Last active
January 8, 2021 14:43
-
-
Save tcwalther/f1f2a31a2f2fba3e8f2fa3ea99164002 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import tensorflow as tf\n", | |
"import numpy as np\n", | |
"import scipy" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# RFFT Tests" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_fft_length_matches_input_size():\n", | |
" input = np.array([1, 2, 3, 4, 3, 8, 6, 3, 5, 2, 7, 6, 9, 5, 8, 3]).reshape((4, 4))\n", | |
" \n", | |
" result = tf.signal.rfft2d(input, (4,4)).numpy()\n", | |
" \n", | |
" expected_result = np.array([75, -6-1j, 9, -10+5j, -3+2j, -6+11j,\n", | |
" -15, -2+13j, -5, -10-5j, 3-6j, -6-11j])\n", | |
" np.testing.assert_array_equal(result.reshape(-1), expected_result)\n", | |
" \n", | |
"test_fft_length_matches_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_fft_length_smaller_than_input_size():\n", | |
" input = np.array([1, 2, 3, 4, 0, 3, 8, 6, 3, 0, 5, 2, 7, 6, 0, 9, 5, 8, 3, 0]).reshape((4, 5))\n", | |
" \n", | |
" np_result = np.fft.rfft2(input, (4, 4))\n", | |
" tf_result = tf.signal.rfft2d(input, fft_length=(4, 4)).numpy()\n", | |
" \n", | |
" expected_result = np.array([75, -6-1j, 9, -10+5j, -3+2j, -6+11j,\n", | |
" -15, -2+13j, -5, -10-5j, 3-6j, -6-11j])\n", | |
" \n", | |
" np.testing.assert_array_almost_equal(np_result.reshape(-1), expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result.reshape(-1), expected_result)\n", | |
"\n", | |
"test_fft_length_smaller_than_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_fft_length_greater_than_input_size():\n", | |
" input = np.array([[1, 2, 3, 4],\n", | |
" [3, 8, 6, 3],\n", | |
" [5, 2, 7, 6]])\n", | |
" \n", | |
" np_result = np.fft.rfft2(input, (4, 8)).reshape(-1)\n", | |
" tf_result = tf.signal.rfft2d(input, fft_length=(4, 8)).numpy().reshape(-1)\n", | |
" \n", | |
" expected_result = np.array([\n", | |
" 50, 8.29289341-33.6776695j, -7+1j, 9.70710659-1.67766953j, 0,\n", | |
" -10-20j, -16.3639603-1.12132037j, -5+1j, -7.19238806-2.05025244j, -6+2j,\n", | |
" 10, -4.7781744-6.12132025j, -1+11j, 10.7781744+1.87867963j, 4,\n", | |
" -10+20j, 11.1923885+11.9497471j, 5-5j, -3.63603902-3.12132025j, -6-2j])\n", | |
"\n", | |
" np.testing.assert_array_almost_equal(np_result, expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result, expected_result)\n", | |
" \n", | |
"test_fft_length_greater_than_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_input_dims_greater_than_2():\n", | |
" input = np.array([1, 2, 3, 4, 3, 8, 6, 3, 5, 2, 7, 6, 7, 3, 23, 5]).reshape((2, 2, 4))\n", | |
" \n", | |
" np_result = np.fft.rfft2(input, (2, 4)).reshape(-1)\n", | |
" tf_result = tf.signal.rfft2d(input, fft_length=(2, 4)).numpy().reshape(-1)\n", | |
"\n", | |
" expected_result = np.array([\n", | |
" 30, -5-3j, -4,\n", | |
" -10, 1+7j, 0,\n", | |
" 58, -18+6j, 26,\n", | |
" -18, 14+2j, -18\n", | |
" ])\n", | |
"\n", | |
" np.testing.assert_array_almost_equal(np_result, expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result, expected_result)\n", | |
"\n", | |
"test_input_dims_greater_than_2()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# IRFFT Tests" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_fft_length_matches_input_size():\n", | |
" input = np.array([75, -6-1j, 9, -10+5j, -3+2j, -6+11j,\n", | |
" -15, -2+13j, -5, -10-5j, 3-6j, -6-11j]).reshape(4, 3)\n", | |
" \n", | |
" np_result = np.fft.irfft2(input, (4, 4)).reshape(-1)\n", | |
" tf_result = tf.signal.irfft2d(input, fft_length=(4, 4)).numpy().reshape(-1)\n", | |
" \n", | |
" expected_result = np.array([1, 2, 3, 4, 3, 8, 6, 3, 5, 2, 7, 6, 9, 5, 8, 3])\n", | |
" \n", | |
" np.testing.assert_array_almost_equal(np_result, expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result, expected_result)\n", | |
" \n", | |
"test_fft_length_matches_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(4, 3)\n" | |
] | |
} | |
], | |
"source": [ | |
"def test_fft_length_smaller_than_input_size():\n", | |
" input = np.array([1, 2, 3, 4, 0, 3, 8, 6, 3, 0, 5, 2, 7, 6, 0, 9, 5, 8, 3, 0]).reshape((4, 5))\n", | |
" \n", | |
" np_result = np.fft.rfft2(input, (4, 4))\n", | |
" tf_result = tf.signal.rfft2d(input, fft_length=(4, 4)).numpy()\n", | |
" print(np_result.shape)\n", | |
" \n", | |
" expected_result = np.array([75, -6-1j, 9, -10+5j, -3+2j, -6+11j,\n", | |
" -15, -2+13j, -5, -10-5j, 3-6j, -6-11j])\n", | |
" \n", | |
" np.testing.assert_array_almost_equal(np_result.reshape(-1), expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result.reshape(-1), expected_result)\n", | |
"\n", | |
"test_fft_length_smaller_than_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_fft_length_smaller_than_input_size():\n", | |
" input = np.array([75, -6-1j, 9, -10+5j, -3+2j, -6+11j,\n", | |
" -15, -2+13j, -5, -10-5j, 3-6j, -6-11j]).reshape(4, 3)\n", | |
" \n", | |
" np_result = np.fft.irfft2(input, (2, 2))\n", | |
" tf_result = tf.signal.irfft2d(input, fft_length=(2, 2)).numpy()\n", | |
" \n", | |
" expected_result = np.array([14, 18.5,\n", | |
" 20.5, 22]).reshape(2, 2)\n", | |
" \n", | |
" np.testing.assert_array_almost_equal(np_result, expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result, expected_result)\n", | |
" \n", | |
"test_fft_length_smaller_than_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_fft_length_greater_than_input_size():\n", | |
" input = np.array([75, -6-1j, 9, -10+5j, -3+2j, -6+11j, -15, -2+13j, -5, -10-5j, 3-6j, -6-11j]).reshape((4, 3))\n", | |
" \n", | |
" np_result = np.fft.irfft2(input, (4, 8))\n", | |
" tf_result = tf.signal.irfft2d(input, fft_length=(4, 8)).numpy()\n", | |
" \n", | |
" expected_result = np.array([[0.25, 0.54289322, 1.25, 1.25, 1.25, 1.95710678, 2.25, 1.25],\n", | |
" [1.25, 2.85355339, 4.25, 3.91421356, 2.75, 2.14644661, 1.75, 1.08578644],\n", | |
" [3., 1.43933983, 0.5, 2.14644661, 4., 3.56066017, 2.5, 2.85355339],\n", | |
" [5.625, 3.65533009, 1.375, 3.3017767, 5.125, 2.59466991, 0.375, 2.9482233]])\n", | |
" \n", | |
" np.testing.assert_array_almost_equal(np_result, expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result, expected_result)\n", | |
" \n", | |
"test_fft_length_greater_than_input_size()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def test_input_dims_greater_than_2():\n", | |
" input = np.array([30, -5-3j, -4,\n", | |
" -10, 1+7j, 0,\n", | |
" 58, -18+6j, 26,\n", | |
" -18, 14+2j, -18]).reshape(2, 2, 3)\n", | |
" \n", | |
" np_result = np.fft.irfft2(input, (2, 4))\n", | |
" tf_result = tf.signal.irfft2d(input, fft_length=(2, 4)).numpy()\n", | |
" \n", | |
" expected_result = np.array([1., 2., 3., 4., 3., 8., 6., 3.,\n", | |
" 5., 2., 7., 6., 7., 3., 23., 5.]).reshape(2, 2, 4)\n", | |
"\n", | |
" np.testing.assert_array_almost_equal(np_result, expected_result)\n", | |
" np.testing.assert_array_almost_equal(tf_result, expected_result)\n", | |
" \n", | |
"test_input_dims_greater_than_2()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python [conda env:tflite]", | |
"language": "python", | |
"name": "conda-env-tflite-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment