Created
July 24, 2022 02:18
-
-
Save taroushirani/2c3a77dc75f3d1ae4ab2add461cec0a8 to your computer and use it in GitHub Desktop.
nnsvs_dev20220717_oniku_kurumi_utagoe_db_dev_latest_training_20220717
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/taroushirani/2c3a77dc75f3d1ae4ab2add461cec0a8/nnsvs_dev20220717_oniku_kurumi_utagoe_db_dev_latest_training_20220717.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "giSmNuVzDdcL" | |
}, | |
"source": [ | |
"# Setup" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "I7FTMYdyUzgW" | |
}, | |
"source": [ | |
"# Miscellaneous setting\n", | |
"## Check GPU" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "C6wUuWIupBz3", | |
"outputId": "c8d6d050-ecc1-419d-a10a-3e42649cba86" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Jul 17 09:47:11 2022 \n", | |
"+-----------------------------------------------------------------------------+\n", | |
"| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n", | |
"|-------------------------------+----------------------+----------------------+\n", | |
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", | |
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", | |
"| | | MIG M. |\n", | |
"|===============================+======================+======================|\n", | |
"| 0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | 0 |\n", | |
"| N/A 35C P0 27W / 250W | 0MiB / 16280MiB | 0% Default |\n", | |
"| | | N/A |\n", | |
"+-------------------------------+----------------------+----------------------+\n", | |
" \n", | |
"+-----------------------------------------------------------------------------+\n", | |
"| Processes: |\n", | |
"| GPU GI CI PID Type Process name GPU Memory |\n", | |
"| ID ID Usage |\n", | |
"|=============================================================================|\n", | |
"| No running processes found |\n", | |
"+-----------------------------------------------------------------------------+\n" | |
] | |
} | |
], | |
"source": [ | |
"! nvidia-smi" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "J76ifcTqBr88" | |
}, | |
"source": [ | |
"## Setting Google drive accessible" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "UAHxQFcMOBR2", | |
"outputId": "a5279898-1d07-4429-c2bd-654e39fc5a0f" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Mounted at /content/drive\n" | |
] | |
} | |
], | |
"source": [ | |
"from google.colab import drive\n", | |
"drive.mount('/content/drive')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "7b6A4YPEOEjt" | |
}, | |
"outputs": [], | |
"source": [ | |
"!ln -s \"/content/drive/My Drive\" /content/gdrive" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "K2ghaLcEOz5C" | |
}, | |
"source": [ | |
"\n", | |
"## Update numpy and cython" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "FCY9PjEUXT5i", | |
"outputId": "be785830-4ee7-4dc1-8fc2-8f5e27bc5320" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (1.21.6)\n", | |
"Requirement already satisfied: cython in /usr/local/lib/python3.7/dist-packages (0.29.30)\n" | |
] | |
} | |
], | |
"source": [ | |
"! pip install -U numpy cython" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Ci9XLYz5RRp2" | |
}, | |
"source": [ | |
"## Install pysinsy (binary-indep version)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "BbzKX7A1PHia", | |
"outputId": "53ec3b2a-cabe-4604-bf5c-f2a3e6ea603a" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Collecting pysinsy\n", | |
" Downloading pysinsy-0.0.4.tar.gz (1.4 MB)\n", | |
"\u001b[K |████████████████████████████████| 1.4 MB 4.1 MB/s \n", | |
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", | |
"Requirement already satisfied: numpy>=1.8.0 in /usr/local/lib/python3.7/dist-packages (from pysinsy) (1.21.6)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from pysinsy) (1.15.0)\n", | |
"Requirement already satisfied: cython>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from pysinsy) (0.29.30)\n", | |
"Building wheels for collected packages: pysinsy\n", | |
" Building wheel for pysinsy (PEP 517) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for pysinsy: filename=pysinsy-0.0.4-cp37-cp37m-linux_x86_64.whl size=3222731 sha256=6c0311ea2ea632d1c3edb7ca9dda8b945b57d1803faf2d175b6de2571d22e5cf\n", | |
" Stored in directory: /root/.cache/pip/wheels/f7/f7/0c/b80b7529235c74a8febbfefad50edcab5082f6b134929e9225\n", | |
"Successfully built pysinsy\n", | |
"Installing collected packages: pysinsy\n", | |
"Successfully installed pysinsy-0.0.4\n" | |
] | |
} | |
], | |
"source": [ | |
"! pip install pysinsy" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "kC4w4OdDSrLx" | |
}, | |
"source": [ | |
"## Install nnmnkwii (development version)\n", | |
"We can also use \"pip install git+https://github.com/r9y9/nnmnkwii\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "tZwFN2dLTi8L", | |
"outputId": "421c1b8e-8678-4ad8-a1ce-211c9ff8f889" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Processing /content/nnmnkwii\n", | |
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting pysptk>=0.1.17\n", | |
" Downloading pysptk-0.1.21.tar.gz (420 kB)\n", | |
"\u001b[K |████████████████████████████████| 420 kB 3.9 MB/s \n", | |
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", | |
"Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from nnmnkwii==0.1.2+86cec77) (1.7.3)\n", | |
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from nnmnkwii==0.1.2+86cec77) (4.64.0)\n", | |
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from nnmnkwii==0.1.2+86cec77) (1.0.2)\n", | |
"Requirement already satisfied: cython>=0.28.0 in /usr/local/lib/python3.7/dist-packages (from nnmnkwii==0.1.2+86cec77) (0.29.30)\n", | |
"Requirement already satisfied: fastdtw in /usr/local/lib/python3.7/dist-packages (from nnmnkwii==0.1.2+86cec77) (0.3.4)\n", | |
"Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from pysptk>=0.1.17->nnmnkwii==0.1.2+86cec77) (4.4.2)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from pysptk>=0.1.17->nnmnkwii==0.1.2+86cec77) (1.15.0)\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from fastdtw->nnmnkwii==0.1.2+86cec77) (1.21.6)\n", | |
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->nnmnkwii==0.1.2+86cec77) (1.1.0)\n", | |
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->nnmnkwii==0.1.2+86cec77) (3.1.0)\n", | |
"Building wheels for collected packages: nnmnkwii, pysptk\n", | |
" Building wheel for nnmnkwii (PEP 517) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for nnmnkwii: filename=nnmnkwii-0.1.2+86cec77-cp37-cp37m-linux_x86_64.whl size=2893525 sha256=af64330815021a0dd89484d5585a5c7975bc363aa0477a3a76810bb62e742bf9\n", | |
" Stored in directory: /tmp/pip-ephem-wheel-cache-9l0953od/wheels/a5/5f/60/65c8ed7bf189bb4a268d31f2e20f86205c5b15cd7510dc4e66\n", | |
" Building wheel for pysptk (PEP 517) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for pysptk: filename=pysptk-0.1.21-cp37-cp37m-linux_x86_64.whl size=952300 sha256=d52422211e11db41587b653913d823c37d2bfa5bf6a60e6ac34608050a019cc1\n", | |
" Stored in directory: /root/.cache/pip/wheels/ab/3d/14/d7179b072549e93b6b5d76eb8b455f3a9d39a10f314660a385\n", | |
"Successfully built nnmnkwii pysptk\n", | |
"Installing collected packages: pysptk, nnmnkwii\n", | |
"Successfully installed nnmnkwii-0.1.2+86cec77 pysptk-0.1.21\n" | |
] | |
} | |
], | |
"source": [ | |
"! git clone -q https://github.com/r9y9/nnmnkwii\n", | |
"! cd nnmnkwii && pip install . --use-feature=in-tree-build" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "24jlkljnTttP" | |
}, | |
"source": [ | |
"## Install NNSVS" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "UdRQ5pMuYtFj", | |
"outputId": "8c927906-b0ad-4966-dd07-acdadf3b6455" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Processing /content/nnsvs\n", | |
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", | |
"Requirement already satisfied: cython in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (0.29.30)\n", | |
"Requirement already satisfied: pysptk in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (0.1.21)\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (1.21.6)\n", | |
"Collecting pyworld\n", | |
" Downloading pyworld-0.3.0.tar.gz (212 kB)\n", | |
"\u001b[K |████████████████████████████████| 212 kB 4.2 MB/s \n", | |
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", | |
"Requirement already satisfied: torch>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (1.12.0+cu113)\n", | |
"Requirement already satisfied: tensorboard in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (2.8.0)\n", | |
"Requirement already satisfied: torchaudio in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (0.12.0+cu113)\n", | |
"Requirement already satisfied: librosa>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (0.8.1)\n", | |
"Collecting hydra-core<1.2.0,>=1.1.0\n", | |
" Downloading hydra_core-1.1.2-py3-none-any.whl (147 kB)\n", | |
"\u001b[K |████████████████████████████████| 147 kB 55.5 MB/s \n", | |
"\u001b[?25hRequirement already satisfied: pysinsy in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (0.0.4)\n", | |
"Requirement already satisfied: nnmnkwii in /usr/local/lib/python3.7/dist-packages (from nnsvs==0.0.3) (0.1.2+86cec77)\n", | |
"Collecting hydra-colorlog>=1.1.0\n", | |
" Downloading hydra_colorlog-1.2.0-py3-none-any.whl (3.6 kB)\n", | |
"Collecting colorlog\n", | |
" Downloading colorlog-6.6.0-py2.py3-none-any.whl (11 kB)\n", | |
"Collecting omegaconf==2.1.*\n", | |
" Downloading omegaconf-2.1.2-py3-none-any.whl (74 kB)\n", | |
"\u001b[K |████████████████████████████████| 74 kB 3.3 MB/s \n", | |
"\u001b[?25hCollecting importlib-resources<5.3\n", | |
" Downloading importlib_resources-5.2.3-py3-none-any.whl (27 kB)\n", | |
"Collecting antlr4-python3-runtime==4.8\n", | |
" Downloading antlr4-python3-runtime-4.8.tar.gz (112 kB)\n", | |
"\u001b[K |████████████████████████████████| 112 kB 71.3 MB/s \n", | |
"\u001b[?25hCollecting PyYAML>=5.1.0\n", | |
" Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n", | |
"\u001b[K |████████████████████████████████| 596 kB 66.2 MB/s \n", | |
"\u001b[?25hRequirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.7/dist-packages (from importlib-resources<5.3->hydra-core<1.2.0,>=1.1.0->nnsvs==0.0.3) (3.8.0)\n", | |
"Requirement already satisfied: soundfile>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (0.10.3.post1)\n", | |
"Requirement already satisfied: pooch>=1.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (1.6.0)\n", | |
"Requirement already satisfied: joblib>=0.14 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (1.1.0)\n", | |
"Requirement already satisfied: audioread>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (2.1.9)\n", | |
"Requirement already satisfied: scikit-learn!=0.19.0,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (1.0.2)\n", | |
"Requirement already satisfied: decorator>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (4.4.2)\n", | |
"Requirement already satisfied: numba>=0.43.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (0.51.2)\n", | |
"Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (1.7.3)\n", | |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (21.3)\n", | |
"Requirement already satisfied: resampy>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from librosa>=0.7.0->nnsvs==0.0.3) (0.3.1)\n", | |
"Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.0->librosa>=0.7.0->nnsvs==0.0.3) (57.4.0)\n", | |
"Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in /usr/local/lib/python3.7/dist-packages (from numba>=0.43.0->librosa>=0.7.0->nnsvs==0.0.3) (0.34.0)\n", | |
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->librosa>=0.7.0->nnsvs==0.0.3) (3.0.9)\n", | |
"Requirement already satisfied: appdirs>=1.3.0 in /usr/local/lib/python3.7/dist-packages (from pooch>=1.0->librosa>=0.7.0->nnsvs==0.0.3) (1.4.4)\n", | |
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from pooch>=1.0->librosa>=0.7.0->nnsvs==0.0.3) (2.23.0)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa>=0.7.0->nnsvs==0.0.3) (2022.6.15)\n", | |
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa>=0.7.0->nnsvs==0.0.3) (1.24.3)\n", | |
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa>=0.7.0->nnsvs==0.0.3) (3.0.4)\n", | |
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pooch>=1.0->librosa>=0.7.0->nnsvs==0.0.3) (2.10)\n", | |
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn!=0.19.0,>=0.14.0->librosa>=0.7.0->nnsvs==0.0.3) (3.1.0)\n", | |
"Requirement already satisfied: cffi>=1.0 in /usr/local/lib/python3.7/dist-packages (from soundfile>=0.10.2->librosa>=0.7.0->nnsvs==0.0.3) (1.15.1)\n", | |
"Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.0->soundfile>=0.10.2->librosa>=0.7.0->nnsvs==0.0.3) (2.21)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.6.0->nnsvs==0.0.3) (4.1.1)\n", | |
"Requirement already satisfied: fastdtw in /usr/local/lib/python3.7/dist-packages (from nnmnkwii->nnsvs==0.0.3) (0.3.4)\n", | |
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from nnmnkwii->nnsvs==0.0.3) (4.64.0)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from pysptk->nnsvs==0.0.3) (1.15.0)\n", | |
"Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (0.6.1)\n", | |
"Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (1.8.1)\n", | |
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (1.0.1)\n", | |
"Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (1.1.0)\n", | |
"Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (0.4.6)\n", | |
"Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (1.47.0)\n", | |
"Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (1.35.0)\n", | |
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (0.37.1)\n", | |
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (3.3.7)\n", | |
"Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->nnsvs==0.0.3) (3.17.3)\n", | |
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->nnsvs==0.0.3) (4.8)\n", | |
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->nnsvs==0.0.3) (0.2.8)\n", | |
"Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->nnsvs==0.0.3) (4.2.4)\n", | |
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->nnsvs==0.0.3) (1.3.1)\n", | |
"Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard->nnsvs==0.0.3) (4.12.0)\n", | |
"Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->nnsvs==0.0.3) (0.4.8)\n", | |
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->nnsvs==0.0.3) (3.2.0)\n", | |
"Building wheels for collected packages: nnsvs, antlr4-python3-runtime, pyworld\n", | |
" Building wheel for nnsvs (PEP 517) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for nnsvs: filename=nnsvs-0.0.3-py3-none-any.whl size=2343874 sha256=dfddc303caf78670303aedff4cff1503a049433cd617f6f836a5ed807ffb89c9\n", | |
" Stored in directory: /tmp/pip-ephem-wheel-cache-irq6zjwf/wheels/db/2b/ae/0c12ddf83c351cf9d279be61d900a5a32727bfc3a54acb4457\n", | |
" Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.8-py3-none-any.whl size=141230 sha256=03374eb833a39f4f270dbacc2530e705b7226fe5adb4d62044d12581b8cec99a\n", | |
" Stored in directory: /root/.cache/pip/wheels/ca/33/b7/336836125fc9bb4ceaa4376d8abca10ca8bc84ddc824baea6c\n", | |
" Building wheel for pyworld (PEP 517) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for pyworld: filename=pyworld-0.3.0-cp37-cp37m-linux_x86_64.whl size=609473 sha256=7fd508150c3f3417f241df4042c8ca7864003258d1f9cbedd89fb11a15408c91\n", | |
" Stored in directory: /root/.cache/pip/wheels/e7/7c/11/c775fffa0e1e7b05a6604b4323408a77f80fb4ab304d96b5c6\n", | |
"Successfully built nnsvs antlr4-python3-runtime pyworld\n", | |
"Installing collected packages: PyYAML, antlr4-python3-runtime, omegaconf, importlib-resources, hydra-core, colorlog, pyworld, hydra-colorlog, nnsvs\n", | |
" Attempting uninstall: PyYAML\n", | |
" Found existing installation: PyYAML 3.13\n", | |
" Uninstalling PyYAML-3.13:\n", | |
" Successfully uninstalled PyYAML-3.13\n", | |
" Attempting uninstall: importlib-resources\n", | |
" Found existing installation: importlib-resources 5.8.0\n", | |
" Uninstalling importlib-resources-5.8.0:\n", | |
" Successfully uninstalled importlib-resources-5.8.0\n", | |
"Successfully installed PyYAML-6.0 antlr4-python3-runtime-4.8 colorlog-6.6.0 hydra-colorlog-1.2.0 hydra-core-1.1.2 importlib-resources-5.2.3 nnsvs-0.0.3 omegaconf-2.1.2 pyworld-0.3.0\n" | |
] | |
} | |
], | |
"source": [ | |
"! git clone -b dev20220717 -q https://github.com/taroushirani/nnsvs\n", | |
"! cd nnsvs && pip install . --use-feature=in-tree-build" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "zVs9OAsrVTve" | |
}, | |
"source": [ | |
"## Recipe setting" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "nJHNL9htIP4D" | |
}, | |
"outputs": [], | |
"source": [ | |
"RECIPE_ROOT=\"/content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "XTb5MRRHUGAh", | |
"outputId": "aec6834f-abd4-47f6-a2ab-653d18f8411e" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Collecting jaconv\n", | |
" Downloading jaconv-0.3.tar.gz (15 kB)\n", | |
"Building wheels for collected packages: jaconv\n", | |
" Building wheel for jaconv (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for jaconv: filename=jaconv-0.3-py3-none-any.whl size=15564 sha256=e38e37482c60b9cf1ecbd0f276e0857a527acb2742d24c0e9c0f9b7170ff366c\n", | |
" Stored in directory: /root/.cache/pip/wheels/8f/4f/c2/a2a3b14d0e94f855f4aa8887bf0267bee9ecfb8e62a9ee2d92\n", | |
"Successfully built jaconv\n", | |
"Installing collected packages: jaconv\n", | |
"Successfully installed jaconv-0.3\n" | |
] | |
} | |
], | |
"source": [ | |
"! pip install jaconv" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "iCTC2-NSmdSN", | |
"outputId": "a5afdf57-899e-4d2e-e69b-d42cbc7815ce" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", | |
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (3.2.2)\n", | |
"Requirement already satisfied: mlflow in /usr/local/lib/python3.7/dist-packages (1.27.0)\n", | |
"Collecting optuna\n", | |
" Downloading optuna-2.10.1-py3-none-any.whl (308 kB)\n", | |
"\u001b[K |████████████████████████████████| 308 kB 3.9 MB/s \n", | |
"\u001b[?25hCollecting hydra-optuna-sweeper\n", | |
" Downloading hydra_optuna_sweeper-1.2.0-py3-none-any.whl (8.5 kB)\n", | |
"Requirement already satisfied: protobuf in /usr/local/lib/python3.7/dist-packages (3.17.3)\n", | |
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (3.0.9)\n", | |
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (0.11.0)\n", | |
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (1.4.3)\n", | |
"Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (1.21.6)\n", | |
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (2.8.2)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib) (4.1.1)\n", | |
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib) (1.15.0)\n", | |
"Requirement already satisfied: querystring-parser in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.2.4)\n", | |
"Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.7.3)\n", | |
"Requirement already satisfied: alembic in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.8.1)\n", | |
"Requirement already satisfied: Flask in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.1.4)\n", | |
"Requirement already satisfied: docker>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from mlflow) (5.0.3)\n", | |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from mlflow) (6.0)\n", | |
"Requirement already satisfied: sqlparse>=0.3.1 in /usr/local/lib/python3.7/dist-packages (from mlflow) (0.4.2)\n", | |
"Requirement already satisfied: gitpython>=2.1.0 in /usr/local/lib/python3.7/dist-packages (from mlflow) (3.1.27)\n", | |
"Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.3.5)\n", | |
"Requirement already satisfied: prometheus-flask-exporter in /usr/local/lib/python3.7/dist-packages (from mlflow) (0.20.2)\n", | |
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from mlflow) (7.1.2)\n", | |
"Requirement already satisfied: importlib-metadata!=4.7.0,>=3.7.0 in /usr/local/lib/python3.7/dist-packages (from mlflow) (4.12.0)\n", | |
"Requirement already satisfied: entrypoints in /usr/local/lib/python3.7/dist-packages (from mlflow) (0.4)\n", | |
"Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from mlflow) (2022.1)\n", | |
"Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mlflow) (21.3)\n", | |
"Requirement already satisfied: cloudpickle in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.3.0)\n", | |
"Requirement already satisfied: requests>=2.17.3 in /usr/local/lib/python3.7/dist-packages (from mlflow) (2.23.0)\n", | |
"Requirement already satisfied: databricks-cli>=0.8.7 in /usr/local/lib/python3.7/dist-packages (from mlflow) (0.17.0)\n", | |
"Requirement already satisfied: sqlalchemy>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from mlflow) (1.4.39)\n", | |
"Requirement already satisfied: gunicorn in /usr/local/lib/python3.7/dist-packages (from mlflow) (20.1.0)\n", | |
"Requirement already satisfied: pyjwt>=1.7.0 in /usr/local/lib/python3.7/dist-packages (from databricks-cli>=0.8.7->mlflow) (2.4.0)\n", | |
"Requirement already satisfied: oauthlib>=3.1.0 in /usr/local/lib/python3.7/dist-packages (from databricks-cli>=0.8.7->mlflow) (3.2.0)\n", | |
"Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.7/dist-packages (from databricks-cli>=0.8.7->mlflow) (0.8.10)\n", | |
"Requirement already satisfied: websocket-client>=0.32.0 in /usr/local/lib/python3.7/dist-packages (from docker>=4.0.0->mlflow) (1.3.3)\n", | |
"Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.7/dist-packages (from gitpython>=2.1.0->mlflow) (4.0.9)\n", | |
"Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.7/dist-packages (from gitdb<5,>=4.0.1->gitpython>=2.1.0->mlflow) (5.0.0)\n", | |
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata!=4.7.0,>=3.7.0->mlflow) (3.8.0)\n", | |
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.17.3->mlflow) (3.0.4)\n", | |
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.17.3->mlflow) (1.24.3)\n", | |
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.17.3->mlflow) (2.10)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.17.3->mlflow) (2022.6.15)\n", | |
"Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.7/dist-packages (from sqlalchemy>=1.4.0->mlflow) (1.1.2)\n", | |
"Requirement already satisfied: colorlog in /usr/local/lib/python3.7/dist-packages (from optuna) (6.6.0)\n", | |
"Collecting cliff\n", | |
" Downloading cliff-3.10.1-py3-none-any.whl (81 kB)\n", | |
"\u001b[K |████████████████████████████████| 81 kB 11.6 MB/s \n", | |
"\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from optuna) (4.64.0)\n", | |
"Collecting cmaes>=0.8.2\n", | |
" Downloading cmaes-0.8.2-py3-none-any.whl (15 kB)\n", | |
"Requirement already satisfied: hydra-core>=1.1.0.dev7 in /usr/local/lib/python3.7/dist-packages (from hydra-optuna-sweeper) (1.1.2)\n", | |
"Requirement already satisfied: omegaconf==2.1.* in /usr/local/lib/python3.7/dist-packages (from hydra-core>=1.1.0.dev7->hydra-optuna-sweeper) (2.1.2)\n", | |
"Requirement already satisfied: importlib-resources<5.3 in /usr/local/lib/python3.7/dist-packages (from hydra-core>=1.1.0.dev7->hydra-optuna-sweeper) (5.2.3)\n", | |
"Requirement already satisfied: antlr4-python3-runtime==4.8 in /usr/local/lib/python3.7/dist-packages (from hydra-core>=1.1.0.dev7->hydra-optuna-sweeper) (4.8)\n", | |
"Requirement already satisfied: Mako in /usr/local/lib/python3.7/dist-packages (from alembic->mlflow) (1.2.1)\n", | |
"Collecting pbr!=2.1.0,>=2.0.0\n", | |
" Downloading pbr-5.9.0-py2.py3-none-any.whl (112 kB)\n", | |
"\u001b[K |████████████████████████████████| 112 kB 71.3 MB/s \n", | |
"\u001b[?25hRequirement already satisfied: PrettyTable>=0.7.2 in /usr/local/lib/python3.7/dist-packages (from cliff->optuna) (3.3.0)\n", | |
"Collecting autopage>=0.4.0\n", | |
" Downloading autopage-0.5.1-py3-none-any.whl (29 kB)\n", | |
"Collecting cmd2>=1.0.0\n", | |
" Downloading cmd2-2.4.2-py3-none-any.whl (147 kB)\n", | |
"\u001b[K |████████████████████████████████| 147 kB 63.4 MB/s \n", | |
"\u001b[?25hCollecting stevedore>=2.0.1\n", | |
" Downloading stevedore-3.5.0-py3-none-any.whl (49 kB)\n", | |
"\u001b[K |████████████████████████████████| 49 kB 7.2 MB/s \n", | |
"\u001b[?25hRequirement already satisfied: attrs>=16.3.0 in /usr/local/lib/python3.7/dist-packages (from cmd2>=1.0.0->cliff->optuna) (21.4.0)\n", | |
"Collecting pyperclip>=1.6\n", | |
" Downloading pyperclip-1.8.2.tar.gz (20 kB)\n", | |
"Requirement already satisfied: wcwidth>=0.1.7 in /usr/local/lib/python3.7/dist-packages (from cmd2>=1.0.0->cliff->optuna) (0.2.5)\n", | |
"Requirement already satisfied: Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.7/dist-packages (from Flask->mlflow) (1.0.1)\n", | |
"Requirement already satisfied: itsdangerous<2.0,>=0.24 in /usr/local/lib/python3.7/dist-packages (from Flask->mlflow) (1.1.0)\n", | |
"Requirement already satisfied: Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.7/dist-packages (from Flask->mlflow) (2.11.3)\n", | |
"Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from Jinja2<3.0,>=2.10.1->Flask->mlflow) (2.0.1)\n", | |
"Requirement already satisfied: setuptools>=3.0 in /usr/local/lib/python3.7/dist-packages (from gunicorn->mlflow) (57.4.0)\n", | |
"Requirement already satisfied: prometheus-client in /usr/local/lib/python3.7/dist-packages (from prometheus-flask-exporter->mlflow) (0.14.1)\n", | |
"Building wheels for collected packages: pyperclip\n", | |
" Building wheel for pyperclip (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for pyperclip: filename=pyperclip-1.8.2-py3-none-any.whl size=11137 sha256=c5130fa0d36edb39ccc67bcbf3dea7a56311f81db202410b280f61005834f138\n", | |
" Stored in directory: /root/.cache/pip/wheels/9f/18/84/8f69f8b08169c7bae2dde6bd7daf0c19fca8c8e500ee620a28\n", | |
"Successfully built pyperclip\n", | |
"Installing collected packages: pyperclip, pbr, stevedore, cmd2, autopage, cmaes, cliff, optuna, hydra-optuna-sweeper\n", | |
"Successfully installed autopage-0.5.1 cliff-3.10.1 cmaes-0.8.2 cmd2-2.4.2 hydra-optuna-sweeper-1.2.0 optuna-2.10.1 pbr-5.9.0 pyperclip-1.8.2 stevedore-3.5.0\n" | |
] | |
} | |
], | |
"source": [ | |
"! pip install matplotlib mlflow optuna hydra-optuna-sweeper protobuf" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "egbw2IYYw1DH" | |
}, | |
"outputs": [], | |
"source": [ | |
"! sed -i 's#\\~\\/data#\\/content\\/gdrive#g' $RECIPE_ROOT/config.yaml" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "kvC_xsSOWDUh" | |
}, | |
"source": [ | |
"# Data preparation" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "HO_LXEu1BGG8" | |
}, | |
"outputs": [], | |
"source": [ | |
"#! cd $RECIPE_ROOT && bash run.sh --stage -1 --stop-stage -1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "0bLMxIs2x2Qr", | |
"outputId": "db84bf5f-165f-4aee-8862-c98c7e9f8247" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 0: Data preparation\n", | |
"Convert musicxml to label files.\n", | |
"100% 56/56 [00:13<00:00, 4.01it/s]\n", | |
"Copy original label files.\n", | |
"100% 56/56 [00:11<00:00, 4.84it/s]\n", | |
"Round label files.\n", | |
"100% 56/56 [00:00<00:00, 1307.50it/s]\n", | |
"100% 56/56 [00:00<00:00, 903.64it/s]\n", | |
"100% 56/56 [00:00<00:00, 1339.84it/s]\n", | |
"Copy original label files.\n", | |
"100% 56/56 [00:00<00:00, 507.85it/s]\n", | |
"Round label files.\n", | |
"100% 56/56 [00:00<00:00, 1224.00it/s]\n", | |
"100% 56/56 [00:00<00:00, 780.13it/s]\n", | |
"100% 56/56 [00:00<00:00, 994.73it/s]\n", | |
"0it [00:00, ?it/s]Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"akai_kutsu.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"akatonbo.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"amehuri.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"aogeba_toutoshi.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"aoimeno_ningyou.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"arupusu_ichimanjaku.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"chatsumi.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"chouchou.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"die_moldau.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"donguri_korokoro.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"fujino_yama.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"furusato.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"goin_home.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"hamabeno_uta.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"haruga_kita.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"haruno_ogawa.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"haruyo_koi.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"hato.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"hiraita_hiraita.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"hoshinoyo.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"hotaruno_hikari.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"jugoya_otsukisan.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"kachushano_uta.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"kagome_kagome.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"kamomeno_suiheisan.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"katatsumuri.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"kintarou.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"koganemushi.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"koinobori.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"makibano_asa.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"mansikka_on_punanen_marja.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"miwataseba.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"momiji.lab 0.0\n", | |
"33it [00:00, 321.72it/s]Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"momotarou.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"morobito_kozorite.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"mushino_koe.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"nanatsunoko.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"nonakano_bara.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"peichika.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"romance_anonimo.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"sakura_sakura.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"shabondama.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"shoujoujino_tanukibayashi.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"sousyunfu.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"tetsudou_shouka.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"the_other_day_i_met_a_bear.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"tonbi.lab 1.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"toryanse.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"troika.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"twinkle_twinkle_little_star.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"urashima_tarou.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"usagi.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"usagito_kame.lab 6.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"yuki.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"yurikagono_uta.lab 0.0\n", | |
"Consecutive pau/sil-s are detected.\n", | |
"zuizui_zukkorobashi.lab 0.0\n", | |
"56it [00:00, 319.51it/s]\n", | |
"56it [00:00, 821.91it/s]\n", | |
"56it [00:00, 144.75it/s]\n", | |
"56it [00:00, 141.29it/s]\n", | |
"56it [00:00, 148.67it/s]\n", | |
"akai_kutsu.lab: segment duration min 10.70, max 16.59, mean 12.82\n", | |
"akatonbo.lab: segment duration min 5.08, max 16.92, mean 11.33\n", | |
"amehuri.lab: segment duration min 5.56, max 15.72, mean 11.21\n", | |
"aogeba_toutoshi.lab: segment duration min 5.73, max 29.72, mean 11.16\n", | |
"aoimeno_ningyou.lab: segment duration min 5.44, max 12.48, mean 7.65\n", | |
"arupusu_ichimanjaku.lab: segment duration min 7.09, max 9.03, mean 8.15\n", | |
"chatsumi.lab: segment duration min 6.96, max 11.62, mean 7.97\n", | |
"chouchou.lab: segment duration min 5.02, max 11.43, mean 7.18\n", | |
"die_moldau.lab: segment duration min 5.17, max 19.72, mean 10.59\n", | |
"donguri_korokoro.lab: segment duration min 5.84, max 8.04, mean 7.31\n", | |
"fujino_yama.lab: segment duration min 7.24, max 14.39, mean 10.37\n", | |
"furusato.lab: segment duration min 8.11, max 12.72, mean 9.13\n", | |
"goin_home.lab: segment duration min 7.95, max 8.79, mean 8.51\n", | |
"hamabeno_uta.lab: segment duration min 5.62, max 12.87, mean 6.63\n", | |
"haruga_kita.lab: segment duration min 7.48, max 11.29, mean 8.86\n", | |
"haruno_ogawa.lab: segment duration min 8.62, max 13.21, mean 9.54\n", | |
"haruyo_koi.lab: segment duration min 6.42, max 10.33, mean 8.88\n", | |
"hato.lab: segment duration min 6.88, max 14.16, mean 11.55\n", | |
"hiraita_hiraita.lab: segment duration min 9.34, max 14.28, mean 12.16\n", | |
"hoshinoyo.lab: segment duration min 5.01, max 10.86, mean 7.10\n", | |
"hotaruno_hikari.lab: segment duration min 6.06, max 13.36, mean 9.66\n", | |
"jugoya_otsukisan.lab: segment duration min 8.72, max 13.53, mean 9.76\n", | |
"kachushano_uta.lab: segment duration min 8.98, max 12.76, mean 10.02\n", | |
"kagome_kagome.lab: segment duration min 7.57, max 11.50, mean 9.06\n", | |
"kamomeno_suiheisan.lab: segment duration min 5.86, max 9.16, mean 6.55\n", | |
"katatsumuri.lab: segment duration min 5.79, max 9.15, mean 6.82\n", | |
"kintarou.lab: segment duration min 5.55, max 8.42, mean 6.42\n", | |
"koganemushi.lab: segment duration min 8.18, max 18.71, mean 12.96\n", | |
"koinobori.lab: segment duration min 7.46, max 11.50, mean 8.53\n", | |
"makibano_asa.lab: segment duration min 5.23, max 17.76, mean 10.16\n", | |
"mansikka_on_punanen_marja.lab: segment duration min 10.05, max 23.52, mean 14.34\n", | |
"miwataseba.lab: segment duration min 9.17, max 20.23, mean 14.50\n", | |
"momiji.lab: segment duration min 7.46, max 10.00, mean 9.64\n", | |
"momotarou.lab: segment duration min 6.02, max 14.02, mean 10.56\n", | |
"morobito_kozorite.lab: segment duration min 11.60, max 30.07, mean 16.79\n", | |
"mushino_koe.lab: segment duration min 5.45, max 8.54, mean 7.57\n", | |
"nanatsunoko.lab: segment duration min 5.19, max 11.46, mean 9.13\n", | |
"nonakano_bara.lab: segment duration min 5.00, max 10.81, mean 6.04\n", | |
"peichika.lab: segment duration min 5.34, max 11.56, mean 6.97\n", | |
"romance_anonimo.lab: segment duration min 8.04, max 37.63, mean 28.05\n", | |
"sakura_sakura.lab: segment duration min 10.13, max 15.50, mean 13.31\n", | |
"shabondama.lab: segment duration min 5.78, max 12.62, mean 6.67\n", | |
"shoujoujino_tanukibayashi.lab: segment duration min 5.23, max 20.20, mean 13.06\n", | |
"sousyunfu.lab: segment duration min 5.04, max 5.89, mean 5.57\n", | |
"tetsudou_shouka.lab: segment duration min 17.75, max 18.52, mean 18.13\n", | |
"the_other_day_i_met_a_bear.lab: segment duration min 6.00, max 12.21, mean 8.78\n", | |
"tonbi.lab: segment duration min 9.29, max 12.09, mean 10.10\n", | |
"toryanse.lab: segment duration min 42.04, max 42.04, mean 42.04\n", | |
"troika.lab: segment duration min 5.40, max 9.15, mean 6.99\n", | |
"twinkle_twinkle_little_star.lab: segment duration min 5.27, max 11.24, mean 6.13\n", | |
"urashima_tarou.lab: segment duration min 20.22, max 21.22, mean 20.69\n", | |
"usagi.lab: segment duration min 18.36, max 18.36, mean 18.36\n", | |
"usagito_kame.lab: segment duration min 17.93, max 19.86, mean 18.90\n", | |
"yuki.lab: segment duration min 21.86, max 23.29, mean 22.57\n", | |
"yurikagono_uta.lab: segment duration min 8.05, max 19.04, mean 11.62\n", | |
"zuizui_zukkorobashi.lab: segment duration min 6.27, max 9.04, mean 7.30\n", | |
"akai_kutsu.lab: segment lengths: 16.59, 10.76, 14.01, 10.78, 14.06, 10.70, \n", | |
"akatonbo.lab: segment lengths: 11.57, 16.92, 9.09, 5.08, 11.09, 14.68, 10.89, \n", | |
"amehuri.lab: segment lengths: 15.72, 14.79, 5.56, 8.76, \n", | |
"aogeba_toutoshi.lab: segment lengths: 6.04, 5.73, 11.81, 5.97, 5.79, 12.58, 17.01, 12.00, 12.29, 12.81, 29.72, 5.98, 5.93, 12.53, \n", | |
"aoimeno_ningyou.lab: segment lengths: 12.48, 6.67, 9.14, 6.29, 5.69, 6.31, 5.96, 10.84, 5.44, \n", | |
"arupusu_ichimanjaku.lab: segment lengths: 9.03, 8.35, 8.12, 7.09, \n", | |
"chatsumi.lab: segment lengths: 11.62, 7.13, 7.14, 6.96, 9.67, 7.09, 7.11, 7.01, \n", | |
"chouchou.lab: segment lengths: 8.00, 7.97, 10.63, 5.21, 5.15, 5.02, 5.71, 5.22, 8.06, 10.72, 5.12, 5.09, 11.43, \n", | |
"die_moldau.lab: segment lengths: 5.17, 14.39, 9.93, 9.64, 9.60, 9.57, 9.80, 5.48, 5.19, 14.43, 19.72, 9.68, 9.55, 16.09, \n", | |
"donguri_korokoro.lab: segment lengths: 7.58, 7.49, 5.84, 7.59, 8.04, \n", | |
"fujino_yama.lab: segment lengths: 9.49, 14.30, 9.48, 9.47, 7.24, 14.39, 9.43, 9.17, \n", | |
"furusato.lab: segment lengths: 12.72, 8.23, 8.44, 8.39, 10.84, 8.35, 8.33, 8.37, 10.97, 8.11, 8.46, 8.32, \n", | |
"goin_home.lab: segment lengths: 8.61, 8.49, 8.79, 8.63, 8.46, 8.69, 8.18, 8.61, 8.46, 8.75, 8.57, 8.59, 8.34, 7.95, \n", | |
"hamabeno_uta.lab: segment lengths: 12.37, 6.21, 5.86, 6.21, 5.71, 6.26, 5.96, 6.15, 5.62, 6.19, 5.71, 6.22, 5.94, 6.19, 6.01, 6.19, 5.97, 6.20, 5.69, 12.87, 6.19, 6.16, \n", | |
"haruga_kita.lab: segment lengths: 11.29, 7.48, 9.56, 7.64, 9.59, 7.60, \n", | |
"haruno_ogawa.lab: segment lengths: 13.21, 8.71, 8.66, 8.89, 11.15, 8.62, 8.71, 8.89, 11.12, 8.62, 8.64, 9.23, \n", | |
"haruyo_koi.lab: segment lengths: 7.49, 10.03, 6.42, 10.10, 10.33, \n", | |
"hato.lab: segment lengths: 13.59, 6.88, 14.16, \n", | |
"hiraita_hiraita.lab: segment lengths: 10.79, 14.28, 9.34, 14.25, \n", | |
"hoshinoyo.lab: segment lengths: 10.82, 10.85, 10.86, 5.04, 5.17, 5.08, 8.25, 5.01, 5.10, 5.05, 10.73, 5.13, 5.15, \n", | |
"hotaruno_hikari.lab: segment lengths: 6.26, 6.18, 6.25, 6.06, 12.71, 13.36, 11.20, 6.13, 12.50, 12.76, 12.80, \n", | |
"jugoya_otsukisan.lab: segment lengths: 13.53, 9.04, 8.72, 8.86, 8.74, 9.66, \n", | |
"kachushano_uta.lab: segment lengths: 8.98, 9.05, 9.61, 12.65, 9.17, 9.21, 12.76, 9.13, 9.57, \n", | |
"kagome_kagome.lab: segment lengths: 7.57, 11.50, 8.10, \n", | |
"kamomeno_suiheisan.lab: segment lengths: 9.16, 5.86, 6.04, 5.95, 7.89, 5.93, 6.13, 6.01, 7.88, 5.88, 5.91, 5.98, \n", | |
"katatsumuri.lab: segment lengths: 9.15, 5.97, 5.79, 8.15, 5.90, 5.97, \n", | |
"kintarou.lab: segment lengths: 8.42, 5.63, 5.79, 7.08, 5.55, 6.05, \n", | |
"koganemushi.lab: segment lengths: 11.98, 8.18, 18.71, \n", | |
"koinobori.lab: segment lengths: 11.50, 7.46, 7.59, 7.58, \n", | |
"makibano_asa.lab: segment lengths: 17.62, 6.32, 6.82, 7.34, 15.99, 17.76, 5.23, 14.07, 6.38, 6.85, 7.33, \n", | |
"mansikka_on_punanen_marja.lab: segment lengths: 15.03, 10.05, 23.52, 12.67, 10.46, \n", | |
"miwataseba.lab: segment lengths: 20.23, 9.17, 19.15, 9.46, \n", | |
"momiji.lab: segment lengths: 9.84, 9.85, 9.97, 9.90, 7.46, 9.97, 9.89, 9.87, 10.00, \n", | |
"momotarou.lab: segment lengths: 6.02, 8.21, 14.02, 14.01, \n", | |
"morobito_kozorite.lab: segment lengths: 30.07, 11.75, 15.07, 11.60, 15.44, \n", | |
"mushino_koe.lab: segment lengths: 8.41, 8.54, 8.39, 5.67, 7.06, 8.48, 8.53, 5.45, \n", | |
"nanatsunoko.lab: segment lengths: 8.49, 8.30, 11.46, 11.35, 11.30, 5.58, 5.19, 11.40, \n", | |
"nonakano_bara.lab: segment lengths: 10.81, 5.16, 5.12, 5.18, 5.00, 5.12, 5.26, 8.29, 10.74, 5.04, 5.05, 5.32, 5.42, 8.04, 5.17, 5.01, 5.02, 5.01, 5.20, 5.75, \n", | |
"peichika.lab: segment lengths: 6.69, 6.76, 5.96, 5.56, 11.54, 6.64, 5.87, 5.34, 11.56, 6.69, 5.44, 5.58, \n", | |
"romance_anonimo.lab: segment lengths: 37.63, 8.04, 25.14, 35.71, 33.73, \n", | |
"sakura_sakura.lab: segment lengths: 15.50, 10.21, 15.45, 13.17, 10.13, 15.40, \n", | |
"shabondama.lab: segment lengths: 12.62, 6.11, 6.07, 5.96, 6.15, 5.90, 5.88, 5.78, 5.92, 6.29, \n", | |
"shoujoujino_tanukibayashi.lab: segment lengths: 20.20, 13.66, 13.15, 5.23, \n", | |
"sousyunfu.lab: segment lengths: 5.73, 5.08, 5.89, 5.04, 5.72, 5.62, 5.72, 5.19, 5.66, 5.42, 5.75, 5.31, 5.76, 5.67, 5.70, 5.42, 5.66, 5.56, 5.79, 5.22, 5.70, 5.66, 5.71, 5.75, \n", | |
"tetsudou_shouka.lab: segment lengths: 18.52, 17.75, 18.13, \n", | |
"the_other_day_i_met_a_bear.lab: segment lengths: 8.23, 7.83, 12.21, 7.85, 6.00, 7.72, 10.22, 10.56, 6.09, 7.83, 10.30, 10.49, \n", | |
"tonbi.lab: segment lengths: 11.81, 9.44, 9.52, 9.47, 12.09, 9.29, 9.64, 9.53, \n", | |
"toryanse.lab: segment lengths: 42.04, \n", | |
"troika.lab: segment lengths: 7.12, 6.42, 5.40, 9.15, 7.13, 6.29, 5.44, 8.79, 7.28, 6.20, 5.45, 9.15, \n", | |
"twinkle_twinkle_little_star.lab: segment lengths: 11.24, 5.36, 5.37, 5.31, 5.35, 5.97, 8.53, 5.40, 5.27, 5.29, 5.35, 5.64, 8.55, 5.37, 5.33, 5.38, 5.36, 6.17, \n", | |
"urashima_tarou.lab: segment lengths: 21.22, 20.22, 20.63, \n", | |
"usagi.lab: segment lengths: 18.36, \n", | |
"usagito_kame.lab: segment lengths: 19.86, 18.91, 17.93, \n", | |
"yuki.lab: segment lengths: 23.29, 21.86, \n", | |
"yurikagono_uta.lab: segment lengths: 12.36, 8.11, 19.04, 10.55, 8.05, \n", | |
"zuizui_zukkorobashi.lab: segment lengths: 6.65, 7.92, 6.62, 9.04, 6.27, \n", | |
"Segmentation stats: min 5.00, max 42.04, mean 9.26\n", | |
"Total number of segments: 451\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"Prepare data for time-lag models\n", | |
" 0% 0/56 [00:00<?, ?it/s]akai_kutsu: Global offset (in sec): -0.045\n", | |
"akai_kutsu_seg0.lab offset (in sec): -0.045\n", | |
"akai_kutsu_seg1.lab offset (in sec): -0.045\n", | |
"akai_kutsu_seg2.lab offset (in sec): -0.04\n", | |
"akai_kutsu_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"akai_kutsu_seg4.lab offset (in sec): -0.045\n", | |
"akai_kutsu_seg5.lab offset (in sec): -0.024999999999999998\n", | |
"akatonbo: Global offset (in sec): -0.045\n", | |
"akatonbo_seg0.lab offset (in sec): -0.06\n", | |
"akatonbo_seg1.lab offset (in sec): -0.034999999999999996\n", | |
"akatonbo_seg2.lab offset (in sec): -0.06\n", | |
"akatonbo_seg3.lab offset (in sec): -0.049999999999999996\n", | |
"akatonbo_seg4.lab offset (in sec): -0.034999999999999996\n", | |
"akatonbo.lab: 1/18 time-lags are excluded.\n", | |
"akatonbo_seg5.lab offset (in sec): -0.04\n", | |
"akatonbo.lab: 1/15 time-lags are excluded.\n", | |
"akatonbo_seg6.lab offset (in sec): -0.03\n", | |
"akatonbo.lab: 1/18 time-lags are excluded.\n", | |
"amehuri: Global offset (in sec): -0.049999999999999996\n", | |
"amehuri_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"amehuri.lab: 2/41 time-lags are excluded.\n", | |
"amehuri_seg1.lab offset (in sec): -0.049999999999999996\n", | |
"amehuri.lab: 2/40 time-lags are excluded.\n", | |
"amehuri_seg2.lab offset (in sec): -0.045\n", | |
"amehuri_seg3.lab offset (in sec): -0.045\n", | |
"amehuri.lab: 1/27 time-lags are excluded.\n", | |
"aogeba_toutoshi: Global offset (in sec): -0.055\n", | |
"aogeba_toutoshi_seg0.lab offset (in sec): -0.08\n", | |
"aogeba_toutoshi_seg1.lab offset (in sec): -0.06999999999999999\n", | |
"aogeba_toutoshi_seg2.lab offset (in sec): -0.06\n", | |
"aogeba_toutoshi_seg3.lab offset (in sec): -0.06\n", | |
"aogeba_toutoshi_seg4.lab offset (in sec): -0.08\n", | |
"aogeba_toutoshi_seg5.lab offset (in sec): -0.075\n", | |
"aogeba_toutoshi.lab: 1/16 time-lags are excluded.\n", | |
"aogeba_toutoshi_seg6.lab offset (in sec): -0.045\n", | |
"aogeba_toutoshi_seg7.lab offset (in sec): -0.06999999999999999\n", | |
"aogeba_toutoshi_seg8.lab offset (in sec): -0.034999999999999996\n", | |
"aogeba_toutoshi_seg9.lab offset (in sec): -0.049999999999999996\n", | |
"aogeba_toutoshi.lab: 1/16 time-lags are excluded.\n", | |
"aogeba_toutoshi_seg10.lab offset (in sec): -0.055\n", | |
"aogeba_toutoshi_seg11.lab offset (in sec): -0.065\n", | |
"aogeba_toutoshi_seg12.lab offset (in sec): -0.06999999999999999\n", | |
"aogeba_toutoshi_seg13.lab offset (in sec): -0.04\n", | |
"aogeba_toutoshi.lab: 1/16 time-lags are excluded.\n", | |
"aoimeno_ningyou: Global offset (in sec): -0.049999999999999996\n", | |
"aoimeno_ningyou_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"aoimeno_ningyou_seg1.lab offset (in sec): -0.045\n", | |
"aoimeno_ningyou_seg2.lab offset (in sec): -0.055\n", | |
"aoimeno_ningyou_seg3.lab offset (in sec): -0.045\n", | |
"aoimeno_ningyou_seg4.lab offset (in sec): -0.055\n", | |
"aoimeno_ningyou_seg5.lab offset (in sec): -0.049999999999999996\n", | |
"aoimeno_ningyou_seg6.lab offset (in sec): -0.06999999999999999\n", | |
"aoimeno_ningyou.lab: 1/14 time-lags are excluded.\n", | |
"aoimeno_ningyou_seg7.lab offset (in sec): -0.045\n", | |
"aoimeno_ningyou_seg8.lab offset (in sec): -0.02\n", | |
"arupusu_ichimanjaku: Global offset (in sec): -0.034999999999999996\n", | |
"arupusu_ichimanjaku_seg0.lab offset (in sec): -0.03\n", | |
"arupusu_ichimanjaku_seg1.lab offset (in sec): -0.034999999999999996\n", | |
"arupusu_ichimanjaku_seg2.lab offset (in sec): -0.049999999999999996\n", | |
"arupusu_ichimanjaku.lab: 2/29 time-lags are excluded.\n", | |
"arupusu_ichimanjaku_seg3.lab offset (in sec): -0.02\n", | |
"chatsumi: Global offset (in sec): -0.049999999999999996\n", | |
"chatsumi_seg0.lab offset (in sec): -0.055\n", | |
"chatsumi_seg1.lab offset (in sec): -0.055\n", | |
"chatsumi_seg2.lab offset (in sec): -0.04\n", | |
"chatsumi_seg3.lab offset (in sec): -0.06\n", | |
"chatsumi_seg4.lab offset (in sec): -0.065\n", | |
"chatsumi_seg5.lab offset (in sec): -0.034999999999999996\n", | |
"chatsumi_seg6.lab offset (in sec): -0.049999999999999996\n", | |
"chatsumi_seg7.lab offset (in sec): -0.06\n", | |
"chouchou: Global offset (in sec): -0.065\n", | |
"chouchou_seg0.lab offset (in sec): -0.095\n", | |
"chouchou_seg1.lab offset (in sec): -0.055\n", | |
"chouchou_seg2.lab offset (in sec): -0.055\n", | |
"chouchou_seg3.lab offset (in sec): -0.08\n", | |
"chouchou_seg4.lab offset (in sec): -0.049999999999999996\n", | |
"chouchou_seg5.lab offset (in sec): -0.06\n", | |
"chouchou_seg6.lab offset (in sec): -0.075\n", | |
"chouchou_seg7.lab offset (in sec): -0.04\n", | |
"chouchou_seg8.lab offset (in sec): -0.06\n", | |
"chouchou_seg9.lab offset (in sec): -0.06999999999999999\n", | |
"chouchou_seg10.lab offset (in sec): -0.055\n", | |
"chouchou_seg11.lab offset (in sec): -0.045\n", | |
"chouchou_seg12.lab offset (in sec): -0.055\n", | |
"die_moldau.lab: 1/17 time-lags are excluded.\n", | |
"die_moldau.lab: 2/13 time-lags are excluded.\n", | |
"die_moldau.lab: 1/17 time-lags are excluded.\n", | |
"die_moldau.lab: 2/26 time-lags are excluded.\n", | |
"die_moldau.lab: 2/14 time-lags are excluded.\n", | |
"donguri_korokoro: Global offset (in sec): -0.04\n", | |
"donguri_korokoro_seg0.lab offset (in sec): -0.03\n", | |
"donguri_korokoro.lab: 1/13 time-lags are excluded.\n", | |
"donguri_korokoro_seg1.lab offset (in sec): -0.03\n", | |
"donguri_korokoro_seg2.lab offset (in sec): -0.065\n", | |
"donguri_korokoro.lab: 2/11 time-lags are excluded.\n", | |
"donguri_korokoro_seg3.lab offset (in sec): -0.04\n", | |
"donguri_korokoro.lab: 2/26 time-lags are excluded.\n", | |
"donguri_korokoro_seg4.lab offset (in sec): -0.034999999999999996\n", | |
" 18% 10/56 [00:00<00:00, 99.41it/s]fujino_yama: Global offset (in sec): -0.045\n", | |
"fujino_yama_seg0.lab offset (in sec): -0.045\n", | |
"fujino_yama_seg1.lab offset (in sec): -0.034999999999999996\n", | |
"fujino_yama_seg2.lab offset (in sec): -0.045\n", | |
"fujino_yama_seg3.lab offset (in sec): -0.04\n", | |
"fujino_yama_seg4.lab offset (in sec): -0.055\n", | |
"fujino_yama_seg5.lab offset (in sec): -0.03\n", | |
"fujino_yama_seg6.lab offset (in sec): -0.06\n", | |
"fujino_yama_seg7.lab offset (in sec): -0.045\n", | |
"furusato: Global offset (in sec): -0.055\n", | |
"furusato_seg0.lab offset (in sec): -0.065\n", | |
"furusato_seg1.lab offset (in sec): -0.06\n", | |
"furusato_seg2.lab offset (in sec): -0.04\n", | |
"furusato_seg3.lab offset (in sec): -0.049999999999999996\n", | |
"furusato_seg4.lab offset (in sec): -0.06\n", | |
"furusato_seg5.lab offset (in sec): -0.065\n", | |
"furusato_seg6.lab offset (in sec): -0.034999999999999996\n", | |
"furusato_seg7.lab offset (in sec): -0.055\n", | |
"furusato_seg8.lab offset (in sec): -0.06999999999999999\n", | |
"furusato_seg9.lab offset (in sec): -0.034999999999999996\n", | |
"furusato_seg10.lab offset (in sec): -0.045\n", | |
"furusato_seg11.lab offset (in sec): -0.049999999999999996\n", | |
"goin_home: Global offset (in sec): -0.04\n", | |
"goin_home_seg0.lab offset (in sec): -0.04\n", | |
"goin_home_seg1.lab offset (in sec): -0.055\n", | |
"goin_home_seg2.lab offset (in sec): -0.065\n", | |
"goin_home_seg3.lab offset (in sec): -0.01\n", | |
"goin_home.lab: 1/12 time-lags are excluded.\n", | |
"goin_home_seg4.lab offset (in sec): -0.03\n", | |
"goin_home_seg5.lab offset (in sec): -0.049999999999999996\n", | |
"goin_home.lab: 2/12 time-lags are excluded.\n", | |
"goin_home_seg6.lab offset (in sec): -0.034999999999999996\n", | |
"goin_home_seg7.lab offset (in sec): -0.02\n", | |
"goin_home.lab: 1/12 time-lags are excluded.\n", | |
"goin_home_seg8.lab offset (in sec): -0.015\n", | |
"goin_home_seg9.lab offset (in sec): -0.015\n", | |
"goin_home_seg10.lab offset (in sec): -0.005\n", | |
"goin_home_seg11.lab offset (in sec): -0.01\n", | |
"goin_home.lab: 1/12 time-lags are excluded.\n", | |
"goin_home_seg12.lab offset (in sec): -0.049999999999999996\n", | |
"goin_home_seg13.lab offset (in sec): -0.049999999999999996\n", | |
"hamabeno_uta: Global offset (in sec): -0.049999999999999996\n", | |
"hamabeno_uta_seg0.lab offset (in sec): -0.04\n", | |
"hamabeno_uta_seg1.lab offset (in sec): -0.049999999999999996\n", | |
"hamabeno_uta.lab: 1/10 time-lags are excluded.\n", | |
"hamabeno_uta_seg2.lab offset (in sec): -0.065\n", | |
"hamabeno_uta_seg3.lab offset (in sec): -0.055\n", | |
"hamabeno_uta_seg4.lab offset (in sec): -0.06999999999999999\n", | |
"hamabeno_uta_seg5.lab offset (in sec): -0.04\n", | |
"hamabeno_uta.lab: 1/10 time-lags are excluded.\n", | |
"hamabeno_uta_seg6.lab offset (in sec): -0.024999999999999998\n", | |
"hamabeno_uta_seg7.lab offset (in sec): -0.049999999999999996\n", | |
"hamabeno_uta_seg8.lab offset (in sec): -0.04\n", | |
"hamabeno_uta_seg9.lab offset (in sec): -0.045\n", | |
"hamabeno_uta_seg10.lab offset (in sec): -0.06\n", | |
"hamabeno_uta_seg11.lab offset (in sec): -0.075\n", | |
"hamabeno_uta_seg12.lab offset (in sec): -0.065\n", | |
"hamabeno_uta_seg13.lab offset (in sec): -0.024999999999999998\n", | |
"hamabeno_uta_seg14.lab offset (in sec): -0.065\n", | |
"hamabeno_uta_seg15.lab offset (in sec): -0.06\n", | |
"hamabeno_uta_seg16.lab offset (in sec): -0.055\n", | |
"hamabeno_uta_seg17.lab offset (in sec): -0.055\n", | |
"hamabeno_uta_seg18.lab offset (in sec): -0.049999999999999996\n", | |
"hamabeno_uta_seg19.lab offset (in sec): -0.06999999999999999\n", | |
"hamabeno_uta.lab: 1/14 time-lags are excluded.\n", | |
"hamabeno_uta_seg20.lab offset (in sec): -0.045\n", | |
"hamabeno_uta_seg21.lab offset (in sec): -0.049999999999999996\n", | |
"haruga_kita: Global offset (in sec): -0.049999999999999996\n", | |
"haruga_kita_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"haruga_kita_seg1.lab offset (in sec): -0.055\n", | |
"haruga_kita_seg2.lab offset (in sec): -0.04\n", | |
"haruga_kita_seg3.lab offset (in sec): -0.065\n", | |
"haruga_kita_seg4.lab offset (in sec): -0.03\n", | |
"haruga_kita_seg5.lab offset (in sec): -0.045\n", | |
"haruno_ogawa: Global offset (in sec): -0.055\n", | |
"haruno_ogawa_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"haruno_ogawa_seg1.lab offset (in sec): -0.06\n", | |
"haruno_ogawa.lab: 1/16 time-lags are excluded.\n", | |
"haruno_ogawa_seg2.lab offset (in sec): -0.04\n", | |
"haruno_ogawa_seg3.lab offset (in sec): -0.06\n", | |
"haruno_ogawa_seg4.lab offset (in sec): -0.045\n", | |
"haruno_ogawa_seg5.lab offset (in sec): -0.06\n", | |
"haruno_ogawa_seg6.lab offset (in sec): -0.04\n", | |
"haruno_ogawa_seg7.lab offset (in sec): -0.055\n", | |
"haruno_ogawa_seg8.lab offset (in sec): -0.049999999999999996\n", | |
"haruno_ogawa_seg9.lab offset (in sec): -0.049999999999999996\n", | |
"haruno_ogawa_seg10.lab offset (in sec): -0.04\n", | |
"haruno_ogawa_seg11.lab offset (in sec): -0.03\n", | |
"haruyo_koi: Global offset (in sec): -0.034999999999999996\n", | |
"haruyo_koi_seg0.lab offset (in sec): -0.01\n", | |
"haruyo_koi_seg1.lab offset (in sec): -0.03\n", | |
"haruyo_koi.lab: 1/25 time-lags are excluded.\n", | |
"haruyo_koi_seg2.lab offset (in sec): -0.03\n", | |
"haruyo_koi_seg3.lab offset (in sec): -0.03\n", | |
"haruyo_koi.lab: 1/24 time-lags are excluded.\n", | |
"haruyo_koi_seg4.lab offset (in sec): -0.034999999999999996\n", | |
"haruyo_koi.lab: 1/25 time-lags are excluded.\n", | |
"hato: Global offset (in sec): -0.045\n", | |
"hato_seg0.lab offset (in sec): -0.024999999999999998\n", | |
"hato.lab: 2/21 time-lags are excluded.\n", | |
"hato_seg1.lab offset (in sec): -0.04\n", | |
"hato_seg2.lab offset (in sec): -0.024999999999999998\n", | |
"hiraita_hiraita: Global offset (in sec): -0.034999999999999996\n", | |
"hiraita_hiraita_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"hiraita_hiraita_seg1.lab offset (in sec): -0.03\n", | |
"hiraita_hiraita_seg2.lab offset (in sec): -0.03\n", | |
"hiraita_hiraita_seg3.lab offset (in sec): -0.03\n", | |
"hoshinoyo: Global offset (in sec): -0.055\n", | |
"hoshinoyo_seg0.lab offset (in sec): -0.065\n", | |
"hoshinoyo_seg1.lab offset (in sec): -0.049999999999999996\n", | |
"hoshinoyo_seg2.lab offset (in sec): -0.049999999999999996\n", | |
"hoshinoyo.lab: 1/16 time-lags are excluded.\n", | |
"hoshinoyo_seg3.lab offset (in sec): -0.045\n", | |
"hoshinoyo_seg4.lab offset (in sec): -0.06999999999999999\n", | |
"hoshinoyo_seg5.lab offset (in sec): -0.06\n", | |
"hoshinoyo_seg6.lab offset (in sec): -0.055\n", | |
"hoshinoyo_seg7.lab offset (in sec): -0.045\n", | |
"hoshinoyo_seg8.lab offset (in sec): -0.02\n", | |
"hoshinoyo_seg9.lab offset (in sec): -0.049999999999999996\n", | |
"hoshinoyo_seg10.lab offset (in sec): -0.049999999999999996\n", | |
"hoshinoyo_seg11.lab offset (in sec): -0.065\n", | |
"hoshinoyo_seg12.lab offset (in sec): -0.045\n", | |
" 36% 20/56 [00:00<00:00, 95.57it/s]hotaruno_hikari: Global offset (in sec): -0.049999999999999996\n", | |
"hotaruno_hikari_seg0.lab offset (in sec): -0.055\n", | |
"hotaruno_hikari_seg1.lab offset (in sec): -0.03\n", | |
"hotaruno_hikari_seg2.lab offset (in sec): -0.04\n", | |
"hotaruno_hikari_seg3.lab offset (in sec): -0.02\n", | |
"hotaruno_hikari_seg4.lab offset (in sec): -0.055\n", | |
"hotaruno_hikari.lab: 1/16 time-lags are excluded.\n", | |
"hotaruno_hikari_seg5.lab offset (in sec): -0.024999999999999998\n", | |
"hotaruno_hikari.lab: 1/17 time-lags are excluded.\n", | |
"hotaruno_hikari_seg6.lab offset (in sec): -0.049999999999999996\n", | |
"hotaruno_hikari_seg7.lab offset (in sec): -0.04\n", | |
"hotaruno_hikari_seg8.lab offset (in sec): -0.045\n", | |
"hotaruno_hikari_seg9.lab offset (in sec): -0.045\n", | |
"hotaruno_hikari.lab: 1/16 time-lags are excluded.\n", | |
"hotaruno_hikari_seg10.lab offset (in sec): -0.034999999999999996\n", | |
"hotaruno_hikari.lab: 1/16 time-lags are excluded.\n", | |
"jugoya_otsukisan: Global offset (in sec): -0.055\n", | |
"jugoya_otsukisan_seg0.lab offset (in sec): -0.06\n", | |
"jugoya_otsukisan.lab: 2/16 time-lags are excluded.\n", | |
"jugoya_otsukisan_seg1.lab offset (in sec): -0.075\n", | |
"jugoya_otsukisan_seg2.lab offset (in sec): -0.045\n", | |
"jugoya_otsukisan_seg3.lab offset (in sec): -0.065\n", | |
"jugoya_otsukisan_seg4.lab offset (in sec): -0.045\n", | |
"jugoya_otsukisan_seg5.lab offset (in sec): -0.045\n", | |
"kachushano_uta: Global offset (in sec): -0.04\n", | |
"kachushano_uta_seg0.lab offset (in sec): -0.04\n", | |
"kachushano_uta_seg1.lab offset (in sec): -0.03\n", | |
"kachushano_uta_seg2.lab offset (in sec): -0.045\n", | |
"kachushano_uta_seg3.lab offset (in sec): -0.04\n", | |
"kachushano_uta_seg4.lab offset (in sec): -0.03\n", | |
"kachushano_uta_seg5.lab offset (in sec): -0.045\n", | |
"kachushano_uta_seg6.lab offset (in sec): -0.06\n", | |
"kachushano_uta_seg7.lab offset (in sec): -0.015\n", | |
"kachushano_uta.lab: 2/17 time-lags are excluded.\n", | |
"kachushano_uta_seg8.lab offset (in sec): -0.034999999999999996\n", | |
"kagome_kagome: Global offset (in sec): -0.03\n", | |
"kagome_kagome_seg0.lab offset (in sec): -0.03\n", | |
"kagome_kagome_seg1.lab offset (in sec): -0.01\n", | |
"kagome_kagome.lab: 1/27 time-lags are excluded.\n", | |
"kagome_kagome_seg2.lab offset (in sec): -0.045\n", | |
"kamomeno_suiheisan: Global offset (in sec): -0.049999999999999996\n", | |
"kamomeno_suiheisan_seg0.lab offset (in sec): -0.055\n", | |
"kamomeno_suiheisan.lab: 1/10 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg1.lab offset (in sec): 0.0\n", | |
"kamomeno_suiheisan.lab: 1/11 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg2.lab offset (in sec): -0.055\n", | |
"kamomeno_suiheisan.lab: 1/18 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg3.lab offset (in sec): -0.049999999999999996\n", | |
"kamomeno_suiheisan_seg4.lab offset (in sec): -0.06\n", | |
"kamomeno_suiheisan.lab: 1/10 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg5.lab offset (in sec): -0.065\n", | |
"kamomeno_suiheisan.lab: 1/11 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg6.lab offset (in sec): -0.049999999999999996\n", | |
"kamomeno_suiheisan.lab: 2/18 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg7.lab offset (in sec): -0.034999999999999996\n", | |
"kamomeno_suiheisan_seg8.lab offset (in sec): -0.049999999999999996\n", | |
"kamomeno_suiheisan.lab: 1/10 time-lags are excluded.\n", | |
"kamomeno_suiheisan_seg9.lab offset (in sec): -0.055\n", | |
"kamomeno_suiheisan_seg10.lab offset (in sec): -0.055\n", | |
"kamomeno_suiheisan_seg11.lab offset (in sec): -0.045\n", | |
"katatsumuri: Global offset (in sec): -0.065\n", | |
"katatsumuri_seg0.lab offset (in sec): -0.055\n", | |
"katatsumuri_seg1.lab offset (in sec): -0.04\n", | |
"katatsumuri_seg2.lab offset (in sec): -0.08\n", | |
"katatsumuri_seg3.lab offset (in sec): -0.06\n", | |
"katatsumuri_seg4.lab offset (in sec): -0.045\n", | |
"katatsumuri_seg5.lab offset (in sec): -0.09999999999999999\n", | |
"katatsumuri.lab: 1/13 time-lags are excluded.\n", | |
"kintarou: Global offset (in sec): -0.04\n", | |
"kintarou_seg0.lab offset (in sec): -0.04\n", | |
"kintarou_seg1.lab offset (in sec): -0.049999999999999996\n", | |
"kintarou_seg2.lab offset (in sec): -0.055\n", | |
"kintarou_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"kintarou_seg4.lab offset (in sec): -0.055\n", | |
"kintarou_seg5.lab offset (in sec): -0.01\n", | |
"koganemushi: Global offset (in sec): -0.034999999999999996\n", | |
"koganemushi_seg0.lab offset (in sec): -0.04\n", | |
"koganemushi.lab: 1/24 time-lags are excluded.\n", | |
"koganemushi_seg1.lab offset (in sec): -0.015\n", | |
"koganemushi_seg2.lab offset (in sec): -0.03\n", | |
"koinobori: Global offset (in sec): -0.049999999999999996\n", | |
"koinobori_seg0.lab offset (in sec): -0.04\n", | |
"koinobori_seg1.lab offset (in sec): -0.045\n", | |
"koinobori_seg2.lab offset (in sec): -0.045\n", | |
"koinobori_seg3.lab offset (in sec): -0.049999999999999996\n", | |
"koinobori.lab: 1/13 time-lags are excluded.\n", | |
"makibano_asa: Global offset (in sec): -0.034999999999999996\n", | |
"makibano_asa_seg0.lab offset (in sec): -0.034999999999999996\n", | |
"makibano_asa_seg1.lab offset (in sec): -0.04\n", | |
"makibano_asa_seg2.lab offset (in sec): -0.04\n", | |
"makibano_asa_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"makibano_asa_seg4.lab offset (in sec): -0.024999999999999998\n", | |
"makibano_asa_seg5.lab offset (in sec): -0.034999999999999996\n", | |
"makibano_asa_seg6.lab offset (in sec): -0.015\n", | |
"makibano_asa_seg7.lab offset (in sec): -0.03\n", | |
"makibano_asa_seg8.lab offset (in sec): -0.034999999999999996\n", | |
"makibano_asa.lab: 1/14 time-lags are excluded.\n", | |
"makibano_asa_seg9.lab offset (in sec): -0.02\n", | |
"makibano_asa_seg10.lab offset (in sec): -0.02\n", | |
"mansikka_on_punanen_marja: Global offset (in sec): -0.04\n", | |
"mansikka_on_punanen_marja_seg0.lab offset (in sec): -0.045\n", | |
"mansikka_on_punanen_marja_seg1.lab offset (in sec): -0.04\n", | |
"mansikka_on_punanen_marja_seg2.lab offset (in sec): -0.034999999999999996\n", | |
"mansikka_on_punanen_marja.lab: 1/41 time-lags are excluded.\n", | |
"mansikka_on_punanen_marja_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"mansikka_on_punanen_marja.lab: 1/20 time-lags are excluded.\n", | |
"mansikka_on_punanen_marja_seg4.lab offset (in sec): -0.045\n", | |
"miwataseba: Global offset (in sec): -0.049999999999999996\n", | |
"miwataseba_seg0.lab offset (in sec): -0.045\n", | |
"miwataseba.lab: 2/38 time-lags are excluded.\n", | |
"miwataseba_seg1.lab offset (in sec): -0.055\n", | |
"miwataseba_seg2.lab offset (in sec): -0.06\n", | |
"miwataseba_seg3.lab offset (in sec): -0.03\n", | |
" 57% 32/56 [00:00<00:00, 103.39it/s]momiji: Global offset (in sec): -0.04\n", | |
"momiji_seg0.lab offset (in sec): -0.04\n", | |
"momiji_seg1.lab offset (in sec): -0.045\n", | |
"momiji_seg2.lab offset (in sec): -0.034999999999999996\n", | |
"momiji_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"momiji_seg4.lab offset (in sec): -0.04\n", | |
"momiji_seg5.lab offset (in sec): -0.049999999999999996\n", | |
"momiji_seg6.lab offset (in sec): -0.034999999999999996\n", | |
"momiji_seg7.lab offset (in sec): -0.034999999999999996\n", | |
"momiji.lab: 2/17 time-lags are excluded.\n", | |
"momiji_seg8.lab offset (in sec): -0.02\n", | |
"momotarou: Global offset (in sec): -0.04\n", | |
"momotarou_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"momotarou_seg1.lab offset (in sec): -0.034999999999999996\n", | |
"momotarou_seg2.lab offset (in sec): -0.045\n", | |
"momotarou.lab: 1/34 time-lags are excluded.\n", | |
"momotarou_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"morobito_kozorite: Global offset (in sec): -0.034999999999999996\n", | |
"morobito_kozorite_seg0.lab offset (in sec): -0.03\n", | |
"morobito_kozorite.lab: 1/64 time-lags are excluded.\n", | |
"morobito_kozorite_seg1.lab offset (in sec): -0.049999999999999996\n", | |
"morobito_kozorite_seg2.lab offset (in sec): -0.034999999999999996\n", | |
"morobito_kozorite.lab: 1/48 time-lags are excluded.\n", | |
"morobito_kozorite_seg3.lab offset (in sec): -0.04\n", | |
"morobito_kozorite_seg4.lab offset (in sec): -0.03\n", | |
"morobito_kozorite.lab: 3/46 time-lags are excluded.\n", | |
"mushino_koe: Global offset (in sec): -0.034999999999999996\n", | |
"mushino_koe_seg0.lab offset (in sec): -0.034999999999999996\n", | |
"mushino_koe_seg1.lab offset (in sec): -0.02\n", | |
"mushino_koe.lab: 1/28 time-lags are excluded.\n", | |
"mushino_koe_seg2.lab offset (in sec): -0.045\n", | |
"mushino_koe.lab: 4/25 time-lags are excluded.\n", | |
"mushino_koe_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"mushino_koe_seg4.lab offset (in sec): -0.06\n", | |
"mushino_koe_seg5.lab offset (in sec): -0.03\n", | |
"mushino_koe_seg6.lab offset (in sec): -0.024999999999999998\n", | |
"mushino_koe.lab: 1/25 time-lags are excluded.\n", | |
"mushino_koe_seg7.lab offset (in sec): -0.045\n", | |
"nanatsunoko: Global offset (in sec): -0.045\n", | |
"nanatsunoko_seg0.lab offset (in sec): -0.08\n", | |
"nanatsunoko_seg1.lab offset (in sec): -0.06\n", | |
"nanatsunoko_seg2.lab offset (in sec): -0.034999999999999996\n", | |
"nanatsunoko_seg3.lab offset (in sec): -0.04\n", | |
"nanatsunoko.lab: 1/16 time-lags are excluded.\n", | |
"nanatsunoko_seg4.lab offset (in sec): -0.034999999999999996\n", | |
"nanatsunoko_seg5.lab offset (in sec): -0.04\n", | |
"nanatsunoko_seg6.lab offset (in sec): -0.049999999999999996\n", | |
"nanatsunoko_seg7.lab offset (in sec): -0.005\n", | |
"nanatsunoko.lab: 1/18 time-lags are excluded.\n", | |
"nonakano_bara: Global offset (in sec): -0.04\n", | |
"nonakano_bara_seg0.lab offset (in sec): -0.04\n", | |
"nonakano_bara_seg1.lab offset (in sec): -0.065\n", | |
"nonakano_bara_seg2.lab offset (in sec): -0.055\n", | |
"nonakano_bara_seg3.lab offset (in sec): -0.04\n", | |
"nonakano_bara_seg4.lab offset (in sec): -0.045\n", | |
"nonakano_bara_seg5.lab offset (in sec): -0.02\n", | |
"nonakano_bara_seg6.lab offset (in sec): -0.04\n", | |
"nonakano_bara_seg7.lab offset (in sec): -0.02\n", | |
"nonakano_bara_seg8.lab offset (in sec): -0.02\n", | |
"nonakano_bara_seg9.lab offset (in sec): -0.055\n", | |
"nonakano_bara_seg10.lab offset (in sec): -0.045\n", | |
"nonakano_bara_seg11.lab offset (in sec): -0.03\n", | |
"nonakano_bara_seg12.lab offset (in sec): -0.024999999999999998\n", | |
"nonakano_bara_seg13.lab offset (in sec): -0.034999999999999996\n", | |
"nonakano_bara_seg14.lab offset (in sec): -0.04\n", | |
"nonakano_bara_seg15.lab offset (in sec): -0.055\n", | |
"nonakano_bara_seg16.lab offset (in sec): -0.045\n", | |
"nonakano_bara_seg17.lab offset (in sec): -0.04\n", | |
"nonakano_bara_seg18.lab offset (in sec): -0.03\n", | |
"nonakano_bara_seg19.lab offset (in sec): -0.034999999999999996\n", | |
"peichika: Global offset (in sec): -0.049999999999999996\n", | |
"peichika_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"peichika_seg1.lab offset (in sec): -0.06\n", | |
"peichika_seg2.lab offset (in sec): -0.04\n", | |
"peichika_seg3.lab offset (in sec): -0.065\n", | |
"peichika_seg4.lab offset (in sec): -0.055\n", | |
"peichika_seg5.lab offset (in sec): -0.03\n", | |
"peichika_seg6.lab offset (in sec): -0.034999999999999996\n", | |
"peichika_seg7.lab offset (in sec): -0.045\n", | |
"peichika_seg8.lab offset (in sec): -0.065\n", | |
"peichika.lab: 1/14 time-lags are excluded.\n", | |
"peichika_seg9.lab offset (in sec): -0.055\n", | |
"peichika_seg10.lab offset (in sec): -0.045\n", | |
"peichika_seg11.lab offset (in sec): -0.055\n", | |
"romance_anonimo: Global offset (in sec): -0.049999999999999996\n", | |
"romance_anonimo_seg0.lab offset (in sec): -0.04\n", | |
"romance_anonimo.lab: 1/52 time-lags are excluded.\n", | |
"romance_anonimo_seg1.lab offset (in sec): -0.075\n", | |
"romance_anonimo_seg2.lab offset (in sec): -0.045\n", | |
"romance_anonimo_seg3.lab offset (in sec): -0.06999999999999999\n", | |
"romance_anonimo.lab: 4/53 time-lags are excluded.\n", | |
"romance_anonimo_seg4.lab offset (in sec): -0.04\n", | |
"romance_anonimo.lab: 3/52 time-lags are excluded.\n", | |
"sakura_sakura: Global offset (in sec): -0.045\n", | |
"sakura_sakura_seg0.lab offset (in sec): -0.034999999999999996\n", | |
"sakura_sakura.lab: 2/17 time-lags are excluded.\n", | |
"sakura_sakura_seg1.lab offset (in sec): -0.024999999999999998\n", | |
"sakura_sakura_seg2.lab offset (in sec): -0.034999999999999996\n", | |
"sakura_sakura.lab: 1/23 time-lags are excluded.\n", | |
"sakura_sakura_seg3.lab offset (in sec): -0.04\n", | |
"sakura_sakura.lab: 1/16 time-lags are excluded.\n", | |
"sakura_sakura_seg4.lab offset (in sec): -0.024999999999999998\n", | |
"sakura_sakura_seg5.lab offset (in sec): -0.02\n", | |
"shabondama: Global offset (in sec): -0.06\n", | |
"shabondama_seg0.lab offset (in sec): -0.034999999999999996\n", | |
"shabondama.lab: 1/8 time-lags are excluded.\n", | |
"shabondama_seg1.lab offset (in sec): -0.06999999999999999\n", | |
"shabondama_seg2.lab offset (in sec): -0.045\n", | |
"shabondama_seg3.lab offset (in sec): -0.03\n", | |
"shabondama_seg4.lab offset (in sec): -0.045\n", | |
"shabondama.lab: 1/9 time-lags are excluded.\n", | |
"shabondama_seg5.lab offset (in sec): -0.065\n", | |
"shabondama_seg6.lab offset (in sec): -0.08\n", | |
"shabondama_seg7.lab offset (in sec): -0.049999999999999996\n", | |
"shabondama_seg8.lab offset (in sec): -0.065\n", | |
"shabondama_seg9.lab offset (in sec): -0.065\n", | |
"shabondama.lab: 1/9 time-lags are excluded.\n", | |
"shoujoujino_tanukibayashi: Global offset (in sec): -0.04\n", | |
"shoujoujino_tanukibayashi_seg0.lab offset (in sec): -0.045\n", | |
"shoujoujino_tanukibayashi.lab: 4/50 time-lags are excluded.\n", | |
"shoujoujino_tanukibayashi_seg1.lab offset (in sec): -0.01\n", | |
"shoujoujino_tanukibayashi.lab: 2/43 time-lags are excluded.\n", | |
"shoujoujino_tanukibayashi_seg2.lab offset (in sec): -0.055\n", | |
"shoujoujino_tanukibayashi.lab: 1/27 time-lags are excluded.\n", | |
"shoujoujino_tanukibayashi_seg3.lab offset (in sec): -0.03\n", | |
"shoujoujino_tanukibayashi.lab: 1/17 time-lags are excluded.\n", | |
" 77% 43/56 [00:00<00:00, 90.69it/s] sousyunfu: Global offset (in sec): -0.034999999999999996\n", | |
"sousyunfu_seg0.lab offset (in sec): -0.045\n", | |
"sousyunfu_seg1.lab offset (in sec): -0.06999999999999999\n", | |
"sousyunfu_seg2.lab offset (in sec): -0.024999999999999998\n", | |
"sousyunfu.lab: 2/7 time-lags are excluded.\n", | |
"sousyunfu_seg3.lab offset (in sec): -0.02\n", | |
"sousyunfu_seg4.lab offset (in sec): -0.03\n", | |
"sousyunfu_seg5.lab offset (in sec): -0.02\n", | |
"sousyunfu_seg6.lab offset (in sec): -0.02\n", | |
"sousyunfu_seg7.lab offset (in sec): 0.005\n", | |
"sousyunfu_seg8.lab offset (in sec): -0.015\n", | |
"sousyunfu.lab: 1/7 time-lags are excluded.\n", | |
"sousyunfu_seg9.lab offset (in sec): -0.034999999999999996\n", | |
"sousyunfu_seg10.lab offset (in sec): -0.04\n", | |
"sousyunfu_seg11.lab offset (in sec): -0.03\n", | |
"sousyunfu_seg12.lab offset (in sec): -0.06\n", | |
"sousyunfu_seg13.lab offset (in sec): -0.03\n", | |
"sousyunfu_seg14.lab offset (in sec): -0.06\n", | |
"sousyunfu_seg15.lab offset (in sec): -0.02\n", | |
"sousyunfu_seg16.lab offset (in sec): -0.045\n", | |
"sousyunfu_seg17.lab offset (in sec): -0.055\n", | |
"sousyunfu_seg18.lab offset (in sec): -0.049999999999999996\n", | |
"sousyunfu_seg19.lab offset (in sec): -0.03\n", | |
"sousyunfu_seg20.lab offset (in sec): -0.045\n", | |
"sousyunfu_seg21.lab offset (in sec): -0.02\n", | |
"sousyunfu_seg22.lab offset (in sec): -0.055\n", | |
"sousyunfu_seg23.lab offset (in sec): 0.0\n", | |
"tetsudou_shouka: Global offset (in sec): -0.065\n", | |
"tetsudou_shouka_seg0.lab offset (in sec): -0.065\n", | |
"tetsudou_shouka.lab: 2/49 time-lags are excluded.\n", | |
"tetsudou_shouka_seg1.lab offset (in sec): -0.065\n", | |
"tetsudou_shouka_seg2.lab offset (in sec): -0.065\n", | |
"the_other_day_i_met_a_bear: Global offset (in sec): -0.06\n", | |
"the_other_day_i_met_a_bear_seg0.lab offset (in sec): -0.02\n", | |
"the_other_day_i_met_a_bear.lab: 1/4 time-lags are excluded.\n", | |
"the_other_day_i_met_a_bear_seg1.lab offset (in sec): -0.09\n", | |
"the_other_day_i_met_a_bear.lab: 1/9 time-lags are excluded.\n", | |
"the_other_day_i_met_a_bear_seg2.lab offset (in sec): -0.045\n", | |
"the_other_day_i_met_a_bear_seg3.lab offset (in sec): -0.055\n", | |
"the_other_day_i_met_a_bear_seg4.lab offset (in sec): -0.045\n", | |
"the_other_day_i_met_a_bear_seg5.lab offset (in sec): -0.08\n", | |
"the_other_day_i_met_a_bear_seg6.lab offset (in sec): -0.04\n", | |
"the_other_day_i_met_a_bear_seg7.lab offset (in sec): -0.015\n", | |
"the_other_day_i_met_a_bear.lab: 1/11 time-lags are excluded.\n", | |
"the_other_day_i_met_a_bear_seg8.lab offset (in sec): -0.045\n", | |
"the_other_day_i_met_a_bear.lab: 2/4 time-lags are excluded.\n", | |
"the_other_day_i_met_a_bear_seg9.lab offset (in sec): -0.065\n", | |
"the_other_day_i_met_a_bear_seg10.lab offset (in sec): -0.065\n", | |
"the_other_day_i_met_a_bear.lab: 2/12 time-lags are excluded.\n", | |
"the_other_day_i_met_a_bear_seg11.lab offset (in sec): -0.04\n", | |
"tonbi: Global offset (in sec): -0.04\n", | |
"tonbi_seg0.lab offset (in sec): -0.02\n", | |
"tonbi.lab: 1/17 time-lags are excluded.\n", | |
"tonbi_seg1.lab offset (in sec): -0.04\n", | |
"tonbi.lab: 1/17 time-lags are excluded.\n", | |
"tonbi_seg2.lab offset (in sec): -0.015\n", | |
"tonbi.lab: 1/19 time-lags are excluded.\n", | |
"tonbi_seg3.lab offset (in sec): -0.04\n", | |
"tonbi.lab: 1/15 time-lags are excluded.\n", | |
"tonbi_seg4.lab offset (in sec): -0.024999999999999998\n", | |
"tonbi_seg5.lab offset (in sec): -0.04\n", | |
"tonbi_seg6.lab offset (in sec): -0.045\n", | |
"tonbi.lab: 1/19 time-lags are excluded.\n", | |
"tonbi_seg7.lab offset (in sec): -0.034999999999999996\n", | |
"tonbi.lab: 1/15 time-lags are excluded.\n", | |
"toryanse: Global offset (in sec): -0.04\n", | |
"toryanse_seg0.lab offset (in sec): -0.04\n", | |
"toryanse.lab: 1/109 time-lags are excluded.\n", | |
"troika: Global offset (in sec): -0.055\n", | |
"troika_seg0.lab offset (in sec): -0.04\n", | |
"troika_seg1.lab offset (in sec): -0.034999999999999996\n", | |
"troika_seg2.lab offset (in sec): -0.06\n", | |
"troika.lab: 1/8 time-lags are excluded.\n", | |
"troika_seg3.lab offset (in sec): -0.049999999999999996\n", | |
"troika_seg4.lab offset (in sec): -0.065\n", | |
"troika_seg5.lab offset (in sec): -0.08499999999999999\n", | |
"troika.lab: 1/7 time-lags are excluded.\n", | |
"troika_seg6.lab offset (in sec): -0.075\n", | |
"troika.lab: 1/8 time-lags are excluded.\n", | |
"troika_seg7.lab offset (in sec): -0.04\n", | |
"troika_seg8.lab offset (in sec): -0.04\n", | |
"troika.lab: 1/10 time-lags are excluded.\n", | |
"troika_seg9.lab offset (in sec): -0.034999999999999996\n", | |
"troika_seg10.lab offset (in sec): -0.095\n", | |
"troika_seg11.lab offset (in sec): -0.04\n", | |
"twinkle_twinkle_little_star: Global offset (in sec): -0.065\n", | |
"twinkle_twinkle_little_star_seg0.lab offset (in sec): -0.034999999999999996\n", | |
"twinkle_twinkle_little_star.lab: 1/7 time-lags are excluded.\n", | |
"twinkle_twinkle_little_star_seg1.lab offset (in sec): -0.045\n", | |
"twinkle_twinkle_little_star_seg2.lab offset (in sec): -0.075\n", | |
"twinkle_twinkle_little_star_seg3.lab offset (in sec): -0.055\n", | |
"twinkle_twinkle_little_star_seg4.lab offset (in sec): -0.045\n", | |
"twinkle_twinkle_little_star_seg5.lab offset (in sec): -0.06\n", | |
"twinkle_twinkle_little_star.lab: 1/7 time-lags are excluded.\n", | |
"twinkle_twinkle_little_star_seg6.lab offset (in sec): -0.09999999999999999\n", | |
"twinkle_twinkle_little_star.lab: 1/7 time-lags are excluded.\n", | |
"twinkle_twinkle_little_star_seg7.lab offset (in sec): -0.06999999999999999\n", | |
"twinkle_twinkle_little_star_seg8.lab offset (in sec): -0.04\n", | |
"twinkle_twinkle_little_star_seg9.lab offset (in sec): -0.04\n", | |
"twinkle_twinkle_little_star.lab: 1/7 time-lags are excluded.\n", | |
"twinkle_twinkle_little_star_seg10.lab offset (in sec): -0.045\n", | |
"twinkle_twinkle_little_star_seg11.lab offset (in sec): -0.055\n", | |
"twinkle_twinkle_little_star_seg12.lab offset (in sec): -0.095\n", | |
"twinkle_twinkle_little_star_seg13.lab offset (in sec): -0.08499999999999999\n", | |
"twinkle_twinkle_little_star_seg14.lab offset (in sec): -0.055\n", | |
"twinkle_twinkle_little_star_seg15.lab offset (in sec): -0.06999999999999999\n", | |
"twinkle_twinkle_little_star.lab: 1/7 time-lags are excluded.\n", | |
"twinkle_twinkle_little_star_seg16.lab offset (in sec): -0.06\n", | |
"twinkle_twinkle_little_star_seg17.lab offset (in sec): -0.13\n", | |
"urashima_tarou: Global offset (in sec): -0.045\n", | |
"urashima_tarou_seg0.lab offset (in sec): -0.045\n", | |
"urashima_tarou_seg1.lab offset (in sec): -0.049999999999999996\n", | |
"urashima_tarou_seg2.lab offset (in sec): -0.04\n", | |
"usagi: Global offset (in sec): -0.065\n", | |
"usagi_seg0.lab offset (in sec): -0.055\n", | |
"usagito_kame: Global offset (in sec): -0.049999999999999996\n", | |
"usagito_kame_seg0.lab offset (in sec): -0.04\n", | |
"usagito_kame_seg1.lab offset (in sec): -0.055\n", | |
"usagito_kame.lab: 1/48 time-lags are excluded.\n", | |
"usagito_kame_seg2.lab offset (in sec): -0.04\n", | |
" 95% 53/56 [00:00<00:00, 92.98it/s]yuki: Global offset (in sec): -0.045\n", | |
"yuki_seg0.lab offset (in sec): -0.04\n", | |
"yuki.lab: 1/61 time-lags are excluded.\n", | |
"yuki_seg1.lab offset (in sec): -0.04\n", | |
"yuki.lab: 1/60 time-lags are excluded.\n", | |
"yurikagono_uta: Global offset (in sec): -0.04\n", | |
"yurikagono_uta_seg0.lab offset (in sec): -0.03\n", | |
"yurikagono_uta.lab: 1/18 time-lags are excluded.\n", | |
"yurikagono_uta_seg1.lab offset (in sec): -0.03\n", | |
"yurikagono_uta_seg2.lab offset (in sec): -0.04\n", | |
"yurikagono_uta_seg3.lab offset (in sec): -0.055\n", | |
"yurikagono_uta_seg4.lab offset (in sec): -0.024999999999999998\n", | |
"zuizui_zukkorobashi: Global offset (in sec): -0.045\n", | |
"zuizui_zukkorobashi_seg0.lab offset (in sec): -0.049999999999999996\n", | |
"zuizui_zukkorobashi_seg1.lab offset (in sec): -0.034999999999999996\n", | |
"zuizui_zukkorobashi_seg2.lab offset (in sec): -0.034999999999999996\n", | |
"zuizui_zukkorobashi_seg3.lab offset (in sec): -0.034999999999999996\n", | |
"zuizui_zukkorobashi_seg4.lab offset (in sec): -0.034999999999999996\n", | |
"100% 56/56 [00:00<00:00, 96.31it/s]\n", | |
"Prepare data for duration models\n", | |
"100% 56/56 [00:00<00:00, 464.49it/s]\n", | |
"Prepare data for acoustic models\n", | |
"100% 56/56 [07:13<00:00, 7.75s/it]\n", | |
"train/dev/eval split\n" | |
] | |
} | |
], | |
"source": [ | |
"#! cd $RECIPE_ROOT && bash run.sh --stage -0 --stop-stage 0" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "QnYwVu94gjF4", | |
"outputId": "707e7d9a-d551-4948-f190-09e9cc004e61" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 1: Feature generation\n", | |
"++ nnsvs-prepare-features utt_list=data/list/train_no_dev.list out_dir=dump/oniku_kurumi/org/train_no_dev/ question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=static_deltadelta_sinevib acoustic.sample_rate=48000 acoustic.trajectory_smoothing=false acoustic.trajectory_smoothing_cutoff=50\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 07:26:25,516\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" label_phone_score_dir: data/timelag/label_phone_score\n", | |
" label_phone_align_dir: data/timelag/label_phone_align\n", | |
"duration:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" label_dir: data/duration/label_phone_align\n", | |
"acoustic:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" wav_dir: data/acoustic/wav\n", | |
" label_dir: data/acoustic/label_phone_align\n", | |
" sample_rate: 48000\n", | |
" subphone_features: coarse_coding\n", | |
" f0_floor: 150\n", | |
" f0_ceil: 700\n", | |
" use_harvest: true\n", | |
" d4c_threshold: 0.85\n", | |
" frame_period: 5\n", | |
" mgc_order: 59\n", | |
" num_windows: 3\n", | |
" relative_f0: false\n", | |
" interp_unvoiced_aperiodicity: true\n", | |
" vibrato_mode: sine\n", | |
" trajectory_smoothing: false\n", | |
" trajectory_smoothing_cutoff: 50\n", | |
" correct_vuv: false\n", | |
"verbose: 100\n", | |
"utt_list: data/list/train_no_dev.list\n", | |
"out_dir: dump/oniku_kurumi/org/train_no_dev/\n", | |
"max_workers: null\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,553\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/train_no_dev/in_timelag\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,554\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/train_no_dev/out_timelag\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,554\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/train_no_dev/in_duration\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,554\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/train_no_dev/out_duration\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,555\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/train_no_dev/in_acoustic\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,555\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/train_no_dev/out_acoustic\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,578\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Timelag linguistic feature dim: 337\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:25,578\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Timelag feature dim: 1\u001b[0m\n", | |
"100% 442/442 [00:07<00:00, 56.65it/s]\n", | |
"[\u001b[36m2022-07-17 07:26:33,475\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Duration linguistic feature dim: 337\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:33,476\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Duration feature dim: 1\u001b[0m\n", | |
"100% 442/442 [00:12<00:00, 34.71it/s]\n", | |
"[\u001b[36m2022-07-17 07:26:46,315\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Acoustic linguistic feature dim: 341\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:26:53,592\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Acoustic feature dim: 206\u001b[0m\n", | |
" 0% 0/442 [00:00<?, ?it/s]Rate: 5.496828752642706, Extent: 24.970238833613728\n", | |
" 2% 7/442 [00:36<33:56, 4.68s/it]Rate: 4.273504273504273, Extent: 27.796228798245828\n", | |
" 2% 8/442 [00:40<34:03, 4.71s/it]Rate: 5.257623554153523, Extent: 26.301474147696844\n", | |
" 3% 12/442 [00:55<31:33, 4.40s/it]Rate: 5.231388329979879, Extent: 28.47998116010446\n", | |
" 3% 13/442 [00:58<28:00, 3.92s/it]Rate: 5.389221556886227, Extent: 35.98746835707006\n", | |
"Rate: 4.854368932038835, Extent: 41.00032827424384\n", | |
" 8% 34/442 [02:20<20:18, 2.99s/it]Rate: 6.267806267806268, Extent: 22.281267545263166\n", | |
" 12% 54/442 [03:16<19:56, 3.08s/it]Rate: 4.814814814814815, Extent: 25.228192071675146\n", | |
" 13% 57/442 [03:25<20:59, 3.27s/it]Rate: 4.830917874396135, Extent: 39.554192661255186\n", | |
" 13% 58/442 [03:27<18:33, 2.90s/it]Rate: 5.263157894736842, Extent: 15.226496757957102\n", | |
" 14% 63/442 [03:36<11:14, 1.78s/it]Rate: 4.406779661016949, Extent: 24.656660871931447\n", | |
" 15% 65/442 [03:47<21:13, 3.38s/it]Rate: 5.362982341399608, Extent: 33.28671823608857\n", | |
" 15% 68/442 [04:05<35:05, 5.63s/it]Rate: 5.300859598853869, Extent: 28.837320965100044\n", | |
" 16% 69/442 [04:08<29:33, 4.75s/it]Rate: 3.870967741935484, Extent: 32.14984004326617\n", | |
" 19% 82/442 [04:51<13:44, 2.29s/it]Rate: 3.3175355450236967, Extent: 75.41375214090827\n", | |
" 20% 90/442 [05:25<24:57, 4.25s/it]Rate: 5.607476635514019, Extent: 24.096058860845915\n", | |
" 22% 97/442 [05:45<18:35, 3.23s/it]Rate: 4.774535809018568, Extent: 25.054688356373845\n", | |
" 22% 99/442 [05:51<18:09, 3.17s/it]Rate: 5.05050505050505, Extent: 32.774031561727405\n", | |
" 27% 118/442 [06:51<14:31, 2.69s/it]Rate: 5.154639175257732, Extent: 27.009765887244612\n", | |
" 28% 123/442 [07:05<12:17, 2.31s/it]Rate: 5.0724637681159415, Extent: 37.879238363104186\n", | |
" 29% 129/442 [07:19<10:37, 2.04s/it]Rate: 5.319148936170213, Extent: 46.98310457360149\n", | |
"Rate: 5.9880239520958085, Extent: 34.87633221264032\n", | |
" 32% 140/442 [07:48<11:23, 2.26s/it]Rate: 5.20446096654275, Extent: 33.29093519416639\n", | |
"Rate: 6.0344827586206895, Extent: 25.677191719766597\n", | |
" 32% 141/442 [07:55<18:17, 3.65s/it]Rate: 5.761316872427984, Extent: 31.80359576257329\n", | |
" 33% 146/442 [08:09<14:14, 2.89s/it]Rate: 5.20446096654275, Extent: 28.57935877919785\n", | |
" 33% 147/442 [08:19<23:40, 4.82s/it]Rate: 6.7114093959731544, Extent: 80.2917360762629\n", | |
" 34% 150/442 [08:26<16:05, 3.31s/it]Rate: 5.780346820809249, Extent: 22.71172160693404\n", | |
" 35% 154/442 [08:42<17:25, 3.63s/it]Rate: 4.946996466431095, Extent: 35.998922090470124\n", | |
" 36% 157/442 [08:50<14:25, 3.04s/it]Rate: 5.154639175257732, Extent: 16.62105426784192\n", | |
" 37% 162/442 [09:10<17:17, 3.71s/it]Rate: 6.796116504854369, Extent: 22.8663232665562\n", | |
"Rate: 4.878048780487805, Extent: 55.74130752725296\n", | |
" 37% 164/442 [09:18<17:49, 3.85s/it]Rate: 4.854368932038835, Extent: 49.34959884337741\n", | |
" 38% 167/442 [09:26<14:09, 3.09s/it]Rate: 4.1841004184100425, Extent: 23.683679790311544\n", | |
" 39% 173/442 [09:42<11:36, 2.59s/it]Rate: 4.216867469879518, Extent: 19.134939674894277\n", | |
" 40% 177/442 [09:50<10:28, 2.37s/it]Rate: 5.128205128205128, Extent: 25.036943698698103\n", | |
" 40% 178/442 [09:52<10:14, 2.33s/it]Rate: 4.366812227074236, Extent: 25.352965478728947\n", | |
" 41% 180/442 [10:04<18:25, 4.22s/it]Rate: 4.405286343612335, Extent: 27.516412561890956\n", | |
" 41% 183/442 [10:12<14:44, 3.41s/it]Rate: 4.878048780487805, Extent: 26.868161040627\n", | |
" 42% 184/442 [10:15<14:31, 3.38s/it]Rate: 5.05050505050505, Extent: 23.618962457504857\n", | |
" 42% 186/442 [10:20<11:49, 2.77s/it]Rate: 5.780346820809249, Extent: 21.545594246698876\n", | |
"Rate: 4.262295081967213, Extent: 30.787960347592335\n", | |
" 43% 189/442 [10:37<17:49, 4.23s/it]Rate: 6.3559322033898304, Extent: 23.822234436707156\n", | |
" 43% 192/442 [10:47<15:24, 3.70s/it]Rate: 5.042016806722689, Extent: 22.07303464735297\n", | |
" 44% 194/442 [10:53<14:55, 3.61s/it]Rate: 4.697986577181208, Extent: 28.133458319835363\n", | |
" 45% 199/442 [11:12<14:51, 3.67s/it]Rate: 5.5464926590538335, Extent: 35.367880254710066\n", | |
" 47% 208/442 [11:40<08:57, 2.30s/it]Rate: 6.382978723404256, Extent: 43.03049509196343\n", | |
"Rate: 3.4428794992175273, Extent: 40.63775307313856\n", | |
" 48% 210/442 [11:46<09:07, 2.36s/it]Rate: 4.545454545454546, Extent: 30.83168041066174\n", | |
" 48% 213/442 [11:53<09:44, 2.55s/it]Rate: 4.15335463258786, Extent: 36.254156458433044\n", | |
" 49% 217/442 [12:02<08:09, 2.18s/it]Rate: 6.024096385542168, Extent: 34.34362629550223\n", | |
"Rate: 4.830917874396135, Extent: 48.61864613602957\n", | |
" 50% 219/442 [12:08<08:41, 2.34s/it]Rate: 5.426356589147288, Extent: 33.93083930432061\n", | |
" 50% 220/442 [12:11<10:03, 2.72s/it]Rate: 4.615384615384615, Extent: 53.620309817766305\n", | |
"Rate: 4.946996466431095, Extent: 35.067659253336906\n", | |
" 50% 222/442 [12:17<10:45, 2.93s/it]Rate: 5.4945054945054945, Extent: 46.87342643293878\n", | |
" 52% 228/442 [12:34<12:24, 3.48s/it]Rate: 3.8135593220338984, Extent: 47.46756414928556\n", | |
"Rate: 5.907172995780591, Extent: 29.251546750597235\n", | |
" 53% 234/442 [12:57<11:46, 3.39s/it]Rate: 3.674540682414698, Extent: 56.008289634907996\n", | |
" 54% 240/442 [13:22<14:01, 4.17s/it]Rate: 4.672897196261683, Extent: 38.75254153096985\n", | |
" 56% 247/442 [13:47<11:50, 3.65s/it]Rate: 4.0, Extent: 38.06049796032412\n", | |
"Rate: 6.25, Extent: 23.37124173150314\n", | |
"Rate: 6.622516556291391, Extent: 21.18483812001532\n", | |
" 57% 250/442 [14:09<15:58, 4.99s/it]Rate: 5.136986301369864, Extent: 31.221002127617005\n", | |
"Rate: 6.4102564102564115, Extent: 23.567739326419723\n", | |
" 57% 251/442 [14:21<20:53, 6.56s/it]Rate: 5.232558139534884, Extent: 28.54637371402719\n", | |
" 59% 261/442 [14:54<10:01, 3.32s/it]Rate: 4.545454545454546, Extent: 18.127771546472466\n", | |
" 60% 265/442 [15:09<10:58, 3.72s/it]Rate: 3.733333333333334, Extent: 44.01749871662014\n", | |
" 60% 267/442 [15:22<15:04, 5.17s/it]Rate: 4.3478260869565215, Extent: 58.64114934744066\n", | |
"Rate: 6.11353711790393, Extent: 34.768889313561495\n", | |
" 61% 268/442 [15:38<23:55, 8.25s/it]Rate: 5.952380952380952, Extent: 51.73044675437059\n", | |
" 61% 270/442 [15:42<15:30, 5.41s/it]Rate: 4.823747680890538, Extent: 33.96749064773058\n", | |
" 61% 271/442 [15:46<14:32, 5.10s/it]Rate: 6.306306306306306, Extent: 20.095913435100556\n", | |
"Rate: 6.11353711790393, Extent: 22.90380775916687\n", | |
" 62% 274/442 [15:56<10:47, 3.86s/it]Rate: 4.8076923076923075, Extent: 18.14268503989815\n", | |
" 63% 278/442 [16:07<08:00, 2.93s/it]Rate: 5.291005291005291, Extent: 19.011103528077637\n", | |
" 64% 281/442 [16:14<06:40, 2.49s/it]Rate: 6.081081081081082, Extent: 25.350874930307377\n", | |
" 64% 282/442 [16:18<07:58, 2.99s/it]Rate: 5.338078291814946, Extent: 27.323396294195117\n", | |
" 64% 283/442 [16:23<09:23, 3.54s/it]Rate: 4.794520547945205, Extent: 31.125137957459497\n", | |
" 65% 287/442 [16:34<07:12, 2.79s/it]Rate: 5.676855895196506, Extent: 60.85254647238186\n", | |
" 67% 298/442 [16:58<04:50, 2.02s/it]Rate: 4.878048780487805, Extent: 31.662797030423967\n", | |
" 68% 299/442 [17:00<04:34, 1.92s/it]Rate: 3.674540682414698, Extent: 33.63852061073346\n", | |
" 68% 301/442 [17:04<04:23, 1.87s/it]Rate: 5.170975813177648, Extent: 28.840593969924758\n", | |
" 69% 305/442 [17:12<04:15, 1.86s/it]Rate: 5.88235294117647, Extent: 31.79831993961049\n", | |
" 69% 306/442 [17:16<05:20, 2.35s/it]Rate: 6.516290726817042, Extent: 22.569097190732673\n", | |
" 72% 320/442 [17:52<04:45, 2.34s/it]Rate: 4.961832061068702, Extent: 29.046815674502586\n", | |
"Rate: 5.029013539651838, Extent: 30.34517762896065\n", | |
"Rate: 5.05050505050505, Extent: 32.0784026772295\n", | |
" 73% 321/442 [18:16<18:13, 9.04s/it]Rate: 3.233256351039261, Extent: 41.43678556945497\n", | |
"Rate: 3.733333333333334, Extent: 27.582907311292665\n", | |
"Rate: 5.555555555555555, Extent: 31.465973447190454\n", | |
" 74% 325/442 [18:43<13:56, 7.15s/it]Rate: 5.009633911368016, Extent: 40.01028216823603\n", | |
" 74% 326/442 [18:49<13:26, 6.95s/it]Rate: 6.622516556291391, Extent: 29.142918310824463\n", | |
" 74% 327/442 [18:51<10:54, 5.69s/it]Rate: 4.201680672268907, Extent: 42.846474014897105\n", | |
"Rate: 5.128205128205128, Extent: 42.96715451142709\n", | |
" 74% 328/442 [19:01<12:53, 6.79s/it]Rate: 4.587155963302751, Extent: 46.852239020968774\n", | |
" 75% 330/442 [19:06<09:22, 5.02s/it]Rate: 4.25531914893617, Extent: 35.30064216767751\n", | |
" 77% 341/442 [19:35<04:13, 2.51s/it]Rate: 5.577689243027889, Extent: 26.19059161077218\n", | |
"Rate: 5.291005291005291, Extent: 24.555491490999522\n", | |
"Rate: 5.384615384615384, Extent: 62.89874508897901\n", | |
" 77% 342/442 [19:48<09:15, 5.55s/it]Rate: 5.590062111801243, Extent: 41.15224790276898\n", | |
" 80% 353/442 [20:14<03:22, 2.27s/it]Rate: 4.0983606557377055, Extent: 21.091375662907193\n", | |
" 82% 361/442 [20:32<02:43, 2.02s/it]Rate: 4.034582132564841, Extent: 22.4812797148307\n", | |
" 82% 362/442 [20:36<03:13, 2.42s/it]Rate: 5.38243626062323, Extent: 20.391705851254372\n", | |
" 82% 364/442 [20:40<03:03, 2.35s/it]Rate: 4.0669856459330145, Extent: 49.53662841988476\n", | |
" 83% 368/442 [20:49<02:51, 2.32s/it]Rate: 5.405405405405405, Extent: 35.64798266406667\n", | |
"Rate: 5.405405405405405, Extent: 30.441422104565937\n", | |
"Rate: 6.167400881057268, Extent: 27.060494106362448\n", | |
" 86% 381/442 [21:40<03:35, 3.54s/it]Rate: 5.5865921787709505, Extent: 38.79071425169004\n", | |
" 87% 385/442 [21:52<03:08, 3.30s/it]Rate: 4.784688995215311, Extent: 24.416665972340162\n", | |
" 88% 388/442 [22:04<03:32, 3.93s/it]Rate: 5.232558139534884, Extent: 42.20363863349404\n", | |
" 88% 389/442 [22:07<03:09, 3.57s/it]Rate: 5.185185185185186, Extent: 24.44616400067954\n", | |
" 89% 392/442 [22:19<03:23, 4.08s/it]Rate: 5.017921146953405, Extent: 17.913362506015087\n", | |
"Rate: 7.042253521126761, Extent: 30.79030120064099\n", | |
"Rate: 4.62962962962963, Extent: 30.758174783686353\n", | |
"Rate: 5.37190082644628, Extent: 37.898860779101774\n", | |
" 92% 407/442 [23:14<01:36, 2.77s/it]Rate: 4.854368932038835, Extent: 24.01577646274427\n", | |
" 93% 410/442 [23:21<01:25, 2.66s/it]Rate: 5.6521739130434785, Extent: 30.488204423881772\n", | |
" 93% 411/442 [23:23<01:12, 2.35s/it]Rate: 4.291845493562231, Extent: 21.51810899192069\n", | |
"Rate: 4.98220640569395, Extent: 23.231887201048785\n", | |
" 93% 412/442 [23:26<01:12, 2.43s/it]Rate: 4.9504950495049505, Extent: 28.184729294502358\n", | |
" 95% 420/442 [23:44<00:53, 2.44s/it]Rate: 5.128205128205128, Extent: 27.104048771717224\n", | |
" 96% 423/442 [23:49<00:39, 2.07s/it]Rate: 5.434782608695652, Extent: 19.394653805559482\n", | |
"Rate: 5.434782608695652, Extent: 53.725617913333096\n", | |
"Rate: 5.10204081632653, Extent: 16.963427241103545\n", | |
"Rate: 5.524861878453039, Extent: 19.232709550501205\n", | |
" 96% 424/442 [24:05<01:50, 6.15s/it]Rate: 5.940594059405941, Extent: 30.643588310875707\n", | |
"Rate: 6.451612903225806, Extent: 28.835688816026895\n", | |
" 96% 426/442 [24:21<01:52, 7.03s/it]Rate: 4.9504950495049505, Extent: 47.514966610283714\n", | |
"Rate: 5.6285178236397755, Extent: 34.582578090027525\n", | |
"Rate: 5.622489959839358, Extent: 42.39851718169699\n", | |
" 97% 430/442 [24:50<01:23, 6.97s/it]Rate: 5.176470588235295, Extent: 26.23844356979796\n", | |
"Rate: 5.583756345177664, Extent: 41.363200078485825\n", | |
" 98% 431/442 [24:53<01:08, 6.21s/it]Rate: 5.080831408775981, Extent: 26.790833198143982\n", | |
"Rate: 5.952380952380952, Extent: 19.552556267586986\n", | |
" 98% 434/442 [25:09<00:42, 5.33s/it]Rate: 4.1039671682626535, Extent: 33.65569561969896\n", | |
"100% 442/442 [25:33<00:00, 3.47s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-prepare-features utt_list=data/list/dev.list out_dir=dump/oniku_kurumi/org/dev/ question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=static_deltadelta_sinevib acoustic.sample_rate=48000 acoustic.trajectory_smoothing=false acoustic.trajectory_smoothing_cutoff=50\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 07:52:44,112\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" label_phone_score_dir: data/timelag/label_phone_score\n", | |
" label_phone_align_dir: data/timelag/label_phone_align\n", | |
"duration:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" label_dir: data/duration/label_phone_align\n", | |
"acoustic:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" wav_dir: data/acoustic/wav\n", | |
" label_dir: data/acoustic/label_phone_align\n", | |
" sample_rate: 48000\n", | |
" subphone_features: coarse_coding\n", | |
" f0_floor: 150\n", | |
" f0_ceil: 700\n", | |
" use_harvest: true\n", | |
" d4c_threshold: 0.85\n", | |
" frame_period: 5\n", | |
" mgc_order: 59\n", | |
" num_windows: 3\n", | |
" relative_f0: false\n", | |
" interp_unvoiced_aperiodicity: true\n", | |
" vibrato_mode: sine\n", | |
" trajectory_smoothing: false\n", | |
" trajectory_smoothing_cutoff: 50\n", | |
" correct_vuv: false\n", | |
"verbose: 100\n", | |
"utt_list: data/list/dev.list\n", | |
"out_dir: dump/oniku_kurumi/org/dev/\n", | |
"max_workers: null\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,140\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/dev/in_timelag\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,141\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/dev/out_timelag\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,141\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/dev/in_duration\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,141\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/dev/out_duration\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,141\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/dev/in_acoustic\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,142\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/dev/out_acoustic\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,150\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Timelag linguistic feature dim: 337\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,151\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Timelag feature dim: 1\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 42.09it/s]\n", | |
"[\u001b[36m2022-07-17 07:52:44,282\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Duration linguistic feature dim: 337\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:44,282\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Duration feature dim: 1\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 24.23it/s]\n", | |
"[\u001b[36m2022-07-17 07:52:44,461\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Acoustic linguistic feature dim: 341\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:52:46,445\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Acoustic feature dim: 206\u001b[0m\n", | |
" 33% 1/3 [00:03<00:06, 3.42s/it]Rate: 5.844155844155844, Extent: 43.09901340452365\n", | |
"100% 3/3 [00:08<00:00, 2.78s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-prepare-features utt_list=data/list/eval.list out_dir=dump/oniku_kurumi/org/eval/ question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=static_deltadelta_sinevib acoustic.sample_rate=48000 acoustic.trajectory_smoothing=false acoustic.trajectory_smoothing_cutoff=50\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 07:53:09,059\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" label_phone_score_dir: data/timelag/label_phone_score\n", | |
" label_phone_align_dir: data/timelag/label_phone_align\n", | |
"duration:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" label_dir: data/duration/label_phone_align\n", | |
"acoustic:\n", | |
" enabled: true\n", | |
" question_path: null\n", | |
" wav_dir: data/acoustic/wav\n", | |
" label_dir: data/acoustic/label_phone_align\n", | |
" sample_rate: 48000\n", | |
" subphone_features: coarse_coding\n", | |
" f0_floor: 150\n", | |
" f0_ceil: 700\n", | |
" use_harvest: true\n", | |
" d4c_threshold: 0.85\n", | |
" frame_period: 5\n", | |
" mgc_order: 59\n", | |
" num_windows: 3\n", | |
" relative_f0: false\n", | |
" interp_unvoiced_aperiodicity: true\n", | |
" vibrato_mode: sine\n", | |
" trajectory_smoothing: false\n", | |
" trajectory_smoothing_cutoff: 50\n", | |
" correct_vuv: false\n", | |
"verbose: 100\n", | |
"utt_list: data/list/eval.list\n", | |
"out_dir: dump/oniku_kurumi/org/eval/\n", | |
"max_workers: null\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,087\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/eval/in_timelag\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,087\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/eval/out_timelag\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,088\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/eval/in_duration\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,088\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/eval/out_duration\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,088\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/eval/in_acoustic\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,088\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - mkdirs: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/org/eval/out_acoustic\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,106\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Timelag linguistic feature dim: 337\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,108\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Timelag feature dim: 1\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 52.62it/s]\n", | |
"[\u001b[36m2022-07-17 07:53:09,289\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Duration linguistic feature dim: 337\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:09,290\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Duration feature dim: 1\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 25.31it/s]\n", | |
"[\u001b[36m2022-07-17 07:53:09,605\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Acoustic linguistic feature dim: 341\u001b[0m\n", | |
"[\u001b[36m2022-07-17 07:53:14,269\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Acoustic feature dim: 206\u001b[0m\n", | |
"100% 6/6 [00:19<00:00, 3.17s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-fit-scaler list_path=train_list.txt scaler._target_=sklearn.preprocessing.MinMaxScaler out_path=dump/oniku_kurumi/org/in_timelag_scaler.joblib\n", | |
"[2022-07-17 07:53:35,655][nnsvs][INFO] - verbose: 100\n", | |
"scaler:\n", | |
" _target_: sklearn.preprocessing.MinMaxScaler\n", | |
"list_path: train_list.txt\n", | |
"out_path: dump/oniku_kurumi/org/in_timelag_scaler.joblib\n", | |
"external_scaler: null\n", | |
"\n", | |
"[2022-07-17 07:53:36,317][nnsvs][INFO] - data min:\n", | |
"[ 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 5.278103 5.278103 5.278103\n", | |
" -1. -1. -1. 1. 1. -1.\n", | |
" -1. -1. 1. -1. -1. -1.\n", | |
" 1. 1. -1. -1. 1. 5.\n", | |
" 3. -1. -1. -1. -1. -1.\n", | |
" -1. 1. 1. 0. 0. 0.\n", | |
" 3. 0. 4. -1. -1. -1.\n", | |
" -1. -1. -1. -1. -1. -12.\n", | |
" -12. ]\n", | |
"[2022-07-17 07:53:36,321][nnsvs][INFO] - data max:\n", | |
"[ 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 0.\n", | |
" 1. 0. 0. 0. 0. 0.\n", | |
" 1. 0. 0. 0. 0. 0.\n", | |
" 1. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 1. 1. 0. 1. 1. 0.\n", | |
" 1. 0. 0. 1. 0. 0.\n", | |
" 1. 0. 0. 0. 0. 0.\n", | |
" 1. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 1. 0. 1. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 1. 0. 0. 0.\n", | |
" 0. 0. 0. 1. 1. 1.\n", | |
" 1. 0. 1. 1. 0. 1.\n", | |
" 1. 0. 1. 1. 0. 1.\n", | |
" 1. 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 0.\n", | |
" 0. 1. 0. 0. 1. 1.\n", | |
" 0. 1. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 0.\n", | |
" 1. 1. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 0. 6.548873 6.548873 6.548873\n", | |
" 11. 11. 11. 1. 3. -1.\n", | |
" 2. 3. 3. 3. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 346.\n", | |
" 96. 1. 318. 90. 1. 346.\n", | |
" 96. 10. 10. 43. 46. 93.\n", | |
" 96. 96. 100. 30. 30. 76.\n", | |
" 80. 336. 363. 96. 100. 12.\n", | |
" 12. ]\n", | |
"++ set +x\n", | |
"'dump/oniku_kurumi/org/in_timelag_scaler.joblib' -> 'dump/oniku_kurumi/norm/in_timelag_scaler.joblib'\n", | |
"++ nnsvs-fit-scaler list_path=train_list.txt scaler._target_=sklearn.preprocessing.MinMaxScaler out_path=dump/oniku_kurumi/org/in_duration_scaler.joblib\n", | |
"[2022-07-17 07:53:38,386][nnsvs][INFO] - verbose: 100\n", | |
"scaler:\n", | |
" _target_: sklearn.preprocessing.MinMaxScaler\n", | |
"list_path: train_list.txt\n", | |
"out_path: dump/oniku_kurumi/org/in_duration_scaler.joblib\n", | |
"external_scaler: null\n", | |
"\n", | |
"[2022-07-17 07:53:39,119][nnsvs][INFO] - data min:\n", | |
"[ 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 5.278103 5.278103 5.278103\n", | |
" -1. -1. -1. 1. 1. -1.\n", | |
" -1. -1. 1. -1. -1. -1.\n", | |
" 1. 1. -1. -1. 1. 5.\n", | |
" 3. -1. -1. -1. -1. -1.\n", | |
" -1. 1. 1. 0. 0. 0.\n", | |
" 3. 0. 4. -1. -1. -1.\n", | |
" -1. -1. -1. -1. -1. -12.\n", | |
" -12. ]\n", | |
"[2022-07-17 07:53:39,123][nnsvs][INFO] - data max:\n", | |
"[ 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 0.\n", | |
" 1. 1. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 0.\n", | |
" 1. 1. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0. 0.\n", | |
" 1. 1. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 1.\n", | |
" 1. 0. 0. 6.548873 6.548873 6.548873\n", | |
" 11. 11. 11. 3. 3. -1.\n", | |
" 2. 3. 3. 3. 1. 1.\n", | |
" 1. 1. 1. 1. 1. 499.\n", | |
" 189. 1. 346. 90. 1. 346.\n", | |
" 96. 10. 10. 43. 46. 93.\n", | |
" 96. 96. 100. 30. 30. 76.\n", | |
" 80. 336. 363. 96. 100. 12.\n", | |
" 12. ]\n", | |
"++ set +x\n", | |
"'dump/oniku_kurumi/org/in_duration_scaler.joblib' -> 'dump/oniku_kurumi/norm/in_duration_scaler.joblib'\n", | |
"++ nnsvs-fit-scaler list_path=train_list.txt scaler._target_=sklearn.preprocessing.MinMaxScaler out_path=dump/oniku_kurumi/org/in_acoustic_scaler.joblib\n", | |
"[2022-07-17 07:53:41,122][nnsvs][INFO] - verbose: 100\n", | |
"scaler:\n", | |
" _target_: sklearn.preprocessing.MinMaxScaler\n", | |
"list_path: train_list.txt\n", | |
"out_path: dump/oniku_kurumi/org/in_acoustic_scaler.joblib\n", | |
"external_scaler: null\n", | |
"\n", | |
"[2022-07-17 07:53:43,347][nnsvs][INFO] - data min:\n", | |
"[ 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 0. 0. 0. 0.\n", | |
" 0. 5.278103 5.278103 5.278103 -1.\n", | |
" -1. -1. 1. 1. -1.\n", | |
" -1. -1. 1. -1. -1.\n", | |
" -1. 1. 1. -1. -1.\n", | |
" 1. 5. 3. -1. -1.\n", | |
" -1. -1. -1. -1. 1.\n", | |
" 1. 0. 0. 0. 3.\n", | |
" 0. 4. -1. -1. -1.\n", | |
" -1. -1. -1. -1. -1.\n", | |
" -12. -12. 0.04404987 0.45900714 0.04404987\n", | |
" 1. ]\n", | |
"[2022-07-17 07:53:43,351][nnsvs][INFO] - data max:\n", | |
"[ 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0.\n", | |
" 1. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 0. 0. 1.\n", | |
" 1. 0. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 0. 0. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 0. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 0. 0.\n", | |
" 1. 1. 0. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 0. 0.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 0. 1. 0. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0.\n", | |
" 0. 1. 1. 0. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 1. 1. 1. 0.\n", | |
" 0. 6.548873 6.548873 6.548873 11.\n", | |
" 11. 11. 3. 3. -1.\n", | |
" 2. 3. 3. 3. 1.\n", | |
" 1. 1. 1. 1. 1.\n", | |
" 1. 499. 189. 1. 346.\n", | |
" 90. 1. 346. 96. 10.\n", | |
" 10. 43. 46. 93. 96.\n", | |
" 96. 100. 30. 30. 76.\n", | |
" 80. 336. 363. 96. 100.\n", | |
" 12. 12. 0.99733615 0.99733615 0.99733615\n", | |
" 994. ]\n", | |
"++ set +x\n", | |
"'dump/oniku_kurumi/org/in_acoustic_scaler.joblib' -> 'dump/oniku_kurumi/norm/in_acoustic_scaler.joblib'\n", | |
"++ nnsvs-fit-scaler list_path=train_list.txt scaler._target_=sklearn.preprocessing.StandardScaler out_path=dump/oniku_kurumi/org/out_timelag_scaler.joblib\n", | |
"[2022-07-17 07:53:45,417][nnsvs][INFO] - verbose: 100\n", | |
"scaler:\n", | |
" _target_: sklearn.preprocessing.StandardScaler\n", | |
"list_path: train_list.txt\n", | |
"out_path: dump/oniku_kurumi/org/out_timelag_scaler.joblib\n", | |
"external_scaler: null\n", | |
"\n", | |
"[2022-07-17 07:53:45,816][nnsvs][INFO] - mean:\n", | |
"[0.04060533]\n", | |
"[2022-07-17 07:53:45,816][nnsvs][INFO] - std:\n", | |
"[7.86408743]\n", | |
"++ set +x\n", | |
"'dump/oniku_kurumi/org/out_timelag_scaler.joblib' -> 'dump/oniku_kurumi/norm/out_timelag_scaler.joblib'\n", | |
"++ nnsvs-fit-scaler list_path=train_list.txt scaler._target_=sklearn.preprocessing.StandardScaler out_path=dump/oniku_kurumi/org/out_duration_scaler.joblib\n", | |
"[2022-07-17 07:53:47,827][nnsvs][INFO] - verbose: 100\n", | |
"scaler:\n", | |
" _target_: sklearn.preprocessing.StandardScaler\n", | |
"list_path: train_list.txt\n", | |
"out_path: dump/oniku_kurumi/org/out_duration_scaler.joblib\n", | |
"external_scaler: null\n", | |
"\n", | |
"[2022-07-17 07:53:48,223][nnsvs][INFO] - mean:\n", | |
"[67.54582921]\n", | |
"[2022-07-17 07:53:48,224][nnsvs][INFO] - std:\n", | |
"[83.79628159]\n", | |
"++ set +x\n", | |
"'dump/oniku_kurumi/org/out_duration_scaler.joblib' -> 'dump/oniku_kurumi/norm/out_duration_scaler.joblib'\n", | |
"++ nnsvs-fit-scaler list_path=train_list.txt scaler._target_=sklearn.preprocessing.StandardScaler out_path=dump/oniku_kurumi/org/out_acoustic_scaler.joblib\n", | |
"[2022-07-17 07:53:50,229][nnsvs][INFO] - verbose: 100\n", | |
"scaler:\n", | |
" _target_: sklearn.preprocessing.StandardScaler\n", | |
"list_path: train_list.txt\n", | |
"out_path: dump/oniku_kurumi/org/out_acoustic_scaler.joblib\n", | |
"external_scaler: null\n", | |
"\n", | |
"[2022-07-17 07:53:52,591][nnsvs][INFO] - mean:\n", | |
"[ 5.49873193e+00 2.79285910e+00 -5.01513442e-02 1.17711517e+00\n", | |
" -3.47282078e-01 6.05280490e-01 -1.98770619e-01 1.40398269e-01\n", | |
" 1.31985139e-02 2.49454598e-01 -3.02786195e-01 7.49993681e-02\n", | |
" -8.82376305e-02 5.36799456e-02 -1.52716982e-01 2.45845901e-02\n", | |
" -4.46831553e-02 1.22847371e-01 -9.32973897e-02 3.85733540e-02\n", | |
" -9.56805647e-02 1.16027954e-01 -1.01388473e-01 1.01111904e-02\n", | |
" -8.97941557e-03 4.69483959e-02 -9.01483038e-02 9.08089374e-02\n", | |
" -5.27809836e-02 1.54450302e-02 -9.69261906e-04 1.80645343e-02\n", | |
" -2.69604677e-02 2.34432906e-02 -3.06497410e-02 4.52638547e-02\n", | |
" -4.97031840e-02 4.69590400e-02 -3.54833539e-02 2.58911599e-02\n", | |
" -1.01325077e-02 -3.03222427e-03 8.16489318e-03 -3.34169376e-03\n", | |
" -5.72475529e-03 1.51845406e-02 -1.87894060e-02 1.77525692e-02\n", | |
" -1.06907893e-02 -1.91050400e-04 1.21008839e-02 -2.03289555e-02\n", | |
" 2.05802309e-02 -1.47389486e-02 4.72417565e-03 2.13571603e-03\n", | |
" -5.14919986e-03 2.83096350e-03 2.25690094e-03 -8.26157301e-03\n", | |
" 6.02055408e-04 1.19346086e-04 2.40774129e-05 1.14796845e-04\n", | |
" -6.38460015e-05 -1.76331160e-05 -2.33780114e-05 7.90004150e-07\n", | |
" 1.90879769e-05 2.26233447e-05 -4.51131578e-05 3.65937101e-05\n", | |
" 1.50199535e-05 -1.78283669e-05 -1.16085592e-05 -3.24499318e-06\n", | |
" 5.61835167e-06 1.47193168e-05 -1.31278330e-06 -7.21901445e-06\n", | |
" -7.43739582e-06 8.51234249e-06 -1.46614732e-05 -9.47149645e-06\n", | |
" 2.27456039e-07 8.04044952e-06 -1.13062059e-05 1.04180638e-05\n", | |
" -1.22867611e-06 -6.15567413e-06 9.14884648e-06 -6.03742368e-06\n", | |
" 6.02868319e-06 -2.54211074e-06 -7.03441164e-06 1.67028325e-05\n", | |
" -1.35066411e-05 5.37039642e-06 4.00526124e-06 -5.15274661e-06\n", | |
" 3.75736826e-06 -3.33577573e-06 4.15953414e-06 -3.97708793e-06\n", | |
" 4.47285846e-07 6.21439007e-06 -7.70447599e-06 4.60343933e-06\n", | |
" -1.95694885e-07 -5.03985362e-06 7.90043598e-06 -7.56113981e-06\n", | |
" 5.15553013e-06 -2.33025807e-06 -4.10049106e-07 1.16224317e-06\n", | |
" -2.25817547e-06 1.63547359e-06 -1.24301979e-07 -1.11748037e-06\n", | |
" -1.34517716e-03 -1.96375522e-03 -2.72930929e-04 -9.48991582e-04\n", | |
" 1.12669080e-04 -3.38082906e-04 -5.21951988e-05 -1.16726037e-04\n", | |
" -9.08443623e-05 -1.10097527e-04 5.77542725e-05 -8.88083299e-05\n", | |
" -1.03090477e-05 1.40656113e-05 1.11646022e-04 6.70580194e-06\n", | |
" 3.57722312e-05 -4.57306528e-05 4.89431094e-05 4.17861508e-06\n", | |
" 5.95253792e-05 -2.61535125e-05 4.00676966e-05 1.28776411e-05\n", | |
" 1.76044321e-05 -3.67483506e-05 6.29429474e-05 -5.36145507e-05\n", | |
" 7.70939041e-06 1.92148610e-05 -8.91618149e-06 -9.13069382e-06\n", | |
" 3.70944452e-06 4.37761044e-06 8.56768740e-06 -2.70012071e-05\n", | |
" 2.62940972e-05 -1.42282615e-05 -5.49274295e-07 -1.34928752e-06\n", | |
" -9.47301361e-07 4.43418802e-06 -1.33310947e-05 1.29081996e-05\n", | |
" -6.51251051e-06 -1.25851681e-06 6.91685831e-06 -7.13062943e-06\n", | |
" 3.39428175e-06 2.39909712e-06 -1.12644564e-05 1.59330628e-05\n", | |
" -1.36263350e-05 1.10506511e-05 -7.30436749e-06 3.31855475e-06\n", | |
" -2.02568090e-06 3.75163710e-06 -6.03309106e-06 8.07737156e-06\n", | |
" 5.95574602e+00 2.79746354e-05 -6.31500265e-03 8.50978358e-01\n", | |
" -1.22313270e+01 -6.00319415e+00 -5.02522520e+00 -4.42111617e+00\n", | |
" -4.82046449e+00 7.16883010e-05 1.00564101e-04 1.92632695e-04\n", | |
" 1.04171463e-04 3.66133264e-05 3.13952290e-03 2.54342471e-03\n", | |
" 2.82957314e-03 2.76333271e-03 2.75560720e-03 1.02798336e+01\n", | |
" 1.38599859e+00 -1.29596487e-06 -1.56977765e-04 -8.56894759e-03\n", | |
" -1.17059109e-03 3.18285265e-02]\n", | |
"[2022-07-17 07:53:52,595][nnsvs][INFO] - std:\n", | |
"[ 3.58852364 0.81067101 0.44808498 0.39205262 0.4269118 0.42300183\n", | |
" 0.26935385 0.22298686 0.23350039 0.21607543 0.24271653 0.18138476\n", | |
" 0.1905842 0.1756037 0.17160178 0.1758263 0.1504915 0.14565346\n", | |
" 0.13568746 0.14421589 0.1341389 0.1442119 0.12562144 0.11830068\n", | |
" 0.1103623 0.11361267 0.10734197 0.10063382 0.09964095 0.09384366\n", | |
" 0.09095013 0.08948297 0.09156362 0.08709025 0.08260055 0.08298885\n", | |
" 0.07987614 0.07430049 0.07078514 0.06971043 0.06746124 0.0659499\n", | |
" 0.06422584 0.06270514 0.06272968 0.06063294 0.05891477 0.05787714\n", | |
" 0.05672406 0.05539665 0.05348583 0.05251927 0.05107118 0.05095226\n", | |
" 0.04995176 0.04793379 0.04715625 0.04691922 0.04635664 0.04512491\n", | |
" 0.49934697 0.1169164 0.09252099 0.07958563 0.07352537 0.06796686\n", | |
" 0.06583541 0.06347534 0.06158371 0.06033155 0.06037576 0.05690075\n", | |
" 0.05608686 0.05460099 0.05362493 0.05262118 0.05079233 0.04997983\n", | |
" 0.0484497 0.04739849 0.04626865 0.04572679 0.04380771 0.0427875\n", | |
" 0.04169523 0.04104104 0.04017855 0.0388459 0.03797473 0.03712971\n", | |
" 0.03646936 0.03556425 0.0348069 0.03401327 0.03357933 0.03300973\n", | |
" 0.03234282 0.03166029 0.03095844 0.03047948 0.02995142 0.02932588\n", | |
" 0.0287466 0.02830987 0.02791404 0.02735056 0.02680212 0.02628612\n", | |
" 0.02580579 0.02538248 0.02500461 0.02462908 0.02404237 0.0237884\n", | |
" 0.0235065 0.02299117 0.02273197 0.02242645 0.02200169 0.02165305\n", | |
" 1.36938284 0.2591011 0.23957078 0.21451416 0.20757336 0.19523865\n", | |
" 0.19390307 0.19082002 0.18809043 0.1834755 0.17919126 0.17633514\n", | |
" 0.17412201 0.16976234 0.16742225 0.16341285 0.15895587 0.15621585\n", | |
" 0.15199692 0.14866959 0.14523711 0.14267463 0.13804255 0.13531494\n", | |
" 0.13186772 0.13034788 0.12822317 0.12444159 0.12144343 0.11922404\n", | |
" 0.1174302 0.11468523 0.11243703 0.11014507 0.1085183 0.10663619\n", | |
" 0.10467993 0.10252378 0.10060598 0.09914662 0.09742231 0.09540352\n", | |
" 0.09376949 0.09234256 0.09108733 0.08934451 0.08762939 0.08615946\n", | |
" 0.08476882 0.08328305 0.08202246 0.0808677 0.07917646 0.07834844\n", | |
" 0.07726584 0.0755854 0.07467847 0.07368287 0.0723944 0.0713071\n", | |
" 0.23926882 0.09696564 0.19246538 0.3561098 6.66990362 4.23287167\n", | |
" 3.47057995 3.04949449 3.20527081 1.87832658 1.8383517 1.88743868\n", | |
" 1.75587312 1.86342771 5.59818727 5.89628452 6.27970731 5.87762423\n", | |
" 6.28913881 15.17360356 2.12066371 0.36691177 0.04054283 0.52482162\n", | |
" 0.07375618 0.17554336]\n", | |
"++ set +x\n", | |
"'dump/oniku_kurumi/org/out_acoustic_scaler.joblib' -> 'dump/oniku_kurumi/norm/out_acoustic_scaler.joblib'\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/train_no_dev/in_timelag/ scaler_path=dump/oniku_kurumi/org/in_timelag_scaler.joblib out_dir=dump/oniku_kurumi/norm/train_no_dev/in_timelag/\n", | |
"[\u001b[36m2022-07-17 07:53:54,349\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/train_no_dev/in_timelag/\n", | |
"out_dir: dump/oniku_kurumi/norm/train_no_dev/in_timelag/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_timelag_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 442/442 [00:00<00:00, 1117.36it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/train_no_dev/in_duration/ scaler_path=dump/oniku_kurumi/org/in_duration_scaler.joblib out_dir=dump/oniku_kurumi/norm/train_no_dev/in_duration/\n", | |
"[\u001b[36m2022-07-17 07:53:56,852\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/train_no_dev/in_duration/\n", | |
"out_dir: dump/oniku_kurumi/norm/train_no_dev/in_duration/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_duration_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 442/442 [00:00<00:00, 1086.94it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/train_no_dev/in_acoustic/ scaler_path=dump/oniku_kurumi/org/in_acoustic_scaler.joblib out_dir=dump/oniku_kurumi/norm/train_no_dev/in_acoustic/\n", | |
"[\u001b[36m2022-07-17 07:53:59,353\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/train_no_dev/in_acoustic/\n", | |
"out_dir: dump/oniku_kurumi/norm/train_no_dev/in_acoustic/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_acoustic_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 442/442 [00:03<00:00, 111.35it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/train_no_dev/out_timelag/ scaler_path=dump/oniku_kurumi/org/out_timelag_scaler.joblib out_dir=dump/oniku_kurumi/norm/train_no_dev/out_timelag/\n", | |
"[\u001b[36m2022-07-17 07:54:05,588\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/train_no_dev/out_timelag/\n", | |
"out_dir: dump/oniku_kurumi/norm/train_no_dev/out_timelag/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_timelag_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 442/442 [00:00<00:00, 1377.41it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/train_no_dev/out_duration/ scaler_path=dump/oniku_kurumi/org/out_duration_scaler.joblib out_dir=dump/oniku_kurumi/norm/train_no_dev/out_duration/\n", | |
"[\u001b[36m2022-07-17 07:54:08,053\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/train_no_dev/out_duration/\n", | |
"out_dir: dump/oniku_kurumi/norm/train_no_dev/out_duration/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_duration_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 442/442 [00:00<00:00, 1321.14it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/train_no_dev/out_acoustic/ scaler_path=dump/oniku_kurumi/org/out_acoustic_scaler.joblib out_dir=dump/oniku_kurumi/norm/train_no_dev/out_acoustic/\n", | |
"[\u001b[36m2022-07-17 07:54:10,523\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/train_no_dev/out_acoustic/\n", | |
"out_dir: dump/oniku_kurumi/norm/train_no_dev/out_acoustic/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_acoustic_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 442/442 [00:05<00:00, 79.72it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/dev/in_timelag/ scaler_path=dump/oniku_kurumi/org/in_timelag_scaler.joblib out_dir=dump/oniku_kurumi/norm/dev/in_timelag/\n", | |
"[\u001b[36m2022-07-17 07:54:19,178\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/dev/in_timelag/\n", | |
"out_dir: dump/oniku_kurumi/norm/dev/in_timelag/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_timelag_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 161.61it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/dev/in_duration/ scaler_path=dump/oniku_kurumi/org/in_duration_scaler.joblib out_dir=dump/oniku_kurumi/norm/dev/in_duration/\n", | |
"[\u001b[36m2022-07-17 07:54:21,731\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/dev/in_duration/\n", | |
"out_dir: dump/oniku_kurumi/norm/dev/in_duration/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_duration_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 255.37it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/dev/in_acoustic/ scaler_path=dump/oniku_kurumi/org/in_acoustic_scaler.joblib out_dir=dump/oniku_kurumi/norm/dev/in_acoustic/\n", | |
"[\u001b[36m2022-07-17 07:54:23,823\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/dev/in_acoustic/\n", | |
"out_dir: dump/oniku_kurumi/norm/dev/in_acoustic/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_acoustic_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 107.82it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/dev/out_timelag/ scaler_path=dump/oniku_kurumi/org/out_timelag_scaler.joblib out_dir=dump/oniku_kurumi/norm/dev/out_timelag/\n", | |
"[\u001b[36m2022-07-17 07:54:25,942\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/dev/out_timelag/\n", | |
"out_dir: dump/oniku_kurumi/norm/dev/out_timelag/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_timelag_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 350.78it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/dev/out_duration/ scaler_path=dump/oniku_kurumi/org/out_duration_scaler.joblib out_dir=dump/oniku_kurumi/norm/dev/out_duration/\n", | |
"[\u001b[36m2022-07-17 07:54:28,071\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/dev/out_duration/\n", | |
"out_dir: dump/oniku_kurumi/norm/dev/out_duration/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_duration_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 264.28it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/dev/out_acoustic/ scaler_path=dump/oniku_kurumi/org/out_acoustic_scaler.joblib out_dir=dump/oniku_kurumi/norm/dev/out_acoustic/\n", | |
"[\u001b[36m2022-07-17 07:54:30,154\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/dev/out_acoustic/\n", | |
"out_dir: dump/oniku_kurumi/norm/dev/out_acoustic/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_acoustic_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 103.43it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/eval/in_timelag/ scaler_path=dump/oniku_kurumi/org/in_timelag_scaler.joblib out_dir=dump/oniku_kurumi/norm/eval/in_timelag/\n", | |
"[\u001b[36m2022-07-17 07:54:32,268\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/eval/in_timelag/\n", | |
"out_dir: dump/oniku_kurumi/norm/eval/in_timelag/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_timelag_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 370.59it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/eval/in_duration/ scaler_path=dump/oniku_kurumi/org/in_duration_scaler.joblib out_dir=dump/oniku_kurumi/norm/eval/in_duration/\n", | |
"[\u001b[36m2022-07-17 07:54:34,368\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/eval/in_duration/\n", | |
"out_dir: dump/oniku_kurumi/norm/eval/in_duration/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_duration_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 440.89it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/eval/in_acoustic/ scaler_path=dump/oniku_kurumi/org/in_acoustic_scaler.joblib out_dir=dump/oniku_kurumi/norm/eval/in_acoustic/\n", | |
"[\u001b[36m2022-07-17 07:54:36,492\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/eval/in_acoustic/\n", | |
"out_dir: dump/oniku_kurumi/norm/eval/in_acoustic/\n", | |
"scaler_path: dump/oniku_kurumi/org/in_acoustic_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 120.55it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/eval/out_timelag/ scaler_path=dump/oniku_kurumi/org/out_timelag_scaler.joblib out_dir=dump/oniku_kurumi/norm/eval/out_timelag/\n", | |
"[\u001b[36m2022-07-17 07:54:38,623\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/eval/out_timelag/\n", | |
"out_dir: dump/oniku_kurumi/norm/eval/out_timelag/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_timelag_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 12312.05it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/eval/out_duration/ scaler_path=dump/oniku_kurumi/org/out_duration_scaler.joblib out_dir=dump/oniku_kurumi/norm/eval/out_duration/\n", | |
"[\u001b[36m2022-07-17 07:54:40,725\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/eval/out_duration/\n", | |
"out_dir: dump/oniku_kurumi/norm/eval/out_duration/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_duration_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 541.77it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-preprocess-normalize in_dir=dump/oniku_kurumi/org/eval/out_acoustic/ scaler_path=dump/oniku_kurumi/org/out_acoustic_scaler.joblib out_dir=dump/oniku_kurumi/norm/eval/out_acoustic/\n", | |
"[\u001b[36m2022-07-17 07:54:42,821\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/org/eval/out_acoustic/\n", | |
"out_dir: dump/oniku_kurumi/norm/eval/out_acoustic/\n", | |
"scaler_path: dump/oniku_kurumi/org/out_acoustic_scaler.joblib\n", | |
"inverse: false\n", | |
"num_workers: 4\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 138.35it/s]\n", | |
"++ set +x\n" | |
] | |
} | |
], | |
"source": [ | |
"#! cd $RECIPE_ROOT && bash run.sh --stage 1 --stop-stage 1" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "HH4AVfZlXa07" | |
}, | |
"source": [ | |
"# Save extract data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "SVsg4Xn8XIee", | |
"outputId": "86ce41bd-4218-49f4-f48b-321a17484a4a" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"tar: Removing leading `/' from member names\n" | |
] | |
} | |
], | |
"source": [ | |
" #! tar zcf /content/gdrive/nnsvs_dev20220117_oniku_kurumi_utagoe_db_dev_latest_extracted_data_20220717.tgz $RECIPE_ROOT/dump $RECIPE_ROOT/data $RECIPE_ROOT/outputs" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "GrbNM2Qy4-ok" | |
}, | |
"outputs": [], | |
"source": [ | |
"! tar zxf /content/gdrive/nnsvs_dev20220117_oniku_kurumi_utagoe_db_dev_latest_extracted_data_20220717.tgz -C /" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "8EFgAz7v8Ee6" | |
}, | |
"source": [ | |
"# Training\n", | |
"## Timelag model" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "andN-LWzC9-l", | |
"outputId": "6513ba71-cfe4-4d3d-c4be-6422c67cd7f9" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 2: Training time-lag model\n", | |
"++ nnsvs-train --config-dir conf/train/timelag model=timelag_mdn train=myconfig data=myconfig data.train_no_dev.in_dir=dump/oniku_kurumi/norm/train_no_dev/in_timelag/ data.train_no_dev.out_dir=dump/oniku_kurumi/norm/train_no_dev/out_timelag/ data.dev.in_dir=dump/oniku_kurumi/norm/dev/in_timelag/ data.dev.out_dir=dump/oniku_kurumi/norm/dev/out_timelag/ data.in_scaler_path=dump/oniku_kurumi/norm/in_timelag_scaler.joblib data.out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib train.out_dir=exp/oniku_kurumi/timelag_mdn train.log_dir=tensorboard/oniku_kurumi_timelag_mdn train.resume.checkpoint=\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 10:06:53,124\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - model:\n", | |
" stream_sizes:\n", | |
" - 1\n", | |
" has_dynamic_features:\n", | |
" - false\n", | |
" stream_weights:\n", | |
" - 1\n", | |
" netG:\n", | |
" _target_: nnsvs.model.MDNv2\n", | |
" in_dim: 337\n", | |
" out_dim: 1\n", | |
" hidden_dim: 32\n", | |
" dropout: 0.5\n", | |
" num_layers: 3\n", | |
" num_gaussians: 1\n", | |
" init_type: kaiming_normal\n", | |
"train:\n", | |
" out_dir: exp/oniku_kurumi/timelag_mdn\n", | |
" log_dir: tensorboard/oniku_kurumi_timelag_mdn\n", | |
" use_amp: false\n", | |
" max_train_steps: -1\n", | |
" nepochs: 100\n", | |
" checkpoint_epoch_interval: 50\n", | |
" feats_criterion: mse\n", | |
" stream_wise_loss: false\n", | |
" use_detect_anomaly: false\n", | |
" optim:\n", | |
" optimizer:\n", | |
" name: Adam\n", | |
" params:\n", | |
" lr: 0.001\n", | |
" betas:\n", | |
" - 0.9\n", | |
" - 0.999\n", | |
" weight_decay: 0.0\n", | |
" lr_scheduler:\n", | |
" name: StepLR\n", | |
" params:\n", | |
" step_size: 20\n", | |
" gamma: 0.5\n", | |
" resume:\n", | |
" checkpoint: ''\n", | |
" load_optimizer: false\n", | |
" cudnn:\n", | |
" benchmark: false\n", | |
" deterministic: true\n", | |
"data:\n", | |
" train_no_dev:\n", | |
" in_dir: dump/oniku_kurumi/norm/train_no_dev/in_timelag/\n", | |
" out_dir: dump/oniku_kurumi/norm/train_no_dev/out_timelag/\n", | |
" dev:\n", | |
" in_dir: dump/oniku_kurumi/norm/dev/in_timelag/\n", | |
" out_dir: dump/oniku_kurumi/norm/dev/out_timelag/\n", | |
" num_workers: 2\n", | |
" batch_size: 8\n", | |
" pin_memory: true\n", | |
" filter_long_segments: false\n", | |
" filter_num_frames: 6000\n", | |
" max_time_frames: -1\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_timelag_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
"mlflow:\n", | |
" enabled: false\n", | |
" experiment: test\n", | |
"verbose: 100\n", | |
"seed: 773\n", | |
"data_parallel: false\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:53,124\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - PyTorch version: 1.12.0+cu113\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:53,124\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cudnn.deterministic: True\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:53,124\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cudnn.benchmark: False\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:53,151\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cuDNN version: 8302\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:53,151\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Random seed: 773\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:57,692\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of trainable params: 0.013 million\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:57,693\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - MDNv2(\n", | |
" (model): Sequential(\n", | |
" (0): Linear(in_features=337, out_features=32, bias=True)\n", | |
" (1): ReLU()\n", | |
" (2): Dropout(p=0.5, inplace=False)\n", | |
" (3): Linear(in_features=32, out_features=32, bias=True)\n", | |
" (4): ReLU()\n", | |
" (5): Dropout(p=0.5, inplace=False)\n", | |
" (6): Linear(in_features=32, out_features=32, bias=True)\n", | |
" (7): ReLU()\n", | |
" (8): Dropout(p=0.5, inplace=False)\n", | |
" (9): MDNLayer(\n", | |
" (log_pi): Linear(in_features=32, out_features=1, bias=True)\n", | |
" (log_sigma): Linear(in_features=32, out_features=1, bias=True)\n", | |
" (mu): Linear(in_features=32, out_features=1, bias=True)\n", | |
" )\n", | |
" )\n", | |
")\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:57,698\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of iterations per epoch: 56\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:57,699\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of max_train_steps is set based on nepochs: 5600\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:57,699\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of epochs: 100\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:06:57,699\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of iterations: 5600\u001b[0m\n", | |
" 0% 0/100 [00:00<?, ?it/s][\u001b[36m2022-07-17 10:07:11,202\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 1]: loss 1.8819881273167474\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:11,343\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 1]: loss 1.6762841939926147\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:11,354\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 1% 1/100 [00:03<06:17, 3.82s/it][\u001b[36m2022-07-17 10:07:12,604\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 2]: loss 1.4346154566322054\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:12,739\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 2]: loss 1.6870020627975464\u001b[0m\n", | |
" 2% 2/100 [00:05<03:53, 2.39s/it][\u001b[36m2022-07-17 10:07:13,685\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 3]: loss 1.4222220608166285\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:13,821\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 3]: loss 1.6922587156295776\u001b[0m\n", | |
" 3% 3/100 [00:06<02:53, 1.79s/it][\u001b[36m2022-07-17 10:07:14,771\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 4]: loss 1.414461727653231\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:14,913\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 4]: loss 1.6921724081039429\u001b[0m\n", | |
" 4% 4/100 [00:07<02:25, 1.52s/it][\u001b[36m2022-07-17 10:07:15,858\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 5]: loss 1.4051858867917741\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:16,008\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 5]: loss 1.6801979541778564\u001b[0m\n", | |
" 5% 5/100 [00:08<02:09, 1.36s/it][\u001b[36m2022-07-17 10:07:16,944\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 6]: loss 1.3823946246079035\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:17,084\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 6]: loss 1.6527228355407715\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:17,090\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 6% 6/100 [00:09<01:59, 1.27s/it][\u001b[36m2022-07-17 10:07:18,008\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 7]: loss 1.3785658542598997\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:18,158\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 7]: loss 1.6392133235931396\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:18,165\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 7% 7/100 [00:10<01:52, 1.20s/it][\u001b[36m2022-07-17 10:07:19,122\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 8]: loss 1.360454071845327\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:19,259\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 8]: loss 1.6255580186843872\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:19,266\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 8% 8/100 [00:11<01:47, 1.17s/it][\u001b[36m2022-07-17 10:07:20,246\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 9]: loss 1.3490146803004401\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:20,385\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 9]: loss 1.5783262252807617\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:20,392\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 9% 9/100 [00:12<01:45, 1.16s/it][\u001b[36m2022-07-17 10:07:21,348\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 10]: loss 1.3311207847935813\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:21,485\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 10]: loss 1.5792049169540405\u001b[0m\n", | |
" 10% 10/100 [00:13<01:42, 1.14s/it][\u001b[36m2022-07-17 10:07:22,455\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 11]: loss 1.3108925563948495\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:22,593\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 11]: loss 1.5398895740509033\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:22,600\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 11% 11/100 [00:15<01:40, 1.13s/it][\u001b[36m2022-07-17 10:07:23,560\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 12]: loss 1.297024782214846\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:23,698\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 12]: loss 1.555284023284912\u001b[0m\n", | |
" 12% 12/100 [00:16<01:38, 1.12s/it][\u001b[36m2022-07-17 10:07:24,668\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 13]: loss 1.2973887622356415\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:24,808\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 13]: loss 1.5208743810653687\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:24,815\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 13% 13/100 [00:17<01:37, 1.12s/it][\u001b[36m2022-07-17 10:07:25,767\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 14]: loss 1.2847191670111247\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:25,923\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 14]: loss 1.470308780670166\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:25,930\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 14% 14/100 [00:18<01:36, 1.12s/it][\u001b[36m2022-07-17 10:07:26,887\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 15]: loss 1.2732906746012824\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:27,027\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 15]: loss 1.4988665580749512\u001b[0m\n", | |
" 15% 15/100 [00:19<01:34, 1.11s/it][\u001b[36m2022-07-17 10:07:28,002\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 16]: loss 1.2673123329877853\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:28,142\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 16]: loss 1.4675227403640747\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:28,149\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 16% 16/100 [00:20<01:33, 1.11s/it][\u001b[36m2022-07-17 10:07:29,119\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 17]: loss 1.2675847496305193\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:29,258\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 17]: loss 1.4546257257461548\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:29,265\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 17% 17/100 [00:21<01:32, 1.12s/it][\u001b[36m2022-07-17 10:07:30,211\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 18]: loss 1.2555948730025972\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:30,357\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 18]: loss 1.4367355108261108\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:30,363\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 18% 18/100 [00:22<01:31, 1.11s/it][\u001b[36m2022-07-17 10:07:31,299\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 19]: loss 1.2603563559906823\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:31,447\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 19]: loss 1.4432473182678223\u001b[0m\n", | |
" 19% 19/100 [00:23<01:29, 1.10s/it][\u001b[36m2022-07-17 10:07:32,405\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 20]: loss 1.2492340079375677\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:32,543\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 20]: loss 1.3973333835601807\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:32,549\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 20% 20/100 [00:25<01:28, 1.10s/it][\u001b[36m2022-07-17 10:07:33,507\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 21]: loss 1.2582063866513116\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:33,644\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 21]: loss 1.4053072929382324\u001b[0m\n", | |
" 21% 21/100 [00:26<01:26, 1.10s/it][\u001b[36m2022-07-17 10:07:34,587\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 22]: loss 1.2503448597022466\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:34,722\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 22]: loss 1.3700276613235474\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:34,729\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 22% 22/100 [00:27<01:25, 1.10s/it][\u001b[36m2022-07-17 10:07:35,681\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 23]: loss 1.2313607356378011\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:35,816\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 23]: loss 1.3798669576644897\u001b[0m\n", | |
" 23% 23/100 [00:28<01:24, 1.09s/it][\u001b[36m2022-07-17 10:07:36,786\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 24]: loss 1.2365308701992035\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:36,923\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 24]: loss 1.397169589996338\u001b[0m\n", | |
" 24% 24/100 [00:29<01:23, 1.10s/it][\u001b[36m2022-07-17 10:07:37,876\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 25]: loss 1.2282583607094628\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:38,018\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 25]: loss 1.4225527048110962\u001b[0m\n", | |
" 25% 25/100 [00:30<01:22, 1.10s/it][\u001b[36m2022-07-17 10:07:38,962\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 26]: loss 1.2438751884869166\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:39,104\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 26]: loss 1.404800295829773\u001b[0m\n", | |
" 26% 26/100 [00:31<01:20, 1.09s/it][\u001b[36m2022-07-17 10:07:40,061\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 27]: loss 1.2204200497695379\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:40,203\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 27]: loss 1.4030007123947144\u001b[0m\n", | |
" 27% 27/100 [00:32<01:19, 1.10s/it][\u001b[36m2022-07-17 10:07:41,174\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 28]: loss 1.2322909129517419\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:41,309\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 28]: loss 1.3938043117523193\u001b[0m\n", | |
" 28% 28/100 [00:33<01:19, 1.10s/it][\u001b[36m2022-07-17 10:07:42,272\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 29]: loss 1.2293992723737444\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:42,413\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 29]: loss 1.4028812646865845\u001b[0m\n", | |
" 29% 29/100 [00:34<01:18, 1.10s/it][\u001b[36m2022-07-17 10:07:43,376\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 30]: loss 1.2276505891765868\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:43,514\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 30]: loss 1.4006688594818115\u001b[0m\n", | |
" 30% 30/100 [00:35<01:17, 1.10s/it][\u001b[36m2022-07-17 10:07:44,705\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 31]: loss 1.221539597426142\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:44,921\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 31]: loss 1.4004688262939453\u001b[0m\n", | |
" 31% 31/100 [00:37<01:22, 1.19s/it][\u001b[36m2022-07-17 10:07:46,826\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 32]: loss 1.2294603905507497\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:47,038\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 32]: loss 1.425377368927002\u001b[0m\n", | |
" 32% 32/100 [00:39<01:39, 1.47s/it][\u001b[36m2022-07-17 10:07:48,094\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 33]: loss 1.2243278324604034\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:48,232\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 33]: loss 1.393580436706543\u001b[0m\n", | |
" 33% 33/100 [00:40<01:32, 1.39s/it][\u001b[36m2022-07-17 10:07:49,196\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 34]: loss 1.2102085032633372\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:49,333\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 34]: loss 1.3994009494781494\u001b[0m\n", | |
" 34% 34/100 [00:41<01:25, 1.30s/it][\u001b[36m2022-07-17 10:07:50,299\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 35]: loss 1.2173914217523165\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:50,439\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 35]: loss 1.4046440124511719\u001b[0m\n", | |
" 35% 35/100 [00:42<01:20, 1.24s/it][\u001b[36m2022-07-17 10:07:51,393\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 36]: loss 1.2015983100448335\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:51,532\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 36]: loss 1.4012508392333984\u001b[0m\n", | |
" 36% 36/100 [00:43<01:16, 1.20s/it][\u001b[36m2022-07-17 10:07:52,492\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 37]: loss 1.2112089863845281\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:52,632\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 37]: loss 1.3985404968261719\u001b[0m\n", | |
" 37% 37/100 [00:45<01:13, 1.17s/it][\u001b[36m2022-07-17 10:07:53,596\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 38]: loss 1.2096826774733407\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:53,731\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 38]: loss 1.3710758686065674\u001b[0m\n", | |
" 38% 38/100 [00:46<01:11, 1.15s/it][\u001b[36m2022-07-17 10:07:54,705\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 39]: loss 1.2203282075268882\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:54,843\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 39]: loss 1.4091509580612183\u001b[0m\n", | |
" 39% 39/100 [00:47<01:09, 1.14s/it][\u001b[36m2022-07-17 10:07:55,814\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 40]: loss 1.2156899943947792\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:55,958\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 40]: loss 1.3908467292785645\u001b[0m\n", | |
" 40% 40/100 [00:48<01:07, 1.13s/it][\u001b[36m2022-07-17 10:07:56,915\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 41]: loss 1.2126226318734032\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:57,060\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 41]: loss 1.3834714889526367\u001b[0m\n", | |
" 41% 41/100 [00:49<01:06, 1.12s/it][\u001b[36m2022-07-17 10:07:58,026\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 42]: loss 1.204583348972457\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:58,165\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 42]: loss 1.3826287984848022\u001b[0m\n", | |
" 42% 42/100 [00:50<01:04, 1.12s/it][\u001b[36m2022-07-17 10:07:59,121\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 43]: loss 1.208104093159948\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:59,258\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 43]: loss 1.3686766624450684\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:07:59,264\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 43% 43/100 [00:51<01:03, 1.11s/it][\u001b[36m2022-07-17 10:08:00,217\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 44]: loss 1.2028741793973106\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:00,356\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 44]: loss 1.3773776292800903\u001b[0m\n", | |
" 44% 44/100 [00:52<01:01, 1.11s/it][\u001b[36m2022-07-17 10:08:01,338\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 45]: loss 1.208822491977896\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:01,474\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 45]: loss 1.382139801979065\u001b[0m\n", | |
" 45% 45/100 [00:53<01:01, 1.11s/it][\u001b[36m2022-07-17 10:08:02,430\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 46]: loss 1.1898920174155916\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:02,571\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 46]: loss 1.381348967552185\u001b[0m\n", | |
" 46% 46/100 [00:55<00:59, 1.11s/it][\u001b[36m2022-07-17 10:08:03,528\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 47]: loss 1.207710170320102\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:03,669\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 47]: loss 1.3773185014724731\u001b[0m\n", | |
" 47% 47/100 [00:56<00:58, 1.10s/it][\u001b[36m2022-07-17 10:08:04,638\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 48]: loss 1.194554397038051\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:04,774\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 48]: loss 1.3533848524093628\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:04,781\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 48% 48/100 [00:57<00:57, 1.11s/it][\u001b[36m2022-07-17 10:08:05,749\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 49]: loss 1.193785873906953\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:05,890\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 49]: loss 1.3594461679458618\u001b[0m\n", | |
" 49% 49/100 [00:58<00:56, 1.11s/it][\u001b[36m2022-07-17 10:08:06,848\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 50]: loss 1.2037718721798487\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:06,993\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 50]: loss 1.3727071285247803\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:07,000\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/epoch0050.pth\u001b[0m\n", | |
" 50% 50/100 [00:59<00:55, 1.11s/it][\u001b[36m2022-07-17 10:08:07,960\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 51]: loss 1.205870847616877\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:08,100\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 51]: loss 1.381665825843811\u001b[0m\n", | |
" 51% 51/100 [01:00<00:54, 1.11s/it][\u001b[36m2022-07-17 10:08:09,049\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 52]: loss 1.1960929493818964\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:09,191\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 52]: loss 1.3618594408035278\u001b[0m\n", | |
" 52% 52/100 [01:01<00:52, 1.10s/it][\u001b[36m2022-07-17 10:08:10,130\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 53]: loss 1.1948177175862449\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:10,273\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 53]: loss 1.3768517971038818\u001b[0m\n", | |
" 53% 53/100 [01:02<00:51, 1.10s/it][\u001b[36m2022-07-17 10:08:11,234\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 54]: loss 1.1909563349825996\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:11,382\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 54]: loss 1.369380235671997\u001b[0m\n", | |
" 54% 54/100 [01:03<00:50, 1.10s/it][\u001b[36m2022-07-17 10:08:12,354\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 55]: loss 1.1971642949751444\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:12,492\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 55]: loss 1.3680601119995117\u001b[0m\n", | |
" 55% 55/100 [01:04<00:49, 1.10s/it][\u001b[36m2022-07-17 10:08:13,440\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 56]: loss 1.1962766157729285\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:13,577\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 56]: loss 1.38181734085083\u001b[0m\n", | |
" 56% 56/100 [01:06<00:48, 1.10s/it][\u001b[36m2022-07-17 10:08:14,530\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 57]: loss 1.2036537357739039\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:14,671\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 57]: loss 1.366079330444336\u001b[0m\n", | |
" 57% 57/100 [01:07<00:47, 1.10s/it][\u001b[36m2022-07-17 10:08:15,641\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 58]: loss 1.1818362410579408\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:15,777\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 58]: loss 1.3730212450027466\u001b[0m\n", | |
" 58% 58/100 [01:08<00:46, 1.10s/it][\u001b[36m2022-07-17 10:08:16,736\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 59]: loss 1.1919769389288766\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:16,876\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 59]: loss 1.3613793849945068\u001b[0m\n", | |
" 59% 59/100 [01:09<00:45, 1.10s/it][\u001b[36m2022-07-17 10:08:17,840\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 60]: loss 1.1981405743530817\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:17,979\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 60]: loss 1.3548054695129395\u001b[0m\n", | |
" 60% 60/100 [01:10<00:44, 1.10s/it][\u001b[36m2022-07-17 10:08:18,934\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 61]: loss 1.1900953469531876\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:19,071\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 61]: loss 1.3693116903305054\u001b[0m\n", | |
" 61% 61/100 [01:11<00:42, 1.10s/it][\u001b[36m2022-07-17 10:08:20,029\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 62]: loss 1.1915076545306615\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:20,165\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 62]: loss 1.3568015098571777\u001b[0m\n", | |
" 62% 62/100 [01:12<00:41, 1.10s/it][\u001b[36m2022-07-17 10:08:21,129\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 63]: loss 1.194013563649995\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:21,266\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 63]: loss 1.3605660200119019\u001b[0m\n", | |
" 63% 63/100 [01:13<00:40, 1.10s/it][\u001b[36m2022-07-17 10:08:22,231\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 64]: loss 1.1811128184199333\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:22,373\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 64]: loss 1.3594967126846313\u001b[0m\n", | |
" 64% 64/100 [01:14<00:39, 1.10s/it][\u001b[36m2022-07-17 10:08:23,332\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 65]: loss 1.1920101855482375\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:23,469\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 65]: loss 1.3670623302459717\u001b[0m\n", | |
" 65% 65/100 [01:15<00:38, 1.10s/it][\u001b[36m2022-07-17 10:08:24,424\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 66]: loss 1.177561925990241\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:24,560\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 66]: loss 1.37412691116333\u001b[0m\n", | |
" 66% 66/100 [01:17<00:37, 1.10s/it][\u001b[36m2022-07-17 10:08:25,526\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 67]: loss 1.1914606860705785\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:25,672\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 67]: loss 1.3615418672561646\u001b[0m\n", | |
" 67% 67/100 [01:18<00:36, 1.10s/it][\u001b[36m2022-07-17 10:08:26,640\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 68]: loss 1.1831135654023714\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:26,785\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 68]: loss 1.3603196144104004\u001b[0m\n", | |
" 68% 68/100 [01:19<00:35, 1.10s/it][\u001b[36m2022-07-17 10:08:27,740\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 69]: loss 1.19382886162826\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:27,881\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 69]: loss 1.3596338033676147\u001b[0m\n", | |
" 69% 69/100 [01:20<00:34, 1.10s/it][\u001b[36m2022-07-17 10:08:28,853\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 70]: loss 1.1916385771972793\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:28,992\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 70]: loss 1.3565598726272583\u001b[0m\n", | |
" 70% 70/100 [01:21<00:33, 1.10s/it][\u001b[36m2022-07-17 10:08:29,956\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 71]: loss 1.1937362200447492\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:30,093\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 71]: loss 1.3534560203552246\u001b[0m\n", | |
" 71% 71/100 [01:22<00:32, 1.10s/it][\u001b[36m2022-07-17 10:08:31,047\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 72]: loss 1.196092086178916\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:31,187\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 72]: loss 1.3560974597930908\u001b[0m\n", | |
" 72% 72/100 [01:23<00:30, 1.10s/it][\u001b[36m2022-07-17 10:08:32,149\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 73]: loss 1.1909968044076646\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:32,289\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 73]: loss 1.3485839366912842\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:32,296\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\u001b[0m\n", | |
" 73% 73/100 [01:24<00:29, 1.10s/it][\u001b[36m2022-07-17 10:08:33,249\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 74]: loss 1.1849516278931074\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:33,391\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 74]: loss 1.3505277633666992\u001b[0m\n", | |
" 74% 74/100 [01:25<00:28, 1.10s/it][\u001b[36m2022-07-17 10:08:34,340\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 75]: loss 1.1905866989067622\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:34,480\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 75]: loss 1.3630480766296387\u001b[0m\n", | |
" 75% 75/100 [01:26<00:27, 1.10s/it][\u001b[36m2022-07-17 10:08:35,447\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 76]: loss 1.1933424366371972\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:35,585\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 76]: loss 1.3531477451324463\u001b[0m\n", | |
" 76% 76/100 [01:28<00:26, 1.10s/it][\u001b[36m2022-07-17 10:08:36,561\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 77]: loss 1.1786022537520953\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:36,697\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 77]: loss 1.357223629951477\u001b[0m\n", | |
" 77% 77/100 [01:29<00:25, 1.10s/it][\u001b[36m2022-07-17 10:08:37,694\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 78]: loss 1.1793673144919532\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:37,834\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 78]: loss 1.349335789680481\u001b[0m\n", | |
" 78% 78/100 [01:30<00:24, 1.11s/it][\u001b[36m2022-07-17 10:08:38,813\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 79]: loss 1.1900251465184348\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:38,955\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 79]: loss 1.3574063777923584\u001b[0m\n", | |
" 79% 79/100 [01:31<00:23, 1.12s/it][\u001b[36m2022-07-17 10:08:39,912\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 80]: loss 1.1780395720686232\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:40,057\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 80]: loss 1.3572275638580322\u001b[0m\n", | |
" 80% 80/100 [01:32<00:22, 1.11s/it][\u001b[36m2022-07-17 10:08:41,015\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 81]: loss 1.1859238158379282\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:41,159\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 81]: loss 1.3555094003677368\u001b[0m\n", | |
" 81% 81/100 [01:33<00:21, 1.11s/it][\u001b[36m2022-07-17 10:08:42,123\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 82]: loss 1.187451344515596\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:42,264\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 82]: loss 1.3579833507537842\u001b[0m\n", | |
" 82% 82/100 [01:34<00:19, 1.11s/it][\u001b[36m2022-07-17 10:08:43,237\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 83]: loss 1.186842798122338\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:43,376\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 83]: loss 1.351947546005249\u001b[0m\n", | |
" 83% 83/100 [01:35<00:18, 1.11s/it][\u001b[36m2022-07-17 10:08:44,346\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 84]: loss 1.1898308715650014\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:44,486\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 84]: loss 1.3537472486495972\u001b[0m\n", | |
" 84% 84/100 [01:36<00:17, 1.11s/it][\u001b[36m2022-07-17 10:08:45,481\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 85]: loss 1.1769450051443917\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:45,622\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 85]: loss 1.3547794818878174\u001b[0m\n", | |
" 85% 85/100 [01:38<00:16, 1.12s/it][\u001b[36m2022-07-17 10:08:46,585\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 86]: loss 1.1785075717738696\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:46,725\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 86]: loss 1.3576562404632568\u001b[0m\n", | |
" 86% 86/100 [01:39<00:15, 1.11s/it][\u001b[36m2022-07-17 10:08:47,692\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 87]: loss 1.1843251490167208\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:47,833\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 87]: loss 1.354170799255371\u001b[0m\n", | |
" 87% 87/100 [01:40<00:14, 1.11s/it][\u001b[36m2022-07-17 10:08:48,793\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 88]: loss 1.1782695140157426\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:48,930\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 88]: loss 1.3504612445831299\u001b[0m\n", | |
" 88% 88/100 [01:41<00:13, 1.11s/it][\u001b[36m2022-07-17 10:08:49,883\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 89]: loss 1.1847187323229653\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:50,022\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 89]: loss 1.3531585931777954\u001b[0m\n", | |
" 89% 89/100 [01:42<00:12, 1.10s/it][\u001b[36m2022-07-17 10:08:50,988\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 90]: loss 1.175314833010946\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:51,130\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 90]: loss 1.3554811477661133\u001b[0m\n", | |
" 90% 90/100 [01:43<00:11, 1.10s/it][\u001b[36m2022-07-17 10:08:52,088\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 91]: loss 1.1783251336642675\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:52,230\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 91]: loss 1.3600915670394897\u001b[0m\n", | |
" 91% 91/100 [01:44<00:09, 1.10s/it][\u001b[36m2022-07-17 10:08:53,176\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 92]: loss 1.1813702136278152\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:53,324\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 92]: loss 1.3536114692687988\u001b[0m\n", | |
" 92% 92/100 [01:45<00:08, 1.10s/it][\u001b[36m2022-07-17 10:08:54,266\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 93]: loss 1.168422163597175\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:54,412\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 93]: loss 1.3576297760009766\u001b[0m\n", | |
" 93% 93/100 [01:46<00:07, 1.10s/it][\u001b[36m2022-07-17 10:08:55,361\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 94]: loss 1.189123347401619\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:55,497\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 94]: loss 1.3584293127059937\u001b[0m\n", | |
" 94% 94/100 [01:47<00:06, 1.09s/it][\u001b[36m2022-07-17 10:08:56,475\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 95]: loss 1.173099541238376\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:56,622\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 95]: loss 1.354727029800415\u001b[0m\n", | |
" 95% 95/100 [01:49<00:05, 1.10s/it][\u001b[36m2022-07-17 10:08:57,586\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 96]: loss 1.172777214220592\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:57,723\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 96]: loss 1.3576377630233765\u001b[0m\n", | |
" 96% 96/100 [01:50<00:04, 1.10s/it][\u001b[36m2022-07-17 10:08:58,674\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 97]: loss 1.1693728970629829\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:58,811\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 97]: loss 1.3562281131744385\u001b[0m\n", | |
" 97% 97/100 [01:51<00:03, 1.10s/it][\u001b[36m2022-07-17 10:08:59,777\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 98]: loss 1.1812683418393135\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:08:59,917\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 98]: loss 1.3529962301254272\u001b[0m\n", | |
" 98% 98/100 [01:52<00:02, 1.10s/it][\u001b[36m2022-07-17 10:09:00,871\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 99]: loss 1.1907714158296585\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:01,012\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 99]: loss 1.3531525135040283\u001b[0m\n", | |
" 99% 99/100 [01:53<00:01, 1.10s/it][\u001b[36m2022-07-17 10:09:01,976\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 100]: loss 1.1850884833506174\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:02,115\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 100]: loss 1.3584741353988647\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:02,121\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/epoch0100.pth\u001b[0m\n", | |
"100% 100/100 [01:54<00:00, 1.15s/it]\n", | |
"[\u001b[36m2022-07-17 10:09:02,127\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/epoch0100.pth\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:02,128\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - The best loss was 1.3485839366912842\u001b[0m\n", | |
"++ set +x\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd $RECIPE_ROOT && bash run.sh --stage 2 --stop-stage 2" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "DyPXU3RJ8MFp" | |
}, | |
"source": [ | |
"## Duration model" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "js0FLYInDEGL", | |
"outputId": "7ae7a51e-36f6-4fda-8649-a7ed6e2e9ad9" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 3: Training duration model\n", | |
"++ nnsvs-train --config-dir conf/train/duration model=duration_vp_mdn train=myconfig data=myconfig data.train_no_dev.in_dir=dump/oniku_kurumi/norm/train_no_dev/in_duration/ data.train_no_dev.out_dir=dump/oniku_kurumi/norm/train_no_dev/out_duration/ data.dev.in_dir=dump/oniku_kurumi/norm/dev/in_duration/ data.dev.out_dir=dump/oniku_kurumi/norm/dev/out_duration/ data.in_scaler_path=dump/oniku_kurumi/norm/in_duration_scaler.joblib data.out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib train.out_dir=exp/oniku_kurumi/duration_vp_mdn train.log_dir=tensorboard/oniku_kurumi_duration_vp_mdn train.resume.checkpoint=\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 10:09:15,476\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - model:\n", | |
" stream_sizes:\n", | |
" - 1\n", | |
" has_dynamic_features:\n", | |
" - false\n", | |
" stream_weights:\n", | |
" - 1\n", | |
" netG:\n", | |
" _target_: nnsvs.model.VariancePredictor\n", | |
" in_dim: 337\n", | |
" out_dim: 1\n", | |
" hidden_dim: 256\n", | |
" num_layers: 5\n", | |
" kernel_size: 5\n", | |
" dropout: 0.5\n", | |
" use_mdn: true\n", | |
" num_gaussians: 4\n", | |
" init_type: kaiming_normal\n", | |
"train:\n", | |
" out_dir: exp/oniku_kurumi/duration_vp_mdn\n", | |
" log_dir: tensorboard/oniku_kurumi_duration_vp_mdn\n", | |
" use_amp: false\n", | |
" max_train_steps: -1\n", | |
" nepochs: 100\n", | |
" checkpoint_epoch_interval: 50\n", | |
" feats_criterion: mse\n", | |
" stream_wise_loss: false\n", | |
" use_detect_anomaly: false\n", | |
" optim:\n", | |
" optimizer:\n", | |
" name: Adam\n", | |
" params:\n", | |
" lr: 0.001\n", | |
" betas:\n", | |
" - 0.9\n", | |
" - 0.999\n", | |
" weight_decay: 0.0\n", | |
" lr_scheduler:\n", | |
" name: StepLR\n", | |
" params:\n", | |
" step_size: 20\n", | |
" gamma: 0.5\n", | |
" resume:\n", | |
" checkpoint: ''\n", | |
" load_optimizer: false\n", | |
" cudnn:\n", | |
" benchmark: false\n", | |
" deterministic: true\n", | |
"data:\n", | |
" train_no_dev:\n", | |
" in_dir: dump/oniku_kurumi/norm/train_no_dev/in_duration/\n", | |
" out_dir: dump/oniku_kurumi/norm/train_no_dev/out_duration/\n", | |
" dev:\n", | |
" in_dir: dump/oniku_kurumi/norm/dev/in_duration/\n", | |
" out_dir: dump/oniku_kurumi/norm/dev/out_duration/\n", | |
" num_workers: 2\n", | |
" batch_size: 8\n", | |
" pin_memory: true\n", | |
" filter_long_segments: false\n", | |
" filter_num_frames: 6000\n", | |
" max_time_frames: -1\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_duration_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
"mlflow:\n", | |
" enabled: false\n", | |
" experiment: test\n", | |
"verbose: 100\n", | |
"seed: 773\n", | |
"data_parallel: false\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:15,477\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - PyTorch version: 1.12.0+cu113\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:15,477\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cudnn.deterministic: True\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:15,477\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cudnn.benchmark: False\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:15,478\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cuDNN version: 8302\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:15,478\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Random seed: 773\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:17,075\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of trainable params: 1.749 million\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:17,076\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - VariancePredictor(\n", | |
" (conv): Sequential(\n", | |
" (0): Sequential(\n", | |
" (0): Conv1d(337, 256, kernel_size=(5,), stride=(1,), padding=(2,))\n", | |
" (1): ReLU()\n", | |
" (2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)\n", | |
" (3): Dropout(p=0.5, inplace=False)\n", | |
" )\n", | |
" (1): Sequential(\n", | |
" (0): Conv1d(256, 256, kernel_size=(5,), stride=(1,), padding=(2,))\n", | |
" (1): ReLU()\n", | |
" (2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)\n", | |
" (3): Dropout(p=0.5, inplace=False)\n", | |
" )\n", | |
" (2): Sequential(\n", | |
" (0): Conv1d(256, 256, kernel_size=(5,), stride=(1,), padding=(2,))\n", | |
" (1): ReLU()\n", | |
" (2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)\n", | |
" (3): Dropout(p=0.5, inplace=False)\n", | |
" )\n", | |
" (3): Sequential(\n", | |
" (0): Conv1d(256, 256, kernel_size=(5,), stride=(1,), padding=(2,))\n", | |
" (1): ReLU()\n", | |
" (2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)\n", | |
" (3): Dropout(p=0.5, inplace=False)\n", | |
" )\n", | |
" (4): Sequential(\n", | |
" (0): Conv1d(256, 256, kernel_size=(5,), stride=(1,), padding=(2,))\n", | |
" (1): ReLU()\n", | |
" (2): LayerNorm((256,), eps=1e-12, elementwise_affine=True)\n", | |
" (3): Dropout(p=0.5, inplace=False)\n", | |
" )\n", | |
" )\n", | |
" (mdn_layer): MDNLayer(\n", | |
" (log_pi): Linear(in_features=256, out_features=4, bias=True)\n", | |
" (log_sigma): Linear(in_features=256, out_features=4, bias=True)\n", | |
" (mu): Linear(in_features=256, out_features=4, bias=True)\n", | |
" )\n", | |
")\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:17,082\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of iterations per epoch: 56\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:17,082\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of max_train_steps is set based on nepochs: 5600\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:17,082\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of epochs: 100\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:17,082\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of iterations: 5600\u001b[0m\n", | |
" 0% 0/100 [00:00<?, ?it/s][\u001b[36m2022-07-17 10:09:25,658\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 1]: loss 2.646130996091025\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:25,824\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 1]: loss 1.203948736190796\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:25,867\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 1% 1/100 [00:06<10:38, 6.45s/it][\u001b[36m2022-07-17 10:09:27,155\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 2]: loss 1.6544350130217416\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:27,320\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 2]: loss 0.9663150906562805\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:27,382\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 2% 2/100 [00:07<05:47, 3.55s/it][\u001b[36m2022-07-17 10:09:28,688\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 3]: loss 1.2918789110013418\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:28,854\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 3]: loss 0.8338977694511414\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:28,911\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 3% 3/100 [00:09<04:14, 2.63s/it][\u001b[36m2022-07-17 10:09:30,202\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 4]: loss 1.0935186190264565\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:30,364\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 4]: loss 0.67059326171875\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:30,425\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 4% 4/100 [00:11<03:29, 2.19s/it][\u001b[36m2022-07-17 10:09:31,702\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 5]: loss 0.9474198424390384\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:31,864\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 5]: loss 0.5264842510223389\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:31,924\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 5% 5/100 [00:12<03:04, 1.94s/it][\u001b[36m2022-07-17 10:09:33,214\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 6]: loss 0.8302079055990491\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:33,378\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 6]: loss 0.4467860162258148\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:33,437\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 6% 6/100 [00:14<02:48, 1.79s/it][\u001b[36m2022-07-17 10:09:34,713\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 7]: loss 0.6902472084122044\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:34,880\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 7]: loss 0.3139960765838623\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:34,939\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 7% 7/100 [00:15<02:37, 1.70s/it][\u001b[36m2022-07-17 10:09:36,247\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 8]: loss 0.5727573484182358\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:36,412\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 8]: loss 0.17164303362369537\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:36,469\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 8% 8/100 [00:17<02:31, 1.64s/it][\u001b[36m2022-07-17 10:09:37,740\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 9]: loss 0.46696473604866434\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:37,901\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 9]: loss 0.0374319851398468\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:37,962\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 9% 9/100 [00:18<02:25, 1.60s/it][\u001b[36m2022-07-17 10:09:39,221\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 10]: loss 0.3993323313604508\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:39,393\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 10]: loss -0.011698705144226551\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:39,454\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 10% 10/100 [00:20<02:20, 1.56s/it][\u001b[36m2022-07-17 10:09:40,754\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 11]: loss 0.35606072656810284\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:40,919\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 11]: loss -0.0706024318933487\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:40,975\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 11% 11/100 [00:21<02:18, 1.55s/it][\u001b[36m2022-07-17 10:09:42,240\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 12]: loss 0.27311379043385386\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:42,416\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 12]: loss -0.1980307251214981\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:42,474\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 12% 12/100 [00:23<02:15, 1.54s/it][\u001b[36m2022-07-17 10:09:43,743\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 13]: loss 0.22759593351344978\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:43,907\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 13]: loss -0.1017477810382843\u001b[0m\n", | |
" 13% 13/100 [00:24<02:10, 1.50s/it][\u001b[36m2022-07-17 10:09:45,170\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 14]: loss 0.19322720664890117\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:45,337\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 14]: loss -0.33786001801490784\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:45,397\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 14% 14/100 [00:25<02:09, 1.50s/it][\u001b[36m2022-07-17 10:09:46,694\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 15]: loss 0.17225695159452567\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:46,861\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 15]: loss -0.1908777803182602\u001b[0m\n", | |
" 15% 15/100 [00:27<02:06, 1.49s/it][\u001b[36m2022-07-17 10:09:48,117\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 16]: loss 0.14636153994797496\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:48,281\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 16]: loss -0.2748127579689026\u001b[0m\n", | |
" 16% 16/100 [00:28<02:03, 1.47s/it][\u001b[36m2022-07-17 10:09:49,555\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 17]: loss 0.059930981685673554\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:49,720\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 17]: loss -0.45613664388656616\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:49,776\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 17% 17/100 [00:30<02:02, 1.48s/it][\u001b[36m2022-07-17 10:09:51,041\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 18]: loss 0.021219341464789716\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:51,208\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 18]: loss -0.3722762167453766\u001b[0m\n", | |
" 18% 18/100 [00:31<01:59, 1.46s/it][\u001b[36m2022-07-17 10:09:52,478\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 19]: loss 0.029514004133358997\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:52,647\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 19]: loss -0.28012770414352417\u001b[0m\n", | |
" 19% 19/100 [00:33<01:57, 1.46s/it][\u001b[36m2022-07-17 10:09:53,908\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 20]: loss -0.025722671158811345\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:54,069\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 20]: loss -0.4051469564437866\u001b[0m\n", | |
" 20% 20/100 [00:34<01:55, 1.45s/it][\u001b[36m2022-07-17 10:09:55,327\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 21]: loss -0.06291283656797272\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:55,492\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 21]: loss -0.5141132473945618\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:55,551\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 21% 21/100 [00:36<01:55, 1.46s/it][\u001b[36m2022-07-17 10:09:56,858\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 22]: loss -0.09359925656878788\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:57,023\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 22]: loss -0.4922477602958679\u001b[0m\n", | |
" 22% 22/100 [00:37<01:53, 1.46s/it][\u001b[36m2022-07-17 10:09:58,288\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 23]: loss -0.12880641564593784\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:58,456\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 23]: loss -0.4485433101654053\u001b[0m\n", | |
" 23% 23/100 [00:39<01:51, 1.45s/it][\u001b[36m2022-07-17 10:09:59,708\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 24]: loss -0.16451156953865262\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:09:59,877\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 24]: loss -0.5072503089904785\u001b[0m\n", | |
" 24% 24/100 [00:40<01:49, 1.44s/it][\u001b[36m2022-07-17 10:10:01,154\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 25]: loss -0.18365980247576122\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:01,322\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 25]: loss -0.56026291847229\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:01,379\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 25% 25/100 [00:41<01:49, 1.46s/it][\u001b[36m2022-07-17 10:10:02,673\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 26]: loss -0.19590835855342448\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:02,843\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 26]: loss -0.5753440856933594\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:02,902\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 26% 26/100 [00:43<01:49, 1.48s/it][\u001b[36m2022-07-17 10:10:04,204\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 27]: loss -0.21971262105840392\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:04,373\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 27]: loss -0.5647346377372742\u001b[0m\n", | |
" 27% 27/100 [00:44<01:47, 1.48s/it][\u001b[36m2022-07-17 10:10:05,679\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 28]: loss -0.2480518006071049\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:05,845\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 28]: loss -0.6179808974266052\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:05,911\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 28% 28/100 [00:46<01:47, 1.50s/it][\u001b[36m2022-07-17 10:10:07,202\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 29]: loss -0.2669170773796005\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:07,371\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 29]: loss -0.5531905889511108\u001b[0m\n", | |
" 29% 29/100 [00:47<01:45, 1.48s/it][\u001b[36m2022-07-17 10:10:08,667\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 30]: loss -0.27828110308785525\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:08,832\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 30]: loss -0.6768397092819214\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:08,889\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 30% 30/100 [00:49<01:44, 1.49s/it][\u001b[36m2022-07-17 10:10:10,210\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 31]: loss -0.3202305613750858\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:10,378\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 31]: loss -0.6766812801361084\u001b[0m\n", | |
" 31% 31/100 [00:50<01:43, 1.49s/it][\u001b[36m2022-07-17 10:10:11,662\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 32]: loss -0.3064615372235754\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:11,828\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 32]: loss -0.6734722256660461\u001b[0m\n", | |
" 32% 32/100 [00:52<01:40, 1.48s/it][\u001b[36m2022-07-17 10:10:13,130\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 33]: loss -0.33031766715326477\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:13,296\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 33]: loss -0.641183078289032\u001b[0m\n", | |
" 33% 33/100 [00:53<01:38, 1.48s/it][\u001b[36m2022-07-17 10:10:14,587\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 34]: loss -0.34684657039386885\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:14,751\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 34]: loss -0.5572686195373535\u001b[0m\n", | |
" 34% 34/100 [00:55<01:37, 1.47s/it][\u001b[36m2022-07-17 10:10:16,028\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 35]: loss -0.37725233632539\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:16,200\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 35]: loss -0.698361337184906\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:16,254\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 35% 35/100 [00:56<01:36, 1.48s/it][\u001b[36m2022-07-17 10:10:17,528\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 36]: loss -0.37269368794347557\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:17,694\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 36]: loss -0.7457754015922546\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:17,750\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 36% 36/100 [00:58<01:35, 1.48s/it][\u001b[36m2022-07-17 10:10:19,013\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 37]: loss -0.41645987278648783\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:19,187\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 37]: loss -0.7094877362251282\u001b[0m\n", | |
" 37% 37/100 [00:59<01:32, 1.47s/it][\u001b[36m2022-07-17 10:10:20,451\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 38]: loss -0.4115079451086266\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:20,617\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 38]: loss -0.736817479133606\u001b[0m\n", | |
" 38% 38/100 [01:01<01:30, 1.46s/it][\u001b[36m2022-07-17 10:10:21,894\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 39]: loss -0.42684950599712984\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:22,058\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 39]: loss -0.7087638974189758\u001b[0m\n", | |
" 39% 39/100 [01:02<01:28, 1.45s/it][\u001b[36m2022-07-17 10:10:23,332\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 40]: loss -0.45433733612298965\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:23,499\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 40]: loss -0.7333222031593323\u001b[0m\n", | |
" 40% 40/100 [01:04<01:26, 1.45s/it][\u001b[36m2022-07-17 10:10:24,766\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 41]: loss -0.4852020437163966\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:24,935\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 41]: loss -0.787286102771759\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:24,991\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 41% 41/100 [01:05<01:26, 1.46s/it][\u001b[36m2022-07-17 10:10:26,255\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 42]: loss -0.48664177155920435\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:26,426\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 42]: loss -0.7723602652549744\u001b[0m\n", | |
" 42% 42/100 [01:07<01:24, 1.45s/it][\u001b[36m2022-07-17 10:10:27,708\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 43]: loss -0.49229344193424496\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:27,874\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 43]: loss -0.763935923576355\u001b[0m\n", | |
" 43% 43/100 [01:08<01:22, 1.45s/it][\u001b[36m2022-07-17 10:10:29,181\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 44]: loss -0.5161033416432994\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:29,348\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 44]: loss -0.8521526455879211\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:29,406\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 44% 44/100 [01:09<01:22, 1.48s/it][\u001b[36m2022-07-17 10:10:30,690\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 45]: loss -0.5170773525855371\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:30,854\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 45]: loss -0.7480339407920837\u001b[0m\n", | |
" 45% 45/100 [01:11<01:20, 1.47s/it][\u001b[36m2022-07-17 10:10:32,131\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 46]: loss -0.5433308114962918\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:32,297\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 46]: loss -0.8403776288032532\u001b[0m\n", | |
" 46% 46/100 [01:12<01:18, 1.46s/it][\u001b[36m2022-07-17 10:10:33,577\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 47]: loss -0.5440053423600537\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:33,742\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 47]: loss -0.8958118557929993\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:33,797\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 47% 47/100 [01:14<01:18, 1.47s/it][\u001b[36m2022-07-17 10:10:35,080\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 48]: loss -0.5546370537153312\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:35,247\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 48]: loss -0.9153844118118286\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:35,304\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 48% 48/100 [01:15<01:17, 1.48s/it][\u001b[36m2022-07-17 10:10:37,581\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 49]: loss -0.5551863653319222\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:37,827\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 49]: loss -0.934801459312439\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:37,907\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 49% 49/100 [01:18<01:32, 1.82s/it][\u001b[36m2022-07-17 10:10:39,499\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 50]: loss -0.5647800059190818\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:39,663\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 50]: loss -0.8609095811843872\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:39,706\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/epoch0050.pth\u001b[0m\n", | |
" 50% 50/100 [01:20<01:31, 1.82s/it][\u001b[36m2022-07-17 10:10:41,028\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 51]: loss -0.5730561361249004\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:41,195\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 51]: loss -0.9109963178634644\u001b[0m\n", | |
" 51% 51/100 [01:21<01:23, 1.71s/it][\u001b[36m2022-07-17 10:10:42,473\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 52]: loss -0.5596560418073621\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:42,639\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 52]: loss -0.9276463985443115\u001b[0m\n", | |
" 52% 52/100 [01:23<01:18, 1.63s/it][\u001b[36m2022-07-17 10:10:43,918\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 53]: loss -0.5740387296038014\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:44,079\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 53]: loss -0.8782821297645569\u001b[0m\n", | |
" 53% 53/100 [01:24<01:14, 1.57s/it][\u001b[36m2022-07-17 10:10:45,374\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 54]: loss -0.5896020675344127\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:45,541\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 54]: loss -0.9022565484046936\u001b[0m\n", | |
" 54% 54/100 [01:26<01:10, 1.54s/it][\u001b[36m2022-07-17 10:10:46,812\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 55]: loss -0.592544966510364\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:46,987\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 55]: loss -0.9553582072257996\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:47,043\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 55% 55/100 [01:27<01:08, 1.53s/it][\u001b[36m2022-07-17 10:10:48,311\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 56]: loss -0.6044099357511316\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:48,482\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 56]: loss -0.9447216987609863\u001b[0m\n", | |
" 56% 56/100 [01:29<01:06, 1.50s/it][\u001b[36m2022-07-17 10:10:49,741\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 57]: loss -0.6034813360976321\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:49,906\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 57]: loss -0.9116730690002441\u001b[0m\n", | |
" 57% 57/100 [01:30<01:03, 1.48s/it][\u001b[36m2022-07-17 10:10:51,201\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 58]: loss -0.6117524887834277\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:51,371\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 58]: loss -0.9214063286781311\u001b[0m\n", | |
" 58% 58/100 [01:31<01:01, 1.47s/it][\u001b[36m2022-07-17 10:10:52,650\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 59]: loss -0.6256100394363914\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:52,816\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 59]: loss -0.8875522017478943\u001b[0m\n", | |
" 59% 59/100 [01:33<01:00, 1.47s/it][\u001b[36m2022-07-17 10:10:54,090\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 60]: loss -0.6370019827570234\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:54,258\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 60]: loss -0.9835578799247742\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:54,318\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 60% 60/100 [01:34<00:59, 1.48s/it][\u001b[36m2022-07-17 10:10:55,603\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 61]: loss -0.6537156296627862\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:55,770\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 61]: loss -0.9208745956420898\u001b[0m\n", | |
" 61% 61/100 [01:36<00:57, 1.47s/it][\u001b[36m2022-07-17 10:10:57,054\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 62]: loss -0.6528667211532593\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:57,227\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 62]: loss -0.9610403776168823\u001b[0m\n", | |
" 62% 62/100 [01:37<00:55, 1.47s/it][\u001b[36m2022-07-17 10:10:58,506\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 63]: loss -0.6682727959539209\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:58,672\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 63]: loss -1.013179063796997\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:10:58,729\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 63% 63/100 [01:39<00:54, 1.48s/it][\u001b[36m2022-07-17 10:10:59,998\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 64]: loss -0.6713237640048776\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:00,167\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 64]: loss -0.9975940585136414\u001b[0m\n", | |
" 64% 64/100 [01:40<00:52, 1.47s/it][\u001b[36m2022-07-17 10:11:01,463\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 65]: loss -0.683530619101865\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:01,628\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 65]: loss -0.9877912998199463\u001b[0m\n", | |
" 65% 65/100 [01:42<00:51, 1.46s/it][\u001b[36m2022-07-17 10:11:02,896\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 66]: loss -0.6761179614279952\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:03,059\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 66]: loss -0.9822624921798706\u001b[0m\n", | |
" 66% 66/100 [01:43<00:49, 1.45s/it][\u001b[36m2022-07-17 10:11:04,324\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 67]: loss -0.6593792491725513\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:04,488\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 67]: loss -0.9803711175918579\u001b[0m\n", | |
" 67% 67/100 [01:45<00:47, 1.45s/it][\u001b[36m2022-07-17 10:11:05,768\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 68]: loss -0.6856220008007118\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:05,936\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 68]: loss -0.9910953640937805\u001b[0m\n", | |
" 68% 68/100 [01:46<00:46, 1.45s/it][\u001b[36m2022-07-17 10:11:07,209\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 69]: loss -0.6668249131845576\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:07,377\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 69]: loss -1.0208240747451782\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:07,436\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 69% 69/100 [01:48<00:45, 1.46s/it][\u001b[36m2022-07-17 10:11:08,709\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 70]: loss -0.6797444724610874\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:08,873\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 70]: loss -0.999022901058197\u001b[0m\n", | |
" 70% 70/100 [01:49<00:43, 1.46s/it][\u001b[36m2022-07-17 10:11:10,148\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 71]: loss -0.6848522547100272\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:10,312\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 71]: loss -0.9515711665153503\u001b[0m\n", | |
" 71% 71/100 [01:50<00:42, 1.45s/it][\u001b[36m2022-07-17 10:11:11,612\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 72]: loss -0.679444860134806\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:11,775\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 72]: loss -0.9506444931030273\u001b[0m\n", | |
" 72% 72/100 [01:52<00:40, 1.45s/it][\u001b[36m2022-07-17 10:11:13,068\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 73]: loss -0.707762096609388\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:13,233\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 73]: loss -0.9728472828865051\u001b[0m\n", | |
" 73% 73/100 [01:53<00:39, 1.46s/it][\u001b[36m2022-07-17 10:11:14,500\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 74]: loss -0.6858134620956012\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:14,674\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 74]: loss -0.9921979904174805\u001b[0m\n", | |
" 74% 74/100 [01:55<00:37, 1.45s/it][\u001b[36m2022-07-17 10:11:15,946\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 75]: loss -0.6946281061640808\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:16,113\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 75]: loss -1.0241451263427734\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:16,168\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 75% 75/100 [01:56<00:36, 1.46s/it][\u001b[36m2022-07-17 10:11:17,435\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 76]: loss -0.7066321255905288\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:17,600\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 76]: loss -0.9968053698539734\u001b[0m\n", | |
" 76% 76/100 [01:58<00:34, 1.45s/it][\u001b[36m2022-07-17 10:11:18,880\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 77]: loss -0.7101610771247319\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:19,047\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 77]: loss -1.0077271461486816\u001b[0m\n", | |
" 77% 77/100 [01:59<00:33, 1.45s/it][\u001b[36m2022-07-17 10:11:20,318\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 78]: loss -0.7212433101875442\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:20,486\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 78]: loss -0.9972227215766907\u001b[0m\n", | |
" 78% 78/100 [02:01<00:31, 1.45s/it][\u001b[36m2022-07-17 10:11:21,771\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 79]: loss -0.7370136720793588\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:21,937\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 79]: loss -1.004882574081421\u001b[0m\n", | |
" 79% 79/100 [02:02<00:30, 1.45s/it][\u001b[36m2022-07-17 10:11:23,215\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 80]: loss -0.7220803940934795\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:23,383\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 80]: loss -1.0090211629867554\u001b[0m\n", | |
" 80% 80/100 [02:03<00:28, 1.45s/it][\u001b[36m2022-07-17 10:11:24,683\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 81]: loss -0.7345373013189861\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:24,853\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 81]: loss -1.019540548324585\u001b[0m\n", | |
" 81% 81/100 [02:05<00:27, 1.45s/it][\u001b[36m2022-07-17 10:11:26,158\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 82]: loss -0.7382955907710961\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:26,323\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 82]: loss -1.0310771465301514\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:26,378\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 82% 82/100 [02:06<00:26, 1.48s/it][\u001b[36m2022-07-17 10:11:27,670\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 83]: loss -0.7458089872130326\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:27,839\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 83]: loss -1.0007559061050415\u001b[0m\n", | |
" 83% 83/100 [02:08<00:25, 1.47s/it][\u001b[36m2022-07-17 10:11:29,159\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 84]: loss -0.7506302137460027\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:29,326\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 84]: loss -0.9950738549232483\u001b[0m\n", | |
" 84% 84/100 [02:09<00:23, 1.48s/it][\u001b[36m2022-07-17 10:11:30,610\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 85]: loss -0.7398620322346687\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:30,775\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 85]: loss -1.0522781610488892\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:30,835\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 85% 85/100 [02:11<00:22, 1.49s/it][\u001b[36m2022-07-17 10:11:32,138\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 86]: loss -0.7560706346162728\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:32,309\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 86]: loss -1.040703535079956\u001b[0m\n", | |
" 86% 86/100 [02:12<00:20, 1.48s/it][\u001b[36m2022-07-17 10:11:33,583\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 87]: loss -0.7568161732384137\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:33,749\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 87]: loss -1.0542638301849365\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:33,807\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\u001b[0m\n", | |
" 87% 87/100 [02:14<00:19, 1.49s/it][\u001b[36m2022-07-17 10:11:35,109\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 88]: loss -0.754905070577349\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:35,275\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 88]: loss -1.049107313156128\u001b[0m\n", | |
" 88% 88/100 [02:15<00:17, 1.48s/it][\u001b[36m2022-07-17 10:11:36,563\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 89]: loss -0.7436193488538265\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:36,727\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 89]: loss -1.0251551866531372\u001b[0m\n", | |
" 89% 89/100 [02:17<00:16, 1.47s/it][\u001b[36m2022-07-17 10:11:37,997\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 90]: loss -0.7486272432974407\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:38,163\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 90]: loss -1.0428483486175537\u001b[0m\n", | |
" 90% 90/100 [02:18<00:14, 1.46s/it][\u001b[36m2022-07-17 10:11:39,436\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 91]: loss -0.7445180022290775\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:39,605\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 91]: loss -1.0031347274780273\u001b[0m\n", | |
" 91% 91/100 [02:20<00:13, 1.46s/it][\u001b[36m2022-07-17 10:11:40,862\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 92]: loss -0.7624630119119372\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:41,030\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 92]: loss -1.0290493965148926\u001b[0m\n", | |
" 92% 92/100 [02:21<00:11, 1.45s/it][\u001b[36m2022-07-17 10:11:42,321\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 93]: loss -0.7602659304227147\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:42,488\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 93]: loss -0.9918602108955383\u001b[0m\n", | |
" 93% 93/100 [02:23<00:10, 1.45s/it][\u001b[36m2022-07-17 10:11:43,755\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 94]: loss -0.7633764089218208\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:43,921\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 94]: loss -1.0161821842193604\u001b[0m\n", | |
" 94% 94/100 [02:24<00:08, 1.44s/it][\u001b[36m2022-07-17 10:11:45,190\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 95]: loss -0.7753122076392174\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:45,365\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 95]: loss -1.0200101137161255\u001b[0m\n", | |
" 95% 95/100 [02:25<00:07, 1.44s/it][\u001b[36m2022-07-17 10:11:46,640\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 96]: loss -0.7702007793954441\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:46,808\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 96]: loss -0.9887881875038147\u001b[0m\n", | |
" 96% 96/100 [02:27<00:05, 1.44s/it][\u001b[36m2022-07-17 10:11:48,086\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 97]: loss -0.7734773675245898\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:48,248\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 97]: loss -1.038788080215454\u001b[0m\n", | |
" 97% 97/100 [02:28<00:04, 1.44s/it][\u001b[36m2022-07-17 10:11:49,530\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 98]: loss -0.7749269551464489\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:49,694\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 98]: loss -1.0306273698806763\u001b[0m\n", | |
" 98% 98/100 [02:30<00:02, 1.44s/it][\u001b[36m2022-07-17 10:11:50,938\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 99]: loss -0.7656064895646912\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:51,106\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 99]: loss -1.036591649055481\u001b[0m\n", | |
" 99% 99/100 [02:31<00:01, 1.43s/it][\u001b[36m2022-07-17 10:11:52,372\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 100]: loss -0.771382677767958\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:52,541\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 100]: loss -1.0373291969299316\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:52,583\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/epoch0100.pth\u001b[0m\n", | |
"100% 100/100 [02:33<00:00, 1.53s/it]\n", | |
"[\u001b[36m2022-07-17 10:11:52,670\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/epoch0100.pth\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:11:52,703\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - The best loss was -1.0542638301849365\u001b[0m\n", | |
"++ set +x\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd $RECIPE_ROOT && bash run.sh --stage 3 --stop-stage 3" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true, | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "KQ1u_vYdDFwm", | |
"outputId": "8ec867c2-f49d-4053-f9ac-01a4ec499e9e" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 4: Training acoustic model\n", | |
"++ nnsvs-train-resf0 --config-dir conf/train_resf0/acoustic model=acoustic_resf0convlstm train=myconfig data=myconfig data.train_no_dev.in_dir=dump/oniku_kurumi/norm/train_no_dev/in_acoustic/ data.train_no_dev.out_dir=dump/oniku_kurumi/norm/train_no_dev/out_acoustic/ data.dev.in_dir=dump/oniku_kurumi/norm/dev/in_acoustic/ data.dev.out_dir=dump/oniku_kurumi/norm/dev/out_acoustic/ data.in_scaler_path=dump/oniku_kurumi/norm/in_acoustic_scaler.joblib data.out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib ++data.sample_rate=48000 train.out_dir=exp/oniku_kurumi/acoustic_resf0convlstm train.log_dir=tensorboard/oniku_kurumi_acoustic_resf0convlstm train.resume.checkpoint=\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 10:12:06,060\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - model:\n", | |
" stream_sizes:\n", | |
" - 180\n", | |
" - 3\n", | |
" - 1\n", | |
" - 15\n", | |
" - 6\n", | |
" - 1\n", | |
" has_dynamic_features:\n", | |
" - true\n", | |
" - true\n", | |
" - false\n", | |
" - true\n", | |
" - true\n", | |
" - false\n", | |
" num_windows: 3\n", | |
" stream_weights: null\n", | |
" netG:\n", | |
" _target_: nnsvs.model.ResSkipF0FFConvLSTM\n", | |
" in_dim: 341\n", | |
" out_dim: 206\n", | |
" ff_hidden_dim: 1024\n", | |
" conv_hidden_dim: 512\n", | |
" lstm_hidden_dim: 256\n", | |
" dropout: 0.0\n", | |
" num_lstm_layers: 2\n", | |
" bidirectional: true\n", | |
" init_type: kaiming_normal\n", | |
" use_mdn: false\n", | |
" num_gaussians: 8\n", | |
" dim_wise: true\n", | |
" in_lf0_idx: 292\n", | |
" out_lf0_idx: 180\n", | |
" in_lf0_min: null\n", | |
" in_lf0_max: null\n", | |
" out_lf0_mean: null\n", | |
" out_lf0_scale: null\n", | |
"train:\n", | |
" out_dir: exp/oniku_kurumi/acoustic_resf0convlstm\n", | |
" log_dir: tensorboard/oniku_kurumi_acoustic_resf0convlstm\n", | |
" use_amp: false\n", | |
" max_train_steps: -1\n", | |
" nepochs: 100\n", | |
" checkpoint_epoch_interval: 50\n", | |
" feats_criterion: l1\n", | |
" pitch_reg_weight: 1.0\n", | |
" stream_wise_loss: false\n", | |
" use_detect_anomaly: false\n", | |
" optim:\n", | |
" optimizer:\n", | |
" name: Adam\n", | |
" params:\n", | |
" lr: 0.001\n", | |
" betas:\n", | |
" - 0.9\n", | |
" - 0.999\n", | |
" weight_decay: 0.0\n", | |
" lr_scheduler:\n", | |
" name: StepLR\n", | |
" params:\n", | |
" step_size: 20\n", | |
" gamma: 0.5\n", | |
" resume:\n", | |
" checkpoint: ''\n", | |
" load_optimizer: false\n", | |
" cudnn:\n", | |
" benchmark: false\n", | |
" deterministic: true\n", | |
"data:\n", | |
" train_no_dev:\n", | |
" in_dir: dump/oniku_kurumi/norm/train_no_dev/in_acoustic/\n", | |
" out_dir: dump/oniku_kurumi/norm/train_no_dev/out_acoustic/\n", | |
" dev:\n", | |
" in_dir: dump/oniku_kurumi/norm/dev/in_acoustic/\n", | |
" out_dir: dump/oniku_kurumi/norm/dev/out_acoustic/\n", | |
" num_workers: 2\n", | |
" batch_size: 8\n", | |
" pin_memory: true\n", | |
" sample_rate: 48000\n", | |
" filter_long_segments: false\n", | |
" filter_num_frames: 6000\n", | |
" max_time_frames: -1\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_acoustic_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
" in_lf0_idx: 292\n", | |
" in_rest_idx: 1\n", | |
" out_lf0_idx: 180\n", | |
"mlflow:\n", | |
" enabled: false\n", | |
" experiment: test\n", | |
"verbose: 100\n", | |
"seed: 773\n", | |
"data_parallel: false\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:06,061\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - PyTorch version: 1.12.0+cu113\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:06,061\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cudnn.deterministic: True\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:06,061\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cudnn.benchmark: False\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:06,062\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - cuDNN version: 8302\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:06,063\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Random seed: 773\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:08,344\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of trainable params: 13.057 million\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:08,344\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - ResSkipF0FFConvLSTM(\n", | |
" (ff): Sequential(\n", | |
" (0): Linear(in_features=341, out_features=1024, bias=True)\n", | |
" (1): ReLU()\n", | |
" (2): Linear(in_features=1024, out_features=1024, bias=True)\n", | |
" (3): ReLU()\n", | |
" (4): Linear(in_features=1024, out_features=1024, bias=True)\n", | |
" (5): ReLU()\n", | |
" )\n", | |
" (conv): Sequential(\n", | |
" (0): ReflectionPad1d((3, 3))\n", | |
" (1): Conv1d(1025, 512, kernel_size=(7,), stride=(1,))\n", | |
" (2): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (3): ReLU()\n", | |
" (4): ReflectionPad1d((3, 3))\n", | |
" (5): Conv1d(512, 512, kernel_size=(7,), stride=(1,))\n", | |
" (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (7): ReLU()\n", | |
" (8): ReflectionPad1d((3, 3))\n", | |
" (9): Conv1d(512, 512, kernel_size=(7,), stride=(1,))\n", | |
" (10): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | |
" (11): ReLU()\n", | |
" )\n", | |
" (lstm): LSTM(512, 256, num_layers=2, batch_first=True, bidirectional=True)\n", | |
" (fc): Linear(in_features=512, out_features=206, bias=True)\n", | |
")\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:08,351\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of iterations per epoch: 56\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:08,351\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of max_train_steps is set based on nepochs: 5600\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:08,352\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of epochs: 100\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:08,352\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Number of iterations: 5600\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,133\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Checking model configs for residual F0 prediction\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,133\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - in_lf0_idx: 292\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,134\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - in_rest_idx: 1\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,134\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - out_lf0_idx: 180\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,134\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - in_lf0_min: 5.278103\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,134\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - in_lf0_max: 6.548873\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,135\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - model.out_lf0_mean: 5.955746018850272\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:12:10,135\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - model.out_lf0_scale: 0.23926882447957243\u001b[0m\n", | |
" 0% 0/100 [00:00<?, ?it/s][\u001b[36m2022-07-17 10:13:54,788\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 1]: loss 0.7485061905213765\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:15:14,137\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 1]: loss 0.7355414032936096\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:15:14,447\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 1% 1/100 [03:03<5:03:10, 183.74s/it][\u001b[36m2022-07-17 10:16:59,426\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 2]: loss 0.7233402079769543\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:18:17,600\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 2]: loss 0.728647768497467\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:18:17,943\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 2% 2/100 [06:07<4:59:52, 183.60s/it][\u001b[36m2022-07-17 10:19:59,201\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 3]: loss 0.7188248112797737\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:21:18,649\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 3]: loss 0.7257325649261475\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:21:18,990\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 3% 3/100 [09:08<4:54:55, 182.43s/it][\u001b[36m2022-07-17 10:23:00,957\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 4]: loss 0.7154404031378883\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:24:20,210\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 4]: loss 0.723335862159729\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:24:20,582\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 4% 4/100 [12:09<4:51:21, 182.10s/it][\u001b[36m2022-07-17 10:26:03,442\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 5]: loss 0.7123271067227636\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:27:22,570\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 5]: loss 0.7236455082893372\u001b[0m\n", | |
" 5% 5/100 [15:11<4:48:15, 182.06s/it][\u001b[36m2022-07-17 10:29:03,561\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 6]: loss 0.7102760172316006\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:30:23,243\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 6]: loss 0.7210119962692261\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:30:23,607\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 6% 6/100 [18:12<4:44:40, 181.71s/it][\u001b[36m2022-07-17 10:32:03,606\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 7]: loss 0.7093882550086293\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:33:22,665\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 7]: loss 0.7188901305198669\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:33:23,020\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 7% 7/100 [21:12<4:40:29, 180.96s/it][\u001b[36m2022-07-17 10:35:04,301\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 8]: loss 0.7078418625252587\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:36:23,438\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 8]: loss 0.7195698618888855\u001b[0m\n", | |
" 8% 8/100 [24:12<4:37:12, 180.79s/it][\u001b[36m2022-07-17 10:38:05,065\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 9]: loss 0.7088339243616376\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:39:24,032\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 9]: loss 0.7183623313903809\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:39:24,392\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 9% 9/100 [27:13<4:34:16, 180.84s/it][\u001b[36m2022-07-17 10:41:06,375\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 10]: loss 0.7067193314433098\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:42:25,411\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 10]: loss 0.716911792755127\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:42:25,782\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 10% 10/100 [30:15<4:31:30, 181.01s/it][\u001b[36m2022-07-17 10:44:06,576\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 11]: loss 0.7071770621197564\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:45:25,664\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 11]: loss 0.7159714102745056\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:45:26,012\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 11% 11/100 [33:15<4:28:08, 180.77s/it][\u001b[36m2022-07-17 10:47:06,442\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 12]: loss 0.7055068090558052\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:48:26,811\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 12]: loss 0.7153160572052002\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:48:27,170\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 12% 12/100 [36:16<4:25:18, 180.89s/it][\u001b[36m2022-07-17 10:50:10,967\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 13]: loss 0.705994827406747\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:51:31,539\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 13]: loss 0.7154873013496399\u001b[0m\n", | |
" 13% 13/100 [39:20<4:23:49, 181.94s/it][\u001b[36m2022-07-17 10:53:11,121\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 14]: loss 0.7049205228686333\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:54:31,552\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 14]: loss 0.7196761965751648\u001b[0m\n", | |
" 14% 14/100 [42:20<4:19:56, 181.36s/it][\u001b[36m2022-07-17 10:56:11,308\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 15]: loss 0.7046166456171444\u001b[0m\n", | |
"[\u001b[36m2022-07-17 10:57:31,558\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 15]: loss 0.7227178812026978\u001b[0m\n", | |
" 15% 15/100 [45:20<4:16:20, 180.95s/it][\u001b[36m2022-07-17 10:59:13,086\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 16]: loss 0.7069553828665188\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:00:33,678\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 16]: loss 0.7181958556175232\u001b[0m\n", | |
" 16% 16/100 [48:22<4:13:49, 181.30s/it][\u001b[36m2022-07-17 11:02:14,300\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 17]: loss 0.7039565742015839\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:03:33,385\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 17]: loss 0.7158979177474976\u001b[0m\n", | |
" 17% 17/100 [51:22<4:10:08, 180.82s/it][\u001b[36m2022-07-17 11:05:16,972\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 18]: loss 0.7039417092289243\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:06:35,975\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 18]: loss 0.7223993539810181\u001b[0m\n", | |
" 18% 18/100 [54:25<4:07:51, 181.35s/it][\u001b[36m2022-07-17 11:08:17,100\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 19]: loss 0.7029211765953473\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:09:36,049\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 19]: loss 0.715058445930481\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:09:36,382\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 19% 19/100 [57:25<4:04:26, 181.07s/it][\u001b[36m2022-07-17 11:11:18,369\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 20]: loss 0.7029803714581898\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:12:37,252\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 20]: loss 0.7143490314483643\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:12:37,601\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 20% 20/100 [1:00:26<4:01:29, 181.11s/it][\u001b[36m2022-07-17 11:14:16,964\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 21]: loss 0.7018776653068406\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:15:36,634\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 21]: loss 0.7142007946968079\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:15:36,993\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 21% 21/100 [1:03:26<3:57:47, 180.60s/it][\u001b[36m2022-07-17 11:17:17,938\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 22]: loss 0.7008141194071088\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:18:38,203\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 22]: loss 0.7133501768112183\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:18:38,549\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 22% 22/100 [1:06:27<3:55:09, 180.89s/it][\u001b[36m2022-07-17 11:20:19,249\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 23]: loss 0.7001892126032284\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:21:39,436\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 23]: loss 0.7130545973777771\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:21:39,801\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 23% 23/100 [1:09:29<3:52:16, 181.00s/it][\u001b[36m2022-07-17 11:23:19,577\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 24]: loss 0.700861031455653\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:24:39,384\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 24]: loss 0.7130870819091797\u001b[0m\n", | |
" 24% 24/100 [1:12:28<3:48:43, 180.57s/it][\u001b[36m2022-07-17 11:26:19,768\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 25]: loss 0.6997266805597714\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:27:39,271\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 25]: loss 0.7146977186203003\u001b[0m\n", | |
" 25% 25/100 [1:15:28<3:45:27, 180.37s/it][\u001b[36m2022-07-17 11:29:20,077\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 26]: loss 0.6997107341885567\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:30:40,812\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 26]: loss 0.7146811485290527\u001b[0m\n", | |
" 26% 26/100 [1:18:30<3:42:53, 180.72s/it][\u001b[36m2022-07-17 11:32:22,831\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 27]: loss 0.7002198951584953\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:33:43,315\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 27]: loss 0.7148009538650513\u001b[0m\n", | |
" 27% 27/100 [1:21:32<3:40:31, 181.25s/it][\u001b[36m2022-07-17 11:35:25,198\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 28]: loss 0.6994968269552503\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:36:46,170\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 28]: loss 0.7151042819023132\u001b[0m\n", | |
" 28% 28/100 [1:24:35<3:38:04, 181.73s/it][\u001b[36m2022-07-17 11:38:27,157\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 29]: loss 0.6993393759642329\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:39:46,463\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 29]: loss 0.7143082618713379\u001b[0m\n", | |
" 29% 29/100 [1:27:35<3:34:32, 181.30s/it][\u001b[36m2022-07-17 11:41:29,620\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 30]: loss 0.6981957416449275\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:42:48,948\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 30]: loss 0.7173887491226196\u001b[0m\n", | |
" 30% 30/100 [1:30:38<3:31:55, 181.66s/it][\u001b[36m2022-07-17 11:44:29,839\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 31]: loss 0.6982003354600498\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:45:50,328\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 31]: loss 0.7138604521751404\u001b[0m\n", | |
" 31% 31/100 [1:33:39<3:28:48, 181.57s/it][\u001b[36m2022-07-17 11:47:31,317\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 32]: loss 0.6976277679204941\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:48:51,566\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 32]: loss 0.7137477397918701\u001b[0m\n", | |
" 32% 32/100 [1:36:40<3:25:40, 181.47s/it][\u001b[36m2022-07-17 11:50:31,860\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 33]: loss 0.6984797673566001\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:51:52,467\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 33]: loss 0.7185724377632141\u001b[0m\n", | |
" 33% 33/100 [1:39:41<3:22:27, 181.30s/it][\u001b[36m2022-07-17 11:53:33,886\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 34]: loss 0.6976582620825086\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:54:53,266\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 34]: loss 0.7129064798355103\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:54:53,622\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 34% 34/100 [1:42:42<3:19:22, 181.26s/it][\u001b[36m2022-07-17 11:56:36,077\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 35]: loss 0.6969552550997052\u001b[0m\n", | |
"[\u001b[36m2022-07-17 11:57:55,451\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 35]: loss 0.7141364216804504\u001b[0m\n", | |
" 35% 35/100 [1:45:44<3:16:32, 181.43s/it][\u001b[36m2022-07-17 11:59:35,358\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 36]: loss 0.6969359272292682\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:00:54,624\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 36]: loss 0.7161743640899658\u001b[0m\n", | |
" 36% 36/100 [1:48:43<3:12:48, 180.75s/it][\u001b[36m2022-07-17 12:02:36,531\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 37]: loss 0.6961122740592275\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:03:57,014\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 37]: loss 0.7141920328140259\u001b[0m\n", | |
" 37% 37/100 [1:51:46<3:10:18, 181.24s/it][\u001b[36m2022-07-17 12:05:37,173\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 38]: loss 0.6954616201775414\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:06:57,773\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 38]: loss 0.7139496207237244\u001b[0m\n", | |
" 38% 38/100 [1:54:47<3:07:08, 181.10s/it][\u001b[36m2022-07-17 12:08:38,245\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 39]: loss 0.6963980974895614\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:09:58,728\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 39]: loss 0.7128743529319763\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:09:59,087\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 39% 39/100 [1:57:48<3:04:10, 181.16s/it][\u001b[36m2022-07-17 12:11:39,390\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 40]: loss 0.6957339314477784\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:13:00,044\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 40]: loss 0.713630199432373\u001b[0m\n", | |
" 40% 40/100 [2:00:49<3:01:06, 181.10s/it][\u001b[36m2022-07-17 12:14:42,420\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 41]: loss 0.694326211299215\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:16:01,974\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 41]: loss 0.7149229049682617\u001b[0m\n", | |
" 41% 41/100 [2:03:51<2:58:19, 181.35s/it][\u001b[36m2022-07-17 12:17:43,013\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 42]: loss 0.6933759280613491\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:19:02,334\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 42]: loss 0.7120000123977661\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:19:02,660\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\u001b[0m\n", | |
" 42% 42/100 [2:06:51<2:55:06, 181.15s/it][\u001b[36m2022-07-17 12:20:45,114\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 43]: loss 0.6938385495117733\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:22:04,353\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 43]: loss 0.7137588262557983\u001b[0m\n", | |
" 43% 43/100 [2:09:53<2:52:14, 181.31s/it][\u001b[36m2022-07-17 12:23:46,232\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 44]: loss 0.6938110845429557\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:25:06,843\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 44]: loss 0.7133674025535583\u001b[0m\n", | |
" 44% 44/100 [2:12:56<2:49:33, 181.67s/it][\u001b[36m2022-07-17 12:26:47,735\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 45]: loss 0.6928358365382467\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:28:08,671\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 45]: loss 0.714301347732544\u001b[0m\n", | |
" 45% 45/100 [2:15:57<2:46:34, 181.71s/it][\u001b[36m2022-07-17 12:29:49,906\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 46]: loss 0.6926273182034492\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:31:10,618\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 46]: loss 0.7121370434761047\u001b[0m\n", | |
" 46% 46/100 [2:18:59<2:43:36, 181.78s/it][\u001b[36m2022-07-17 12:32:52,933\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 47]: loss 0.6924645858151572\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:34:13,547\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 47]: loss 0.7137022018432617\u001b[0m\n", | |
" 47% 47/100 [2:22:02<2:40:52, 182.13s/it][\u001b[36m2022-07-17 12:35:54,560\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 48]: loss 0.6917717052357537\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:37:15,386\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 48]: loss 0.7129413485527039\u001b[0m\n", | |
" 48% 48/100 [2:25:04<2:37:46, 182.04s/it][\u001b[36m2022-07-17 12:38:55,902\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 49]: loss 0.6912635479654584\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:40:16,071\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 49]: loss 0.7159643769264221\u001b[0m\n", | |
" 49% 49/100 [2:28:05<2:34:23, 181.63s/it][\u001b[36m2022-07-17 12:41:57,577\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 50]: loss 0.6916937093649592\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:43:18,107\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 50]: loss 0.7141079306602478\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:43:18,418\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/epoch0050.pth\u001b[0m\n", | |
" 50% 50/100 [2:31:08<2:31:37, 181.95s/it][\u001b[36m2022-07-17 12:44:58,594\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 51]: loss 0.6905666877116475\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:46:19,141\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 51]: loss 0.7159185409545898\u001b[0m\n", | |
" 51% 51/100 [2:34:08<2:28:12, 181.48s/it][\u001b[36m2022-07-17 12:47:59,679\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 52]: loss 0.690307797065803\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:49:19,973\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 52]: loss 0.7156856060028076\u001b[0m\n", | |
" 52% 52/100 [2:37:09<2:25:01, 181.29s/it][\u001b[36m2022-07-17 12:51:00,051\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 53]: loss 0.6904569800410952\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:52:20,528\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 53]: loss 0.7143575549125671\u001b[0m\n", | |
" 53% 53/100 [2:40:09<2:21:50, 181.07s/it][\u001b[36m2022-07-17 12:54:00,405\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 54]: loss 0.6901836203677314\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:55:21,286\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 54]: loss 0.7152528762817383\u001b[0m\n", | |
" 54% 54/100 [2:43:10<2:18:44, 180.97s/it][\u001b[36m2022-07-17 12:57:01,551\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 55]: loss 0.6894809337598937\u001b[0m\n", | |
"[\u001b[36m2022-07-17 12:58:22,162\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 55]: loss 0.7143320441246033\u001b[0m\n", | |
" 55% 55/100 [2:46:11<2:15:42, 180.94s/it][\u001b[36m2022-07-17 13:00:02,432\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 56]: loss 0.6901884557945388\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:01:22,972\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 56]: loss 0.7137412428855896\u001b[0m\n", | |
" 56% 56/100 [2:49:12<2:12:39, 180.90s/it][\u001b[36m2022-07-17 13:03:04,468\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 57]: loss 0.6894063896366528\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:04:25,007\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 57]: loss 0.7139521241188049\u001b[0m\n", | |
" 57% 57/100 [2:52:14<2:09:53, 181.24s/it][\u001b[36m2022-07-17 13:06:06,289\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 58]: loss 0.6886122705680984\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:07:25,886\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 58]: loss 0.7158541083335876\u001b[0m\n", | |
" 58% 58/100 [2:55:15<2:06:47, 181.13s/it][\u001b[36m2022-07-17 13:09:09,473\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 59]: loss 0.6880351038915771\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:10:29,124\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 59]: loss 0.7146214246749878\u001b[0m\n", | |
" 59% 59/100 [2:58:18<2:04:12, 181.77s/it][\u001b[36m2022-07-17 13:12:10,160\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 60]: loss 0.6883610880800656\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:13:30,552\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 60]: loss 0.7147162556648254\u001b[0m\n", | |
" 60% 60/100 [3:01:19<2:01:06, 181.66s/it][\u001b[36m2022-07-17 13:15:13,076\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 61]: loss 0.6870185488036701\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:16:33,471\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 61]: loss 0.7143681645393372\u001b[0m\n", | |
" 61% 61/100 [3:04:22<1:58:19, 182.04s/it][\u001b[36m2022-07-17 13:18:13,652\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 62]: loss 0.6863207370042801\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:19:34,257\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 62]: loss 0.7142163515090942\u001b[0m\n", | |
" 62% 62/100 [3:07:23<1:55:03, 181.66s/it][\u001b[36m2022-07-17 13:21:15,095\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 63]: loss 0.6863915334854808\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:22:34,403\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 63]: loss 0.7146042585372925\u001b[0m\n", | |
" 63% 63/100 [3:10:23<1:51:44, 181.21s/it][\u001b[36m2022-07-17 13:24:12,443\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 64]: loss 0.685406183557851\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:25:32,678\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 64]: loss 0.7144904136657715\u001b[0m\n", | |
" 64% 64/100 [3:13:21<1:48:11, 180.33s/it][\u001b[36m2022-07-17 13:27:15,647\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 65]: loss 0.6850105236683574\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:28:35,971\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 65]: loss 0.7153890132904053\u001b[0m\n", | |
" 65% 65/100 [3:16:25<1:45:42, 181.22s/it][\u001b[36m2022-07-17 13:30:14,657\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 66]: loss 0.6845316120556423\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:31:34,431\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 66]: loss 0.7146962881088257\u001b[0m\n", | |
" 66% 66/100 [3:19:23<1:42:13, 180.39s/it][\u001b[36m2022-07-17 13:33:14,994\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 67]: loss 0.6846008609448161\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:34:35,627\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 67]: loss 0.7150234580039978\u001b[0m\n", | |
" 67% 67/100 [3:22:24<1:39:20, 180.63s/it][\u001b[36m2022-07-17 13:36:15,200\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 68]: loss 0.6836963689752987\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:37:36,177\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 68]: loss 0.7146798968315125\u001b[0m\n", | |
" 68% 68/100 [3:25:25<1:36:19, 180.61s/it][\u001b[36m2022-07-17 13:39:19,431\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 69]: loss 0.6847038471273014\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:40:38,599\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 69]: loss 0.7159401774406433\u001b[0m\n", | |
" 69% 69/100 [3:28:27<1:33:35, 181.15s/it][\u001b[36m2022-07-17 13:42:21,242\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 70]: loss 0.6844303054468972\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:43:41,555\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 70]: loss 0.7156570553779602\u001b[0m\n", | |
" 70% 70/100 [3:31:30<1:30:50, 181.69s/it][\u001b[36m2022-07-17 13:45:23,068\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 71]: loss 0.6833482384681702\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:46:44,081\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 71]: loss 0.7150239944458008\u001b[0m\n", | |
" 71% 71/100 [3:34:33<1:27:56, 181.94s/it][\u001b[36m2022-07-17 13:48:25,042\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 72]: loss 0.683627975838525\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:49:45,378\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 72]: loss 0.7163045406341553\u001b[0m\n", | |
" 72% 72/100 [3:37:34<1:24:48, 181.75s/it][\u001b[36m2022-07-17 13:51:24,393\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 73]: loss 0.6835322241697993\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:52:44,774\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 73]: loss 0.716058611869812\u001b[0m\n", | |
" 73% 73/100 [3:40:34<1:21:28, 181.04s/it][\u001b[36m2022-07-17 13:54:25,668\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 74]: loss 0.6832559161952564\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:55:45,879\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 74]: loss 0.7156367301940918\u001b[0m\n", | |
" 74% 74/100 [3:43:35<1:18:27, 181.06s/it][\u001b[36m2022-07-17 13:57:29,007\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 75]: loss 0.683108488363879\u001b[0m\n", | |
"[\u001b[36m2022-07-17 13:58:49,068\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 75]: loss 0.7162330746650696\u001b[0m\n", | |
" 75% 75/100 [3:46:38<1:15:42, 181.70s/it][\u001b[36m2022-07-17 14:00:31,106\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 76]: loss 0.6823414234178407\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:01:50,232\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 76]: loss 0.7157100439071655\u001b[0m\n", | |
" 76% 76/100 [3:49:39<1:12:36, 181.54s/it][\u001b[36m2022-07-17 14:03:30,815\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 77]: loss 0.6829887990440641\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:04:50,999\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 77]: loss 0.7159550786018372\u001b[0m\n", | |
" 77% 77/100 [3:52:40<1:09:30, 181.31s/it][\u001b[36m2022-07-17 14:06:30,295\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 78]: loss 0.6833684231553759\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:07:50,916\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 78]: loss 0.7161213755607605\u001b[0m\n", | |
" 78% 78/100 [3:55:40<1:06:19, 180.89s/it][\u001b[36m2022-07-17 14:09:33,512\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 79]: loss 0.6814240291714668\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:10:53,748\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 79]: loss 0.7164033651351929\u001b[0m\n", | |
" 79% 79/100 [3:58:43<1:03:30, 181.47s/it][\u001b[36m2022-07-17 14:12:35,500\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 80]: loss 0.6820910988109452\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:13:55,691\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 80]: loss 0.7166481614112854\u001b[0m\n", | |
" 80% 80/100 [4:01:44<1:00:32, 181.61s/it][\u001b[36m2022-07-17 14:15:36,889\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 81]: loss 0.681204514844077\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:16:56,067\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 81]: loss 0.7168768048286438\u001b[0m\n", | |
" 81% 81/100 [4:04:45<57:23, 181.24s/it] [\u001b[36m2022-07-17 14:18:36,969\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 82]: loss 0.6807073535663741\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:19:57,199\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 82]: loss 0.7162447571754456\u001b[0m\n", | |
" 82% 82/100 [4:07:46<54:21, 181.21s/it][\u001b[36m2022-07-17 14:21:39,839\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 83]: loss 0.6808460386736053\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:22:58,969\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 83]: loss 0.7161741852760315\u001b[0m\n", | |
" 83% 83/100 [4:10:48<51:23, 181.38s/it][\u001b[36m2022-07-17 14:24:40,744\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 84]: loss 0.6808644416076797\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:26:00,901\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 84]: loss 0.7165154218673706\u001b[0m\n", | |
" 84% 84/100 [4:13:50<48:24, 181.54s/it][\u001b[36m2022-07-17 14:27:41,784\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 85]: loss 0.6795940612043653\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:29:02,458\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 85]: loss 0.7165151834487915\u001b[0m\n", | |
" 85% 85/100 [4:16:51<45:23, 181.55s/it][\u001b[36m2022-07-17 14:30:43,630\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 86]: loss 0.6798787659832409\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:32:02,798\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 86]: loss 0.7167169451713562\u001b[0m\n", | |
" 86% 86/100 [4:19:52<42:16, 181.19s/it][\u001b[36m2022-07-17 14:33:45,403\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 87]: loss 0.67948075064591\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:35:05,947\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 87]: loss 0.7173956632614136\u001b[0m\n", | |
" 87% 87/100 [4:22:55<39:23, 181.77s/it][\u001b[36m2022-07-17 14:36:46,788\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 88]: loss 0.6788927103791919\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:38:07,510\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 88]: loss 0.7166451215744019\u001b[0m\n", | |
" 88% 88/100 [4:25:56<36:20, 181.71s/it][\u001b[36m2022-07-17 14:39:48,722\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 89]: loss 0.6793763701404844\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:41:08,543\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 89]: loss 0.7168745398521423\u001b[0m\n", | |
" 89% 89/100 [4:28:57<33:16, 181.51s/it][\u001b[36m2022-07-17 14:42:48,179\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 90]: loss 0.6787483330283847\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:44:09,151\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 90]: loss 0.7163087725639343\u001b[0m\n", | |
" 90% 90/100 [4:31:58<30:12, 181.24s/it][\u001b[36m2022-07-17 14:45:51,117\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 91]: loss 0.6787023150495121\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:47:11,401\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 91]: loss 0.7174398899078369\u001b[0m\n", | |
" 91% 91/100 [4:35:00<27:13, 181.54s/it][\u001b[36m2022-07-17 14:48:56,786\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 92]: loss 0.6794648596218654\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:50:16,393\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 92]: loss 0.7168363928794861\u001b[0m\n", | |
" 92% 92/100 [4:38:05<24:20, 182.58s/it][\u001b[36m2022-07-17 14:51:55,513\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 93]: loss 0.6791103439671653\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:53:14,785\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 93]: loss 0.7177684307098389\u001b[0m\n", | |
" 93% 93/100 [4:41:04<21:09, 181.32s/it][\u001b[36m2022-07-17 14:54:57,347\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 94]: loss 0.6785347344619888\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:56:17,635\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 94]: loss 0.717737078666687\u001b[0m\n", | |
" 94% 94/100 [4:44:06<18:10, 181.78s/it][\u001b[36m2022-07-17 14:57:56,724\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 95]: loss 0.6784808859229088\u001b[0m\n", | |
"[\u001b[36m2022-07-17 14:59:16,966\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 95]: loss 0.7174811363220215\u001b[0m\n", | |
" 95% 95/100 [4:47:06<15:05, 181.05s/it][\u001b[36m2022-07-17 15:00:57,622\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 96]: loss 0.678301528096199\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:02:16,662\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 96]: loss 0.71721351146698\u001b[0m\n", | |
" 96% 96/100 [4:50:05<12:02, 180.64s/it][\u001b[36m2022-07-17 15:03:57,785\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 97]: loss 0.6783113202878407\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:05:16,956\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 97]: loss 0.7174183130264282\u001b[0m\n", | |
" 97% 97/100 [4:53:06<09:01, 180.54s/it][\u001b[36m2022-07-17 15:06:59,157\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 98]: loss 0.678546133850302\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:08:19,358\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 98]: loss 0.7174617052078247\u001b[0m\n", | |
" 98% 98/100 [4:56:08<06:02, 181.10s/it][\u001b[36m2022-07-17 15:10:01,103\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 99]: loss 0.6781182257192475\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:11:21,765\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 99]: loss 0.7176664471626282\u001b[0m\n", | |
" 99% 99/100 [4:59:11<03:01, 181.49s/it][\u001b[36m2022-07-17 15:13:01,424\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [train_no_dev] [Epoch 100]: loss 0.6776793939726693\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:14:21,686\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - [dev] [Epoch 100]: loss 0.7178601026535034\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:14:22,022\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/epoch0100.pth\u001b[0m\n", | |
"100% 100/100 [5:02:11<00:00, 181.32s/it]\n", | |
"[\u001b[36m2022-07-17 15:14:23,327\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Saved checkpoint at /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/epoch0100.pth\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:14:23,719\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - The best loss was 0.7120000123977661\u001b[0m\n", | |
"++ set +x\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd $RECIPE_ROOT && bash run.sh --stage 4 --stop-stage 4" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "ELcT-dlGRTNp", | |
"outputId": "5b0ae53e-2698-49df-b164-4f814895b023" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"remote: Enumerating objects: 5, done.\u001b[K\n", | |
"remote: Counting objects: 20% (1/5)\u001b[K\rremote: Counting objects: 40% (2/5)\u001b[K\rremote: Counting objects: 60% (3/5)\u001b[K\rremote: Counting objects: 80% (4/5)\u001b[K\rremote: Counting objects: 100% (5/5)\u001b[K\rremote: Counting objects: 100% (5/5), done.\u001b[K\n", | |
"remote: Compressing objects: 50% (1/2)\u001b[K\rremote: Compressing objects: 100% (2/2)\u001b[K\rremote: Compressing objects: 100% (2/2), done.\u001b[K\n", | |
"remote: Total 5 (delta 3), reused 5 (delta 3), pack-reused 0\u001b[K\n", | |
"Unpacking objects: 20% (1/5) \rUnpacking objects: 40% (2/5) \rUnpacking objects: 60% (3/5) \rUnpacking objects: 80% (4/5) \rUnpacking objects: 100% (5/5) \rUnpacking objects: 100% (5/5), done.\n", | |
"From https://github.com/taroushirani/nnsvs\n", | |
" * branch dev2_local_mlpg -> FETCH_HEAD\n", | |
" d97b916..d156baa dev2_local_mlpg -> origin/dev2_local_mlpg\n", | |
"Updating d97b916..d156baa\n", | |
"Fast-forward\n", | |
" nnsvs/data/data_source.py | 1 \u001b[32m+\u001b[m\n", | |
" 1 file changed, 1 insertion(+)\n", | |
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", | |
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", | |
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", | |
" Building wheel for nnsvs (PEP 517) ... \u001b[?25l\u001b[?25hdone\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd nnsvs && git checkout $RECIPE_ROOT/config.yaml\n", | |
"! cd nnsvs && git pull origin dev2_local_mlpg\n", | |
"! cd nnsvs && pip install -q . --use-feature=in-tree-build\n", | |
"! sed -i 's#\\~\\/data#\\/content\\/gdrive#g' $RECIPE_ROOT/config.yaml " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true | |
}, | |
"id": "sVU6ra7TDHEZ", | |
"outputId": "3215b565-42ba-454a-d61e-98f81ae44882" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 5: Generate features from timelag/duration/acoustic models\n", | |
"++ nnsvs-generate model.checkpoint=exp/oniku_kurumi/timelag_mdn/latest.pth model.model_yaml=exp/oniku_kurumi/timelag_mdn/model.yaml out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib in_dir=dump/oniku_kurumi/norm/dev/in_timelag/ out_dir=exp/oniku_kurumi/timelag_mdn/predicted/dev/latest/\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:14:47,147\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/norm/dev/in_timelag/\n", | |
"out_dir: exp/oniku_kurumi/timelag_mdn/predicted/dev/latest/\n", | |
"out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
"model:\n", | |
" checkpoint: exp/oniku_kurumi/timelag_mdn/latest.pth\n", | |
" model_yaml: exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:00<00:00, 5.46it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-generate model.checkpoint=exp/oniku_kurumi/duration_vp_mdn/latest.pth model.model_yaml=exp/oniku_kurumi/duration_vp_mdn/model.yaml out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib in_dir=dump/oniku_kurumi/norm/dev/in_duration/ out_dir=exp/oniku_kurumi/duration_vp_mdn/predicted/dev/latest/\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:15:04,143\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/norm/dev/in_duration/\n", | |
"out_dir: exp/oniku_kurumi/duration_vp_mdn/predicted/dev/latest/\n", | |
"out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
"model:\n", | |
" checkpoint: exp/oniku_kurumi/duration_vp_mdn/latest.pth\n", | |
" model_yaml: exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:03<00:00, 1.25s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-generate model.checkpoint=exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth model.model_yaml=exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib in_dir=dump/oniku_kurumi/norm/dev/in_acoustic/ out_dir=exp/oniku_kurumi/acoustic_resf0convlstm/predicted/dev/latest/\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:15:22,092\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/norm/dev/in_acoustic/\n", | |
"out_dir: exp/oniku_kurumi/acoustic_resf0convlstm/predicted/dev/latest/\n", | |
"out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
"model:\n", | |
" checkpoint: exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth\n", | |
" model_yaml: exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
"\u001b[0m\n", | |
"100% 3/3 [00:01<00:00, 2.59it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-generate model.checkpoint=exp/oniku_kurumi/timelag_mdn/latest.pth model.model_yaml=exp/oniku_kurumi/timelag_mdn/model.yaml out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib in_dir=dump/oniku_kurumi/norm/eval/in_timelag/ out_dir=exp/oniku_kurumi/timelag_mdn/predicted/eval/latest/\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:15:39,087\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/norm/eval/in_timelag/\n", | |
"out_dir: exp/oniku_kurumi/timelag_mdn/predicted/eval/latest/\n", | |
"out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
"model:\n", | |
" checkpoint: exp/oniku_kurumi/timelag_mdn/latest.pth\n", | |
" model_yaml: exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 16.24it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-generate model.checkpoint=exp/oniku_kurumi/duration_vp_mdn/latest.pth model.model_yaml=exp/oniku_kurumi/duration_vp_mdn/model.yaml out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib in_dir=dump/oniku_kurumi/norm/eval/in_duration/ out_dir=exp/oniku_kurumi/duration_vp_mdn/predicted/eval/latest/\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:15:53,411\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/norm/eval/in_duration/\n", | |
"out_dir: exp/oniku_kurumi/duration_vp_mdn/predicted/eval/latest/\n", | |
"out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
"model:\n", | |
" checkpoint: exp/oniku_kurumi/duration_vp_mdn/latest.pth\n", | |
" model_yaml: exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:00<00:00, 6.05it/s]\n", | |
"++ set +x\n", | |
"++ nnsvs-generate model.checkpoint=exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth model.model_yaml=exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib in_dir=dump/oniku_kurumi/norm/eval/in_acoustic/ out_dir=exp/oniku_kurumi/acoustic_resf0convlstm/predicted/eval/latest/\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:16:08,585\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - verbose: 100\n", | |
"in_dir: dump/oniku_kurumi/norm/eval/in_acoustic/\n", | |
"out_dir: exp/oniku_kurumi/acoustic_resf0convlstm/predicted/eval/latest/\n", | |
"out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
"model:\n", | |
" checkpoint: exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth\n", | |
" model_yaml: exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
"\u001b[0m\n", | |
"100% 6/6 [00:01<00:00, 4.06it/s]\n", | |
"++ set +x\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd $RECIPE_ROOT && bash run.sh --stage 5 --stop-stage 5" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true | |
}, | |
"id": "_GuQN0zEGXjA", | |
"outputId": "e4cfbb41-5514-45e5-bf4f-947c2446e48b" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"stage 6: Synthesis waveforms\n", | |
"++ nnsvs-synthesis sample_rate=48000 question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=defaults acoustic.relative_f0=false timelag.checkpoint=exp/oniku_kurumi/timelag_mdn/latest.pth timelag.in_scaler_path=dump/oniku_kurumi/norm/in_timelag_scaler.joblib timelag.out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib timelag.model_yaml=exp/oniku_kurumi/timelag_mdn/model.yaml duration.checkpoint=exp/oniku_kurumi/duration_vp_mdn/latest.pth duration.in_scaler_path=dump/oniku_kurumi/norm/in_duration_scaler.joblib duration.out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib duration.model_yaml=exp/oniku_kurumi/duration_vp_mdn/model.yaml acoustic.checkpoint=exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth acoustic.in_scaler_path=dump/oniku_kurumi/norm/in_acoustic_scaler.joblib acoustic.out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib acoustic.model_yaml=exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml utt_list=./data/list/dev.list in_dir=data/acoustic/label_phone_score/ out_dir=exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/dev/latest/label_phone_score ground_truth_duration=false\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:16:24,305\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/timelag_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_timelag_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
" allowed_range:\n", | |
" - -20\n", | |
" - 20\n", | |
" allowed_range_rest:\n", | |
" - -40\n", | |
" - 40\n", | |
" force_clip_input_features: true\n", | |
"duration:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/duration_vp_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_duration_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
" force_clip_input_features: true\n", | |
"acoustic:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_acoustic_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
" subphone_features: coarse_coding\n", | |
" relative_f0: false\n", | |
" post_filter: true\n", | |
" force_clip_input_features: true\n", | |
"verbose: 100\n", | |
"device: cuda\n", | |
"utt_list: ./data/list/dev.list\n", | |
"in_dir: data/acoustic/label_phone_score/\n", | |
"out_dir: exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/dev/latest/label_phone_score\n", | |
"label_path: null\n", | |
"out_wav_path: null\n", | |
"sample_rate: 48000\n", | |
"frame_period: 5\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"ground_truth_duration: false\n", | |
"vibrato_scale: 1.0\n", | |
"gain_normalize: false\n", | |
"stats_dir: null\n", | |
"model_dir: null\n", | |
"model_checkpoint: latest.pth\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:16:26,695\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Processes 3 utterances...\u001b[0m\n", | |
"100% 3/3 [00:12<00:00, 4.10s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-synthesis sample_rate=48000 question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=defaults acoustic.relative_f0=false timelag.checkpoint=exp/oniku_kurumi/timelag_mdn/latest.pth timelag.in_scaler_path=dump/oniku_kurumi/norm/in_timelag_scaler.joblib timelag.out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib timelag.model_yaml=exp/oniku_kurumi/timelag_mdn/model.yaml duration.checkpoint=exp/oniku_kurumi/duration_vp_mdn/latest.pth duration.in_scaler_path=dump/oniku_kurumi/norm/in_duration_scaler.joblib duration.out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib duration.model_yaml=exp/oniku_kurumi/duration_vp_mdn/model.yaml acoustic.checkpoint=exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth acoustic.in_scaler_path=dump/oniku_kurumi/norm/in_acoustic_scaler.joblib acoustic.out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib acoustic.model_yaml=exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml utt_list=./data/list/dev.list in_dir=data/acoustic/label_phone_align/ out_dir=exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/dev/latest/label_phone_align ground_truth_duration=true\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:16:50,546\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/timelag_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_timelag_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
" allowed_range:\n", | |
" - -20\n", | |
" - 20\n", | |
" allowed_range_rest:\n", | |
" - -40\n", | |
" - 40\n", | |
" force_clip_input_features: true\n", | |
"duration:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/duration_vp_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_duration_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
" force_clip_input_features: true\n", | |
"acoustic:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_acoustic_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
" subphone_features: coarse_coding\n", | |
" relative_f0: false\n", | |
" post_filter: true\n", | |
" force_clip_input_features: true\n", | |
"verbose: 100\n", | |
"device: cuda\n", | |
"utt_list: ./data/list/dev.list\n", | |
"in_dir: data/acoustic/label_phone_align/\n", | |
"out_dir: exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/dev/latest/label_phone_align\n", | |
"label_path: null\n", | |
"out_wav_path: null\n", | |
"sample_rate: 48000\n", | |
"frame_period: 5\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"ground_truth_duration: true\n", | |
"vibrato_scale: 1.0\n", | |
"gain_normalize: false\n", | |
"stats_dir: null\n", | |
"model_dir: null\n", | |
"model_checkpoint: latest.pth\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:16:52,934\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Processes 3 utterances...\u001b[0m\n", | |
"100% 3/3 [00:12<00:00, 4.10s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-synthesis sample_rate=48000 question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=defaults acoustic.relative_f0=false timelag.checkpoint=exp/oniku_kurumi/timelag_mdn/latest.pth timelag.in_scaler_path=dump/oniku_kurumi/norm/in_timelag_scaler.joblib timelag.out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib timelag.model_yaml=exp/oniku_kurumi/timelag_mdn/model.yaml duration.checkpoint=exp/oniku_kurumi/duration_vp_mdn/latest.pth duration.in_scaler_path=dump/oniku_kurumi/norm/in_duration_scaler.joblib duration.out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib duration.model_yaml=exp/oniku_kurumi/duration_vp_mdn/model.yaml acoustic.checkpoint=exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth acoustic.in_scaler_path=dump/oniku_kurumi/norm/in_acoustic_scaler.joblib acoustic.out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib acoustic.model_yaml=exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml utt_list=./data/list/eval.list in_dir=data/acoustic/label_phone_score/ out_dir=exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/eval/latest/label_phone_score ground_truth_duration=false\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:17:16,877\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/timelag_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_timelag_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
" allowed_range:\n", | |
" - -20\n", | |
" - 20\n", | |
" allowed_range_rest:\n", | |
" - -40\n", | |
" - 40\n", | |
" force_clip_input_features: true\n", | |
"duration:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/duration_vp_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_duration_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
" force_clip_input_features: true\n", | |
"acoustic:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_acoustic_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
" subphone_features: coarse_coding\n", | |
" relative_f0: false\n", | |
" post_filter: true\n", | |
" force_clip_input_features: true\n", | |
"verbose: 100\n", | |
"device: cuda\n", | |
"utt_list: ./data/list/eval.list\n", | |
"in_dir: data/acoustic/label_phone_score/\n", | |
"out_dir: exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/eval/latest/label_phone_score\n", | |
"label_path: null\n", | |
"out_wav_path: null\n", | |
"sample_rate: 48000\n", | |
"frame_period: 5\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"ground_truth_duration: false\n", | |
"vibrato_scale: 1.0\n", | |
"gain_normalize: false\n", | |
"stats_dir: null\n", | |
"model_dir: null\n", | |
"model_checkpoint: latest.pth\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:17:19,317\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Processes 6 utterances...\u001b[0m\n", | |
"100% 6/6 [00:23<00:00, 3.88s/it]\n", | |
"++ set +x\n", | |
"++ nnsvs-synthesis sample_rate=48000 question_path=../../_common/hed/jp_dev.hed timelag=defaults duration=defaults acoustic=defaults acoustic.relative_f0=false timelag.checkpoint=exp/oniku_kurumi/timelag_mdn/latest.pth timelag.in_scaler_path=dump/oniku_kurumi/norm/in_timelag_scaler.joblib timelag.out_scaler_path=dump/oniku_kurumi/norm/out_timelag_scaler.joblib timelag.model_yaml=exp/oniku_kurumi/timelag_mdn/model.yaml duration.checkpoint=exp/oniku_kurumi/duration_vp_mdn/latest.pth duration.in_scaler_path=dump/oniku_kurumi/norm/in_duration_scaler.joblib duration.out_scaler_path=dump/oniku_kurumi/norm/out_duration_scaler.joblib duration.model_yaml=exp/oniku_kurumi/duration_vp_mdn/model.yaml acoustic.checkpoint=exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth acoustic.in_scaler_path=dump/oniku_kurumi/norm/in_acoustic_scaler.joblib acoustic.out_scaler_path=dump/oniku_kurumi/norm/out_acoustic_scaler.joblib acoustic.model_yaml=exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml utt_list=./data/list/eval.list in_dir=data/acoustic/label_phone_align/ out_dir=exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/eval/latest/label_phone_align ground_truth_duration=true\n", | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:17:54,285\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/timelag_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_timelag_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
" allowed_range:\n", | |
" - -20\n", | |
" - 20\n", | |
" allowed_range_rest:\n", | |
" - -40\n", | |
" - 40\n", | |
" force_clip_input_features: true\n", | |
"duration:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/duration_vp_mdn/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_duration_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
" force_clip_input_features: true\n", | |
"acoustic:\n", | |
" question_path: null\n", | |
" checkpoint: exp/oniku_kurumi/acoustic_resf0convlstm/latest.pth\n", | |
" in_scaler_path: dump/oniku_kurumi/norm/in_acoustic_scaler.joblib\n", | |
" out_scaler_path: dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
" model_yaml: exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
" subphone_features: coarse_coding\n", | |
" relative_f0: false\n", | |
" post_filter: true\n", | |
" force_clip_input_features: true\n", | |
"verbose: 100\n", | |
"device: cuda\n", | |
"utt_list: ./data/list/eval.list\n", | |
"in_dir: data/acoustic/label_phone_align/\n", | |
"out_dir: exp/oniku_kurumi/synthesis_timelag_mdn_duration_vp_mdn_acoustic_resf0convlstm/eval/latest/label_phone_align\n", | |
"label_path: null\n", | |
"out_wav_path: null\n", | |
"sample_rate: 48000\n", | |
"frame_period: 5\n", | |
"question_path: ../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"ground_truth_duration: true\n", | |
"vibrato_scale: 1.0\n", | |
"gain_normalize: false\n", | |
"stats_dir: null\n", | |
"model_dir: null\n", | |
"model_checkpoint: latest.pth\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:17:56,687\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Processes 6 utterances...\u001b[0m\n", | |
"100% 6/6 [00:24<00:00, 4.08s/it]\n", | |
"++ set +x\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd $RECIPE_ROOT && bash run.sh --stage 6 --stop-stage 6" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true | |
}, | |
"id": "YQMmSBWEBZ9I", | |
"outputId": "5a236610-b1fd-43f8-c2e3-ca6303263d71" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"tar: Removing leading `/' from member names\n" | |
] | |
} | |
], | |
"source": [ | |
"! tar zcf /content/gdrive/nnsvs_dev20220717_oniku_kurumi_utagoe_db_dev_latest_trained_data_20220717.tgz $RECIPE_ROOT/dump $RECIPE_ROOT/data $RECIPE_ROOT/exp $RECIPE_ROOT/outputs" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "WX2_fBwPATwg" | |
}, | |
"outputs": [], | |
"source": [ | |
"! tar zxf /content/gdrive/nnsvs_dev20220717_oniku_kurumi_utagoe_db_dev_latest_trained_data_20220717.tgz -C /" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true | |
}, | |
"id": "mhbd7HBHpeG6", | |
"outputId": "ab8ed212-0683-4645-f5c3-e6b1a4094643" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"<re.Match object; span=(0, 61), match='[2022-05-11 14:43:07,288][nnsvs][INFO] - ResSkipF>\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"{'model_name': 'ResSkipF0FFConvLSTM', 'training_type': 'acoustic_resf0convlstm', 'log': dataset ... loss\n", | |
"0 train_no_dev ... 0.901342\n", | |
"1 dev ... 0.882815\n", | |
"2 train_no_dev ... 0.825112\n", | |
"3 dev ... 0.873575\n", | |
"4 train_no_dev ... 0.815909\n", | |
".. ... ... ...\n", | |
"95 dev ... 0.813792\n", | |
"96 train_no_dev ... 0.602489\n", | |
"97 dev ... 0.822459\n", | |
"98 train_no_dev ... 0.598885\n", | |
"99 dev ... 0.825190\n", | |
"\n", | |
"[100 rows x 3 columns]}\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"<re.Match object; span=(0, 45), match='[2022-05-11 14:40:05,602][nnsvs][INFO] - MDN('>\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"{'model_name': 'MDN', 'training_type': 'timelag_mdn', 'log': dataset ... loss\n", | |
"0 train_no_dev ... 1.305376\n", | |
"1 dev ... 1.386335\n", | |
"2 train_no_dev ... 1.131707\n", | |
"3 dev ... 1.266746\n", | |
"4 train_no_dev ... 1.091684\n", | |
".. ... ... ...\n", | |
"95 dev ... 1.313723\n", | |
"96 train_no_dev ... 0.932576\n", | |
"97 dev ... 1.281018\n", | |
"98 train_no_dev ... 0.931488\n", | |
"99 dev ... 1.308918\n", | |
"\n", | |
"[100 rows x 3 columns]}\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"<re.Match object; span=(0, 45), match='[2022-05-11 14:41:34,901][nnsvs][INFO] - MDN('>\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"None\n", | |
"{'model_name': 'MDN', 'training_type': 'duration_mdn', 'log': dataset ... loss\n", | |
"0 train_no_dev ... 0.498712\n", | |
"1 dev ... 0.200057\n", | |
"2 train_no_dev ... -0.084001\n", | |
"3 dev ... -0.417816\n", | |
"4 train_no_dev ... -0.327031\n", | |
".. ... ... ...\n", | |
"95 dev ... -1.022281\n", | |
"96 train_no_dev ... -1.707457\n", | |
"97 dev ... -0.945342\n", | |
"98 train_no_dev ... -1.708459\n", | |
"99 dev ... -0.831344\n", | |
"\n", | |
"[100 rows x 3 columns]}\n" | |
] | |
} | |
], | |
"source": [ | |
"! cd $RECIPE_ROOT && python /content/nnsvs/utils/make_graph.py ." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true | |
}, | |
"id": "9fxtGe19NSRD" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pysinsy\n", | |
"from os.path import basename, join, splitext\n", | |
"from glob import glob\n", | |
"sample_dir=\"/content/gdrive/sample_score_20220326\"\n", | |
"\n", | |
"song_list_file=join(sample_dir, \"song_list.txt\")\n", | |
"\n", | |
"sinsy = pysinsy.sinsy.Sinsy()\n", | |
"# Set language to Japanese\n", | |
"assert sinsy.setLanguages(\"j\", join(RECIPE_ROOT, \"../../_common/no2/dic\"))\n", | |
"\n", | |
"song_list = []\n", | |
"musicxml_files = glob(join(sample_dir, \"*hello*.*xml\"))\n", | |
"for musicxml_file in musicxml_files:\n", | |
" assert sinsy.loadScoreFromMusicXML(musicxml_file)\n", | |
" is_mono = False\n", | |
" labels = sinsy.createLabelData(is_mono, 1, 1).getData()\n", | |
" song_name = splitext(basename(musicxml_file))[0]\n", | |
" song_list.append(song_name)\n", | |
" lab_file_path = join(sample_dir, song_name + \".lab\")\n", | |
" with open(lab_file_path, \"w\") as f:\n", | |
" f.write(\"\\n\".join(labels))\n", | |
"\n", | |
" sinsy.clearScore()\n", | |
"\n", | |
"with open(song_list_file, \"w\") as f:\n", | |
" f.write(\"\\n\".join(song_list))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"colab": { | |
"background_save": true | |
}, | |
"id": "0fQizP4eOe3b", | |
"outputId": "408477df-c730-4232-a658-9256ea710d32" | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/resampy/interpn.py:114: NumbaWarning: The TBB threading layer requires TBB version 2019.5 or later i.e., TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 9107. The TBB threading layer is disabled.\n", | |
" _resample_loop_p(x, t_out, interp_win, interp_delta, num_table, scale, y)\n", | |
"[\u001b[36m2022-07-17 15:25:58,464\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - timelag:\n", | |
" question_path: null\n", | |
" checkpoint: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/best_loss.pth\n", | |
" in_scaler_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/norm/in_timelag_scaler.joblib\n", | |
" out_scaler_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/norm/out_timelag_scaler.joblib\n", | |
" model_yaml: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/timelag_mdn/model.yaml\n", | |
" allowed_range:\n", | |
" - -20\n", | |
" - 20\n", | |
" allowed_range_rest:\n", | |
" - -40\n", | |
" - 40\n", | |
" force_clip_input_features: true\n", | |
"duration:\n", | |
" question_path: null\n", | |
" checkpoint: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/best_loss.pth\n", | |
" in_scaler_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/norm/in_duration_scaler.joblib\n", | |
" out_scaler_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/norm/out_duration_scaler.joblib\n", | |
" model_yaml: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/duration_vp_mdn/model.yaml\n", | |
" force_clip_input_features: true\n", | |
"acoustic:\n", | |
" question_path: null\n", | |
" checkpoint: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/best_loss.pth\n", | |
" in_scaler_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/norm/in_acoustic_scaler.joblib\n", | |
" out_scaler_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/dump/oniku_kurumi/norm/out_acoustic_scaler.joblib\n", | |
" model_yaml: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/acoustic_resf0convlstm/model.yaml\n", | |
" subphone_features: coarse_coding\n", | |
" relative_f0: false\n", | |
" post_filter: true\n", | |
" force_clip_input_features: true\n", | |
"verbose: 100\n", | |
"device: cuda\n", | |
"utt_list: /content/gdrive/sample_score_20220326/song_list.txt\n", | |
"in_dir: /content/gdrive/sample_score_20220326\n", | |
"out_dir: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/exp/oniku_kurumi/synthesis/sample\n", | |
"label_path: null\n", | |
"out_wav_path: null\n", | |
"sample_rate: 48000\n", | |
"frame_period: 5\n", | |
"question_path: /content/nnsvs/recipes/oniku_kurumi_utagoe_db/dev-latest/../../_common/hed/jp_dev.hed\n", | |
"log_f0_conditioning: true\n", | |
"ground_truth_duration: false\n", | |
"vibrato_scale: 1.0\n", | |
"gain_normalize: false\n", | |
"stats_dir: null\n", | |
"model_dir: null\n", | |
"model_checkpoint: latest.pth\n", | |
"\u001b[0m\n", | |
"[\u001b[36m2022-07-17 15:26:07,299\u001b[0m][\u001b[34mnnsvs\u001b[0m][\u001b[32mINFO\u001b[0m] - Processes 0 utterances...\u001b[0m\n", | |
"0it [00:00, ?it/s]\n" | |
] | |
} | |
], | |
"source": [ | |
"import yaml\n", | |
"with open(join(RECIPE_ROOT, 'config.yaml'), 'r') as yml:\n", | |
" config = yaml.load(yml, Loader=yaml.FullLoader)\n", | |
"\n", | |
"exp_dir=join(RECIPE_ROOT, \"exp\", config[\"spk\"])\n", | |
"dump_dir=join(RECIPE_ROOT, \"dump\")\n", | |
"dump_org_dir=join(dump_dir, config[\"spk\"], \"org\")\n", | |
"dump_norm_dir=join(dump_dir, config[\"spk\"], \"norm\")\n", | |
"out_dir=join(exp_dir, \"synthesis/sample\")\n", | |
"question_path=join(RECIPE_ROOT, config[\"question_path\"])\n", | |
"timelag_model=config[\"timelag_model\"]\n", | |
"duration_model=config[\"duration_model\"]\n", | |
"acoustic_model=config[\"acoustic_model\"]\n", | |
"\n", | |
"! nnsvs-synthesis question_path=$question_path \\\n", | |
"timelag=defaults duration=defaults acoustic=defaults \\\n", | |
"acoustic.relative_f0=false \\\n", | |
"timelag.checkpoint=$exp_dir/$timelag_model/best_loss.pth \\\n", | |
"timelag.in_scaler_path=$dump_norm_dir/in_timelag_scaler.joblib \\\n", | |
"timelag.out_scaler_path=$dump_norm_dir/out_timelag_scaler.joblib \\\n", | |
"timelag.model_yaml=$exp_dir/$timelag_model/model.yaml \\\n", | |
"duration.checkpoint=$exp_dir/$duration_model/best_loss.pth \\\n", | |
"duration.in_scaler_path=$dump_norm_dir/in_duration_scaler.joblib \\\n", | |
"duration.out_scaler_path=$dump_norm_dir/out_duration_scaler.joblib \\\n", | |
"duration.model_yaml=$exp_dir/$duration_model/model.yaml \\\n", | |
"acoustic.checkpoint=$exp_dir/$acoustic_model/best_loss.pth \\\n", | |
"acoustic.in_scaler_path=$dump_norm_dir/in_acoustic_scaler.joblib \\\n", | |
"acoustic.out_scaler_path=$dump_norm_dir/out_acoustic_scaler.joblib \\\n", | |
"acoustic.model_yaml=$exp_dir/$acoustic_model/model.yaml \\\n", | |
"utt_list=$song_list_file \\\n", | |
"in_dir=$sample_dir \\\n", | |
"out_dir=$out_dir \\\n", | |
"ground_truth_duration=false" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "NWBiFS-Fg7CH" | |
}, | |
"outputs": [], | |
"source": [ | |
"DESTDIR=\"/content/gdrive/nnsvs_dev20220717_oniku_kurumi_utagoe_db_dev_latest_trained_data_20220717\"\n", | |
"! mkdir -p $DESTDIR" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "9w05y0e24_54" | |
}, | |
"outputs": [], | |
"source": [ | |
"! cp $out_dir/*.wav $DESTDIR" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "IEj_agixAfax" | |
}, | |
"outputs": [], | |
"source": [ | |
"! cp $RECIPE_ROOT/*.png $DESTDIR" | |
] | |
} | |
], | |
"metadata": { | |
"accelerator": "GPU", | |
"colab": { | |
"collapsed_sections": [], | |
"name": "nnsvs_dev20220717_oniku_kurumi_utagoe_db_dev_latest_training_20220717", | |
"provenance": [], | |
"mount_file_id": "12HbEBcuG8pRRDY0w9QECR16MVyqlitsN", | |
"authorship_tag": "ABX9TyPrMNZ+GhpEdXKI3V+B4xeR", | |
"include_colab_link": true | |
}, | |
"gpuClass": "standard", | |
"kernelspec": { | |
"display_name": "Python 3", | |
"name": "python3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment