Skip to content

Instantly share code, notes, and snippets.

View tel's full-sized avatar
✍️

Joseph Abrahamson tel

✍️
View GitHub Profile
rackup -p 9292 config.ru
/System/Library/Frameworks/Ruby.framework/Versions/1.8/usr/lib/ruby/1.8/rubygems/custom_require.rb:31:in `gem_original_require': ./hack_sanitation_app.rb:69: syntax error, unexpected tIDENTIFIER, expecting ')' (SyntaxError)
commands = []
^
./hack_sanitation_app.rb:104: syntax error, unexpected kIF_MOD, expecting '\n' or ';'
run! if app_file == $0
^
from /System/Library/Frameworks/Ruby.framework/Versions/1.8/usr/lib/ruby/1.8/rubygems/custom_require.rb:31:in `require'
from /Users/tel/Dropbox/proj/hacksanitation/config.ru:2
from /Library/Ruby/Gems/1.8/gems/rack-1.4.1/lib/rack/builder.rb:51:in `instance_eval'
@tel
tel / Basics.v
Created November 19, 2012 15:03
intros b c H. destruct b.
simpl in H. rewrite -> H. reflexivity. simpl in H.
(** There are no hard and fast rules for how proofs should be
formatted in Coq -- in particular, where lines should be broken
and how sections of the proof should be indented to indicate their
nested structure. However, if the places where multiple subgoals
are generated are marked with explicit [Case] tactics placed at
the beginning of lines, then the proof will be readable almost no
matter what choices are made about other aspects of layout.
DecodeFailure String
instance Error EncryptError where
noMsg = EncryptError
strMsg = OtherEncryptError
-- | A monad transformer for building encryption pipelines and
-- methods. Within a single 'EncryptT' session, 'Nonce's are
-- guaranteed to be randomized and increasing.
newtype EncryptT m a =
fromEncrypted,
newKey, getKeys,
addKey, removeKey, removeKeyById,
encrypt, encryptMulti, decrypt
) where
import Data.Encrypted.Internal
import Data.UUID
@tel
tel / Basic.hs
Created November 21, 2012 04:24
import Data.Data
@tel
tel / Email.hs
Created November 21, 2012 05:28
-- | The 'Actionable' act of sending an email
module Reify.Action.Email where
import Reify.Actionable
import Reify.Receipt
import Reify.Types.Basic
import Aws
import qualified Aws.Ses as Ses
Require Import Bool Ari
(A : O -> O -> Set) :=
{
id : forall (x : O), A x x(* ; *)
(* comp : forall x y z, A x y -> A y z -> A x z; *)
(* id_unit_lt : forall x (a : A x x), comp a (id x) = a; *)
(* id_unit_rt : forall x (a : A x x), comp (id x) a = a *)
}.
{ id x := ltnat_reflexive x;
comp x y := ltnat_transitive x y }.
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x