Last active
August 29, 2015 14:16
-
-
Save tcotav/e7d63fe3785d811592c9 to your computer and use it in GitHub Desktop.
pandas timeseries dataframe from source
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import datetime as dt | |
| testdata={ | |
| "host1":[ | |
| (dt.datetime(2015, 3, 5, 12), 100), | |
| (dt.datetime(2015, 3, 5, 12,1), 100), | |
| (dt.datetime(2015, 3, 5, 12,2), 100), | |
| (dt.datetime(2015, 3, 5, 12,3), 100), | |
| (dt.datetime(2015, 3, 5, 12,4), 100), | |
| ], | |
| "host2":[ | |
| (dt.datetime(2015, 3, 5, 12), 300), | |
| (dt.datetime(2015, 3, 5, 12,2), 300), | |
| (dt.datetime(2015, 3, 5, 12,3), 300), | |
| (dt.datetime(2015, 3, 5, 12,4), 300) | |
| ] | |
| } | |
| host1=pd.Series([100, 101, 102, 103, 104], index=[dt.datetime(2015, 3, 5, 12), | |
| dt.datetime(2015, 3, 5, 12,1), | |
| dt.datetime(2015, 3, 5, 12,2), | |
| dt.datetime(2015, 3, 5, 12,3), | |
| dt.datetime(2015, 3, 5, 12,4)]) | |
| host2=pd.Series([300, 302, 303, 304], index=[dt.datetime(2015, 3, 5, 12), | |
| dt.datetime(2015, 3, 5, 12,2), | |
| dt.datetime(2015, 3, 5, 12,3), | |
| dt.datetime(2015, 3, 5, 12,4)]) | |
| d={ | |
| "host1":host1, | |
| "host2": host2 | |
| } | |
| idx=[dt.datetime(2015, 3, 5, 12), | |
| dt.datetime(2015, 3, 5, 12,1), | |
| dt.datetime(2015, 3, 5, 12,2), | |
| dt.datetime(2015, 3, 5, 12,3), | |
| dt.datetime(2015, 3, 5, 12,4), | |
| dt.datetime(2015, 3, 5, 12,5) | |
| ] | |
| df=pd.DataFrame(d, index=idx) | |
| """ | |
| >>> df | |
| 2015-03-05 12:00:00 100 100 | |
| 2015-03-05 12:01:00 101 NaN | |
| 2015-03-05 12:02:00 102 102 | |
| 2015-03-05 12:03:00 103 103 | |
| 2015-03-05 12:04:00 104 104 | |
| 2015-03-05 12:05:00 NaN NaN | |
| >>> df.index | |
| <class 'pandas.tseries.index.DatetimeIndex'> | |
| [2015-03-05 12:00:00, ..., 2015-03-05 12:05:00] | |
| Length: 6, Freq: None, Timezone: None | |
| >>> df.columns | |
| Index([u'host1', u'host2'], dtype='object') | |
| # select a column | |
| >>> df['host1'] | |
| 2015-03-05 12:00:00 100 | |
| 2015-03-05 12:01:00 101 | |
| 2015-03-05 12:02:00 102 | |
| 2015-03-05 12:03:00 103 | |
| 2015-03-05 12:04:00 104 | |
| 2015-03-05 12:05:00 NaN | |
| Name: host1, dtype: float64 | |
| """ | |
| df=df.interpolate() # fills a gap in the data replacing NaN with interpolated numbers | |
| """ | |
| # drop a column | |
| df=.drop('_span', 1) | |
| # set a column as the index | |
| df= df.set_index("_time") | |
| """ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
used to parse and clean up dumped zabbix data