX13/91/999977+v\nIhW9LPZ+4N/JVpb8UNJ1NYcE+5KRl4EHgJeBhcANsa/3NwJ3Aa8AqyPisRS/C/gFSauBjwO3pHNt\nA2YBy4GngNbIJo+SjvmEpFeAE9I5zMzMrECFDqlExO/0sP/0mu2/AP6ik+OeAc7tJP5TsqW0nZ17\nDjCnk/hasqWyZmZm1k/8pFHrUqVSaXQTGqbMfQf33/2vNLoJDVPmvhdNRY/ZHM4khT8fMzMrC0nE\nYTxp1MzMzErOCYeZmZkVzgmHmZmZFc4Jh5mZmRXOCYeZmZkVzgmHmZmZFc4Jh5mZmRXOCYeZmZkV\nzgmHmZmZFc4Jh5mZmRXOCYeZmZkVzgmHmZmZFc4Jh5mZmRXOCYeZmZkVzgmHmZmZFc4Jh5mZmRXO\nCYeZmZkVzgmHmZmZFc4Jh5mZmRXOCYeZmZkV7shGN8DMzMz639q165kxYw4dHXtoahrErFlTC71e\noQmHpLuA3wC2RMQ7U+w24H8APwXWANdFxOtp33TgY8AuYFpEtKX4WGAOcCywMCI+nuJHA/cA5wM/\nBq6JiB+mfVOAW4EA/ndE3JPio4H5wAnAM8DvRsSuIj8HMzOzQ8nateuZMOF21qxpBQYDO1m6tKXQ\naxY9pHI3MLEm1ga8IyLeDawGpgNIOge4GjgbuAy4Q5JSnTuB6yNiDDBGUvWc1wNbI+IsYDZwWzrX\ncOCzwAXAhUCLpGGpzheAL6VzbU/nMDMzK40ZM+bkkg2AwWm7OIUmHBHxXWBbTezxiNiTNpcCI1P5\ncmB+ROyKiHVkycg4SacAQyJiWTruHuDKVL4CmJvKDwLjU3ki0BYROyJiO1mSc2naNx54KJXnAh85\n6I6amZkdRjo69rAv2aiq3e5bjZ40+jFgYSo3ARty+zpSrAnYmItvTLH96kTEbmCHpBO6OpekE4Ft\nuYRnIzCiz3pjZmZ2GGhqGgTsrInWbvethk0alXQr8GZEfLMvT9tHx+w1c+bMveVKpUKlUjmwFpmZ\nmR1iZs2aytKlLaxZczHwFPAzhg9vZ9u2HioehIYkHJKmAh9m3xAIZHchTs1tj0yxruL5OpskHQEM\njYitkjqASk2dJyLiNUnDJA1Kdzny5+pUPuEwMzMbCJqbR7F48U3MmDGHTZuCESOOYdasb3L66aML\nu6YiorCTw95VIY9GxLlp+1LgS8AHI+K13HHnAPeRTfJsAhYDZ0VESFoK3AwsA/4J+KuIeEzSDcAv\nR8QNkiYBV0bEpDRpdDkwlmzYaDlwfkRsl/Qt4OGI+JakO4EXIuJvumh7FP35mJmZHSokEREHNBJQ\n97mL/IEq6X6yOw0nAluAFuAzwNFANdlYGhE3pOOnk60aeZP9l8Wez/7LYqel+DHAvcB56XyT0oTT\n6l2U6rLYz+WWxTaTLYsdDjwHfDQi3uyi/U44zMysNA7bhONw54TDzMzKpMiEo9GrVMzMzKwEnHCY\nmZlZ4ZxwmJmZWeGccJiZmVnhnHCYmZlZ4ZxwmJmZWeGccJiZmVnhnHCYmZlZ4ZxwmJmZWeGccJiZ\nmVnhnHCYmZlZ4ZxwmJmZWeGccJiZmVnhnHCYmZlZ4ZxwmJmZWeGccJiZmVnhnHCYmZlZ4ZxwmJmZ\nWeGccJiZmVnhnHCYmZlZ4ZxwmJmZWeGccJiZmVnhnHCYmZlZ4QpNOCTdJWmLpBW52HBJbZJWSVok\naVhu33RJqyWtlHRJLj5W0gpJr0ianYsfLWl+qvOkpNNy+6ak41dJmpyLj5a0NO37pqQji/wMzMzM\nrPg7HHcDE2titwCPR8TbgCXAdABJ5wBXA2cDlwF3SFKqcydwfUSMAcZIqp7zemBrRJwFzAZuS+ca\nDnwWuAC4EGjJJTZfAL6UzrU9ncPMzMwKVGjCERHfBbbVhK8A5qbyXODKVL4cmB8RuyJiHbAaGCfp\nFGBIRCxLx92Tq5M/14PA+FSeCLRFxI6I2A60AZemfeOBh3LX/8hBddLMzMx61Ig5HCdFxBaAiNgM\nnJTiTcCG3HEdKdYEbMzFN6bYfnUiYjewQ9IJXZ1L0onAtojYkzvXiD7ql5mZmXXhUJi/EH14LvV8\nSF3H7DVz5sy95UqlQqVSObAWmZmZHaLa29tpb2/vl2s1IuHYIunkiNiShkteTfEO4NTccSNTrKt4\nvs4mSUcAQyNiq6QOoFJT54mIeE3SMEmD0l2O/Lk6lU84zMzMBpLaX6RbW1sLu1Z/DKmI/e8qLACm\npvIU4JFcfFJaedIMnAk8nYZddkgalyaRTq6pMyWVryKbhAqwCJiQkovhwIQUA3giHVt7fTMzMyuI\nIvpyRKPm5NL9ZHcaTgS2AC3APwDfJrszsR64Ok3sRNJ0slUjbwLTIqItxc8H5gDHAgsjYlqKHwPc\nC5wHvAZMShNOkTQVuJVsyOZzEXFPijcD84HhwHPARyPizS7aH0V+PmZmZocSSUTEAU09qPvc/oHa\nNSccZmZWJkUmHH7SqJmZmRWu20mjkp6t4xw/iojah3uZmZmZ7dXTKpVjyB7I1RUBD/ddc8zMzGwg\n6inhuDEi1nR3gKSb+7A9ZmZmNgB50mg3PGnUzMzKpMhJo3U9+EvSRWRLWkelOgIivQDNzMzMrFt1\n3eGQtBL4M+AZYHc1Xn0nykDlOxxmZlYmDb/DAbweEY8W0QAzMzMb+Oq9w/EXqfgw8NNqPCJWFNSu\nQ4LvcJiZWZk0/Emjkr7TSTgi4oN936RDhxMOMzMrk4YnHGXlhMPMzMqk4Y82l/SLkr4u6R/T9jnp\n5WhmZmZmPar3XSpzgH8le8MrwGrgk0U0yMzMzAaeehOOkyLifmAPQHqd+57CWmVmZmYDSr0Jx05J\nJwABIOkC4PXCWmVmZmYDSr3P4fhT4FHgdEn/CjQBv1VYq8zMzGxA6XaViqShEfF6Kh8NnE32WPOX\nI+Jn/dPExvEqFTMzK5NGrlJ5TtIkgIj4WUS8EBHPlyHZMDMzs77TU8IxHrhG0mJJZ/ZHg8zMzGzg\nqfdJo5eRLY1dRm51SkRcXljLDgEeUjEzszJp6MvbJL2NbNLod4Cv4eWwZmZmdoC6TTgkfR64AviT\niHisf5pkZmZmA01Pdzh2AedFxH/3R2PMzMxsYOpp0ujDPSUbksb25sKS/kTS9yStkHSfpKMlDZfU\nJmmVpEWShuWOny5ptaSVki7JXz+d4xVJs3PxoyXNT3WelHRabt+UdPwqSZN7034zMzOrX0/P4XgB\nqJA9e6Mr/xIR5x3QRaURwHeBt0fEzyR9C1gInAO8FhG3Sfo0MDwibpF0DnAfcAEwEngcOCsiQtJT\nwB9HxDJJC4GvRsQiSX8EnBsRN0i6BvhIREySNBxYDoxN/XoGGBsROzpppyeNmplZaTRy0ugwsh/I\n3V38R7289hHAYEl7gOOADmA68Ktp/1ygHbgFuByYHxG7gHWSVgPjJK0HhkTEslTnHuBKYBHZ3JOW\nFH8QuD2VJwJt1QRDUhtwKfCtXvbDzMzMetBtwhERo4u4aERskvQl4IfAf5ElAI9LOjkitqRjNks6\nKVVpAp7MnaIjxXYBG3PxjSlerbMhnWu3pB3pfTB74zXnMjMzs4LU+y6VPiXp58nuQIwCdgDflnQt\n6eVwOX05ntGrW0QzZ87cW65UKlQqlT5qjpmZWWO1t7fT3t7eL9dqSMIB/Brwg4jYCiDp74FfAbZU\n73JIOgV4NR3fAZyaqz8yxbqK5+tsknQEMDQitkrqIJuXkq/zRFcNzSccZmZmA0ntL9Ktra2FXave\n19P3tR8CF0k6VpKAi4GXgQXA1HTMFOCRVF4ATEorT5qBM4GnI2IzsEPSuHSeyTV1pqTyVcCSVF4E\nTJA0LE0gnZBiZmZmVpC67nBI+peIuLinWL0i4mlJDwLPAW+m798AhgAPSPoYsB64Oh3/sqQHyJKS\nN4EbcstHbiR77PqxwMLcA8ruAu5NE0xfA6ovodsmaRbZSpUAWiNie2/6YWZmZvXpaVnsscDxZEMO\nFfbNgxgKPBYRby+6gY3kZbFmZlYmjVwW+wfAx4ER7L889nXgr4tokJmZmQ089b4t9qaIuL3HAwcY\n3+EwM7MyKfIOR72TRjdLGpIa8+eSHu7tI83NzMysfOpNOGZExBuS3k+2pPUu4M7immVmZmYDSb0J\nx+70/deBb0TEPwFHF9MkMzMzG2jqTTg6JH0duAZYKOmYA6hrZmZmJVfvpNHjyV5w9mJErJb0S2Rv\nYm0ruoGN5EmjZmZWJkVOGq0r4UiNeBfwgbT5nYh4oYgGHUqccJiZWZk0fJWKpGnAfcBJ6WuepJuK\naJCZmZkNPPUOqawA3hsRO9P2YODJiHhnwe1rKN/hMDOzMmn4HQ6yJ4zuzm3vppevezczM7Pyqff1\n9HcDT6XXyANcSfYsDjMzM7MeHcik0bHA+9PmdyLiucJadYjwkIqZmZVJw1epSLoIeCki3kjbQ4Gz\nI+KpIhp1qHDCYWZmZXIoJBzPAWOrP30lDQKWR8SAfp+KEw4zMyuTQ2LSaP4nb0Tsof75H2ZmZlZy\n9SYcP5B0s6Sj0tc04AdFNszMzMwGjnoTjj8EfgXoADYCFwK/X1SjzMzMbGCpe5VKGXkOh5mZlcmh\nMIfDzMzMrNeccJiZmVnhnHCYmZlZ4epa2irp54HJwOh8nYi4uZhmmZmZ2UBS7x2OhWTJxovAM7mv\nXpM0TNK3Ja2U9JKkCyUNl9QmaZWkRZKG5Y6fLml1Ov6SXHyspBWSXpE0Oxc/WtL8VOdJSafl9k1J\nx6+SNPlg+mFmZmY9q/dJo8/29VNFJc0B/jUi7pZ0JDAY+AzwWkTcJunTwPCIuEXSOcB9wAXASOBx\n4KyICElPAX8cEcskLQS+GhGLJP0RcG5E3CDpGuAjETFJ0nBgOTCW7I23z5A9RXVHJ230KhUzMyuN\nQ2GVyr2Sfk/SL0k6ofrV24umd7F8ICLuBoiIXekH/hXA3HTYXLK30gJcDsxPx60DVgPjJJ0CDImI\nZem4e3J18ud6EBifyhOBtojYERHbgTbg0t72xczMzHpW7+PJfwb8JXArUP2VP4DTe3ndZuDHku4G\n3kV2x+HjwMkRsQUgIjZLOikd3wQ8mavfkWK7yB5EVrUxxat1NqRz7Za0IyVJe+M15zIzM7OC1Jtw\nfBI4MyJ+3IfXHQvcGBHLJX0FuIV9yUxVX45n9OoW0cyZM/eWK5UKlUqlj5pjZmbWWO3t7bS3t/fL\ntepNOP4D+K8+vO5GYENELE/bD5ElHFsknRwRW9Jwyatpfwdwaq7+yBTrKp6vs0nSEcDQiNgqqQOo\n1NR5oquG5hMOMzOzgaT2F+nW1tbCrlXvHI6dwPOSvi7pr6pfvb1oGjbZIGlMCl0MvAQsAKam2BTg\nkVReAExKK0+agTOBpyNiM7BD0jhJIlu6m68zJZWvApak8iJgQlolMxyYkGJmZmZWkHrvcPxD+upL\nNwP3STqK7M2z1wFHAA9I+hiwHrgaICJelvQA8DLwJnBDbvnIjcAc4FhgYUQ8luJ3kU12XQ28BkxK\n59omaRbZvJEAWtPkUTMzMyuIX97WDS+LNTOzMilyWWy9TxpdSycTOCOit6tUzMzMrETqHVJ5T658\nLNmciF4/h8PMzMzKpddDKpKeiYjz+7g9hxQPqZiZWZkcCkMq+ceaDyK741Hv3REzMzMruXqThi/l\nyruAdaQVJGZmZmY98SqVbnhIxczMyqRhQyqSPhoR8yR9orP9EfHlIhplZmZmA0tPQyqD0/chRTfE\nzMzMBi4PqXTDQypmZlYmjRxS6fZ9KRFxc982x8zMzAainoZUnumXVpiZmdmAdkBDKpKOj4i+fE39\nIc1DKmZmViZFDqnU9Xp6Se+V9DLw/bT9Lkl3FNEgMzMzG3jqSjiA2cBEste8ExEvAB8sqlFmZmY2\nsNSbcBARG2pCu/u4LWZmZjZA1fto8w2SfgUISUcB04CVxTXLzMzMBpJ673D8IXAj0AR0AO9O22Zm\nZmY98oO/uuFVKmZmViaNfPDX7UCXP3H94C8zMzOrR09zOJbnyq1AS4FtMTMzswGq7iEVSc9FxHkF\nt+eQ4iEV6w9r165nxow5dHTsoalpELNmTaW5eVSjm2VmJdSwIZUa/slr1sfWrl3PhAm3s2ZNK9nL\nmXeydGkLixff5KTDzAaUup/DYWZ9b8aMOblkA2Awa9a0MmPGnAa2ysys73WbcEh6Q9Lrkl4H3lkt\nV+MHe3FJgyQ9K2lB2h4uqU3SKkmLJA3LHTtd0mpJKyVdkouPlbRC0iuSZufiR0uan+o8Kem03L4p\n6fhVkiYfbD/MequjYw/7ko2qwWzatKcRzTEzK0y3CUdEDImIoenryFx5SEQM7YPrTwNezm3fAjwe\nEW8DlgDTASSdA1wNnA1cBtwhqTrGdCdwfUSMAcZImpji1wNbI+Isskez35bONRz4LHABcCHQkk9s\nzPpTU9MgYGdNdCcjRvjmo5kNLA37X03SSODDwN/mwlcAc1N5LnBlKl8OzI+IXRGxDlgNjJN0CjAk\nIpal4+7J1cmf60FgfCpPBNoiYkdEbAfagEv7sm9m9Zo1aypnnNHCvqRjJ2ec0cKsWVMb1iYzsyIc\nyKTRvvYV4FNA/u7CyRGxBSAiNks6KcWbgCdzx3Wk2C5gYy6+McWrdTakc+2WtEPSCfl4zbnM+l1z\n8ygWL76JGTO+yKZNexgxYhCzZnnCqJkNPA1JOCT9OrAlIp6XVOnm0L5cGdOrZT4zZ87cW65UKlQq\nlT5qjlmmuXkU8+b5ETdm1v/a29tpb2/vl2s16g7H+4DLJX0YOA4YIuleYLOkkyNiSxoueTUd3wGc\nmqs/MsW6iufrbJJ0BDA0IrZK6gAqNXWe6Kqh+YTDzMxsIKn9Rbq1tbWwazVkDkdEfCYiTouI04FJ\nwJKI+F3gUWBqOmwK8EgqLwAmpZUnzcCZwNMRsRnYIWlcmkQ6uabOlFS+imwSKsAiYIKkYWkC6YQU\nMzMzs4I0cg5HZz4PPCDpY8B6spUpRMTLkh4gW9HyJnBD7hGgNwJzgGOBhRHxWIrfBdwraTXwGlli\nQ0RskzSL7LHtAbSmyaNmZmZWEL8ttht+tLmZmZVJkY8292J/MzMzK5wTDjMzMyucEw4zMzMrnBMO\nMzMzK5wTDjMzMyucEw4zMzMrnBMOMzMzK5wTDjMzMyucEw4zMzMrnBMOMzMzK5wTDjMzMyucEw4z\nMzMrnBMOMzMzK5wTDjMzMyucEw4zMzMrnBMOMzMzK5wTDjMzMyucEw4zMzMrnBMOMzMzK5wTDjMz\nMyucEw4zMzMrnBMOMzMzK5wTDjMzMytcQxIOSSMlLZH0kqQXJd2c4sMltUlaJWmRpGG5OtMlrZa0\nUtIlufhYSSskvSJpdi5+tKT5qc6Tkk7L7ZuSjl8laXJ/9dvMzKysGnWHYxfwiYh4B/Be4EZJbwdu\nAR6PiLcBS4DpAJLOAa4GzgYuA+6QpHSuO4HrI2IMMEbSxBS/HtgaEWcBs4Hb0rmGA58FLgAuBFry\niY2ZmZn1vYYkHBGxOSKeT+WfACuBkcAVwNx02FzgylS+HJgfEbsiYh2wGhgn6RRgSEQsS8fdk6uT\nP9eDwPhUngi0RcSOiNgOtAGX9n0vzczMrKrhczgkjQbeDSwFTo6ILZAlJcBJ6bAmYEOuWkeKNQEb\nc/GNKbZfnYjYDeyQdEI35zIzM7OCHNnIi0v6ObK7D9Mi4ieSouaQ2u2DulxvKs2cOXNvuVKpUKlU\n+qg5ZmZmjdXe3k57e3u/XKthCYekI8mSjXsj4pEU3iLp5IjYkoZLXk3xDuDUXPWRKdZVPF9nk6Qj\ngKERsVVSB1CpqfNEV+3MJxxmZmYDSe0v0q2trYVdq5FDKn8HvBwRX83FFgBTU3kK8EguPimtPGkG\nzgSeTsMuOySNS5NIJ9fUmZLKV5FNQgVYBEyQNCxNIJ2QYmZmZlYQRfTlqEWdF5XeB/xf4EWyYZMA\nPgM8DTxAdmdiPXB1mtiJpOlkK0/eJBuCaUvx84E5wLHAwoiYluLHAPcC5wGvAZPShFMkTQVuTdf9\nXETc00U7oxGfj5mZWSNIIiJ6NQWhx3P7B2rXnHCYmVmZFJlwNHyVipmZmQ18TjjMzMyscE44zMzM\nrHBOOMzMzKxwDX3wl/WttWvXM2PGHDo69tDUNIhZs6bS3Dyq0c0yMzPzKpXuHE6rVNauXc+ECbez\nZk0rMBjYyRlntLB48U1OOszMrC5epWI9mjFjTi7ZABjMmjWtzJgxp4GtMjMzyzjhGCA6OvawL9mo\nGsymTXsa0RwzM7P9OOEYIJqaBgE7a6I7GTHCf8RmZtZ4/mk0QMyaNZUzzmhhX9KRzeGYNWtqw9pk\nZmZW5Umj3TicJo3CvlUqmzbtYcQIr1IxM7MD43epNMjhlnCYmZkdDK9SMTMzs8OaEw4zMzMrnBMO\nMzMzK5wfbV4wP27czMzMk0a7dbCTRv24cTMzO5x4lUqD9CbhyN/RWLfue6xbdw/7PwF0J9de+0Xm\nzWvp07aamZkdrCITDg+p9KG33tH4c/y4cTMzM08a7VNvfYHaUfhx42ZmZk44+tRbX6A2FfDjxs3M\nzDykcgB6WnGy7wVq1aRjFHA9o0dPprn5l9Pjxj1h1MzMyqe0k0YlXQrMJrvLc1dEfKGTY/ZOGq1n\nxYlXpZiZ2eHMjzbvY5IGAX8NTATeAfy2pLd3duxHP9rKhz7Uwvjxn6iZnzGYNWtamTFjzt5jm5tH\nsXjxTVx77Rf50IdauPbaLx7WyUZ7e3ujm9AwZe47uP/uf3ujm9AwZe570UqZcADjgNURsT4i3gTm\nA1d0duB99/0p7e2trFt3NvWsOGluHsW8eS0sWdLKvHkth22yAeX+h1fmvoP77/63N7oJDVPmvhet\nrAlHE7Aht70xxTrhFSdmZmYHyz8t6zYVrzgxMzPrnVJOGpV0ETAzIi5N27cAUTtxVFL5PhwzMys1\nP9q8D0k6AlgFXAz8J/A08NsRsbKhDTMzMxugSvkcjojYLemPgTb2LYt1smFmZlaQUt7hMDMzs/7l\nSaOdkHSppO9LekXSpxvdnoMh6S5JWyStyMWGS2qTtErSIknDcvumS1otaaWkS3LxsZJWpM9kdi5+\ntKT5qc6Tkk7rv951T9JISUskvSTpRUk3p3hZ+n+MpKckPZf635Lipeg/ZM/ckfSspAVpuzR9B5C0\nTtIL6e/A0ylWis9A0jBJ3059eUnShSXq+5j0Z/5s+r5D0s0N739E+Cv3RZaE/QfZc8mPAp4H3t7o\ndh1Ef94PvBtYkYt9AfizVP408PlUPgd4jmyobXT6HKp3wZ4CLkjlhcDEVP4j4I5UvgaY3+g+5/p5\nCvDuVP45snk7by9L/1Objk/fjwCWkj2Dpkz9/xNgHrCgTH/3c/3/ATC8JlaKzwCYA1yXykcCw8rS\n95rPYRCwCTi10f1v+IdxqH0BFwH/nNu+Bfh0o9t1kH0axf4Jx/eBk1P5FOD7nfUV+GfgwnTMy7n4\nJODOVH4MuDCVjwB+1Oj+dvM5/APwa2XsP3A8sBy4oCz9B0YCi4EK+xKOUvQ91961wIk1sQH/GQBD\ngTWdxAd83zvp8yXAdw6F/ntI5a0O4KFgh62TImILQERsBk5K8dq+d6RYE9nnUJX/TPbWiYjdwHZJ\nJxTX9N6RNJrsTs9Ssn9wpeh/GlJ4DtgMLI6IZZSn/18BPgXkJ6qVpe9VASyWtEzS/0qxMnwGzcCP\nJd2dhhW+Iel4ytH3WtcA96dyQ/vvhMNg//+QD1Yh67cPhqSfAx4EpkXET3hrfwds/yNiT0ScR/bb\n/jhJ76AE/Zf068CWiHie7ts04Ppe430RMRb4MHCjpA9Qgj9/sqGBscDXUv93kv0WX4a+7yXpKOBy\n4Nsp1ND+O+F4qw4gP/llZIoNJFsknQwg6RTg1RTvIBvnq6r2vav4fnWUPd9kaERsLa7pB0bSkWTJ\nxr0R8UgKl6b/VRHxOtAOXEo5+v8+4HJJPwC+CYyXdC+wuQR93ysi/jN9/xHZkOI4yvHnvxHYEBHL\n0/ZDZAlIGfqedxnwTET8OG03tP9OON5qGXCmpFGSjiYbs1rQ4DYdLLF/9rmA7FntAFOAR3LxSWn2\ncTNwJvCozulDAAAEcElEQVR0uvW2Q9I4SQIm19SZkspXAUsK60Xv/B3ZGORXc7FS9F/SL1RnoUs6\nDpgArKQE/Y+Iz0TEaRFxOtm/4SUR8bvAowzwvldJOj7d3UPSYLKx/Bcpx5//FmCDpDEpdDHwEiXo\ne43fJku4qxrb/0ZPaDkUv8h+C1wFrAZuaXR7DrIv95PNUP4p8EPgOmA48HjqYxvw87njp5PNUF4J\nXJKLn0/2n9Vq4Ku5+DHAAym+FBjd6D7n2vY+YDfZSqPngGfTn+0JJen/uanPzwMrgFtTvBT9z7Xx\nV9k3abQ0fSebx1D9u/9i9f+ysnwGwLvIfoF8HniYbJVKKfqe2nc88CNgSC7W0P77wV9mZmZWOA+p\nmJmZWeGccJiZmVnhnHCYmZlZ4ZxwmJmZWeGccJiZmVnhnHCYmZlZ4ZxwmJmZWeGccJiVmKQlkibU\nxKZJ+lo3dUZJerH41u13vf8n6dlc7I1OjvsDSR9N5Snp0c3VfdMkHduLa98m6T8lfaK37TezjBMO\ns3K7n+zxx3mT2Pd2ya709xMDV0f2Eq4urx8RX4+IeWlzKvu/5fnjZE9erJukQRHxZ8CdB9hWM+uE\nEw6zcnsI+HB6yR2SRgG/FBH/lrb/UtKLkl6QdHVt5XQn4fbc9qOSPpjKb6Q7BN+T1CbpAklPSPoP\nSb+RjhmUjnlK0vOSfq+3HZHUIumTkv4n8B5gXno1+c3ACOAJSf+Sjr1E0r9LWi7pW8peXY6ktZI+\nL2k58FvVU/e2TWa2jxMOsxKLiG3A02RvlYTs7sYDAJJ+E3hnRJxL9uK3v6y+abL2NF2cfjDweET8\nMvATYBbZS7R+M5UBrge2R8SFZG8y/f2U9BxEl+IhYDnwOxExNiL+iuzNlpWIuFjSicCtwMUR8R7g\nGSA/ZPLjiHhPRDxwEO0wsxpHNroBZtZw88kSjUfT9+tS/P2kN01GxKuS2oELyF7kVI+fRkRbKr8I\n/HdE7EnzP6pJxSXAuZKuSttDgbOA9b3vzl6qKVe3LwLOAf4tvQHzKODfc8d+qw+ubWY1nHCY2SPA\nlyWdBxwXEc93cVxnQwu72P9OaX5i5pu58h6yNxYTEVEdwknnvCkiFveq5b0joC0iru1i/85+bItZ\naXhIxazkImIn0A78HemORvId4Jo0z+IXgQ+QDb/AvuRjHfBuZU4lGxah5pjOVPctAm7IzSE5S9Jx\ndTS7p3kVb5DdLal6Pbe9FHifpDPSNY+XdFYd1zSzg+A7HGYGWaLxMHBNNRARfy/pIuAFsjsUn0pD\nK6NI8zYi4t8krQNeAlaSzYfYe4purlfd97fAaODZNLzxKnBlHe09TtIPyRKPAL5cc705wN9I+i/g\nvcD/AR6T1JHmcVwHfFPSManenwOre2izmR0ERfjfl5kdulKC849p8mojrt8CvBERX27E9c0GCg+p\nmNmhbjcwLP/gr/4i6TbgWjyvw+yg+Q6HmZmZFc53OMzMzKxwTjjMzMyscE44zMzMrHBOOMzMzKxw\nTjjMzMyscP8fcIW44MZSH3kAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11bc9db90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline\n", | |
"\n", | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"\n", | |
"diameter = np.array([90, 120, 165, 180, 240, 360, 510])\n", | |
"volume = np.array([382, 904, 2351, 3052, 7235, 24417, 69421])\n", | |
"\n", | |
"# ヘリウム400リットル当たり7000円で換算\n", | |
"helium_cost = 7000 * volume / 400.0\n", | |
"\n", | |
"fig, ax = plt.subplots(1, 1, figsize=(8, 4))\n", | |
"ax.plot(volume, helium_cost, 'o')\n", | |
"ax.set_xlabel('Volume [Litter]')\n", | |
"ax.set_ylabel('Helium cost [Yen]')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>diameter</th>\n", | |
" <th>volume</th>\n", | |
" <th>helium_cost</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>90</td>\n", | |
" <td>382</td>\n", | |
" <td>6685.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>120</td>\n", | |
" <td>904</td>\n", | |
" <td>15820.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>165</td>\n", | |
" <td>2351</td>\n", | |
" <td>41142.5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>180</td>\n", | |
" <td>3052</td>\n", | |
" <td>53410.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>240</td>\n", | |
" <td>7235</td>\n", | |
" <td>126612.5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>360</td>\n", | |
" <td>24417</td>\n", | |
" <td>427297.5</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>510</td>\n", | |
" <td>69421</td>\n", | |
" <td>1214867.5</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" diameter volume helium_cost\n", | |
"0 90 382 6685.0\n", | |
"1 120 904 15820.0\n", | |
"2 165 2351 41142.5\n", | |
"3 180 3052 53410.0\n", | |
"4 240 7235 126612.5\n", | |
"5 360 24417 427297.5\n", | |
"6 510 69421 1214867.5" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df = pd.DataFrame(data=np.array([diameter, volume, helium_cost]).T, \n", | |
" columns=['diameter','volume', 'helium_cost'])\n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 球の直径から体積を計算" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def diameter2volume(d):\n", | |
" # Args:\n", | |
" # d (float): 球の直径 [cm]\n", | |
" # Returns:\n", | |
" # float: 球の体積\n", | |
" \n", | |
" import numpy as np\n", | |
" \n", | |
" # 球の半径[cm]を計算\n", | |
" r = d / 2.0 \n", | |
" \n", | |
" # 球の体積[cm^3]を計算\n", | |
" volume = (4.0 / 3.0 ) * np.pi * r ** 3\n", | |
" \n", | |
" # 球の体積の単位をcm^3からリットルに変換\n", | |
" volume = volume / 1000.0 \n", | |
" \n", | |
" return volume" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"球の体積(計算した値): [ 382. 905. 2352. 3054. 7238. 24429. 69456.]\n", | |
"球の体積(HPにあった値): [ 382 904 2351 3052 7235 24417 69421]\n" | |
] | |
} | |
], | |
"source": [ | |
"computed_volume = diameter2volume(diameter)\n", | |
"computed_volume = computed_volume.round()\n", | |
"print(\"球の体積(計算した値): %s\" % computed_volume)\n", | |
"print(\"球の体積(HPにあった値): %s\" % volume)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.legend.Legend at 0x106c51350>" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdXV+PHvupAEEggkkIQpCZgAJQ4IWigCEocqlApY\nKw0OgKK2alU6WEHfAv5exakK1r5YW5FBq0yKoDKJEFG0IIKAMgWQQAKEMUASyLh+f9zD5QYI5MJN\nbob1eZ77cO7O3ifrJOGse/Y+Z29RVYwxxhhXoAMwxhhTNVhCMMYYA1hCMMYY47CEYIwxBrCEYIwx\nxmEJwRhjDFCOhCAi7URkjYisdv49IiKPikiEiCwSkc0islBEGnm1GSkiaSKyUURu8irvLCLrRGSL\niIz3Kg8WkWlOm69FJM7/h2qMMeZczpsQVHWLqnZS1c7AVUAuMBsYASxW1fbAEmAkgIgkAQOBDkAf\nYIKIiLO714FhqtoOaCciNzvlw4BDqtoWGA+86K8DNMYYUz6+dhndCGxT1V1Af2CKUz4FGOBs9wOm\nqWqRqu4A0oAuItIMaKiq3zj1pnq18d7XLOAGXw/EGGPMxfE1IfwGeNfZjlHVLABV3QtEO+UtgV1e\nbTKdspZAhld5hlNWqo2qFgPZIhLpY2zGGGMuQrkTgogE4f70P9MpOn3OC3/OgSHnr2KMMcaf6vpQ\ntw/wraoecN5niUiMqmY53UH7nPJMINarXSunrKxy7za7RaQOEK6qh04PQERs4iVjjLkAqnreD9q+\ndBkNAt7zej8XGOpsDwHmeJWnOHcOtQESgZVOt9IREeniDDIPPq3NEGf7dtyD1GelqjX2NXr06IDH\nYMdnx2bHV3Ner73yBkHyUblP8uW6QhCRUNwDyg94Fb8AzBCRe4F03HcWoaobRGQGsAEoBB5S1ZOf\n7B8GJgP1gHmqusApnwi8LSJpwEEgpdxHYIwx5gyqyjv/WU+h3l/uNuVKCKqaB0SdVnYId5I4W/3n\ngOfOUv4tcPlZyvNxEooxxpiL9/77C1n/fW98GZL1ZQzBVLDk5ORAh1ChavLx1eRjAzu+6mj5l+u4\nuuVmiFnOsq/L10ZO9eZUfSKi1SleY4wJmLQ0WLoUHngAEUHLMahsVwimVmndujXp6emBDsOYChEf\nH8+OHTvcb9asgc6dfWpvCcHUKunp6dhVpqmpTs4SpDm5yPbt0K+fT+1ttlNjjKlh3nh6L6NWD4B6\n9XxqZwnBGGNqElXenN6Qa/pG+NzUuoyMMaYG+W5hFvtywvj5nQ18bmtXCMaYSnPdddfx1ltvBTqM\nGm3ia3ncO+Awder6PiWcXSEYY8olPT2dNm3aUFRUhMtlnyWrqneXNmf1qpILamsJwdR6y+fOpWDb\nNk6t4+R+7D84IYHu5bxLwx/7qOpU9eT97IEOxZzDLT/dS3xSmwtqa2ne1HoxCQnEZmaSnJ3tecVm\nZhKTkFCp+wDIyMjgtttuIzo6mqioKB599FFUlWeeeYbWrVvTrFkzhg4dytGjRwH3p3aXy8XkyZOJ\ni4ujSZMmvPHGG6xatYqOHTsSGRnJI4884tn/lClT6NGjB4888giNGzcmKSmJJUtOzSXZpk2bUu+f\nfvppBg8eDECvXr0AaNy4MeHh4axYsQKAt956i6SkJJo0aUKfPn3YuXOnp/2nn35Khw4diIiI4JFH\nHrFkUgkm/7vwgttaQjC1XkJSElujoz0nK1Vla3Q0CUlJlbqPkpISfvnLX9KmTRvS09PJzMwkJSWF\nyZMnM3XqVD7//HO2b9/OsWPH+P3vf1+q7cqVK9m6dSvTp09n+PDhjB07liVLlvD9998zY8YMvvji\nC0/dFStW0LZtWw4ePMiYMWP41a9+RXZ29nnjW7ZsGQBHjx7l6NGjdO3alTlz5vD888/z4Ycfsn//\nfnr27MmgQYMAOHDgALfddhtjx47lwIEDJCQksHz58nL/PMwFSky84KbWZWRqPREhsW9ftk2aROKq\nVWwrKCDxyiuRp58u/z6AxH372PbddyQGB7Pt6qtJHDiwVBfS+axcuZI9e/bw4osvevror7nmGkaN\nGsUf//hH4uPjAXjuuee47LLLmDx5sif+UaNGERwczI033khYWBiDBg2iSZMmAPTs2ZM1a9bQs2dP\nAGJiYnj00UcBGDhwIC+//DKffPIJd955Z7niPNl1BPDGG28wcuRI2rVrB8CIESN49tln2bVrF6mp\nqVx22WXceuutAAwfPpyXX3653D8Pc4EuYnzHEoIxuD/hL4yOJqFXL7aGhXHz44+DDydzgARVFr70\nEgm5ue59+HB1ALBr1y7i4+PPGLDdvXu3JxmAe3qCoqIisrKyPGXR0dGe7fr16xMTE1PqfU5Ojud9\ny5Yt8RYfH8/u3bt9ivWk9PR0HnvsMf70pz8Bp5JFZmYmu3fvJjY2tlT909+bqsW6jIzh1FXCwr17\nSezb16dP9v7aR2xsLDt37qSkpPQdIi1atCg1/1J6ejpBQUGlTvq+yMzMLPV+586dtGjRAoCwsDDy\n8vI8X9u7d69n+2zHExcXxxtvvMGhQ4c4dOgQhw8fJicnh5/97Gc0b9681HgCuJOeqbosIRjjSEhK\nouGtt/rU7+/PfXTp0oXmzZszYsQI8vLyyM/P56uvvmLQoEGMGzeOHTt2kJOTw1NPPUVKSornSsLX\ngdp9+/bx2muvUVRUxMyZM9m0aRO/+MUvALjyyiuZNm0aRUVFrFq1ilmzZnnaRUVF4XK52LZtm6fs\nt7/9LWPHjmXDhg0AHDlyxNOmb9++bNiwgQ8//JDi4mJeffXVUlc1puqxhGCMQ0To3rv3BV0d+GMf\nLpeLjz76iLS0NOLi4oiNjWXGjBkMGzaMu+66i2uvvZaEhARCQ0P5+9//Xup7nh7Dud537dqVtLQ0\nmjZtyl//+lfef/99IiLc0xz87//+L1u3biUyMpKnn3661LhC/fr1eeqpp+jevTuRkZGsXLmSAQMG\nMGLECFJSUmjcuDFXXHEFCxa4F0Js0qQJM2fO5IknnqBp06Zs27aN7t27+/xzMZXH1kMwtUptv49+\nypQpTJw40XPHkKlZyvr7Lu96CHaFYIwxBrCEYIwxxmFdRqZWqe1dRqZmsy4jY4wxfmEJwRhjDFDO\nhCAijURkpohsFJEfRKSriESIyCIR2SwiC0WkkVf9kSKS5tS/yau8s4isE5EtIjLeqzxYRKY5bb4W\nkTj/HqYxxpjzKe8VwqvAPFXtAHQENgEjgMWq2h5YAowEEJEkYCDQAegDTJBTN0K/DgxT1XZAOxG5\n2SkfBhxS1bbAeODFiz4yY4wxPjlvQhCRcKCnqk4CUNUiVT0C9AemONWmAAOc7X7ANKfeDiAN6CIi\nzYCGqvqNU2+qVxvvfc0CbrioozLGGOOz8lwhtAEOiMgkEVktIv8SkVAgRlWzAFR1L3Bydq2WgPeE\nJZlOWUsgw6s8wykr1UZVi4FsEYm8wGMyplb5/PPPa9SkcSfXeDh9TqdAcrlcbN++PdBhVLjyzHZa\nF+gMPKyqq0RkHO7uotPvbfLnvXxl3h41ZswYz3ZycjLJycl+/LbGVE8XM91GoLVp04aJEydy/fXX\ne8qq2vFUtXjOJzU1ldTUVJ/blSchZAC7VHWV8/593AkhS0RiVDXL6Q7a53w9E/D+uNLKKSur3LvN\nbhGpA4Sr6qGzBeOdEIzxJ1Vl5MiXeO65xy/4BOCPfZiqp7o9u3L6h+Wny7m2x3m7jJxuoV0i0s4p\nugH4AZgLDHXKhgBznO25QIpz51AbIBFY6XQrHRGRLs4g8+DT2gxxtm/HPUhtTKV6//2FTJiwhw8+\nWFTp+3jxxRe5/fbbS5U99thjDB8+HIDJkyeTlJREeHg4iYmJ/Otf/ypzX6d3b9xzzz2MGjXK8/7j\njz+mU6dORERE0KNHD9avX+/52gsvvECrVq0IDw+nQ4cOLF269Kzf4+jRowwePJjo6GjatGnDs88+\n6/nalClT6NmzJ48//jiRkZEkJCR4Jrw73eDBg9m5cye33HIL4eHh/O1vfwPcJ+B33nmH+Ph4oqOj\nGTt2rKeNqvL888+TmJhIVFQUKSkpZa74lpyczOzZswFYvnw5LpeL+fPnA7BkyRI6derkqXuupUAB\nPvnkExISEoiOjuYvf/lLqeM917Kk5/vdvfjii7Ro0YJWrVoxceLEUr+/goIC/vznPxMfH0/z5s15\n6KGHyM/PP+ux+oWqnveF+86ib4DvgA+ARkAksBjYDCwCGnvVHwlsBTYCN3mVXwWsxz3Q/KpXeQgw\nwyn/L9C6jDjUmItR1t9QSUmJdu06XMH9b0lJic/7vph9pKena1hYmObk5KiqanFxsTZv3lxXrlyp\nqqrz5s3TH3/8UVVVly1bpqGhobpmzRpVVU1NTdXY2FjPvlwul27bts3zfujQofrXv/5VVVVXr16t\n0dHR+s0332hJSYlOnTpVW7durQUFBbp582aNjY3VvXv3emLavn37WeO9++67dcCAAZqbm6s7duzQ\ndu3a6VtvvaWqqpMnT9bg4GCdOHGilpSU6Ouvv64tWrQo89hbt26tS5Ys8bzfsWOHiog+8MADmp+f\nr2vXrtWQkBDdtGmTqqqOHz9eu3Xrprt379aCggL93e9+p4MGDTrrvkeNGqWPPvqoqqqOHTtWExMT\ndcSIEZ6vDR8+XFVVP/zwQ23btq1u3rxZi4uL9dlnn9VrrrnGsx8R0euvv16zs7N1165d2q5dO504\ncaLneOvWrauvvvqqFhUV6fTp07VRo0Z6+PDh8/7u5s+fr82bN9eNGzfq8ePH9a677ir1+xs+fLj2\n799fs7OzNScnR/v166dPPvlkmT/Lsv6+nfLzn+vLU6mqvCwhmItV1t/QzJnzNTR0gYIqzFc4ue1+\njR599v2NHq1e9U61Cw2dr7NmLfAptp49e+rbb7+tqqqLFi3SxMTEMusOGDBA//73v6vqmQlBRMpM\nCA8++KCOGjWq1L7at2+vy5Yt061bt2pMTIwuXrxYCwsLy/zexcXFGhwc7DlBq6q+8cYbet1116mq\n+wTZtm1bz9fy8vLU5XJpVlbWWffXunVr/eyzzzzvd+zYoS6XS3fv3u0p69Kli06fPl1VVTt06FAq\ngezevVuDgoK0uLj4jH1/9tln2rFjR1VV7d27t06cOFG7deumqqq9evXS2bNnq6pqnz59PAnt5DGG\nhobqzp07VdX9M120aJHn6xMmTNAbb7zRc7wtW7Ys9X27dOmi77zzzlmP1/t3d++995Y6wW/durXU\n7y8sLKxUUv7qq6+0TZs2Z92v6sUnBHtS2dR6qsrf/raQvLyTz1DeTNeuCygpUc+pvqyhqzFj3F8v\nKVG6dl0IuPeRl3czL720wKe+50GDBvHee+8B8N5773HHHXd4vjZ//ny6detGkyZNiIiIYP78+Rw4\ncMDnY01PT+fll18mMjKSyMhIIiIiyMjIYPfu3SQkJDB+/HjGjBlDTEwMd9xxB3v27DljHwcOHKCo\nqIi4uFPPj8bHx5daia1Zs2ae7fr166OqpZbxLA/vFeFCQ0M97dPT07n11ls9x5CUlERQUNBZF9/p\n1q0bW7ZsYd++faxdu5bBgweza9cuDh48yMqVK+nVq5dnn4899phnn02aNPEsBXpSq1atSh2v97Kj\n51qW9Fy/u9OXGfXe3r9/P3l5eVx11VWeuPr06cPBgwd9+jn6whKCqfXef38h69f35tTNbcL69Tf7\nNA7gj33cfvvtpKamkpmZyezZsz0JoaCggF//+tf85S9/Yf/+/Rw+fJg+ffqUmWxCQ0PLXAYzNjaW\np5566owlL3/zm98AkJKSwhdffOFZsnPEiBFn7L9p06YEBQWdsazn6SfF8vJ18D0uLo758+eXOobc\n3FyaN29+Rt369etz1VVX8eqrr3LZZZdRt25dunXrxiuvvEJiYqJnYaBzLQV6kvfyn97LjkLZy5Ke\n73fXvHlzMjIySrU7qWnTpoSGhvLDDz944srOzubIkSM+/bx8YQnB1HrLl6/n6qu/olevMZ7X1Vd/\nzZdfrqvUfTRt2pRevXpxzz33cMkll9C+fXvAnRAKCgpo2rSpZ1B00aKyE02nTp149913KSkpYcGC\nBXz++eeer91///3885//ZOXKlQDk5uYyb948cnNz2bJlC0uXLqWgoIDg4GDq16/vWabTm8vlYuDA\ngTz11FPk5OSQnp7OuHHjuPvuu8t9rN6aNWt2xj3+57qy+u1vf8uTTz7pOXnu37+fuXPnlln/2muv\n5R//+IfnaiA5ObnU+5P7LGsp0JNeeuklsrOz2bVrF6+++iopKSmer51tWdK+ffue93c3cOBAJk2a\nxKZNm8jLy+OZZ57xJEgR4f7772f48OHs378fcCeec/3uL1p5+pWqygsbQzAXqar/Db399tvqcrn0\n5ZdfLlU+YcIEjYmJ0YiICB08eLAOGjTIMy5w+hjCqlWr9NJLL9Xw8HAdPHiw3nHHHZ66qqoLFy7U\nn/70pxoREaEtWrTQgQMHak5Ojq5bt067dOmi4eHh2qRJE73lllt0z549Z43z8OHDetddd2lUVJTG\nxcXpM8884/na5MmTtWfPnqXqnz7Q7W3OnDkaFxenERER+vLLL3vGELzHBK677jrPIG5JSYmOGzdO\n27dvr+Hh4ZqYmKhPPfVUmT/ThQsXqsvl0mXLlqmq6vfff68ul0tnzpxZqt4777yjl19+uTZq1Ejj\n4uJ02LBhpeJ/7bXX9JJLLtGmTZvq448/7rlpYPLkydqjRw995JFHtFGjRtq+fXtdvHixp+25fneq\nqs8//7w2a9ZMW7Zsqf/85z/V5XJpRkaGqqrm5+frk08+qZdccok2atRIk5KS9LXXXivzWMv6+6ac\nYwi2HoKpVWw9BONv/lyWdNOmTVx++eXk5+ef9ersfGw9BGOMqcY+/PBDCgoKOHz4ME888QT9+vW7\noGTgD5YQjDEmgN544w2io6Np27YtQUFBTJgwIWCxWJeRqVWsy8jUZNZlZIwxxi8sIRhjjAEsIRhj\njHGUZ/prY2qM+Ph4m5ba1Fjx8fEX1d4GlY0xpqopKIBXXoGHH4aGDS96dzaobIwx1dUPP0B8vF+S\ngS8sIRhjTFWzejV07lzp39YSgjHGVCX790N2NrRtW+nf2hKCMcZUIenzN1ByeUcIwPQVlhCMMaaK\nKMovpvujndnU4OqAfH9LCMYYU0UsfCuT2KbHSbqmcUC+vyUEY4ypIt6cCMPuKgjY97fnEIwxpgrY\nu+UoHToGszOzDg0jg/y6b3sOwRhjqpGprxzgVz33+z0Z+MISgjHGBJoqbU5s5JHH6wU0jHIlBBHZ\nISJrRWSNiKx0yiJEZJGIbBaRhSLSyKv+SBFJE5GNInKTV3lnEVknIltEZLxXebCITHPafC0icf48\nSGOMqdK2b+f2bhlc+fOogIZR3iuEEiBZVTupahenbASwWFXbA0uAkQAikgQMBDoAfYAJcmo2sdeB\nYaraDmgnIjc75cOAQ6raFhgPvHiRx2WMMdXH6tXQqVOgoyh3QpCz1O0PTHG2pwADnO1+wDRVLVLV\nHUAa0EVEmgENVfUbp95Urzbe+5oF3ODLQRhjTLWVlwfbtsHllwc6knInBAU+FZFvROQ+pyxGVbMA\nVHUvEO2UtwR2ebXNdMpaAhle5RlOWak2qloMZItIpI/HYowx1c+6ddCuHdSvH+hIyr0eQndV3SMi\nUcAiEdmMO0l48+f9oGXeHjVmzBjPdnJyMsnJyX78tsYYU4lUKfzmO4Ju6e3X3aamppKamupzO5+f\nQxCR0UAOcB/ucYUspztoqap2EJERgKrqC079BcBoIP1kHac8Beilqg+erKOqK0SkDrBHVaPP8r3t\nOQRjTI2xdlEWw+6DVenRUIELN/ntOQQRCRWRBs52GHATsB6YCwx1qg0B5jjbc4EU586hNkAisNLp\nVjoiIl2cQebBp7UZ4mzfjnuQ2hhjarSJr+XS94YTFZoMfFGeLqMYYLaIqFP/P6q6SERWATNE5F7c\nn/4HAqjqBhGZAWwACoGHvD7WPwxMBuoB81R1gVM+EXhbRNKAg0CKX47OGGOqqBNHC3h3STNWrSgJ\ndCgeNnWFMcYEwHvP7WDSeyEsWte8wr+XTV1hjDFV2JtTg7nvnqpzdQCWEIwxptIVZO4nMvgY/X/b\nLNChlGJdRsYYU9kWLXKviHbjjZXy7azLyBhjqqLiYli7tkpMVXE6SwjGGFOZNm+Gpk2hSZNAR3IG\nSwjGGFOZ1qyBzp0DHcVZWUIwxpjKcuQIZGRAUlKgIzmr8s5lZIwx5iL9Y9Q+Grh6MzQocKuinYtd\nIRhjTCXQEuW195rQ/roWgQ6lTJYQjDGmEnw5cw916sDPftk00KGUyRKCMcZUgomvFzBsYA7iqhoT\n2Z2NPZhmjDEV7MiePOIvcbFlkxIdX/kL4diDacYYU0WsmJFO36v3BSQZ+MISgjHGVCRVbgpayjtT\nigMdyXlZQjDGmIq0ezcUFiJtWgc4kPOzhGCMMRVp9Wr3k8lVZFW0c7GEYIwxFaWgAH74ATp2DHQk\n5WIJwRhjKsqGDRAXB+HhgY6kXCwhGGNMBRkzWtnT6qeBDqPc7DkEY4ypANtXHeJnyfXYtS+EkNA6\nAY3FnkMwxpgAeuuVbO68aX/Ak4EvbLZTY4zxs6L8YibPi2LBx1X/2QNvdoVgjDF+tnDSblo1Oc5l\nPRoHOhSflDshiIhLRFaLyFznfYSILBKRzSKyUEQaedUdKSJpIrJRRG7yKu8sIutEZIuIjPcqDxaR\naU6br0Ukzl8HaIwxle0/U4u57678QIfhM1+uEB4DNni9HwEsVtX2wBJgJICIJAEDgQ5AH2CCiOeJ\njNeBYaraDmgnIjc75cOAQ6raFhgPvHiBx2OMMYF19Chv9nmfu/7cLNCR+KxcCUFEWgG/AN70Ku4P\nTHG2pwADnO1+wDRVLVLVHUAa0EVEmgENVfUbp95Urzbe+5oF3OD7oRhjTBXw3XeEdmpPvYZVc1W0\ncynvFcI44HHA+57PGFXNAlDVvUC0U94S2OVVL9MpawlkeJVnOGWl2qhqMZAtIpHlPwxjjKkCVE9N\nVVENnfcuIxHpC2Sp6nciknyOqv58QKDM+2XHjBnj2U5OTiY5OdmP39YYYy7Cjz9CvXrQvHlAw0hN\nTSU1NdXndud9ME1ExgJ3AUVAfaAhMBu4GkhW1SynO2ipqnYQkRGAquoLTvsFwGgg/WQdpzwF6KWq\nD56so6orRKQOsEdVo08LxR5MM8ZUbbNmQWwsdO0a6EhK8duDaar6pKrGqeolQAqwRFXvBj4ChjrV\nhgBznO25QIpz51AbIBFY6XQrHRGRLs4g8+DT2gxxtm/HPUhtjDHVxpE9ebw3KwiuuCLQoVywi3kw\n7Xlghojci/vT/0AAVd0gIjNw35FUCDzk9bH+YWAyUA+Yp6oLnPKJwNsikgYcxJ14jDGm2nhvfBaL\n069iUP2qvSraudhcRsYYc7FU+Wnr/fzv0yX0Hlr1bjctb5eRTV1hjDEXae3ifWQdDeXndzUIdCgX\nxaauMMaYizTx73nc0/8QdepW/VXRzsW6jIwx5iIcP1JAqxbFfPvfIlpf3jDQ4ZyVTX9tjDGVIHjr\nBj56/Isqmwx8YQnBGGMuQp21q7nmN7GBDsMvLCEYY8yFOnAADh2Cdu0CHYlfWEIwxpgLtWYNdOwI\ndarPqmjnYgnBGGMuRHExrF0LnToFOhK/sYRgjDEXYPtnP3IwuDk0bRroUPzGEoIxxlyAPz8VwuwD\nPQMdhl/ZcwjGGOOjvWnH6HBFEDszXDRsEhzocM7LnkMwxpgKMvXl/dzaY1+1SAa+sLmMjDHGB1qi\nTPwggkn/Lgp0KH5nVwjGGOODL2fuweWCbrfUnMHkkywhGGOMD5ru/Z7xI7MQV/WeyO5sLCEYY0x5\nHT9Oh+OrufmB+EBHUiEsIRhjTHmtXw+JiVCNV0U7F0sIxhhTHqqwejV07hzoSCqMJQRjjCmPPXsg\nPx/atAl0JBXGEoIxxpTDsS+deYuk5g0mn2RPKhtjzHmcOFZIXPMCvl9bQnRC9VsIx55UNsYYP5n9\nf7u5ss3RapkMfGEJwRhjzuPNqUHcd09xoMOocOdNCCISIiIrRGSNiKwXkdFOeYSILBKRzSKyUEQa\nebUZKSJpIrJRRG7yKu8sIutEZIuIjPcqDxaRaU6br0Ukzt8HaowxF2L7t4dZt7Mx/X/XPNChVLjz\nJgRVzQeuU9VOwJVAHxHpAowAFqtqe2AJMBJARJKAgUAHoA8wQcQzCvM6MExV2wHtRORmp3wYcEhV\n2wLjgRf9dYDGGHMx3nolm7tu2k9IaM1YFe1cytVlpKp5zmYI7gnxFOgPTHHKpwADnO1+wDRVLVLV\nHUAa0EVEmgENVfUbp95Urzbe+5oF3HBBR2OMMf5UXEzD7F3c98fwQEdSKcqVEETEJSJrgL3Ap85J\nPUZVswBUdS8Q7VRvCezyap7plLUEMrzKM5yyUm1UtRjIFpHICzoiY4zxl7Q0nrhtK5f2iAh0JJWi\nXNNfq2oJ0ElEwoHZInIp7quEUtX8GFeZt0eNGTPGs52cnExycrIfv60xxnippk8mp6amkpqa6nM7\nn9ZDUNWjIpIK9AayRCRGVbOc7qB9TrVMINarWSunrKxy7za7RaQOEK6qh84Wg3dCMMaYCnP0KOza\nBb/+daAj8dnpH5affvrpcrUrz11GTU/eQSQi9YGfAxuBucBQp9oQYI6zPRdIce4cagMkAiudbqUj\nItLFGWQefFqbIc727bgHqY0xJnDWroWkJAiuWauinUt5rhCaA1NExIU7gUxX1Xki8l9ghojcC6Tj\nvrMIVd0gIjOADUAh8JDX48UPA5OBesA8VV3glE8E3haRNOAgkOKXozPGmAuhCmvWwG23BTqSSmVT\nVxhjzGm+nLGb/3spl/dWJtaIuYts6gpjjLlAb75eyNXdgmtEMvCFXSEYY4yXI3uPE99G2LKxhOjW\noYEOxy/sCsEYYy7AtPF7ubHjgRqTDHxhCcEYY7y8OS2M+x6onafG2nnUxhhzFoc27CWsbgE/H1zz\nJ7I7G0vDWDf4AAAUX0lEQVQIxhjjiPzxW1InbqNO3do1mHySJQRjjAEoLITvv4crrwx0JAFjCcEY\nYwA2bICWLaFRo/PXraEsIRhjDLifTK6GE9n5kyUEY4w5eBD274f27QMdSUDZg2nGmFpp+dy5FGzb\nBsDjL68lpWNHrroRghMS6N6vX4Cj8y97MM0YY84hJiGB2MxM9i9fx+rMRtTJSyM2M5OYhIRAhxYw\nlhCMMbVSQlISaVFR/M+n+SjjmZ62j7SoKBKSkgIdWsBYQjDG1Eoiwvx19Uk7ejcgrNt3N9uCI5Fa\nNqGdN0sIxphaKfXtnUyYtg33ApBwvLAf70z/gdo8TmkJwRhT+2zaRNqcVwgK6s2pJdyF9et788EH\niwIZWUD5tKayMcZUexs2wLx5bIhoRJeu/wX+y9HDhwmPiADgyy8bcNttNwc2xgCx206NMbXHDz/A\n/Plw113QrFmgo6k05b3t1K4QjDG1w/r1sHAh3H03xMQEOpoqya4QjDE13vQX0/nh0938v/8kQHR0\noMOpdHaFYIwxwH+e3cGfX2jKwrkNIToy0OFUaZYQjDE11pSnf2TkK1F8Oq+Iy3pYMjgfSwjGmBpp\n4v/8yOh/NOWzBUV06NY40OFUC+d9DkFEWonIEhH5QUTWi8ijTnmEiCwSkc0islBEGnm1GSkiaSKy\nUURu8irvLCLrRGSLiIz3Kg8WkWlOm69FJM7fB2qMqT0KvlzJ+x/Akk9LLBn4oDwPphUBf1TVS4Fu\nwMMi8hNgBLBYVdsDS4CRACKSBAwEOgB9gAly6lnw14FhqtoOaCciJ2/2HQYcUtW2wHjgRb8cnTGm\n9vnqK4K//Zp5X0XQ7qe1d7GbC3HehKCqe1X1O2c7B9gItAL6A1OcalOAAc52P2Caqhap6g4gDegi\nIs2Ahqr6jVNvqlcb733NAm64mIMyxtRSX34Jq1bB0KHQ2K4MfOXT1BUi0hq4EvgvEKOqWeBOGsDJ\ne7laAru8mmU6ZS2BDK/yDKesVBtVLQayRcRGgIwx5bdsGXz3nTsZ1OJlMC9GuQeVRaQB7k/vj6lq\njoic/kCAPx8QKPN+2TFjxni2k5OTSU5O9uO3NcZUO6rMe2E9vcPW4xo6BBo2DHREAZeamkpqaqrP\n7cr1YJqI1AU+Buar6qtO2UYgWVWznO6gparaQURGAKqqLzj1FgCjgfSTdZzyFKCXqj54so6qrhCR\nOsAeVT3j6RF7MM0YU4oq/++eH3l3QQTLVwTRJL5BoCOqkvy9YtpbwIaTycAxFxjqbA8B5niVpzh3\nDrUBEoGVTrfSERHp4gwyDz6tzRBn+3bcg9TGGFMmLVFG3f0j0xc1JvWrEEsGfnDeKwQR6Q4sA9bj\n7hZS4ElgJTADiMX96X+gqmY7bUbivnOoEHcX0yKn/CpgMlAPmKeqjznlIcDbQCfgIJDiDEifHotd\nIRhj0BLlqTt+5OMvG7H4y/pEtw4NdEhVWnmvEGwuI2NM9aLK3x/cyKR50Xy6PIymsfUDHVGVZwnB\nGFPzqMK8eRxMO4QMvJ3IFvUCHVG1YAnBGFOzqMLHH8O+fe71DEJCAh1RtWGznRpjao6SEvjoIzh0\nyJJBBbKEYIyp0kqKStAP51An5wjceScEBwc6pBrLEoIxpsoqLixh2E07uTQmjsffvgKCggIdUo1m\nYwjGmCqpKL+YoTdmsOdQMHOXNyWssSWDC2VjCMaYaqsov5i7rsvkcE4wH/83ivoN7VRVGeynbIyp\nUgqPFzEoeTfHC+ow56so6jWw01Rl8Wm2U2OMqVBFRRx/530Sm+XywfJmlgwqmY0hGGOqhsJCmD7d\nfUvpr34FdeoEOqIaw8YQjDHVR2EhvPcehIXBrbeCyzovAsESgjEmsAoK4N133Yva9O9vySCA7Cdv\njAmY3EP5PHfHOorCIy0ZVAF2hWCMCYhjB/L5ZfdDJMRGI/2uAtd5u7hNBbN0bIypdEf3naBPt8O0\nb1PImwtjqVPXkkFVYAnBGFOpjuw9zs0/O8IV7fP55yexuOpYMqgq7LZTY0zlycvjoT4/UrdxA16d\nHYdYN1GlsPUQjDFVS24uTJ1KXqt21O97vSWDSmTPIRhjqo6cHJg6FX7yE0Kvuw7EkkFVZAnBGFOx\njh1zJ4NLL4VevSwZVGGWEIwxFWb/9mM0mjOV4Ksuh2uvDXQ45jzsLiNjTIXI3HiUHt2K+Cj3eksG\n1YQlBGOM3+36/gjJ15Zw721Hue1/OgQ6HFNO500IIjJRRLJEZJ1XWYSILBKRzSKyUEQaeX1tpIik\nichGEbnJq7yziKwTkS0iMt6rPFhEpjltvhaROH8eoDGmcqWvO0KvXvDgHdk8MSE+0OEYH5TnCmES\ncPNpZSOAxaraHlgCjAQQkSRgINAB6ANMEPGMIL0ODFPVdkA7ETm5z2HAIVVtC4wHXryI4zHGBNDO\nddkkXwfD78nmj6+2DnQ4xkfnTQiq+iVw+LTi/sAUZ3sKMMDZ7gdMU9UiVd0BpAFdRKQZ0FBVv3Hq\nTfVq472vWcANF3AcxphAO3iQJp9M5eURB3j0b3ZlUB1d6F1G0aqaBaCqe0Uk2ilvCXztVS/TKSsC\nMrzKM5zyk212OfsqFpFsEYlU1UMXGJsxprIdOABTpxLW+zp+1Skh0NGYC+Sv2079+fjwOW9SHjNm\njGc7OTmZ5ORkP35rY4zP9u2Dt9+GG2+Ejh0DHY0BUlNTSU1N9blduaauEJF44CNVvcJ5vxFIVtUs\npztoqap2EJERgKrqC069BcBoIP1kHac8Beilqg+erKOqK0SkDrBHVaPPjMKmrjCmysnKcieDm2+G\nyy8PdDSmDOWduqK8t50KpT+5zwWGOttDgDle5SnOnUNtgERgparuBY6ISBdnkHnwaW2GONu34x6k\nNsZUcWsX72fYLfvQ3n0sGdQQ5+0yEpF3gWSgiYjsxP2J/3lgpojci/vT/0AAVd0gIjOADUAh8JDX\nR/qHgclAPWCeqi5wyicCb4tIGnAQSPHPoRljKsrqhfv5xa9Dee3/NUYuiw10OMZPbLZTY4xPVs3b\nR9/fhPH6s4f51aOtAh2OKQeb7dQY43cr5mbR784G/PvFbPo9aMmgprErBGPMWS2fO5eCbdsA+Pcn\nX3F/t58wdtL13DzgOH/+xy8CHJ3xhV0hGGMuSkxCAixbxnc7D/Lxsqbctu8zJty8B3nwD4EOzVQQ\nm9zOGHMGLVHaRDcjrbCQv322j2OFE3hpXwxb27UlISkp0OGZCmJXCMYYSoqVjV8e5Iv5x/hieR2W\nrY9gXL/l7JVC1h15ABDWHRrKtuB9iC1wU2PZFYIxtVFxMezaBcuX8/q9K4kOP06/24L478o6XH89\nLPm0mF9N+iXvbA7meHE/AI4X9uOd6T9g43g1lw0qG1ML5GUXcOD7PcQVboedOyEzEyIjIT6e9LoJ\nBLVuSYu2YaXazJq1gCFDhLy8U5Mdh4YuYOpU4bbbTp8A2VRlNqhsTC12KCOP5R8d4oulhXzxbSjr\ndkXwQPIxxv2lGK65BmJjoV49AMqal3T58vVcfXUO8BVHDx8mPCICgC+/bGAJoYayKwRjaoIjR9yf\n/NPTWfd1Lj1eHkDXxEP07JJPz5/Xo+svmhDaKCjQUZoAKe8VgiUEY6oZLVHSvjnMqsXZ3JG0FtLT\noaAA4uMhPp6SVnEURzUjKMSGCI2bdRkZU1OUlLBm8QGWzc/ji6/q8MWGSELq1qXn5UH8+oZ4gnv2\nhCZNwLn7x4XdLWIujF0hGFPVFBW5B33T092vjAz6v5dCsxYuevZy0fOXjYi/PDzQUZpqxLqMjKkm\nju47wdcfH+SLzwq4vd1aOgZtgKgodxdQXJz7FRoa6DBNNWZdRsZUVTk5fDVnPzNmCl+sDmNzViOu\nalOHnlcLYT07Q49fQHBwoKM0tZBdIRhzgc6Y/K3vNQAEJyTQvZ/7YS5UITv7VPfPzp2Ql8cHe7ux\n5XgcPW+qz9W9mxISWidQh2FqAesyMqaCbf3hB5g0ie92HuTeOfWZ1P8El8c2YetlA0nfFMUXy13E\nBe/l+b5fnOr+iY+H6GjPALAxlcG6jEyVUK5P0VWUligncorIO1Lofh0rhsJC2sefgMJCEkRYUFTE\n31IPcqxgDvfNfoAi/oeYxkrPK45y442Q3L89XPlTSwCmWrCEYCpUqSmUv4jitsj1dIyLhJtuuqj9\naomSn1tEbnYheUeLyDtWTN7RQqSoiCvb5UFhYalXVha8NiOGvONC3nGcf13ENMzj/+78yl2voMBT\nf/2uxnT8x/0E1xXCgoXQYBehwSVc0SqHmQ9/DkFBSHAw244Use7gMEDIK+nHqCfe5amxDwKN/fLz\nM6YyWUIwFSq2dTtmaAteWrqLYwVvMeqzQfxtSGN6FxXBt996TsD79sHz/4n1nKxzj7vIO+EiKuw4\nU4cuOeOEvXlPI65843eEBjkn7BAIDXHxk+YneO/3X0NQ0KlXcDCuolBC6gkRkRDWQAgNE0LDICo6\nDHpcX7p+UBCX1gmicBzUqVuX0v9NIoAEAFSVd8Z9zfES95VOQckv+WjJH3hS1WYENdWSJQTjkxPH\nCtm/8zj7M/LZv7uQE0fy6d91L+Tmul95eZCbS3pGHTq+MIjcgiDqB7UmJ/8ngLDp0F1sO/AJsnVr\nqRNwUEh9WrbEOVELYQ0gtAFENg2DLn3dd9141f9JUBAn/iGc+SfcFLjkjLijgL/eVv7jLM+DXe+/\nv5D16/sAJ0/+wvr1vfngg0U214+plmxQuZbLyy4odYLPOVzA7d33nHGC35elJD4zhBNFdYkKO05U\n+AmiGxeQ0OIEr/9hi/s++bAw9ys0lOJ6YRwpDKVRTAjde/yRFSvG4T5xKl27/oGvvx5X7T9F/+EP\nL7F6dQ5AqcnfOnduwLhxjwcyNGNKsbuMqgl/DrpqiZJ7uID9u064X3uKOHKgkDt6ZZ5xgs85XEiz\nUfdTVOIiqsFxohqeIKpxIa2iCpj4l81nnOBL6odxrDiU8KgQxFX+E7lNoWxM4FW7u4xEpDcwHvfV\n+kRVfSHAIVWKcw26aoly7EC+++TufII/kFXE0BsykLzSJ/iiY8dp9ORDKC6iGghRDV1ENRZimgiD\nrspFGoS5n351TvBhoWHsGaY0iKyDuBoCDb2ian1GnC6g0QUcn02hbEz1USWuEETEBWwBbgB2A98A\nKaq66bR6uuSVV4CqcdticWEJ+XnFnMgpcv+b6361b52PS4vdc9J4vd79qAG5ucKJ40r+CeXECTh+\nAroGPcfYj3ez4uCf6BrxEqN7hXBz9x5E/vXhU5/gw/OJalxIVEQx/358C0GNQk99inf+zdVQwiKq\n7hOuqampJCcnBzqMClGTjw3s+Kq76naF0AVIU9V0ABGZBvQHNp1e8dDX67kiNpLCa2/k6P588nOL\naNKoCFeJc+ItPnUiXrg0mJxjzsnX6yT8UL8MQlyFpepSVMSwv3fkcE5d8gtcnHBe+YUulj46m4Z1\nj59Rv8nYv5BfXId6dYV6QRBSV6gXJHwzch4Nw0qgbt1Sr9SlV1OiQr16UC9ECAlxr1GyLSSKddl9\ngc9Zd+wBtnXciuv++9j72zrUaxgEnH6SjzvrDzHsrKVVR03+T1eTjw3s+GqLqpIQWgK7vN5n4E4S\nZ7h9ZkOUFwgaDyF1i6gXJGwZ8Q4R4cVQp06pE/Bb/06msKQOIcFKvRAICRbqhShFeQWENHRBSIj7\nE7ZTv09fF1JXqFcf6tVXQkKhXijU7zgA6tU9Y/+H/8fl9KefvvDIsLMe5L9uP7NMVenWLddZt3YN\nx4v6886CP/Dw6HDqVfNBV2NM9VJVEkK51at7Pc8/P5FH//QAcHL+l4fPWnf6kLL20vqspb/u5Fss\n/jhd262LxpiqoqqMIfwMGKOqvZ33IwA9fWBZRAIfrDHGVEPV5rZTEakDbMY9qLwHWAkMUtWNAQ3M\nGGNqkSrRZaSqxSLye2ARp247tWRgjDGVqEpcIRhjjAm8arMWt4j0FpFNIrJFRJ4IdDz+JCITRSRL\nRNYFOhZ/E5FWIrJERH4QkfUi8migY/InEQkRkRUissY5vtGBjqkiiIhLRFaLyNxAx+JvIrJDRNY6\nv8OVgY7Hn0SkkYjMFJGNzv/BruesXx2uEMr74Fp1JSI9gBxgqqpeEeh4/ElEmgHNVPU7EWkAfAv0\nrym/OwARCVXVPGcsbDnwqKrWtBPLH4CrgHBVrdoLWfhIRLYDV6nq4UDH4m8iMhn4XFUniUhdIFRV\nj5ZVv7pcIXgeXFPVQuDkg2s1gqp+CdS4P0YAVd2rqt852znARtzPndQYqprnbIbgHper+p+yfCAi\nrYBfAG8GOpYKIlSfc2G5iUg40FNVJwGoatG5kgFUnx/C2R5cq1EnldpARFoDVwIrAhuJfzndKWuA\nvcCnqvpNoGPys3HA49SwROdFgU9F5BsRuT/QwfhRG+CAiExyuvv+JSL1z9WguiQEU8053UWzgMec\nK4UaQ1VLVLUT0AroKiJJgY7JX0SkL5DlXOUJ/nkes6rprqqdcV8FPex04dYEdYHOwP85x5cHjDhX\ng+qSEDIpPYFPK6fMVANO3+Us4G1VnRPoeCqKczm+FOgd6Fj8qDvQz+lnfw+4TkSmBjgmv1LVPc6/\n+4HZlDFtTjWUAexS1VXO+1m4E0SZqktC+AZIFJF4EQkGUoCadrdDTf30BfAWsEFVXw10IP4mIk1F\npJGzXR/4OWeZlLG6UtUnVTVOVS/B/f9uiaoODnRc/iIioc7VKyISBtwEfB/YqPxDVbOAXSLSzim6\nAdhwrjZV4sG086npD66JyLtAMtBERHYCo08OBFV3ItIduBNY7/SzK/Ckqi4IbGR+0xyY4twJ5wKm\nq+q8AMdkyi8GmO1Mi1MX+I+qLgpwTP70KPAfEQkCtgP3nKtytbjt1BhjTMWrLl1GxhhjKpglBGOM\nMYAlBGOMMQ5LCMYYYwBLCMYYYxyWEIwxxgCWEIwxxjgsIRhjjAHg/wNbMbOsvhLahAAAAABJRU5E\nrkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x106c513d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.plot(computed_volume, 'v-r', label='computed', alpha=0.5)\n", | |
"plt.plot(volume, '^--', label='values on the webpage')\n", | |
"plt.legend()\n", | |
"# http://www.balloon-pop.com/fs/balloons/c/round_s7?sort=04" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment