Last active
May 15, 2020 08:37
-
-
Save taroushirani/16bc581ab737ccc4ede80feb94c81620 to your computer and use it in GitHub Desktop.
Untitled2.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Untitled2.ipynb", | |
"provenance": [], | |
"mount_file_id": "1K34g79y88zabgPxkAgkClmJBJRO08tnn", | |
"authorship_tag": "ABX9TyPtnPj5K3Q+l7r+3fblFN50", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/taroushirani/16bc581ab737ccc4ede80feb94c81620/untitled2.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "3TvuPDb3Ug-o", | |
"colab_type": "code", | |
"outputId": "09c59b8d-dfdc-4e9b-bc32-8a603fca138c", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 258 | |
} | |
}, | |
"source": [ | |
"!pip install nnmnkwii" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Requirement already satisfied: nnmnkwii in /usr/local/lib/python3.6/dist-packages (0.0.20)\n", | |
"Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (1.4.1)\n", | |
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (4.41.1)\n", | |
"Requirement already satisfied: bandmat>=0.7 in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (0.7)\n", | |
"Requirement already satisfied: cython>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (0.29.17)\n", | |
"Requirement already satisfied: fastdtw in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (0.3.4)\n", | |
"Requirement already satisfied: pysptk>=0.1.17 in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (0.1.18)\n", | |
"Requirement already satisfied: sklearn in /usr/local/lib/python3.6/dist-packages (from nnmnkwii) (0.0)\n", | |
"Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from scipy->nnmnkwii) (1.18.4)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from pysptk>=0.1.17->nnmnkwii) (1.12.0)\n", | |
"Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from pysptk>=0.1.17->nnmnkwii) (4.4.2)\n", | |
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from sklearn->nnmnkwii) (0.22.2.post1)\n", | |
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->sklearn->nnmnkwii) (0.14.1)\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Nhj186LhUnEY", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"from nnmnkwii.io import hts" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "4Rk55bPYU7F5", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"binary_dict, continuous_dict = hts.load_question_set(\"/content/drive/My Drive/nnmnkwii_gallery/data/questions_jp.hed\")\n" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "5FXG4WICVS6m", | |
"colab_type": "code", | |
"outputId": "9a015f2e-6426-445e-f4e8-cbbc98b0d5bf", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"k2_re = continuous_dict[len(continuous_dict)-2]\n", | |
"k3_re = continuous_dict[len(continuous_dict)-1]\n", | |
"print(k2_re, k3_re)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"re.compile('\\\\+(\\\\d+)\\\\-') re.compile('\\\\-(\\\\d+)\\\\\\\\\\\\$')\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "uTMBOVljVnZX", | |
"colab_type": "code", | |
"outputId": "e0f4494f-0e1b-477e-9c41-e8eeb1aa0d59", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 105 | |
} | |
}, | |
"source": [ | |
"import re\n", | |
"with open(\"/content/drive/My Drive/nnmnkwii_gallery/data/NIT-ATR503/label_phone_align/nitech_jp_atr503_m001_a01.lab\", 'r') as f:\n", | |
" line = f.readline()\n", | |
" print(line)\n", | |
" matched = k2_re.search(line)\n", | |
" print(matched)\n", | |
" matched = k3_re.search(line)\n", | |
" print(matched)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"0 3900000 xx^xx-sil+a=r/A:xx+xx+xx/B:xx-xx_xx/C:xx_xx+xx/D:07+xx_xx/E:xx_xx!xx_xx-xx/F:xx_xx#xx_xx@xx_xx|xx_xx/G:4_3%0_xx_xx/H:xx_xx/I:xx-xx@xx+xx&xx-xx|xx+xx/J:2_9/K:2+5-26\n", | |
"\n", | |
"<_sre.SRE_Match object; span=(168, 171), match='+5-'>\n", | |
"None\n" | |
], | |
"name": "stdout" | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment