Skip to content

Instantly share code, notes, and snippets.

View theotheo's full-sized avatar
🌴
On vacation

theotheo

🌴
On vacation
View GitHub Profile
@markheckmann
markheckmann / server.R
Created November 19, 2013 23:26
client/server interaction with shiny - part 2
library(shiny)
shinyServer( function(input, output, session) {
output$results <- renderPrint({
input$mydata
})
# observer if value of the data sent from the client changes
# if yes generate a new random color and send it back to
@KasperBrandt
KasperBrandt / IATI: DBPedia abstract, thumbnail and HDI
Created July 29, 2013 19:59
SPARQL query for retrieving the abstract, thumbnail and HDI information of a country. Should be performed on the DBPedia endpoint: http://dbpedia.org/sparql
SELECT ?thumbnail ?abstract ?hdirank ?hdiyear
WHERE {
<##DBPedia_link##> <http://dbpedia.org/ontology/thumbnail> ?thumbnail .
<##DBPedia_link##> <http://dbpedia.org/ontology/abstract> ?abstract .
FILTER(langMatches(lang(?abstract), "en")) .
<##DBPedia_link##> <http://dbpedia.org/property/hdiRank> ?hdirank .
<##DBPedia_link##> <http://dbpedia.org/property/hdiYear> ?hdiyear
}
@willurd
willurd / web-servers.md
Last active April 20, 2025 00:42
Big list of http static server one-liners

Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.

Discussion on reddit.

Python 2.x

$ python -m SimpleHTTPServer 8000
@larsmans
larsmans / gist:3745866
Created September 18, 2012 21:00
Inspecting scikit-learn CountVectorizer output with a Pandas DataFrame
>>> from pandas import DataFrame
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> docs = ["You can catch more flies with honey than you can with vinegar.",
... "You can lead a horse to water, but you can't make him drink."]
>>> vect = CountVectorizer(min_df=0., max_df=1.0)
>>> X = vect.fit_transform(docs)
>>> print(DataFrame(X.A, columns=vect.get_feature_names()).to_string())
but can catch drink flies him honey horse lead make more than to vinegar water with you
0 0 2 1 0 1 0 1 0 0 0 1 1 0 1 0 2 2
1 1 2 0 1 0 1 0 1 1 1 0 0 1 0 1 0 2
@bwhite
bwhite / rank_metrics.py
Created September 15, 2012 03:23
Ranking Metrics
"""Information Retrieval metrics
Useful Resources:
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt
http://www.nii.ac.jp/TechReports/05-014E.pdf
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf
Learning to Rank for Information Retrieval (Tie-Yan Liu)
"""
import numpy as np
@agramfort
agramfort / ranking.py
Created March 18, 2012 13:10 — forked from fabianp/ranking.py
Pairwise ranking using scikit-learn LinearSVC
"""
Implementation of pairwise ranking using scikit-learn LinearSVC
Reference: "Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich,
T. Graepel, K. Obermayer.
Authors: Fabian Pedregosa <[email protected]>
Alexandre Gramfort <[email protected]>
"""