Skip to content

Instantly share code, notes, and snippets.

View tengpeng's full-sized avatar

Teng Peng tengpeng

View GitHub Profile
@tengpeng
tengpeng / a.rb
Created February 14, 2016 20:32
mosh ec2
mosh --ssh="/usr/bin/ssh -i ./spot.pem" [email protected] --server="/usr/bin/mosh-server"
@tengpeng
tengpeng / a.rb
Created February 10, 2016 22:53
install r package by force from github
install.packages("devtools")
devtools::install_github("slowkow/ggrepel")
@tengpeng
tengpeng / gist:1de3d2bb01f7abf59df2
Created February 9, 2016 00:44
initialize rstudio docker
install.packages(c('shinyIncubator','markdown','whisker','Hmisc','qcc','httr','RCurl','curl','devtools'), repos='http://cran.rstudio.com/')
devtools::install_github("ropensci/ckanr")
ckanr::ckanr_setup(url="http://catalogue-beta.data.wa.gov.au/")
@tengpeng
tengpeng / gist:737062b0ce502461da97
Created February 9, 2016 00:44
rstudio docker start
mkdir -p /var/projects/rstudio-server
docker run -d \
-p 8787:8787 \
-e USER=<username> \
-e PASSWORD=<password> \
-v /var/projects/rstudio-server/:/home/ \
rocker/ropensci
@tengpeng
tengpeng / a.rb
Created February 8, 2016 06:20
mxnet docker start
sudo docker run -it --device /dev/nvidiactl --device /dev/nvidia-uvm --device /dev/nvidia0 kaixhin/cuda-mxnet:7.0
@tengpeng
tengpeng / a.rb
Created February 8, 2016 06:06
python benchmark
""" Amazon Access Challenge Starter Code
These files provide some starter code using
the scikit-learn library. It provides some examples on how
to design a simple algorithm, including pre-processing,
training a logistic regression classifier on the data,
assess its performance through cross-validation and some
pointers on where to go next.
Paul Duan <[email protected]>
@tengpeng
tengpeng / a.rb
Created February 8, 2016 05:20
bagging r
# Do bagging
tmpP = rep(0,nrow(test))
for (j in 1:30) {
set.seed(j+200)
print(j)
bst = xgb.train(param=param, data=xgtrain, nrounds=1200)
tmpP = tmpP + predict(bst,xgtest)
}
@tengpeng
tengpeng / a.rb
Created February 8, 2016 03:01
time conversion r
train$month <- as.integer(format(train$Original_Quote_Date, "%m"))
train$year <- as.integer(format(train$Original_Quote_Date, "%y"))
train$day <- weekdays(as.Date(train$Original_Quote_Date))
@tengpeng
tengpeng / a.rb
Created February 7, 2016 06:32
impute median
impute.med <- function(x) replace(x, is.na(x), median(x, na.rm = TRUE))
df_all <- sapply(df_all, function(x){
if(is.numeric(x)){
impute.med(x)
} else {
x
}
}
)
@tengpeng
tengpeng / a.rb
Created February 7, 2016 05:56
convert all col to factor
# To do it for all names
col_names <- names(df_all)
# do do it for some names in a vector named 'col_names'
df_all[,col_names] <- lapply(df_all[,col_names] , factor)