Skip to content

Instantly share code, notes, and snippets.

@theikkila
Created April 11, 2022 20:21
Show Gist options
  • Save theikkila/05be3980e2833bc96c7543f7332f3853 to your computer and use it in GitHub Desktop.
Save theikkila/05be3980e2833bc96c7543f7332f3853 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x111e05fa0>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAERCAYAAAB2CKBkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzu0lEQVR4nO3de5xPdf7A8dd7xsx8MW7jUiKN3AoxubVFpaRIdKGw20Z3XVS77Sa/2rbrbrXb2nSzwqJaKaXQRSkkkRBFFBUh16FBjLm9f398zowx5vLFfOd8L+/n4/F9zLnN+b4P3znv7/l8znl/RFUxxhgTu+L8DsAYY4y/LBEYY0yMs0RgjDExzhKBMcbEOEsExhgT4ywRGGNMjIvIRCAi40Rkm4isCGLbRiIyW0S+FJGvROTiiojRGGMiRUQmAmA80CPIbe8HXlPV04EBwPOhCsoYYyJRRCYCVf0E2Fl4mYg0EZH3RWSJiMwTkVPyNweqe9M1gJ8rMFRjjAl7lfwOoByNBoao6hoROQP3zf984EHgAxEZClQFLvAvRGOMCT9RkQhEJBk4C3hdRPIXJ3k/BwLjVfUpETkTeElEWqtqng+hGmNM2ImKRIBr4vpFVdOKWXc9Xn+Cqi4QkQBQB9hWceEZY0z4isg+gqJUdTfwo4hcCSBOW2/1T0A3b/mpQADY7kugxhgThiQSq4+KyCSgK+6b/Vbgr8DHwAtAfSABeFVVHxaRlsCLQDKu4/geVf3Aj7iNMSYcRWQiMMYYU36iomnIGGPM0Yu4zuI6depoamqq32EYY0xEWbJkyQ5VrVvcuohLBKmpqSxevNjvMIwxJqKIyPqS1lnTkDHGxDhLBMYYE+MsERhjTIyLuD6C4mRnZ7Nx40YyMzP9DsUAgUCAhg0bkpCQ4HcoxpggREUi2LhxI9WqVSM1NZVCtYaMD1SV9PR0Nm7cSOPGjf0OxxgThKhoGsrMzKR27dqWBMKAiFC7dm27OjMmgkRFIgAsCYQR+78wJrJETSIwxpho9vDDsGxZaPZtiaAcpKenk5aWRlpaGscffzwNGjQomM/KygJg2rRpPP744+X+3oMHD2bKlCnlvt9869at43//+1/B/Pjx47n99ttD9n7GmMNNmAB//Su89lpo9h8VncV+q127Nsu8VP3ggw+SnJzMn/70p4L1OTk59OnThz59+vgU4dHLTwS//e1v/Q7FmJi0fDkMGQLnneeuCkLBrghCZPDgwQwZMoQzzjiDe+6555Bv0tOnT+eMM87g9NNP54ILLmDr1q2ASyLXXXcdXbt25eSTT2bkyJEF+3vkkUdo0aIFXbp0YeDAgfzzn/887D2XLFnCueeeS/v27bnooovYvHlziXF16NCB5s2bM2PGDMCd8M8++2zatWtHu3bt+OyzzwC49957mTdvHmlpaYwYMQKAn3/+mR49etCsWTPuueee8v2HM8YU+OUX6NsXUlJg0iSoFKKv7lF3RXDX+3exbMuyct1n2vFp/LvHv4/49zZu3Mhnn31GfHw848ePL1jepUsXFi5ciIgwZswYnnzySZ566ikAVq9ezezZs9mzZw8tWrTglltuYdmyZbzxxhssX76c7Oxs2rVrR/v27Q95r+zsbIYOHcrbb79N3bp1mTx5Mvfddx/jxo07LK5169axaNEivv/+e8477zzWrl1LvXr1+PDDDwkEAqxZs4aBAweyePFiHn/8cf75z38WJIzx48ezbNkyvvzyS5KSkmjRogVDhw7lxBNPPOJ/H2NMyfLyYNAgWL8e5s6F444L3XtFXSIIJ1deeSXx8fGHLd+4cSP9+/dn8+bNZGVlHXK/fa9evUhKSiIpKYl69eqxdetW5s+fz6WXXkogECAQCNC7d+/D9vntt9+yYsUKunfvDkBubi7169cvNq6rrrqKuLg4mjVrxsknn8zq1atp3Lgxt99+O8uWLSM+Pp7vvvuuxOPq1q0bNWrUAKBly5asX7/eEoEx5ezJJ2HaNHj6aTjrrNC+V9QlgqP55h4qVatWLXb50KFD+eMf/0ifPn2YM2cODz74YMG6pKSkgun4+HhycnKCei9VpVWrVixYsKDMbYve3ikijBgxguOOO47ly5eTl5dHIBAo8fePNkZjTHBmzYL77oMBA2Do0NC/n/UR+CAjI4MGDRoAMGHChDK379y5M9OnTyczM5O9e/cWNNMU1qJFC7Zv316QCLKzs1m5cmWx+3v99dfJy8vj+++/54cffqBFixZkZGRQv3594uLieOmll8jNzQWgWrVq7Nmz52gP1RhzhNatcwmgZUt48UWoiMdyLBH44MEHH+TKK6+kffv21KlTp8ztO3bsSJ8+fWjTpg09e/bktNNOK2iayZeYmMiUKVMYNmwYbdu2JS0traDDt6hGjRrRqVMnevbsyahRowgEAtx6661MmDCBtm3bsnr16oKrmTZt2hAfH0/btm0LOouNMaGxfz9ccQXk5MDUqZCcXDHvG3FjFnfo0EGLDkyzatUqTj31VJ8iqhh79+4lOTmZffv2cc455zB69GjatWt3xPsZPHgwl1xyCf369QtBlAfFwv+JMeVJFQYPhpdegunToVev8t2/iCxR1Q7FrYu6PoJoddNNN/HNN9+QmZnJoEGDjioJGGPC13PPwcSJ8NBD5Z8EymKJIEIUfrr3WBS+jdUYEx7mzYM//AF694b776/497c+AmOM8dGmTXDlldC4sWsWivPhrGxXBMYY45MDB6BfP9i7Fz76CIrcA1JhLBEYY4xP7roLFi6E11+HVq38i8OahowxxgfjxsGoUTBsmLsq8JMlgnLy2GOP0apVK9q0aUNaWhqff/653yEdlTlz5hzy/EGoy1wbE4u++AJuuQUuuAAefdTvaKxpqFwsWLCAGTNmsHTpUpKSktixY0fBOAShkpubW2wdo2M1Z84ckpOTOSvUxU2MiVHbtrmHxurXh1dfDV1F0SNhVwTlYPPmzdSpU6egBk+dOnU44YQTAHj//fc55ZRTaNeuHXfccQeXXHIJ4J4uLlxKunXr1qxbtw6Ayy67jPbt29OqVStGjx5dsE1ycjJ33303bdu2ZcGCBbz88st06tSJtLQ0br755oKyEIWlpqZyzz33cNppp9GpUyfWrl0LFF8Ke926dYwaNYoRI0aQlpbGvHnzAPjkk08466yzOPnkk+3qwJhjkJXlkkB6Orz5JtSu7XdETshykYicCEwEjgMUGK2qTxfZpivwNvCjt+hNVT22oRfuuqv8x3NLS4N//7vE1RdeeCEPP/wwzZs354ILLqB///6ce+65ZGZmcuONN/Lxxx/TtGlT+vfvH9TbjRs3jpSUFPbv30/Hjh3p27cvtWvX5tdff+WMM87gqaeeYtWqVTzxxBPMnz+fhIQEbr31Vl555RWuueaaw/ZXo0YNvv76ayZOnMhdd93FjBkzSiyFPWTIkEMG1hk7diybN2/m008/ZfXq1fTp0yfkTyUbE41U4fbbYf58dyUQTs+EhvKiJAe4W1WXikg1YImIfKiq3xTZbp6qXhLCOEIuOTmZJUuWMG/ePGbPnk3//v15/PHHSUtLo3HjxjRr1gyAq6+++pBv+CUZOXIkU6dOBWDDhg2sWbOG2rVrEx8fT9++fQH46KOPWLJkCR07dgRg//791KtXr9j9DRw4sODnH/7wB6D0UthFXXbZZcTFxdGyZcuCQXSMMUfm+eddEbn/+z8I8jthhQlZIlDVzcBmb3qPiKwCGgBFE0H5KuWbeyjFx8fTtWtXunbtymmnncaECRNIS0srcftKlSqRl5dXMJ+ZmQm4NvpZs2axYMECqlSpQteuXQvWBQKBgn4BVWXQoEH8/e9/LzO2wmWn86dLK4VdVOGy05FWm8qYcPDxx3Dnne7J4Uce8Tuaw1VIH4GIpAKnA8XdSnOmiCwXkfdEpNg7aUXkJhFZLCKLt2/fHspQj8q3337LmjVrCuaXLVvGSSedxCmnnMK6dev4/vvvAZg0aVLBNqmpqSxduhSApUuX8uOPrnUsIyODWrVqUaVKFVavXs3ChQuLfc9u3boxZcoUtm3bBsDOnTtZv359sdtOnjy54OeZZ55Z8D7FlcK2stPGlK8ffnBPDrdoAS+/7M+Tw2UJeX+1iCQDbwB3qeruIquXAiep6l4RuRh4C2hWdB+qOhoYDa76aGgjPnJ79+5l6NCh/PLLL1SqVImmTZsyevRoAoEAo0ePplevXlSpUoWzzz674CTbt29fJk6cSKtWrTjjjDNo3rw5AD169GDUqFGceuqptGjRgt/85jfFvmfLli159NFHufDCC8nLyyMhIYHnnnuOk0466bBtd+3aRZs2bUhKSipIRvmlsGvVqsX5559fkIh69+5Nv379ePvtt3nmmWdC8c9lTMzYswcuvdT1D7z9NlSv7ndExQtpGWoRSQBmADNV9V9BbL8O6KCqO0raJpLLUM+ZM+eQ8X8rQmpqKosXLw5q3IPyFCn/J8aESl6eG3h++nR4/333zICfSitDHbKLFHGN0WOBVSUlARE53tsOEenkxZMeqpiMMaaiPPggvPUWPPWU/0mgLKFsGuoM/B74WkSWecv+D2gEoKqjgH7ALSKSA+wHBmgU90bmdyZXpPxnE4wxFef1112n8LXXwh13+B1N2UJ519CnQKmjbarqs8CzoYrBGGMq2rJlbqSxM8+EF16omDGHj1UY9l8bY0xk2rYNLrsMUlLck8OF7rwOa2FQ5cIYYyJfZiZcfrlLBp98Ascf73dEwbNEYIwxx0gVbrgBPvvM9Q90KPbenPBlTUPlZMuWLQwYMIAmTZrQvn17Lr74Yr777jt+/vnnI67Nk5qayo4dJd5Be8ys1LQx5euxx+CVV9zPSCzFZVcE5UBVufzyyxk0aBCvvvoqAMuXL2fr1q00b9682JNsTk4OlXyqP2ulpo0pP6+9Bn/5C/z+9zB8uN/RHB27IigHs2fPJiEhgSFDhhQsa9u2LWeffTbr1q2jdevWAIwfP54+ffpw/vnn061bN/bu3cu1117LaaedRps2bXjjjTcO27eVmjYmfC1aBIMGQefOrqBcJNwhVJyouyLwoQo1K1asoH379kHta+nSpXz11VekpKQwbNiwghLR4EpBFLZq1SomT55spaaNCUM//QR9+rgBZqZOjZw7hIoTdYkg3HXv3p2UlBQAZs2aVdCUBFCrVq1DtrVS08aEpz17XCXR/ftdZdG6df2O6NhEXSLwowp1q1atgm5OqVq1atD7tVLTxoSf3Fz43e9g5Up45x1o2dLviI6d9RGUg/PPP58DBw4cMujMV199VdD+XpLu3bvz3HPPFcwXbRqyUtPGhJ9hw1whuZEj4aKL/I6mfFgiKAciwtSpU5k1axZNmjShVatWDB8+nOPLeKLk/vvvZ9euXbRu3Zq2bdsye/bsQ9YXLjXdpk0bunfvzubNm4vdV36p6aeffpoRI0YAB0tNt2/f/pDqo71792bq1KmHdBYbY8r24ouuiNzQoXDrrX5HU35CWoY6FCK5DHWo+FVqujSx/n9ios+HH8LFF7tKotOng093fx81X8pQG2NMtPjqKze2QMuWMHly5CWBskTZ4cQmKzVtTOhs2uSuBKpXd53D4TrK2LGImkSgqofcOWP8E2nNjcaUZPdu6NXL/Zw3Dxo29Dui0IiKpqFAIEB6erqdgMKAqpKenk4gEPA7FGOOSXY2XHUVrFjhCsm1bet3RKETFVcEDRs2ZOPGjWzfvt3vUAwuMTeM1q9OJiaouruCZs6EMWOi5zbRkkRFIkhISCj1qVljjDkSf/+7SwD33QfXX+93NKEXFU1DxhhTXl55xSWAq6924w7HAksExhjjmTPHDTjftSuMHRu51USPlCUCY4wBVq1yQ002berGG05M9DuiimOJwBgT8zZvhp49XSnpd9+FIoWAo15UdBYbY8zRyshwSWDHDpg7F1JT/Y6o4lkiMMbErMxMuOyygyWlgxxfKupYIjDGxKTcXDfO8Jw58PLLcOGFfkfkH+sjMMbEHFW4806YMsWVlf7d7/yOyF8hSwQicqKIzBaRb0RkpYjcWcw2IiIjRWStiHwlIu1CFY8xxuT729/guefgT3+CP/7R72j8F8qmoRzgblVdKiLVgCUi8qGqflNom55AM+91BvCC99MYY0Ji3Di4/353FfDEE35HEx5CdkWgqptVdak3vQdYBTQostmlwER1FgI1RaR+qGIyxsS2GTPgpptcf8C4cRBnjeNABfURiEgqcDrweZFVDYANheY3cniyQERuEpHFIrLYCssZY47GggWumujpp8Mbb8TWA2NlCXkiEJFk4A3gLlXdfTT7UNXRqtpBVTvUrVu3fAM0xkS9VavgkkugQQN3m2hyst8RhZeQJgIRScAlgVdU9c1iNtkEnFhovqG3zBhjysVPP7ky0gkJrqx0vXp+RxR+QnnXkABjgVWq+q8SNpsGXOPdPfQbIENVN4cqJmNMbNm2Dbp3dyOMvf8+nHyy3xGFp1DeNdQZ+D3wtYgs85b9H9AIQFVHAe8CFwNrgX3AtSGMxxgTQ375xV0JbNgAH34IaWl+RxS+QpYIVPVToNQirurGlrwtVDEYY2LTvn3Qu7crHTFtGnTu7HdE4c1KTBhjokpWFvTrB/Pnw6uvQo8efkcU/iwRGGOiRm4uXHMNvPcejB7tbhc1ZbPHKYwxUSF/wPnJk+HJJ+HGG/2OKHJYIjDGRIXhw91VwPDh8Oc/+x1NZLFEYIyJeE884V5DhsBjj/kdTeSxRGCMiWijRsG998KAAfDss7Ez4Hx5KrOzWETqAsOAlkAgf7mqnh/CuIwxpkzjx8Mtt0CvXjBxIsTH+x1RZArmiuAVXOXQxsBDwDrgixDGZIwxZZo0Ca6/3j05PGWKKyFhjk4wiaC2qo4FslV1rqpeB9jVgDHGN2++6YaZ7NIF3noLAoEyf8WUIpjnCLK9n5tFpBfwM5ASupCMMaZk777r+gM6dXLjC1Sp4ndEkS+YRPCoiNQA7gaeAaoDfwhpVMYYU4xZs+CKK6BNG5cQqlXzO6LoUGYiUNUZ3mQGcF5owzHGmOJ98gn06QPNm7ty0jVr+h1R9Cizj0BEmovIRyKywptvIyL3hz40Y4xxFi50dwaddJK7Kqhd2++IokswncUvAsPx+gpU9StgQCiDMsaYfEuXusJxxx0HH31kA8uEQjCJoIqqLiqyLCcUwRhjTGHLl7vbQ2vWhI8/hhNO8Dui6BRMItghIk0ABRCRfoCNImaMCanly+H886FqVZcEGjXyO6LoFcxdQ7cBo4FTRGQT8CPwu5BGZYyJaYWTwOzZNsRkqJWaCEQkHrhVVS8QkapAnKruqZjQjDGxqGgSaNLE74iiX6mJQFVzRaSLN/1rxYRkjIlVy5ZBt26WBCpaME1DX4rINOB1oCAZqOqbIYvKGBNzCieBOXOsOagiBZMIAkA6h9YXUsASgTGmXFgS8FcwTxZfWxGBGGNikyUB/wUzHkEAuB5oxaHjEVwXwriMMTHAkkB4COY5gpeA44GLgLlAQ8DuHDLGHJNFi+C88ywJhINgEkFTVf0L8KuqTgB6AWeENixjTDSbNw8uuABSUlwxOUsC/gomEeSPR/CLiLQGagBW7cMYc1RmzXK1g044wSWB1FS/IzLBJILRIlILuB+YBnwDPFHWL4nIOBHZll+1tJj1XUUkQ0SWea8HjihyY0zEeecduOQS93zA3LnQoIHfERkI7q6hMd7kJ8CRXMCNB54FJpayzTxVveQI9mmMiVBvvAEDB7pBZWbOtFLS4SSYK4KjoqqfADtDtX9jTOR45RXo3x86dnSlpC0JhJeQJYIgnSkiy0XkPRFp5XMsxpgQGDvWDTR/9tnuSqBGDb8jMkX5mQiWAiepalvcWMhvlbShiNwkIotFZPH27dsrKj5jzDF69lm44Qa46CI3xnByst8RmeKU2EcgIleU9ovHWmtIVXcXmn5XRJ4XkTqquqOYbUfjSmHToUMHPZb3NcaEnio89hj85S9w6aUweTIkJfkdlSlJaZ3Fvb2f9YCzgI+9+fOAzzjGWkMicjywVVVVRDrhrk7Sj2Wfxhj/5eXB3XfDv/8NV18N48ZBQoLfUZnSlJgI8msMicgHQEtV3ezN18fdEVQqEZkEdAXqiMhG4K9AgrfvUUA/4BYRyQH2AwNU1b7tGxPBcnJcU9CECXDHHTBiBMT53RNpyhRM9dET85OAZytQ5qBxqjqwjPXP4m4vNcZEgcxMd2fQtGnw8MNw//0g4ndUJhjBJIKPRGQmMMmb7w/MCl1IxphIs3u36wuYM8d1EN92m98RmSMRzANlt4vI5cA53qLRqjo1tGEZYyLF9u3Qs6cbYvKVV+C3v/U7InOkgrkiAHer5x5VnSUiVUSkmo1dbIz56Se48EJYvx7eegt69fI7InM0yuzGEZEbgSnAf7xFDSjlnn9jTGxYvRo6d4YtW+DDDy0JRLJg+vNvAzoDuwFUdQ1WfdSYmDZ/vksCWVmuX6BLF78jMscimERwQFWz8mdEpBJuzGJjTAx66y03lkDt2rBgAaSl+R2ROVbBJIK5IvJ/QGUR6Q68DkwPbVjGmHD0wgvQty+0beuuCmxAmegQTCIYBmwHvgZuBt7FjU1gjIkRqnDffXDrrXDxxfDxx1C3rt9RmfJS6l1DIhIPrFTVU4AXKyYkY0w4yc52TwtPnAg33gjPPw+Vgr3f0ESEUq8IVDUX+FZEynyS2BgTffbsgd69XRJ46CH4z38sCUSjYP5LawErRWQR8Gv+QlXtE7KojDG+27LF3RK6fDmMGQPXX+93RCZUgkkEfwl5FMaYsPLNNy4JbNsGb79tzwhEu2BKTMwVkZOAZvlPFgPxoQ/NGOOHWbOgXz8IBNwzAh07+h2RCTV7stgYU2DMGFc36MQTYdEiSwKxwp4sNsaQlwfDhrm7grp1c88INLJbRGJGMH0EB1Q1S7zC4vZksTHRZd8+uOYaeOMNuOUWGDnS7gyKNcH8dxd9svhW7MliY6LCli1uHIEvvoB//QvuussGk4lFwSSCe4HrOfTJ4jGhDMoYE3orV7q7gbZvh6lTXUIwsSmYRHAZMFFV7cliY6LEO++4AWSqVoVPPoH27f2OyPgpmM7i3sB3IvKSiFzi9REYYyKQKjz5pHtauGlT+PxzSwImiESgqtcCTXFVRwcC34uINQ0ZE2H274ff/97dHXTVVTBvnrtN1Jigvt2raraIvIe7W6gyrrnohhDGZYwpR5s2weWXu07hxx6D4cOtU9gcVGYiEJGeQH+gKzAH11F8VUijMsaUm0WL4LLLXAG5t96yTmFzuGCuCK4BJgM3q+qBEMdjjClHL7/sSkifcAJ88AG0bu13RCYcBdNHMBBYAHT3OovtqWJjwlxuLtxzj+sTOOss1yRkScCUJJhaQ1cCi4ArcU1Cn4tIv1AHZow5Ojt2QI8e8I9/uBHFZs504wsbU5JgmobuBzqq6jYAEakLzMIVojPGhJElS+CKK2DrVhg7Fq67zu+ITCQI5jmCuPwk4EkP5vdEZJyIbBORFSWsFxEZKSJrReQrEWkXZMzGmGKMGwedO7vpTz+1JGCCF0wieF9EZorIYBEZDLwDvBfE740HepSyvifQzHvdBLwQxD6NMUUcOAA33+xGEDv7bHdV0KGD31GZSBLMwDR/FpErgC7eotGqOjWI3/tERFJL2eRSXOkKBRaKSE0Rqa+qm4MJ3BgDGza4QWQWLXLPBjzyCMTbsFHmCJWYCESkKXCcqs5X1TeBN73lXUSkiap+f4zv3QDYUGh+o7fssEQgIjfhrhpoZEXSjQHg449hwADIzIQ333QPjBlzNEprGvo33mA0RWR46yqMqo5W1Q6q2qFu3boV+dbGhJ28PPj736F7d6hTx10NWBIwx6K0pqHjVPXrogtV9esymnyCtQkoXOmkobfMGFOC7dvdswEzZ0L//vDii1Ctmt9RmUhX2hVBzVLWVS6H954GXOPdPfQbIMP6B4wp2aefwumnuwHlX3gBJk2yJGDKR2mJYLE3cP0hROQGYElZOxaRSbgnkluIyEYRuV5EhojIEG+Td4EfgLXAi7iRz4wxReTlweOPQ9euULkyLFgAQ4ZY0ThTfkprGroLmCoiv+Pgib8DkAiU2SLplaYobb0CtwUXpjGxaccON57we++50tEvvgjVq/sdlYk2JSYCVd0KnCUi5wH5VUreUdWPKyQyY2Lc/PmuH2D7dnj+ebsKMKETzHMEs4HZFRCLMQZXMO7xx+Gvf4XUVFi40PUNGBMqNuykMWFkwwa4+mo3jvCAAfCf/1hTkAk9SwTGhIkpU+DGGyEnByZMcLeJWlOQqQjB1BoyxoTQ3r1u8Jgrr4TmzWHZMtdBbEnAVBRLBMb4aMkSaNfOVQ697z73rECTJn5HZWKNJQJjfJCX5waOOfNM2L8fZs+GRx+FhAS/IzOxyPoIjKlgP/4Igwe7DuF+/VyHcEqK31GZWGZXBMZUEFX3QFibNq4f4L//hddesyRg/GdXBMZUgJ9/dh3C770H3bq5PgGrqG7ChV0RGBNir74KrVu7YnHPPAMffGBJwIQXSwTGhEh6uisRMXAgtGjhmoNuvx3i7K/OhBn7SBoTAlOnuquAqVPhb3+DefPcMwLGhCPrIzCmHG3ZAkOHuqeE09Lg/fehbVu/ozKmdHZFYEw5UIWJE6FlS5g+3V0FLFpkScBEBrsiMOYYrV8PN9/sho886ywYOxZOOcXvqIwJnl0RGHOU8vLg2WehVStXGuKZZ1xfgCUBE2nsisCYo7BihRsoZv58uPBC93RwaqrfURlzdOyKwJgj8OuvcO+9bqCYVavc08Hvv29JwEQ2uyIwJkgzZrjnANavh2uvhSefhDp1/I7KmGNnVwTGlGHDBrjiCujdG6pWhblzXYkISwImWlgiMKYE2dnw1FNw6qmu+efxx+HLL+Gcc/yOzJjyZU1DxhRjzhy44w74+mu45BJ3R5D1A5hoZVcExhSyfr0bMvK882D3bnjzTZg2zZKAiW52RWAMsG8fPPGE6wAWgYcfhj/9CSpX9jsyY0LPEoGJaarw+uvupL9hAwwY4JLBiSf6HZkxFSekTUMi0kNEvhWRtSJybzHrB4vIdhFZ5r1uCGU8xhS2bJlrAurf340SNncuTJpkScDEnpAlAhGJB54DegItgYEi0rKYTSerapr3GhOqeIzJ99NPcM010K6de0J41ChYssTuBjKxK5RXBJ2Atar6g6pmAa8Cl4bw/YwpVUaGeyq4eXM3VvCf/wxr17qCcfHxfkdnjH9CmQgaABsKzW/0lhXVV0S+EpEpIlLsRbmI3CQii0Vk8fbt20MRq4liWVkwciQ0aeI6hK+6Cr77zk3XrOl3dMb4z+/bR6cDqaraBvgQmFDcRqo6WlU7qGqHunXrVmiAJnKpugFiWrWCO+90A8UsXerGDbAxg405KJSJYBNQ+Bt+Q29ZAVVNV9UD3uwYoH0I4zExQtU9Cdyxo3smIBCAd9+FDz90xeKMMYcKZSL4AmgmIo1FJBEYAEwrvIGI1C802wdYFcJ4TAyYO9d1+vbs6QaP/+9/3d1BPXu65wOMMYcL2XMEqpojIrcDM4F4YJyqrhSRh4HFqjoNuENE+gA5wE5gcKjiMdFt0SK4/373rf+EE+D55+H66yEx0e/IjAl/oqp+x3BEOnTooIsXL/Y7DBMmli+HBx5wZSDq1IHhw+GWW+yJYGOKEpElqtqhuHX2ZLGJSF98AY8+6hJAjRpu+o47oFo1vyMzJvJYIjAR5dNP3Ul/5kyoVQseegiGDnXTxpijY4nAhD1V+OgjlwDmzoV69dwzALfcYlcAxpQHSwQmbOXmwvTp7qS/cCE0aABPPw033ABVqvgdnTHRwxKBCTv798OECfCvf8GaNW4sgFGjYPBgSEryOzpjoo8lAhM2tm1zt30+9xzs2OEeCHvtNbj8cqhkn1RjQsb+vIzvvv0WRoxwVwGZmdCnjxsfoEsXewjMmIpgicD4IjfXlX149ln44APX5DNoEPzhD3DKKX5HZ0xssURgKlR6OowdCy+8AOvWuQ7gRx6BG2+E447zOzpjYpMlAlMhli513/4nTXLNP+eeC//4B1x6KSQk+B2dMbHNEoEJmYwMePVVGDMGFi+GqlXdnT+33QatW/sdnTEmnyUCU65UYf58d/J/7TV3K+hpp7n7/wcNcuUgjDHhxRKBKRdbt7oBX8aOdXcBVasGv/+9e/irQwe7+8eYcGaJwBy1X3+Ft96Cl1925Z9zc6FzZzcu8JVXuqYgY0z4s0RgjkhOjjvpv/IKTJ0K+/a5YR/vucddAZx6qt8RGmOOlCUCU6a8PPjsM9fmP3myewK4Vi24+mr36twZ4vwe/doYc9QsEZhi5eTAvHlu8PepU2HzZvfQV+/e7uTfo4fV/TEmWlgiMAWysmD2bHfyf+stV++ncmW4+GLo1w969bKyz8ZEI0sEMW7rVnjvPXjnHVfqYfduSE523/z79nXf/K3T15jyl5mTyc79O9m5fye79u86OJ1ZwvT+XdzY7kaGdRlW7rFYIogxeXnw5ZfuxP/OO27IR1U34PtVV7mCb927QyDgd6TGhL88zSMjM6PYk3ZZJ/bMnMwS9xsncaRUTqFWoBYplVOoW6UuzWs35+RaJ4fkOCwRxICffnIjfOW/tmxx9/V36gQPP+yafNLS7F5/E3tUlb1Ze/kl85diXxkHMkpct3P/Tn7J/AVFS9x/1YSq1KrsTuYplVNoltKsYDr/JJ9SOeWQbWoFalEtqRpxUnF3YFgiiELp6a6tP//Ev2aNW16vHpx/PvTs6Zp86tXzN05jjlWe5rH7wO6DJ+7MEk7cB4pfl3EggzzNK/U9qiZUpUagBjUDNakZqMlxycfRok4LUgKHn8ALn9hrBWqRVCky7qiwRBDhVF0Vz/nz3evTT2HlSrc8OdkVd7v1VujWzdX3sW/9Jhzk5OWw58Aedh/YHdwr6+B0/u9lHMhgz4E9pX4jB6iWWK3gJF4zUJMG1RvQql4raibVPGR5zUDNQ074NQM1qZFUg4T46K+KaIkgwmRmwvLlbgzf/JP/zz+7ddWqwVlnQf/+7pt/x45W2dOUn5y8HPZm7T3sVeIJPavkE/u+7H1BvWe1xGpUT6p+yKtBtQZUT6p+2Am+uJN69aTqVIqz01xZ7F8ojGVmwtdfu8qdS5a4nytXunv8wT3Re+65biSvzp3dN/74eH9jNuEhOzfbnaSz9hR78i56It+btZe92aWvP5B7IKj3jpf4gpNw/qte1Xo0TWlK9cTqh53YC7+qJR088ScnJldoO3kss0QQBvLyXPPOihXuRL9y5cHp/JN+7drQvr27p79DB/dt/8QTfQ3bHCVV5UDuAfZl7+PXrF/Zl72v4PVrdpH5stYXmi988s7KzQo6nsqVKpOcmExyYjLVkqqRnJhM9aTqnFDtBLc84dB1xb1qJB088QcqBRBrg4wolggq0K5dsHYtfP+9+7l2rTvZf/ONq9mTr1EjaNXKnfTbt3cn/kaNrH0/VPI0j8ycTPZn7yczJ9NN5xSa9pYXt6zw8v3Z+9mfsz+oE3tZ7dpFCULVxKpUSahS8Kqa4ObrVqlLlYQqh52cqyUWf+IufEKvmlCV+Di7jIx1IU0EItIDeBqIB8ao6uNF1icBE4H2QDrQX1XXhTKmUMnNdbdlbtoEGzce/PnTTwdP/Lt2Hfo7J5wALVvCTTe5E3/r1m6+enV/jqGi5Gke2bnZHMg9QFZuFgdyDhwynZWbdUzzB3IPFJykgzmpH8m35+IkxicSqBSgcqXKBCoFCk7YVROqFpykC5+4C+ZLOLEXtz4pPsm+ZZcnVXcpnpt76M9jWVYe+yhrWbt2rh24nIUsEYhIPPAc0B3YCHwhItNU9ZtCm10P7FLVpiIyAHgC6B+qmMqi6trl9+51JZb37j342rXLlVxIT3c/81/p6a4Oz5Yt7v+qsMREaNgQmjRxHbhNm7rppk2hcWOlchUlNy+XXM0lNy+XPM0jV3NJ33f4suK2y1+Wp3mHrC+6LDs3m5y8HLLzso9t+gh/Jys3yzs5Z5KTk0VW9gGyc7PIyc1BAFGO6GecFr8uDgjEJ5EYl0BSXCKJcQlUrhQgEJ9EID6J6t7PQHwKgbhEApWSCCQlkRSXSCA+iaT4RJLikgjEJ3rT3vI4bz7e7TMQ594jMT6BgPc+iXEJxCHuwxPsKzMP9nl/4PknpLxcyPsFdNfBP/5D1pey7EjnK+p3QvW+5XEijlTDhkVWIgA6AWtV9QcAEXkVuBQonAguBR70pqcAz4qIqOqRXTcHYeQfJzFyZBq5VCKXSuRovPfTmyeB/VqFPMq+TE6WDGpJOrVkBylx6fxGtnF8wkbqJ23ieNnE8XEbOUE2UFPSidupyE7gC9wH2pPuncjAnczyFf7Ol3+yqwQkFFle3LYl7eNIt0UOTscV2irYkzaqBSfuinPAe5kyibhysfmvsuaD2eZY9lGp0pH9Tnz8wfn86dKWHen2FbHsaPdRuXJIPhKhTAQNgA2F5jcCZ5S0jarmiEgGUBvYUXgjEbkJuAmgUaNGRxVMSr3KnFRjLfGS615xOe4nB6crx+0nEL+PKvH7qFxpH5Xj9lEl3i2rnpBBzUq/UD0xg4S4bARQEXeKzL9kF/HOmUI2tdkudfKPwF3WiyAIEicIcYi45W5ZHIK3jbh1cbg/AvF+P3/5ofOF9lPo9yQuDhDiRIiLi0ckjjiJIy4u3i2TeG86f3mcW+btg6LHdfA/48hf+X/Ax/Iqj32ESyz5f9x+nJCteckUIyI6i1V1NDAaoEOHDkf1PfPqey/j6nvLNSxjjIkKobxJdxNQ+AbHht6yYrcRkUpADVynsTHGmAoSykTwBdBMRBqLSCIwAJhWZJtpwCBvuh/wcSj6B4wxxpQsZE1DXpv/7cBM3O2j41R1pYg8DCxW1WnAWOAlEVkL7MQlC2OMMRUopH0Eqvou8G6RZQ8Ums4ErgxlDMYYY0pnhTyMMSbGWSIwxpgYZ4nAGGNinCUCY4yJcRJpd2uKyHZg/VH+eh2KPLUcwexYwlO0HEu0HAfYseQ7SVXrFrci4hLBsRCRxarawe84yoMdS3iKlmOJluMAO5ZgWNOQMcbEOEsExhgT42ItEYz2O4ByZMcSnqLlWKLlOMCOpUwx1UdgjDHmcLF2RWCMMaYISwTGGBPjYiYRiEgPEflWRNaKSFgOUSMi40Rkm4isKLQsRUQ+FJE13s9a3nIRkZHe8XwlIu0K/c4gb/s1IjKouPcK8XGcKCKzReQbEVkpIndG8LEERGSRiCz3juUhb3ljEfnci3myV2odEUny5td661ML7Wu4t/xbEbmooo/FiyFeRL4UkRkRfhzrRORrEVkmIou9ZRH3+fJiqCkiU0RktYisEpEzK/xYVDXqX7gy2N8DJwOJwHKgpd9xFRPnOUA7YEWhZU8C93rT9wJPeNMXA+8BAvwG+NxbngL84P2s5U3XquDjqA+086arAd8BLSP0WARI9qYTgM+9GF8DBnjLRwG3eNO3AqO86QHAZG+6pfe5SwIae5/HeB8+Y38E/gfM8OYj9TjWAXWKLIu4z5cXxwTgBm86EahZ0cdSoQfs1ws4E5hZaH44MNzvuEqINZVDE8G3QH1vuj7wrTf9H2Bg0e2AgcB/Ci0/ZDufjultoHukHwtQBViKG3t7B1Cp6OcLN/7Gmd50JW87KfqZK7xdBcbfEPgIOB+Y4cUVccfhve86Dk8EEff5wo3K+CPejTt+HUusNA01ADYUmt/oLYsEx6nqZm96C3CcN13SMYXVsXpNCqfjvklH5LF4zSnLgG3Ah7hvwb+oak4xcRXE7K3PAGoTHsfyb+AeIM+br01kHgeAAh+IyBIRuclbFomfr8bAduC/XpPdGBGpSgUfS6wkgqigLtVHzP2+IpIMvAHcpaq7C6+LpGNR1VxVTcN9o+4EnOJvREdORC4BtqnqEr9jKSddVLUd0BO4TUTOKbwygj5flXDNwS+o6unAr7imoAIVcSyxkgg2AScWmm/oLYsEW0WkPoD3c5u3vKRjCotjFZEEXBJ4RVXf9BZH5LHkU9VfgNm4JpSaIpI/wl/huApi9tbXANLx/1g6A31EZB3wKq556Gki7zgAUNVN3s9twFRcgo7Ez9dGYKOqfu7NT8Elhgo9llhJBF8Azbw7JBJxnV/TfI4pWNOA/DsABuHa2/OXX+PdRfAbIMO7lJwJXCgitbw7DS70llUYERHceNSrVPVfhVZF4rHUFZGa3nRlXF/HKlxC6OdtVvRY8o+xH/Cx941uGjDAuxunMdAMWFQhBwGo6nBVbaiqqbjP/8eq+jsi7DgARKSqiFTLn8Z9LlYQgZ8vVd0CbBCRFt6ibsA3VPSxVHQnj18vXG/7d7j23fv8jqeEGCcBm4Fs3DeF63Htsh8Ba4BZQIq3rQDPecfzNdCh0H6uA9Z6r2t9OI4uuEvZr4Bl3uviCD2WNsCX3rGsAB7wlp+MOwGuBV4HkrzlAW9+rbf+5EL7us87xm+Bnj5+zrpy8K6hiDsOL+bl3mtl/t9zJH6+vBjSgMXeZ+wt3F0/FXosVmLCGGNiXKw0DRljjCmBJQJjjIlxlgiMMSbGWSIwxpgYZ4nAGGNinCUCEzFEZISI3FVofqaIjCk0/5SI/LGU3x8vIv286XUiUuco45gjIqUOIC4iXeVghc8+UkrFWxFJE5GLjyYWY8qDJQITSeYDZwGISBxQB2hVaP1ZwGc+xFUqVZ2mqo+Xskka7jkLY3xhicBEks9w5R3AJYAVwB7vacok4FRgqYg8ICJfiMgKERntPelcLBGpLCLviciN3hOr48SNP/CliFxaaJtXxdWKnwpULmFfPcTVlF8KXFFo+WARedabvtKLa7mIfOI96f4w0F9cbf3+ItJJRBZ4MXyW/9Spt583ReR9cTXnnyzy3ku9/X7kLSv2eIwpqlLZmxgTHlT1ZxHJEZFGuG//C3AVFs/EVcf8WlWzRORZVX0YQEReAi4Bphezy2Rc3Z2JqjpRRP6GK6VwnVdWYpGIzAJuBvap6qki0gZXivoQIhIAXsTV8FkLTC7hMB4ALlLVTSJS04v3AdwTord7+6oOnK2qOSJyAfA3oK/3+2m4aq4HgG9F5Bkg03vvc1T1RxFJ8ba9r7jjUdVfS/2HNjHHrghMpPkMlwTyE8GCQvPzvW3OEzeq1te4E3Or4naEq9/yX1Wd6M1fCNwrruT0HFyZhUa4AYNeBlDVr3ClAIo6BfhRVdeoe1z/5RLecz4wXkRuxA2YVJwawOviRqobUST+j1Q1Q1UzcTVpTsINUPKJqv7oxbizjOMx5hB2RWAiTX4/wWm4pqENwN3AblxN9wDwPO4b9gYReRB3AixpXz1E5H/eyVuAvqr6beGNSmlZOmKqOkREzgB6AUtEpH0xmz0CzFbVy8WN5zCn0LoDhaZzKf1vuNjjMaYouyIwkeYzXFPPTnXjBOzEDe13prcu/6S/Q9x4CP2K3YvzALALV8QLXLXGofl9CiJyurf8E+C33rLWuEJ0Ra0GUkWkiTc/sLg3FJEmqvq5qj6AG5DkRGAPbkjPfDU4WEJ4cCnx51sInCOuGiiFmoZKOh5jDmGJwESar3F3Cy0ssixDVXeoGzPgRdzVwkxcCfLS3AlU9jpeH8GNS/yViKz05gFeAJJFZBWuY/ewwV28ppqbgHe8zuJtRbfx/EPcoOsrcIlrOa4UdMv8zmLceLV/F5EvCeKqXVW3e+/9pogs52D/REnHY8whrPqoMcbEOLsiMMaYGGeJwBhjYpwlAmOMiXGWCIwxJsZZIjDGmBhnicAYY2KcJQJjjIlx/w8oEJLHa0qxKgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x = np.arange(0, 6000)\n",
"fig, ax = plt.subplots()\n",
"ax.set_xlabel(\"Walked distance\")\n",
"ax.set_ylabel(\"Covered area\")\n",
"ax.plot(((x**2)*np.sqrt(3))/4, color='green', label='Triangle path')\n",
"ax.plot((x**2)/16, color='red', label='Square path')\n",
"ax.plot(((x**2) * np.pi**3)/4, color='blue', label='Circle path')\n",
"ax.legend()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment