Created
August 15, 2020 07:45
-
-
Save tavurth/dea2dfbd448e265cb97e3123305a2132 to your computer and use it in GitHub Desktop.
Zero approach in python pandas
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"plt.style.use(\"dark_background\")\n", | |
"\n", | |
"count = 1000\n", | |
"df = pd.DataFrame({\n", | |
" \"zero_approach\": np.concatenate((\n", | |
" # Approach to zero from left side\n", | |
" np.arange(-count, 0),\n", | |
"\n", | |
" # Positive and negative infinity\n", | |
" [-0.0, +0.0],\n", | |
" \n", | |
" # Approach to zero from right side\n", | |
" np.arange(0, count)\n", | |
" )) / count\n", | |
"})\n", | |
"\n", | |
"df.zero_approach = 1.0 / df.zero_approach\n", | |
"\n", | |
"df.plot()\n", | |
"\n", | |
"print(\"Min value is\", df.zero_approach.min())\n", | |
"print(\"Max value is\", df.zero_approach.max())" | |
], | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Min value is -inf\n", | |
"Max value is inf\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
], | |
"image/png": [ | |
"iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAo90lEQVR4nO3dfVRU17038C8zgK9BiCROnEEg3mEVbXJBL3ifJ5o2VUSSNKhJLKY3EJOFJpXbutI8kZLcRW+yro2uuAxtEpo7VQPrUYmpWlmNNqDRNo834qgjSBCZQVBm5CUEJCpBmJn9/IEcRUABZ89w9PtZ66yZ2bPPOT/OnHN+nL3Pix8AASIiIgAaXwdAREQjB5MCEREpmBSIiEjBpEBERAomBSIiUvj7OoDb1dTUhLNnz/o6DCIiVQkPD8f999/fp1z1SeHs2bOIi4vzdRhERKpiNpv7LWfzERERKZgUiIhIwaRAREQK1fcpEJF3hYSEYNWqVYiIiICfn5+vw6GbEEKgtrYW7733HlpbWwc1DpMCEQ3JqlWrcPToUbz11ltwuVy+DoduQqvV4oknnsCqVauQnZ09qHE80ny0ceNGNDY24uTJk0pZSEgIioqKUFVVhaKiIgQHByvf5eTkwGq1orS0FLGxsUp5amoqqqqqUFVVhdTUVE+ERkQeFhERgT179jAhqIDL5cJnn32GiIiIQY/jkaTw8ccfY8GCBb3KMjMzsX//fkRFRWH//v3IzMwEACQlJcFoNMJoNGL58uXIzc0F0J1EsrOzMWvWLMTHxyM7O7tXIiGikcHPz48JQUVcLteQmvk8khS+/PJLtLS09CpLTk5GXl4eACAvLw8LFy5UyvPz8wEAJSUlCA4Ohk6nQ2JiIoqLi9Ha2ooLFy6guLi4T6IhUouJYQYsyFiOYN0kX4dCNCTSzj6aNGkSGhoaAAANDQ2YNKl749Dr9airq1Pq2e126PX6Acv7k56eDrPZDLPZjNDQUFl/AtGwTTRMRsKKZUwKpDpeOyVVCM89y8dkMiEuLg5xcXFobm722HSJPKd7fefJOSRLTU0NJk6c6PHpSksKjY2N0Ol0AACdToempiYAgMPhQFhYmFLPYDDA4XAMWE6kRsJ99Z8gZoURQ6Px/WVZWq3W1yHckrRTUgsLC5GWloa1a9ciLS0Nu3fvVsozMjJQUFCAWbNmoa2tDQ0NDfj888+xZs0apXN5/vz5+M1vfiMrPCKpeo6M/UbAjkim5NdXYfIPjB6d5vlKK3ave2/A71esWIGXX34ZADBhwgTU1tbid7/7Hf7zP/8To0aNQnV1NZYtW4bLly+jpqYGn3zyCRISErBu3Tr4+fkhKysLfn5++Oyzz5QTYPrz4YcfIi4uDmPGjMGf//xn/Pa3vwXQ/R/69u3bkZSUhO+//x7PPfccqqursXnzZnR0dOBf/uVfEBQUhFdffRWfffYZ0tLSsHjxYowfPx5arRaLFi3Cpk2b8OCDD6K9vR3Lly/HyZMnERcXh5ycHIwePRrff/89li1bhqqqKmg0GqxduxYLFiyA2+2GyWTC+++/DwD493//d/z0pz9FQEAAnn32WZw+ffq2l79HksLWrVvx4x//GKGhoairq0N2djbeeecdbN++HS+99BLOnj2LJUuWAAD27NmDxx9/HDabDe3t7Vi2bBkAoLW1FW+//bZyk6a33npr0BdbEI00SlLwcRx3oo8++ggfffQR/P398cUXX2DTpk148803MW/ePLS3t+P111/Hq6++irfffhsA8O2332LmzJl44IEHcPjwYcycOROtra0oKipCcnKy8g/rjd544w20trZCo9Fg//79eOihh5TT7tva2vDwww/j+eefx3vvvYef/vSnALpP142Pj8fUqVNx4MAB/NM//RMAYMaMGXj44YfR2tqK3//+97BYLFi0aBEee+wx5OfnIzY2FpWVlZgzZw5cLhfmzp2LNWvW4JlnnsHy5csRERGBmJgYuFwuhISEKDE2Nzdj5syZeOWVV/Daa68hPT39tpevR5LCc88912/5vHnz+i3PyMjot3zz5s3YvHmzJ0Ii8i1xdzQf3ew/etlycnLwxRdfoLW1FdOmTcOhQ4cAAIGBgfjqq6+Uep988gkAIC4uDgcPHlT6Ibds2YJHH310wKSwZMkSLF++HP7+/njggQcwbdo0JSls27ZNed2wYYMyzvbt2yGEgM1mw5kzZ/CDH/wAAJQzKwFg9uzZePrppwEABw4cwMSJE3HPPfdgwoQJyMvLg9FohBACAQEBALr3o3/84x+V04Cv/2d5586dAIBjx45h8eLFw16W1+MVzUQS9JxWwdtAyJGWlobw8HBkZGTgiSeeQHFx8YD/nF6+fHnI04+IiMBrr72GuLg4XLhwAZs3b8bo0aOV768/cWag99d/HkwMb7/9Ng4cOIDFixcjPDwcBw8evOU4V65cAdB9LYK/v2d253d2gyeRjwi3GwCTggwzZszAa6+9hn/7t3+DEAKHDx/GI488gqlTpwIAxo4dC6Oxbz/HkSNH8KMf/QgTJ06ERqPB0qVL8fe//73feQQFBeHy5ctoa2vD/fffj6SkpF7f/+xnP1Nerz8qefbZZ+Hn54cHH3wQDz74YL9t/F9++SV+/vOfAwB+9KMfobm5GRcvXsSECROUk2teeOEFpX5xcTFWrFihdFJf33wkA48UiGRQOpqZFDwtIyMD9957Lw4cOAAAOHr0KF544QVs27YNo0aNAgC8+eabsFqtvcZraGhAZmYmDhw4oHQ0FxYW9juPsrIyWCwWVFZWoq6uTmma6hESEoLS0lJcuXIFS5cuVcrPnTuHI0eOICgoCC+//LLyn/z1fvvb32LTpk0oLS1Fe3s70tLSAADr1q1DXl4e3nzzTXz22WdK/T/96U+IiopCWVkZurq6YDKZ8MEHHwxjyQ2eUPNgNpt9HgMHDjcOETEPi/UnvxJR/yve57F4esjPz/d5DL4campqxMSJE/uUb968WTz99NM+j2+wv9lA+042HxHJ0HOkwOYjUhk2HxFJINCdFO70s4/uBIcPH1aanXo8//zzKC8v77d+ZGRkv+U9p9erHZMCkQTXOpp9HIgEQghotdo75k6p//qv/+rrEKTSarVDus0Qm4+IJLh2mcKdt4nV1tbiiSeeUMUtG+52PQ/Zqa2tHfQ4PFIgkuEOvnjtvffew6pVq/D000+zz2SEu/5xnIPFpEAkgbiDO5pbW1sH/WhHUp8779iWaEToSQo+DoNoiJgUiCQQd3DzEd3ZmBSIJOh5nsKd2HxEdzYmBSIJ7uQ+BbqzMSkQScHmI1InJgUiCa51KTApkLpITQpRUVGwWCzK0NbWhl/96lfIzs6G3W5Xyq+/LW1mZiasVisqKysxf/58meERycOOZlIpqdcpVFVVITY2FkD3Q7MdDgd27dqFZcuWYcOGDVi/fn2v+tHR0UhJScH06dMxefJk7Nu3D1FRUXBfvWUAkVrweQqkVl5rPpo7dy6qq6tx7ty5AeskJyejoKAAnZ2dqK2thc1mQ3x8vLdCJPIYdjSTWnktKaSkpCjPNQW6H5RRWlqKjRs3Ijg4GACg1+tRV1en1LHb7dDr9X2mlZ6eDrPZDLPZjNDQUOmxEw0XkwKpjVeSQkBAAJ566il8+umnAIDc3FxMnToVMTExqK+v79OMdCsmkwlxcXGIi4tTHsJNNJLw4jVSK68khaSkJBw/fhxNTU0AgKamJrjdbgghYDKZlCYih8OBsLAwZTyDwaA8s5RITa41H/k4EKIh8kpSWLp0aa+mI51Op7xftGiR8jCLwsJCpKSkIDAwEBERETAajThy5Ig3QiTyLB4pkEpJv0vq2LFjkZCQgBUrVihl69atQ0xMjHJb157vKioqsH37dlRUVMDpdGLlypU884hUSbnNBZgUSF2kJ4X29vY+ncGpqakD1l+zZg3WrFkjOywiqXoex+mn4fWhpC5cY4lkYJ8CqRSTApEEPPuI1IpJgUiGnpzAPgVSGSYFIgl6bnPBIwVSGyYFIgmudTQzKZC6MCkQScBbZ5NaMSkQycCOZlIpJgUiCZTbXLCjmVSGSYFIAiF6Opp9GwfRUDEpEMlwtfVIwyuaSWW4xhJJwIvXSK2YFIhk4G0uSKWYFIgkUI4U2KlAKsOkQCQBr1MgtWJSIJLg2tlHTAqkLkwKRDII3uaC1El6UqipqUFZWRksFgvMZjMAICQkBEVFRaiqqkJRURGCg4OV+jk5ObBarSgtLUVsbKzs8Iik4MVrpFZeOVJ47LHHEBsbi7i4OABAZmYm9u/fj6ioKOzfvx+ZmZkAgKSkJBiNRhiNRixfvhy5ubneCI/I89inQCrlk+aj5ORk5OXlAQDy8vKwcOFCpTw/Px8AUFJSguDgYOh0Ol+ESHRbeJ0CqZX0pCCEQFFREY4ePYr09HQAwKRJk9DQ0AAAaGhowKRJkwAAer0edXV1yrh2ux16vb7PNNPT02E2m2E2m/s8/5loJOjpaGZOILXxlz2D2bNn4/z587jvvvtQXFyMysrKPnWundM9OCaTCSaTCQCUfgqikUQ5UOBtLkhlpK+x58+fBwB888032LVrF+Lj49HY2Kg0C+l0OjQ1NQEAHA4HwsLClHENBgMcDofsEIk8jxevkUpJTQpjx47F+PHjlffz589HeXk5CgsLkZaWBgBIS0vD7t27AQCFhYVITU0FAMyaNQttbW1KMxORmihnH7H9iFRGavPRpEmTsGvXru4Z+ftj69at+Pzzz2E2m7F9+3a89NJLOHv2LJYsWQIA2LNnDx5//HHYbDa0t7dj2bJlMsMjkkdpP/JtGERDJTUp1NTUICYmpk95S0sL5s2b1+84GRkZMkMi8grlGc08UiCVYS8YkQTCzVNSSZ2YFIhkuNp8pGFSIJVhUiCSgBevkVoxKRBJxD4FUhsmBSKZmBRIZZgUiCRxu1w8UiDVYVIgkkQIwaRAqsOkQCSLAJuPSHWYFIgkEeCRAqkPkwKRLELwQIFUh0mBSBKX0wWNVvrd6Yk8ikmBSBK30wmNv9bXYRANCZMCkSTOri74BwT4OgyiIWFSIJLE5XRCy6RAKsOkQCSJq6sLWn/2KZC6SEsKBoMBX3zxBb7++muUl5fjl7/8JQAgOzsbdrsdFosFFosFSUlJyjiZmZmwWq2orKzE/PnzZYVG5BWuLie0AUwKpC7S1lin04lf//rXsFgsGD9+PI4dO4bi4mIAwIYNG7B+/fpe9aOjo5GSkoLp06dj8uTJ2LdvH6KiouB2u2WFSCSVs6uLzUekOtKOFBoaGmCxWAAAly5dwqlTp6DX6wesn5ycjIKCAnR2dqK2thY2mw3x8fGywiOSzsWOZlIhr/QphIeHIzY2FiUlJQC6H7lZWlqKjRs3Ijg4GACg1+tRV1enjGO32wdMIunp6TCbzTCbzQgNDZUeP9FwsPmI1Eh6Uhg3bhx27NiBVatW4eLFi8jNzcXUqVMRExOD+vr6Ps1Ig2EymRAXF4e4uDg0NzdLiJro9rH5iNRIalLw9/fHjh07sGXLFuzatQsA0NTUBLfbDSEETCaT0kTkcDgQFhamjGswGOBwOGSGRyQVm49IjaQmhY0bN+LUqVPYsGGDUqbT6ZT3ixYtQnl5OQCgsLAQKSkpCAwMREREBIxGI44cOSIzPCKp2HxEaiRtjX3kkUeQmpqKsrIypcM5KysLS5cuRUxMDIQQqK2txYoVKwAAFRUV2L59OyoqKuB0OrFy5UqeeUSqxovXSI2kJYVDhw71e9vgvXv3DjjOmjVrsGbNGlkhEXmV88oVBAQG+joMoiHhFc1EknS0t2PUuLG+DoNoSJgUiCS5cqkdo8aN83UYREPCpEAkScflyxg1dgw0Wt4+m9SDSYFIkiuX2wEAgWPH+DgSosFjUiCSpOPSZQDAmPHjfRwJ0eAxKRBJcrm1FQAwLiTYt4EQDQGTApEkbU3fAACCdff7OBKiwWNSIJLkQmMTAGDC/ff5OBKiwWNSIJLkcssFOLu6MGESjxRIPZgUiCQRQqDVUY/7wsNuXZlohGBSIJLIUVkFw7Qf+DoMokFjUiCS6NzJCtyrfwDBbEIilWBSIJLo64NfAgAeTvyJjyMhGhwmBSKJms/Zcba0HLOXPgt/3jGVVIBJgUiyvX/4CBMNk/H0m/8HfhpucjSycQ0lksxachRFf9yE+EVPYvlH70H/gyhfh0Q0oBH3rMDExETk5ORAq9XiT3/6E9auXevrkIhu2+cfmHChoRFPvroSr36ah3prNU7/TwnqTlagsaYWLfZ6XGlv93WYRPADIHwdRA+NRoOqqiokJCTAbrfDbDZj6dKlOHXq1IDjmM1mxMXFeTFKouEbfc94zHwiEQ/P/wnCH5qOgNGjlO8utbTiUksr2tu+Q3tbGy5f+A4dly6hs6MDXR1X0NVx5br3HXB2dsHldMLtcnW/Oq++upxwOV1wO697dbngdjkh3ALC7YYQ178KCOG++nrdez4O94420L5zRB0pxMfHw2azoaamBgBQUFCA5OTkmyaF4Zqbnoag0IkAui8yuv4Vyst1+XKgOspncZNxblG31yg31Okzzg31BhPbdTPoO/3+p9H777hFbLhhWv1Nb4BlK9xuZafkdrm7d0guN4TbDbcQEC6XsgPr+b779WqZu7uucLnhVnZmLgi3UL5zu1xwdTnh7OqEs7MLzs7uV1dXF7yt4+IlHCrYgUMFO6Dx1+IB41TcNyUM9xomI2TyAxgXPAHjgifgXv1kGKZHY/T4cQgcPdqnz2RQlrEQwNUk4nZ3/xYQuJZcrn4P9PO7Y4D158Ztrb/xB1ifr1+nBl43r407mDq32pbEjf9D3zCN/qbb37/dfer0M60+8+pnWh++uNLj6/GISgp6vR51dXXKZ7vdjlmzZvWpl56ejuXLlwMAQkNDhzWvaY8+gvsiplx7jrTy0vPm2vOl+9RRvvPr9bnXM6lvrNtTBwNN61odDTsjvaYnQTg7O+Hs6kJXxxV0XLqE7y9ewvffXUTHxe73l1pbcaG+Ea3nG/Ct3YGL37bc9rzdThccp6rgOFV1y7paf38EjB6FgNGjETh6NAJGj4J/YCA0/lpo/f2h9feHRtv9vqesv89+Gg38/AA/P83V937dg8bv6mcN4Af4aTTQ+HWXoed7Pw00Gr/uz36aa+Pg2vhA73W6z/p/3bbkhxvL+qkzwLZ2/fbTdxtD78/df3Cf2G6c97Xt+Ibx+9kn9Det3jO/WZ2+ZX64cdp9R+u3sL/kcptGVFIYLJPJBJPJBKD7EGg4/vD8ck+G5BU3rvy9y3peBtjAepXdMO4AG1x/8+w7zo3T6qfuzWLz8+ve+Wi7d1IazbWdVfdO7OrOSNu9w/LTaqDp2SFptdfqXd2B9YzfXf9qmVYLbUAA/AMD4B8YCP+Aq6+B3WXa68oCRo/C6PHjMGb8eNwTGY4xQfdgzD3jMWps72cttzV+g7Nl5Tj1j/9B2b4DyrMTZHE5nXBdckqfD9GISgoOhwNhYdfuE2MwGOBwOHwY0chy4+EvMII6hO5wgWPGIGSyDiGTdbgvfAqm/DAaETEP4+GEx5CcuQr7Tfk4sPn/sh2e7ghipAxarVZUV1eLiIgIERAQIE6cOCGmTZt203HMZrPP4+Zw9w5THpomXnjvHbH+5Fdi2e/XCo1W6/OYOHAYzHCTfafvg7t+SEpKEqdPnxY2m01kZWXdzh/GgYPXhtnPPSvWn/xKLMhY7vNYOHAYzDDQvnNENR8BwN69e7F3715fh0E0JP9v66cIf3g6fpz2HA4V7MDF5m99HRLRsPA0FyIP+Tx3IwJGj8LMJxf4OhSiYWNSIPKQ5rN1qKuoRPSj/9vXoRANG5MCkQedOXYC4Q9Nh9Z/xLXMEg0KkwKRB9WdrEDA6FG4LzLc16EQDQuTApEHNdWeBQDcHzHFx5EQDQ+TApEHfWs/DwAIeUDn40iIhodJgciDOi5eQlfHFQTdN7x7chH5GpMCkYd919yMoPsm+joMomFhUiDysEvftmJcSLCvwyAaFiYFIg/ruHQJo8aNvXVFohGISYHIwzout2P0uHG+DoNoWJgUiDzsyuV2jB7PpEDqxKRA5GEdly73eSgPkVowKRB5WMflyxjFIwVSKSYFIg/r6rgCjUYDbUCAr0MhGjImBSIPc3V1AQBvikeqJCUprFu3DqdOnUJpaSl27tyJCRMmAADCw8PR3t4Oi8UCi8WC3NxcZZwZM2agrKwMVqsVOTk5MsIi8gqX82pS4JECqZCUpFBcXIwf/vCH+Od//mdUVVXhN7/5jfJddXU1YmNjERsbi1deeUUpz83NRXp6OoxGI4xGIxYs4INKSJ2cXU4AgH8AjxRIfaQlBZfLBQA4fPgwDAbDTevrdDoEBQWhpKQEAJCfn4+FCxfKCI1IOvfVpMAjBVIj6X0KL774Yq9nLkdGRuL48eM4ePAgZs+eDQDQ6/Ww2+1KHbvdDr1eP+A009PTYTabYTabERrKG4/RyOJk8xGp2LCPb4uLi6HT9b098BtvvIHCwkIAQFZWFpxOJ7Zs2QIAqK+vx5QpU9DS0oIZM2bgL3/5C6ZPnz7keZtMJphMJgCA2Wwe7p9AJIWLzUekYsNeaxMSEm76fVpaGp588knMnTtXKevs7ERLSwsA4Pjx46iurkZUVBQcDkevJiaDwQCHwzHc0Ih8Sjn7iEcKpEJSmo8SExPx+uuv46mnnsL333+vlIeGhkKj6Z5lZGQkjEYjzpw5g4aGBnz33XeYNWsWACA1NRW7d++WERqRdE4mBVIxKce377//PkaNGoXi4mIA3Z3Nr7zyCh599FG89dZb6Orqgtvtxssvv4zW1lYAwC9+8Qt8/PHHGDNmDPbu3durH4JITdh8RGomZa01Go39lu/cuRM7d+7s97tjx47hoYcekhEOkVex+YjUjFc0E3mYy8lTUkm9mBSIPKznSIHNR6RGTApEHuZydl+4qdFqfRwJ0dAxKRB5mHC7AQB+Gm5epD5ca4k8rCcpaJgUSIW41hJ5mJtHCqRiXGuJPOxa85GfjyMhGjomBSIPE24BAPDTsKOZ1IdJgcjD3O6rZx/xSIFUiEmByMOUIwU/bl6kPlxriTxMiKt9ClpuXqQ+XGuJPMzt4tlHpF5ca4k8rOdIgdcpkBpxrSXysGtnH3HzIvXhWkvkYUrzkR/PPiL1kZYUsrOzYbfbYbFYYLFYkJSUpHyXmZkJq9WKyspKzJ8/XylPTExEZWUlrFYrVq9eLSs0IqmU5iPeEI9USOq9fTds2ID169f3KouOjkZKSgqmT5+OyZMnY9++fYiKigIAfPDBB0hISIDdbofZbEZhYSFOnTolM0QijxM8UiAV8/oN35OTk1FQUIDOzk7U1tbCZrMhPj4eAGCz2VBTUwMAKCgoQHJyMpMCqY5ySir7FEiFpK61GRkZKC0txcaNGxEcHAwA0Ov1qKurU+rY7Xbo9foBy/uTnp4Os9kMs9mM0NBQmX8C0ZC5r3Y0a3idAqnQba21xcXFOHnyZJ/hqaeeQm5uLqZOnYqYmBjU19f3aUa6HSaTCXFxcYiLi0Nzc7PHpkvkEUJcfcPmI1Kf22o+SkhIGFQ9k8mEv/71rwAAh8OBsLAw5TuDwQCHwwEAA5YTqYlQkgKR+kg7vtXpdMr7RYsWoby8HABQWFiIlJQUBAYGIiIiAkajEUeOHIHZbIbRaERERAQCAgKQkpKCwsJCWeERSceOZlIjaR3N69atQ0xMDIQQqK2txYoVKwAAFRUV2L59OyoqKuB0OrFy5UrloSQZGRn4/PPPodVqsWnTJlRUVMgKj0ieniMF5gRSKaHmwWw2+zwGDhyuHzT+WrH+5Fdi3vIXfB4LBw4DDQPtO3l6BJGniauvbD4iFWJSIPIwdjSTmjEpEEnCjmZSIyYFIk+7eqTAlEBqxKRA5GFK8xGPFEiFmBSIJGHzEakRkwIRESmYFIhk4ZECqRCTApEEbrebzUekSkwKRDIIwdOPSJWYFIgkEELAj1mBVIhJgUgGXtRMKsWkQCQL+xRIhZgUiCQQEOxoJlViUiCSQQgeKJAqMSkQSSCEYPMRqZKUpFBQUACLxQKLxYKamhpYLBYAQHh4ONrb25XvcnNzlXFmzJiBsrIyWK1W5OTkyAiLyHvY0UwqJeVxnCkpKcr7d999F21tbcrn6upqxMbG9hknNzcX6enpKCkpwZ49e7BgwQL87W9/kxEekVfwlFRSI+nNR0uWLMG2bdtuWken0yEoKAglJSUAgPz8fCxcuFB2aETSsPmI1EpqUpgzZw4aGxths9mUssjISBw/fhwHDx7E7NmzAQB6vR52u12pY7fbodfrB5xueno6zGYzzGYzQkND5f0BRMMkBM8+InUadvNRcXExdDpdn/I33ngDhYWFAIClS5f2Okqor6/HlClT0NLSghkzZuAvf/kLpk+fPuR5m0wmmEwmAIDZbB7mX0AkE29zQeo07KSQkJBw0++1Wi0WL16MmTNnKmWdnZ1oaWkBABw/fhzV1dWIioqCw+GAwWBQ6hkMBjgcjuGGRuRzfE4zqZW05qN58+ahsrKy1849NDQUGk33LCMjI2E0GnHmzBk0NDTgu+++w6xZswAAqamp2L17t6zQiLyCzUekRlLOPgK6z0C6sYP50UcfxVtvvYWuri643W68/PLLaG1tBQD84he/wMcff4wxY8Zg79692Lt3r6zQiOQTYEczqZK0pLBs2bI+ZTt37sTOnTv7rX/s2DE89NBDssIh8ireJZXUilc0E8nA5ymQSjEpEEkgeEkzqRSTApEk7GgmNWJSIJJBMCmQOjEpEEnA21yQWjEpEMnA21yQSjEpEEnAK5pJrZgUiIhIwaRAJAHvkkpqxaRAJAuTAqkQkwKRBDxSILViUiCSgR3NpFJMCkSy8ECBVIhJgUgC3iWV1IpJgUgG3uaCVIpJgUgCAd7mgtTptpLCM888g/Lycrhcrl7PYgaAzMxMWK1WVFZWYv78+Up5YmIiKisrYbVasXr1aqU8IiIChw8fhtVqRUFBAQICAm4nNCLfYkczqdRtJYXy8nIsXrwY//jHP3qVR0dHIyUlBdOnT8eCBQvw4YcfQqPRQKPR4IMPPkBSUhKmTZuGpUuXIjo6GgCwdu1abNiwAUajEa2trXjppZduJzQin2PzEanRbSWFyspKVFVV9SlPTk5GQUEBOjs7UVtbC5vNhvj4eMTHx8Nms6GmpgZdXV0oKChAcnIyAOAnP/kJ/vznPwMA8vLysHDhwtsJjcinBJ+8RiolpU9Br9ejrq5O+Wy326HX6wcsnzhxIi5cuACXy9WrfCDp6ekwm80wm80IDQ2V8ScQ3ZaKvx9CXfkpX4dBNGT+t6pQXFwMnU7Xp/yNN95AYWGhlKBuxWQywWQyAQDMZrNPYiC6mZ3/9a6vQyAallsmhYSEhCFP1OFwICwsTPlsMBjgcDgAoN/yb7/9FsHBwdBqtXC5XL3qExGR90hpPiosLERKSgoCAwMREREBo9GII0eOwGw2w2g0IiIiAgEBAUhJSVGONg4cOIBnnnkGAJCWlobdu3fLCI2IiG5BDHdYuHChqKurEx0dHaKhoUH87W9/U77LysoSNptNVFZWigULFijlSUlJ4vTp08Jms4msrCylPDIyUpSUlAir1Sq2b98uAgMDBxWD2WwedvwcOHDgcLcOA+07/a6+US2z2Yy4uDhfh0FEpCoD7Tt5RTMRESmYFIiISMGkQERECiYFIiJSqL6juampCWfPnh3WuKGhoWhubvZwRLePcQ0N4xoaxjU0d2pc4eHhuP/++/v9zuenRvlqGKmnszIuxsW4Rs5wt8XF5iMiIlIwKRARkeKuTgr//d//7esQ+sW4hoZxDQ3jGpq7LS7VdzQTEZHn3NVHCkRE1BuTAhERKe7KpJCYmIjKykpYrVasXr3aq/M2GAz44osv8PXXX6O8vBy//OUvAQDZ2dmw2+2wWCywWCxISkpSxsnMzITVakVlZSXmz58vLbaamhqUlZXBYrEoDy8KCQlBUVERqqqqUFRUhODgYKV+Tk4OrFYrSktLERsbKyWmqKgoZZlYLBa0tbXhV7/6lc+W18aNG9HY2IiTJ08qZcNZRqmpqaiqqkJVVRVSU1M9HtO6detw6tQplJaWYufOnZgwYQKA7nPT29vbleWWm5urjDNjxgyUlZXBarUiJyfntmK6WWzD+e08vc32F1dBQYESU01NDSwWCwDvLbOB9g2+WL98fr6tNweNRiNsNpuIjIwUAQEB4sSJEyI6Otpr89fpdCI2NlYAEOPHjxenT58W0dHRIjs7W/z617/uUz86OlqcOHFCBAYGioiICGGz2YRGo5ESW01NjZg4cWKvsrVr14rVq1cLAGL16tXinXfeEUD3LdD37NkjAIhZs2aJw4cPe+W3q6+vF1OmTPHZ8pozZ46IjY0VJ0+eHPYyCgkJEdXV1SIkJEQEBweL6upqERwc7NGYEhIShFarFQDEO++8o8QUHh7eq971Q0lJiZg1a5YAIPbs2dPrlveejG2ov52Mbba/uK4f3n33XfEf//EfXl1mA+0bvL1+3XVHCvHx8bDZbKipqUFXVxcKCgqQnJzstfk3NDQo/4FcunQJp06duunzqJOTk1FQUIDOzk7U1tbCZrMhPj7eW+EiOTkZeXl5AIC8vDwsXLhQKc/PzwcAlJSUIDg4uN/HtnrS3LlzUV1djXPnzt00XpnL68svv0RLS0ufeQ5lGSUmJqK4uBitra24cOECiouLsWDBAo/GVFxcrDzz/PDhwzAYDDedhk6nQ1BQEEpKSgAA+fn5yt9xO/qLbSAD/XYyttlbxbVkyRJs27btptPw9DIbaN/g7fXrrksKer0edXV1yme73X7TnbJM4eHhiI2NVVaqjIwMlJaWYuPGjcohojfjFUKgqKgIR48eRXp6OgBg0qRJaGhoANC90k6aNMnrcfVISUnptaH6enn1GOoy8naML774Ivbu3at8joyMxPHjx3Hw4EHMnj1bidVut3stpqH8dt5eXnPmzEFjYyNsNptS5u1ldv2+wdvr112XFEaKcePGYceOHVi1ahUuXryI3NxcTJ06FTExMaivr8f69eu9HtPs2bMxc+ZMJCUlYeXKlZgzZ06fOkIIr8cFAAEBAXjqqafw6aefAsCIWF4D8dUy6k9WVhacTie2bNkCAKivr8eUKVMwY8YMvPrqq9i6dSvuuecer8Y0kn87AFi6dGmvfz68vcxu3DfcSPb6ddclBYfDgbCwMOWzwWCAw+Hwagz+/v7YsWMHtmzZgl27dgHovrGf2+2GEAImk0lp8vBmvOfPnwcAfPPNN9i1axfi4+PR2NioNAvpdDo0NTV5PS4ASEpKwvHjx5X5j4Tl1WOoy8hbMaalpeHJJ5/Ez3/+c6Wss7NTaTY5fvw4qqurERUVBYfD0auJSeZyG+pv583fVKvVYvHixfjkk0+UMm8us/72Db5Yv267M0lNg1arFdXV1SIiIkLptJo2bZpXY8jLyxMbNmzo08nU837VqlVi27ZtAoCYNm1ar8636upqKR3NY8eOFePHj1feHzp0SCQmJop169b16uRau3atACAef/zxXp1cJSUlUpfZtm3bxAsvvDAilteNHY9DXUYhISHizJkzIjg4WAQHB4szZ86IkJAQj8aUmJgovv76axEaGtqrXmhoqLI8IiMjhd1uV+Z9Y6dpUlKSlOU11N9O1jbbXwdyYmKiOHjwoM+WWX/7Bh+sX/I25JE6JCUlidOnTwubzSaysrK8Ou9HHnlECCFEaWmpsFgswmKxiKSkJJGfny/KyspEaWmp2L17d68NJysrS9hsNlFZWemRM0L6GyIjI8WJEyfEiRMnRHl5ubJc7r33XrFv3z5RVVUliouLe61c77//vrDZbKKsrEzMnDlT2jIbO3asaG5uFkFBQUqZr5bX1q1bxfnz50VnZ6eoq6sTL7744rCW0bJly4TVahVWq7VXsvNUTFarVZw7d05Zx3JzcwUAsXjxYlFeXi4sFos4duyYePLJJ5XpzJw5U5w8eVLYbDbxhz/8QdryGs5v5+lttr+4AIjNmzeLFStW9KrrrWU20L7B2+sXb3NBRESKu65PgYiIBsakQERECiYFIiJSMCkQEZGCSYGIiBRMCkREpGBSICIixf8H3GCNUDcbjmAAAAAASUVORK5CYII=\n" | |
] | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true, | |
"outputExpanded": false, | |
"jupyter": { | |
"source_hidden": false, | |
"outputs_hidden": false | |
}, | |
"nteract": { | |
"transient": { | |
"deleting": false | |
} | |
}, | |
"execution": { | |
"iopub.status.busy": "2020-08-15T07:43:57.460Z", | |
"iopub.execute_input": "2020-08-15T07:43:57.466Z", | |
"iopub.status.idle": "2020-08-15T07:43:57.662Z", | |
"shell.execute_reply": "2020-08-15T07:43:57.666Z" | |
} | |
} | |
} | |
], | |
"metadata": { | |
"kernel_info": { | |
"name": "python3" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.8.5", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"kernelspec": { | |
"argv": [ | |
"python", | |
"-m", | |
"ipykernel_launcher", | |
"-f", | |
"{connection_file}" | |
], | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"nteract": { | |
"version": "0.23.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment