Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
library(shiny) | |
shinyServer( function(input, output, session) { | |
output$results <- renderPrint({ | |
input$mydata | |
}) | |
# observer if value of the data sent from the client changes | |
# if yes generate a new random color and send it back to |
SELECT ?thumbnail ?abstract ?hdirank ?hdiyear | |
WHERE { | |
<##DBPedia_link##> <http://dbpedia.org/ontology/thumbnail> ?thumbnail . | |
<##DBPedia_link##> <http://dbpedia.org/ontology/abstract> ?abstract . | |
FILTER(langMatches(lang(?abstract), "en")) . | |
<##DBPedia_link##> <http://dbpedia.org/property/hdiRank> ?hdirank . | |
<##DBPedia_link##> <http://dbpedia.org/property/hdiYear> ?hdiyear | |
} |
Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
>>> from pandas import DataFrame | |
>>> from sklearn.feature_extraction.text import CountVectorizer | |
>>> docs = ["You can catch more flies with honey than you can with vinegar.", | |
... "You can lead a horse to water, but you can't make him drink."] | |
>>> vect = CountVectorizer(min_df=0., max_df=1.0) | |
>>> X = vect.fit_transform(docs) | |
>>> print(DataFrame(X.A, columns=vect.get_feature_names()).to_string()) | |
but can catch drink flies him honey horse lead make more than to vinegar water with you | |
0 0 2 1 0 1 0 1 0 0 0 1 1 0 1 0 2 2 | |
1 1 2 0 1 0 1 0 1 1 1 0 0 1 0 1 0 2 |
"""Information Retrieval metrics | |
Useful Resources: | |
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt | |
http://www.nii.ac.jp/TechReports/05-014E.pdf | |
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf | |
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf | |
Learning to Rank for Information Retrieval (Tie-Yan Liu) | |
""" | |
import numpy as np |
""" | |
Implementation of pairwise ranking using scikit-learn LinearSVC | |
Reference: "Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich, | |
T. Graepel, K. Obermayer. | |
Authors: Fabian Pedregosa <[email protected]> | |
Alexandre Gramfort <[email protected]> | |
""" |