Skip to content

Instantly share code, notes, and snippets.

@taruma
Created August 5, 2019 04:41
Show Gist options
  • Save taruma/d9ee843e8553477f5a0ad972404b1ca7 to your computer and use it in GitHub Desktop.
Save taruma/d9ee843e8553477f5a0ad972404b1ca7 to your computer and use it in GitHub Desktop.
taruma_PI_126907.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "taruma_PI_126907.ipynb",
"version": "0.3.2",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/taruma/d9ee843e8553477f5a0ad972404b1ca7/taruma_pi_126907.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8x0AtGCVE-lb",
"colab_type": "text"
},
"source": [
"berdasarkan: https://t.me/pythonID/126907"
]
},
{
"cell_type": "code",
"metadata": {
"id": "w7CteKIxD2DY",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
},
"outputId": "0c4ced7b-3e31-4e11-9c24-b514d5f8c922"
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"columns_name = 'puji alam sayang maha nama tuhan semesta murah'.split()\n",
"X = pd.DataFrame(\n",
" columns=columns_name,\n",
" data=np.random.rand(100, len(columns_name))\n",
")\n",
"\n",
"X.head()"
],
"execution_count": 11,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>puji</th>\n",
" <th>alam</th>\n",
" <th>sayang</th>\n",
" <th>maha</th>\n",
" <th>nama</th>\n",
" <th>tuhan</th>\n",
" <th>semesta</th>\n",
" <th>murah</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.841253</td>\n",
" <td>0.200102</td>\n",
" <td>0.494680</td>\n",
" <td>0.128288</td>\n",
" <td>0.814720</td>\n",
" <td>0.658413</td>\n",
" <td>0.135724</td>\n",
" <td>0.931693</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.116108</td>\n",
" <td>0.145618</td>\n",
" <td>0.925706</td>\n",
" <td>0.479615</td>\n",
" <td>0.978343</td>\n",
" <td>0.055701</td>\n",
" <td>0.838612</td>\n",
" <td>0.923255</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.999052</td>\n",
" <td>0.267923</td>\n",
" <td>0.348844</td>\n",
" <td>0.609648</td>\n",
" <td>0.388583</td>\n",
" <td>0.978295</td>\n",
" <td>0.084873</td>\n",
" <td>0.369663</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.919730</td>\n",
" <td>0.161474</td>\n",
" <td>0.135100</td>\n",
" <td>0.995756</td>\n",
" <td>0.825695</td>\n",
" <td>0.436864</td>\n",
" <td>0.737513</td>\n",
" <td>0.272068</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.669651</td>\n",
" <td>0.591095</td>\n",
" <td>0.171624</td>\n",
" <td>0.917126</td>\n",
" <td>0.764302</td>\n",
" <td>0.686185</td>\n",
" <td>0.486569</td>\n",
" <td>0.255821</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" puji alam sayang ... tuhan semesta murah\n",
"0 0.841253 0.200102 0.494680 ... 0.658413 0.135724 0.931693\n",
"1 0.116108 0.145618 0.925706 ... 0.055701 0.838612 0.923255\n",
"2 0.999052 0.267923 0.348844 ... 0.978295 0.084873 0.369663\n",
"3 0.919730 0.161474 0.135100 ... 0.436864 0.737513 0.272068\n",
"4 0.669651 0.591095 0.171624 ... 0.686185 0.486569 0.255821\n",
"\n",
"[5 rows x 8 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "FQp2WKoyD4BR",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 884
},
"outputId": "198f13fa-d728-4a3e-c7b4-7579305bc06c"
},
"source": [
"from scipy import sparse\n",
"matrix_sparse = sparse.csr_matrix(X.values)\n",
"print(matrix_sparse)"
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
" (0, 0)\t0.4152583895652301\n",
" (0, 1)\t0.483934313883452\n",
" (0, 2)\t0.629866878814283\n",
" (0, 3)\t0.6718100601516879\n",
" (0, 4)\t0.7922897726821555\n",
" (0, 5)\t0.17373046813031368\n",
" (0, 6)\t0.5913104644196245\n",
" (0, 7)\t0.9794258267599093\n",
" (1, 0)\t0.6298729378859312\n",
" (1, 1)\t0.7018833833528486\n",
" (1, 2)\t0.8597220515001217\n",
" (1, 3)\t0.5917449218594172\n",
" (1, 4)\t0.4399350429776686\n",
" (1, 5)\t0.8982016406327463\n",
" (1, 6)\t0.5511021490333579\n",
" (1, 7)\t0.19016069521900203\n",
" (2, 0)\t0.9544452178004732\n",
" (2, 1)\t0.9146469688761368\n",
" (2, 2)\t0.9166962483876098\n",
" (2, 3)\t0.8633954466855117\n",
" (2, 4)\t0.5124110651801803\n",
" (2, 5)\t0.7683833769452809\n",
" (2, 6)\t0.5643979727509826\n",
" (2, 7)\t0.29945883357827086\n",
" (3, 0)\t0.8383820779782111\n",
" :\t:\n",
" (96, 7)\t0.2668444220767342\n",
" (97, 0)\t0.9490211834203077\n",
" (97, 1)\t0.3988238426771983\n",
" (97, 2)\t0.5989677188151593\n",
" (97, 3)\t0.28143920687125246\n",
" (97, 4)\t0.3014851114175028\n",
" (97, 5)\t0.8839194551706707\n",
" (97, 6)\t0.9201167289874009\n",
" (97, 7)\t0.7383299615850075\n",
" (98, 0)\t0.4905722582840186\n",
" (98, 1)\t0.7514363141452598\n",
" (98, 2)\t0.4398341566128843\n",
" (98, 3)\t0.8964035281237029\n",
" (98, 4)\t0.5021449652649039\n",
" (98, 5)\t0.5689631120134958\n",
" (98, 6)\t0.8695199103376536\n",
" (98, 7)\t0.48533512977763205\n",
" (99, 0)\t0.16408114559593467\n",
" (99, 1)\t0.9995355769075824\n",
" (99, 2)\t0.724864696924347\n",
" (99, 3)\t0.7549029908207381\n",
" (99, 4)\t0.6572112957920095\n",
" (99, 5)\t0.8788837911771098\n",
" (99, 6)\t0.2757142180438097\n",
" (99, 7)\t0.9215395254053284\n"
],
"name": "stdout"
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment