Skip to content

Instantly share code, notes, and snippets.

View techwithshadab's full-sized avatar
💻
Playing with Data

Shadab Hussain techwithshadab

💻
Playing with Data
View GitHub Profile
def selection_to_picks(num_assets, selection):
purchase = []
for i in range(num_assets):
if selection[i] == 1:
purchase.append(stock_list[i])
return purchase
def index_to_selection(i, num_assets):
s = "{0:b}".format(i).rjust(num_assets)
x = np.array([1 if s[i]=='1' else 0 for i in reversed(range(num_assets))])
return x
# Retrieve Hamiltonian
qubitOp, offset = portfolio.get_operator(mu, sigma, risk_factor, budget, penalty)
sns.pairplot(df)
plt.show()
# Correlation Matrix
corr = df.corr()
f, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), annot=True, square=True, ax=ax, xticklabels=stock_list, yticklabels=stock_list)
plt.title("Correlation between Equities")
plt.show()
# Covariance Matrix
sigma = data.get_period_return_covariance_matrix()
f, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(sigma, mask=np.zeros_like(sigma, dtype=np.bool), annot=True, square=True, ax=ax, xticklabels=stock_list, yticklabels=stock_list)
plt.title("Covariance between Equities")
plt.show()
# Mean value of each assets
mu = data.get_period_return_mean_vector()
sns.barplot(y=mu, x = stock_list)
plt.show()
# Closing Price History
fig, ax = plt.subplots(figsize=(15, 8))
ax.plot(df)
plt.title('Close Price History')
plt.xlabel('Date',fontsize =20)
plt.ylabel('Price in USD',fontsize = 20)
ax.legend(df.columns.values)
plt.show()
data = EikonDataProvider(stocks_list = stock_list, start_date=start_date, end_date=end_date)
data.run()
# Top 5 rows of data
df = data.stock_data
df.head()