Skip to content

Instantly share code, notes, and snippets.

View tbensonwest's full-sized avatar

Tarran Benson-West tbensonwest

View GitHub Profile
@ruvnet
ruvnet / *claude.md
Last active November 13, 2025 06:52
The Claude-SPARC Automated Development System is a comprehensive, agentic workflow for automated software development using the SPARC methodology with the Claude Code CLI

Claude-SPARC Automated Development System For Claude Code

This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.

Overview

The SPARC Automated Development System (claude-sparc.sh) is a comprehensive, agentic workflow for automated software development using the SPARC methodology (Specification, Pseudocode, Architecture, Refinement, Completion). This system leverages Claude Code's built-in tools for parallel task orchestration, comprehensive research, and Test-Driven Development.

Features

import boto3
from botocore.config import Config
ta_config = Config(s3={"use_accelerate_endpoint": True})
s3 = boto3.client("s3", config=ta_config)
import boto3
s3 = boto3.client("s3")
response = s3.put_bucket_accelerate_configuration(
Bucket="annageller", AccelerateConfiguration={"Status": "Enabled"},
)
import boto3
s3_resource = boto3.resource("s3")
list(i for i in s3_resource.Bucket("annageller").objects.all()
if i.get()["ContentType"] == "text/csv")
import boto3
s3 = boto3.client("s3")
bucket_name = "annageller"
s3_object = "sales/customers.csv"
local_file_path = f"/Users/annageller/Desktop/datasets/{s3_object}"
# Uploading without specifying content type
s3.upload_file(
local_file_path,
import os
import boto3
import tempfile
S3_BUCKET = "annageller"
S3_PREFIX = "sales/"
with tempfile.TemporaryDirectory() as tempdir:
s3 = boto3.client("s3")
response = s3.list_objects_v2(Bucket=S3_BUCKET, Prefix=S3_PREFIX)
import boto3
bucket_name = "annageller"
s3_object = "ted_lasso.txt"
s3_object_body = "Be curious, not judgemental"
s3_resource = boto3.resource("s3")
upload_result = s3_resource.Object(bucket_name, s3_object).put(Body=s3_object_body)
assert upload_result["ResponseMetadata"]["HTTPStatusCode"] == 200
import boto3
import pandas as pd
s3 = boto3.client("s3")
bucket_name = "annageller"
s3_object = "sales/customers.csv"
obj = s3.get_object(Bucket=bucket_name, Key=s3_object)
df = pd.read_csv(obj["Body"])
import boto3
import pandas as pd
s3_bucket = "annageller"
html_file = "sales_report.html"
df = pd.DataFrame([{'year': 2021, 'month': 8, 'order_status': 'unavailable', 'order_count': 48},
{'year': 2021, 'month': 8, 'order_status': 'delivered', 'order_count': 7069},
{'year': 2021, 'month': 8, 'order_status': 'invoiced', 'order_count': 15},
{'year': 2021, 'month': 8, 'order_status': 'shipped', 'order_count': 74},
import boto3
import pandas as pd
s3_bucket = "awebsite"
html_file = "sales_report.html"
df = pd.DataFrame([{'year': 2021, 'month': 8, 'order_status': 'unavailable', 'order_count': 48},
{'year': 2021, 'month': 8, 'order_status': 'delivered', 'order_count': 7069},
{'year': 2021, 'month': 8, 'order_status': 'invoiced', 'order_count': 15},
{'year': 2021, 'month': 8, 'order_status': 'shipped', 'order_count': 74},