Skip to content

Instantly share code, notes, and snippets.

@theptrk
Created June 20, 2022 05:06
Show Gist options
  • Save theptrk/c7f6529275eb6faacbe17206e9b20c21 to your computer and use it in GitHub Desktop.
Save theptrk/c7f6529275eb6faacbe17206e9b20c21 to your computer and use it in GitHub Desktop.
python-sklearn-linear-regression.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/theptrk/c7f6529275eb6faacbe17206e9b20c21/python-sklearn-linear-regression.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6635a14",
"metadata": {
"id": "d6635a14"
},
"outputs": [],
"source": [
"# Jovian Commit Essentials\n",
"# Please retain and execute this cell without modifying the contents for `jovian.commit` to work\n",
"!pip install jovian --upgrade -q\n",
"import jovian\n",
"jovian.set_project('python-sklearn-linear-regression')\n",
"jovian.set_colab_id('18O3H0wlRl4fEQ4vBB2LiYAWUlzhfL0Ra')"
]
},
{
"cell_type": "markdown",
"id": "0e28a1a1",
"metadata": {
"id": "0e28a1a1"
},
"source": [
"# Linear Regression with Scikit Learn - Machine Learning with Python\n",
"\n",
"This tutorial is a part of [Zero to Data Science Bootcamp by Jovian](https://zerotodatascience.com) and [Machine Learning with Python: Zero to GBMs](https://jovian.ai/learn/machine-learning-with-python-zero-to-gbms)\n",
"\n",
"![](https://i.imgur.com/1EzyZvj.png)\n"
]
},
{
"cell_type": "markdown",
"id": "262ff34b",
"metadata": {
"id": "262ff34b"
},
"source": [
"The following topics are covered in this tutorial:\n",
"\n",
"- A typical problem statement for machine learning\n",
"- Downloading and exploring a dataset for machine learning\n",
"- Linear regression with one variable using Scikit-learn\n",
"- Linear regression with multiple variables \n",
"- Using categorical features for machine learning\n",
"- Regression coefficients and feature importance\n",
"- Other models and techniques for regression using Scikit-learn\n",
"- Applying linear regression to other datasets"
]
},
{
"cell_type": "markdown",
"id": "b9cdc017",
"metadata": {
"id": "b9cdc017"
},
"source": [
"### How to run the code\n",
"\n",
"This tutorial is an executable [Jupyter notebook](https://jupyter.org) hosted on [Jovian](https://www.jovian.ai). You can _run_ this tutorial and experiment with the code examples in a couple of ways: *using free online resources* (recommended) or *on your computer*.\n",
"\n",
"#### Option 1: Running using free online resources (1-click, recommended)\n",
"\n",
"The easiest way to start executing the code is to click the **Run** button at the top of this page and select **Run on Binder**. You can also select \"Run on Colab\" or \"Run on Kaggle\", but you'll need to create an account on [Google Colab](https://colab.research.google.com) or [Kaggle](https://kaggle.com) to use these platforms.\n",
"\n",
"\n",
"#### Option 2: Running on your computer locally\n",
"\n",
"To run the code on your computer locally, you'll need to set up [Python](https://www.python.org), download the notebook and install the required libraries. We recommend using the [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) distribution of Python. Click the **Run** button at the top of this page, select the **Run Locally** option, and follow the instructions.\n",
"\n",
"> **Jupyter Notebooks**: This tutorial is a [Jupyter notebook](https://jupyter.org) - a document made of _cells_. Each cell can contain code written in Python or explanations in plain English. You can execute code cells and view the results, e.g., numbers, messages, graphs, tables, files, etc., instantly within the notebook. Jupyter is a powerful platform for experimentation and analysis. Don't be afraid to mess around with the code & break things - you'll learn a lot by encountering and fixing errors. You can use the \"Kernel > Restart & Clear Output\" menu option to clear all outputs and start again from the top."
]
},
{
"cell_type": "markdown",
"id": "878f37c0",
"metadata": {
"id": "878f37c0"
},
"source": [
"## Problem Statement\n",
"\n",
"This tutorial takes a practical and coding-focused approach. We'll define the terms _machine learning_ and _linear regression_ in the context of a problem, and later generalize their definitions. We'll work through a typical machine learning problem step-by-step:\n",
"\n",
"\n",
"> **QUESTION**: ACME Insurance Inc. offers affordable health insurance to thousands of customer all over the United States. As the lead data scientist at ACME, **you're tasked with creating an automated system to estimate the annual medical expenditure for new customers**, using information such as their age, sex, BMI, children, smoking habits and region of residence. \n",
">\n",
"> Estimates from your system will be used to determine the annual insurance premium (amount paid every month) offered to the customer. Due to regulatory requirements, you must be able to explain why your system outputs a certain prediction.\n",
"> \n",
"> You're given a [CSV file](https://raw.githubusercontent.com/JovianML/opendatasets/master/data/medical-charges.csv) containing verified historical data, consisting of the aforementioned information and the actual medical charges incurred by over 1300 customers. \n",
"> <img src=\"https://i.imgur.com/87Uw0aG.png\" width=\"480\">\n",
">\n",
"> Dataset source: https://github.com/stedy/Machine-Learning-with-R-datasets\n",
"\n",
"\n",
"**EXERCISE**: Before proceeding further, take a moment to think about how can approach this problem. List five or more ideas that come to your mind below:\n",
" \n",
" 1. ???\n",
" 2. ???\n",
" 3. ???\n",
" 4. ???\n",
" 5. ???\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "05be9ff5",
"metadata": {
"id": "05be9ff5"
},
"source": [
"## Downloading the Data\n",
"\n",
"To begin, let's download the data using the `urlretrieve` function from `urllib.request`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c44ead68",
"metadata": {
"id": "c44ead68"
},
"outputs": [],
"source": [
"#restart the kernel after installation\n",
"!pip install pandas-profiling --quiet"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2fb08156",
"metadata": {
"id": "2fb08156"
},
"outputs": [],
"source": [
"medical_charges_url = 'https://raw.githubusercontent.com/JovianML/opendatasets/master/data/medical-charges.csv'"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "178a1b4a",
"metadata": {
"id": "178a1b4a"
},
"outputs": [],
"source": [
"from urllib.request import urlretrieve"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8df68352",
"metadata": {
"scrolled": true,
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8df68352",
"outputId": "557626e7-976c-4694-bdd7-c7d96c7a5b3e"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"('medical.csv', <http.client.HTTPMessage at 0x7febf0857850>)"
]
},
"metadata": {},
"execution_count": 4
}
],
"source": [
"urlretrieve(medical_charges_url, 'medical.csv')"
]
},
{
"cell_type": "markdown",
"id": "549e8d02",
"metadata": {
"id": "549e8d02"
},
"source": [
"We can now create a Pandas dataframe using the downloaded file, to view and analyze the data."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9f0716e7",
"metadata": {
"id": "9f0716e7"
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "201518f6",
"metadata": {
"id": "201518f6"
},
"outputs": [],
"source": [
"medical_df = pd.read_csv('medical.csv')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4cd12809",
"metadata": {
"scrolled": false,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "4cd12809",
"outputId": "8765383d-e788-4605-94c2-ede6e80f4e45"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" age sex bmi children smoker region charges\n",
"0 19 female 27.900 0 yes southwest 16884.92400\n",
"1 18 male 33.770 1 no southeast 1725.55230\n",
"2 28 male 33.000 3 no southeast 4449.46200\n",
"3 33 male 22.705 0 no northwest 21984.47061\n",
"4 32 male 28.880 0 no northwest 3866.85520"
],
"text/html": [
"\n",
" <div id=\"df-e1929889-ae03-4b26-a9bb-b84ee87fa75a\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>sex</th>\n",
" <th>bmi</th>\n",
" <th>children</th>\n",
" <th>smoker</th>\n",
" <th>region</th>\n",
" <th>charges</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>19</td>\n",
" <td>female</td>\n",
" <td>27.900</td>\n",
" <td>0</td>\n",
" <td>yes</td>\n",
" <td>southwest</td>\n",
" <td>16884.92400</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>18</td>\n",
" <td>male</td>\n",
" <td>33.770</td>\n",
" <td>1</td>\n",
" <td>no</td>\n",
" <td>southeast</td>\n",
" <td>1725.55230</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>28</td>\n",
" <td>male</td>\n",
" <td>33.000</td>\n",
" <td>3</td>\n",
" <td>no</td>\n",
" <td>southeast</td>\n",
" <td>4449.46200</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>33</td>\n",
" <td>male</td>\n",
" <td>22.705</td>\n",
" <td>0</td>\n",
" <td>no</td>\n",
" <td>northwest</td>\n",
" <td>21984.47061</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>32</td>\n",
" <td>male</td>\n",
" <td>28.880</td>\n",
" <td>0</td>\n",
" <td>no</td>\n",
" <td>northwest</td>\n",
" <td>3866.85520</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e1929889-ae03-4b26-a9bb-b84ee87fa75a')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-e1929889-ae03-4b26-a9bb-b84ee87fa75a button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-e1929889-ae03-4b26-a9bb-b84ee87fa75a');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 8
}
],
"source": [
"medical_df.head()"
]
},
{
"cell_type": "markdown",
"id": "b51fe0a5",
"metadata": {
"id": "b51fe0a5"
},
"source": [
"The dataset contains 1338 rows and 7 columns. Each row of the dataset contains information about one customer. \n",
"\n",
"Our objective is to find a way to estimate the value in the \"charges\" column using the values in the other columns. If we can do so for the historical data, then we should able to estimate charges for new customers too, simply by asking for information like their age, sex, BMI, no. of children, smoking habits and region.\n",
"\n",
"Let's check the data type for each column."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec3846db",
"metadata": {
"id": "ec3846db",
"outputId": "922d311c-e531-4c91-92be-3fb4534513af"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 1338 entries, 0 to 1337\n",
"Data columns (total 7 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 age 1338 non-null int64 \n",
" 1 sex 1338 non-null object \n",
" 2 bmi 1338 non-null float64\n",
" 3 children 1338 non-null int64 \n",
" 4 smoker 1338 non-null object \n",
" 5 region 1338 non-null object \n",
" 6 charges 1338 non-null float64\n",
"dtypes: float64(2), int64(2), object(3)\n",
"memory usage: 73.3+ KB\n"
]
}
],
"source": [
"medical_df.info()"
]
},
{
"cell_type": "markdown",
"id": "f7daf1ef",
"metadata": {
"id": "f7daf1ef"
},
"source": [
"Looks like \"age\", \"children\", \"bmi\" ([body mass index](https://en.wikipedia.org/wiki/Body_mass_index)) and \"charges\" are numbers, whereas \"sex\", \"smoker\" and \"region\" are strings (possibly categories). None of the columns contain any missing values, which saves us a fair bit of work!\n",
"\n",
"Here are some statistics for the numerical columns:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "601dd869",
"metadata": {
"id": "601dd869",
"outputId": "32ee9272-542d-4fa5-9734-9eaea1831184"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>bmi</th>\n",
" <th>children</th>\n",
" <th>charges</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>1338.000000</td>\n",
" <td>1338.000000</td>\n",
" <td>1338.000000</td>\n",
" <td>1338.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>39.207025</td>\n",
" <td>30.663397</td>\n",
" <td>1.094918</td>\n",
" <td>13270.422265</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>14.049960</td>\n",
" <td>6.098187</td>\n",
" <td>1.205493</td>\n",
" <td>12110.011237</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>18.000000</td>\n",
" <td>15.960000</td>\n",
" <td>0.000000</td>\n",
" <td>1121.873900</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>27.000000</td>\n",
" <td>26.296250</td>\n",
" <td>0.000000</td>\n",
" <td>4740.287150</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>39.000000</td>\n",
" <td>30.400000</td>\n",
" <td>1.000000</td>\n",
" <td>9382.033000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>51.000000</td>\n",
" <td>34.693750</td>\n",
" <td>2.000000</td>\n",
" <td>16639.912515</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>64.000000</td>\n",
" <td>53.130000</td>\n",
" <td>5.000000</td>\n",
" <td>63770.428010</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" age bmi children charges\n",
"count 1338.000000 1338.000000 1338.000000 1338.000000\n",
"mean 39.207025 30.663397 1.094918 13270.422265\n",
"std 14.049960 6.098187 1.205493 12110.011237\n",
"min 18.000000 15.960000 0.000000 1121.873900\n",
"25% 27.000000 26.296250 0.000000 4740.287150\n",
"50% 39.000000 30.400000 1.000000 9382.033000\n",
"75% 51.000000 34.693750 2.000000 16639.912515\n",
"max 64.000000 53.130000 5.000000 63770.428010"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"medical_df.describe()"
]
},
{
"cell_type": "markdown",
"id": "7fddbb64",
"metadata": {
"id": "7fddbb64"
},
"source": [
"The ranges of values in the numerical columns seem reasonable too (no negative ages!), so we may not have to do much data cleaning or correction. The \"charges\" column seems to be significantly skewed however, as the median (50 percentile) is much lower than the maximum value.\n",
"\n",
"\n",
"> **EXERCISE**: What other inferences can you draw by looking at the table above? Add your inferences below:\n",
">\n",
"> 1. ???\n",
"> 2. ???\n",
"> 3. ???\n",
"> 4. ???\n",
"> 5. ???\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "2992f6a2",
"metadata": {
"id": "2992f6a2"
},
"source": [
"Let's save our work before continuing."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b6f83e4",
"metadata": {
"id": "9b6f83e4"
},
"outputs": [],
"source": [
"!pip install jovian --quiet"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb29b7c9",
"metadata": {
"id": "cb29b7c9"
},
"outputs": [],
"source": [
"import jovian"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4040cd9d",
"metadata": {
"id": "4040cd9d",
"outputId": "94825b7a-871b-4c8f-8077-e9c0f0792eca"
},
"outputs": [
{
"data": {
"application/javascript": [
"window.require && require([\"base/js/namespace\"],function(Jupyter){Jupyter.notebook.save_checkpoint()})"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[31m[jovian] Error: The current API key is invalid or expired.\u001b[0m\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[jovian] Please enter your API key ( from https://jovian.ai/ ):\u001b[0m\n",
"API KEY: ········\n",
"[jovian] Updating notebook \"aakashns/python-sklearn-linear-regression\" on https://jovian.ai/\u001b[0m\n",
"[jovian] Committed successfully! https://jovian.ai/aakashns/python-sklearn-linear-regression\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'https://jovian.ai/aakashns/python-sklearn-linear-regression'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jovian.commit()"
]
},
{
"cell_type": "markdown",
"id": "2581f84b",
"metadata": {
"id": "2581f84b"
},
"source": [
"## Exploratory Analysis and Visualization\n",
"\n",
"Let's explore the data by visualizing the distribution of values in some columns of the dataset, and the relationships between \"charges\" and other columns.\n",
"\n",
"We'll use libraries Matplotlib, Seaborn and Plotly for visualization. Follow these tutorials to learn how to use these libraries: \n",
"\n",
"- https://jovian.ai/aakashns/python-matplotlib-data-visualization\n",
"- https://jovian.ai/aakashns/interactive-visualization-plotly\n",
"- https://jovian.ai/aakashns/dataviz-cheatsheet"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f2e85bc8",
"metadata": {
"id": "f2e85bc8"
},
"outputs": [],
"source": [
"!pip install plotly matplotlib seaborn --quiet"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "66d82725",
"metadata": {
"id": "66d82725"
},
"outputs": [],
"source": [
"import plotly.express as px\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"id": "60caa58a",
"metadata": {
"id": "60caa58a"
},
"source": [
"The following settings will improve the default style and font sizes for our charts.\n",
"\n",
"> Indented block\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8ffedac7",
"metadata": {
"id": "8ffedac7"
},
"outputs": [],
"source": [
"sns.set_style('darkgrid')\n",
"matplotlib.rcParams['font.size'] = 14\n",
"matplotlib.rcParams['figure.figsize'] = (10, 6)\n",
"matplotlib.rcParams['figure.facecolor'] = '#00000000'"
]
},
{
"cell_type": "markdown",
"id": "e17a8220",
"metadata": {
"id": "e17a8220"
},
"source": [
"### Age\n",
"\n",
"Age is a numeric column. The minimum age in the dataset is 18 and the maximum age is 64. Thus, we can visualize the distribution of age using a histogram with 47 bins (one for each year) and a box plot. We'll use plotly to make the chart interactive, but you can create similar charts using Seaborn."
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "1252a914",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1252a914",
"outputId": "702ee6cd-e39b-41df-a7b5-cca2efb29773"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"count 1338.000000\n",
"mean 39.207025\n",
"std 14.049960\n",
"min 18.000000\n",
"25% 27.000000\n",
"50% 39.000000\n",
"75% 51.000000\n",
"max 64.000000\n",
"Name: age, dtype: float64"
]
},
"metadata": {},
"execution_count": 26
}
],
"source": [
"medical_df.age.describe()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "fa559500",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"id": "fa559500",
"outputId": "5b0e53ae-e764-481c-efa3-e04d9fd66667"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"97f3f177-3c9d-424c-863f-e541e0dddcd0\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"97f3f177-3c9d-424c-863f-e541e0dddcd0\")) { Plotly.newPlot( \"97f3f177-3c9d-424c-863f-e541e0dddcd0\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"age=%{x}<br>count=%{y}<extra></extra>\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"\",\"nbinsx\":47,\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[19,18,28,33,32,31,46,37,37,60,25,62,23,56,27,19,52,23,56,30,60,30,18,34,37,59,63,55,23,31,22,18,19,63,28,19,62,26,35,60,24,31,41,37,38,55,18,28,60,36,18,21,48,36,40,58,58,18,53,34,43,25,64,28,20,19,61,40,40,28,27,31,53,58,44,57,29,21,22,41,31,45,22,48,37,45,57,56,46,55,21,53,59,35,64,28,54,55,56,38,41,30,18,61,34,20,19,26,29,63,54,55,37,21,52,60,58,29,49,37,44,18,20,44,47,26,19,52,32,38,59,61,53,19,20,22,19,22,54,22,34,26,34,29,30,29,46,51,53,19,35,48,32,42,40,44,48,18,30,50,42,18,54,32,37,47,20,32,19,27,63,49,18,35,24,63,38,54,46,41,58,18,22,44,44,36,26,30,41,29,61,36,25,56,18,19,39,45,51,64,19,48,60,27,46,28,59,35,63,40,20,40,24,34,45,41,53,27,26,24,34,53,32,19,42,55,28,58,41,47,42,59,19,59,39,40,18,31,19,44,23,33,55,40,63,54,60,24,19,29,18,63,54,27,50,55,56,38,51,19,58,20,52,19,53,46,40,59,45,49,18,50,41,50,25,47,19,22,59,51,40,54,30,55,52,46,46,63,59,52,28,29,25,22,25,18,19,47,31,48,36,53,56,28,57,29,28,30,58,41,50,19,43,49,27,52,50,54,44,32,34,26,34,57,29,40,27,45,64,52,61,52,61,56,43,64,60,62,50,46,24,62,60,63,49,34,33,46,36,19,57,50,30,33,18,46,46,47,23,18,48,35,19,21,21,49,56,42,44,18,61,57,42,26,20,23,39,24,64,62,27,55,55,35,44,19,58,50,26,24,48,19,48,49,46,46,43,21,64,18,51,47,64,49,31,52,33,47,38,32,19,44,26,25,19,43,52,36,64,63,64,61,40,25,48,45,38,18,21,27,19,29,42,60,31,60,22,35,52,26,31,33,18,59,56,45,60,56,40,35,39,30,24,20,32,59,55,57,56,40,49,42,62,56,19,30,60,56,28,18,27,18,19,47,54,61,24,25,21,23,63,49,18,51,48,31,54,19,44,53,19,61,18,61,21,20,31,45,44,62,29,43,51,19,38,37,22,21,24,57,56,27,51,19,39,58,20,45,35,31,50,32,51,38,42,18,19,51,46,18,57,62,59,37,64,38,33,46,46,53,34,20,63,54,54,49,28,54,25,43,63,32,62,52,25,28,46,34,35,19,46,54,27,50,18,19,38,41,49,48,31,18,30,62,57,58,22,31,52,25,59,19,39,32,19,33,21,34,61,38,58,47,20,21,41,46,42,34,43,52,18,51,56,64,19,51,27,59,28,30,47,38,18,34,20,47,56,49,19,55,30,37,49,18,59,29,36,33,58,44,53,24,29,40,51,64,19,35,39,56,33,42,61,23,43,48,39,40,18,58,49,53,48,45,59,52,26,27,48,57,37,57,32,18,64,43,49,40,62,40,30,29,36,41,44,45,55,60,56,49,21,19,39,53,33,53,42,40,47,27,21,47,20,24,27,26,53,41,56,23,21,50,53,34,47,33,51,49,31,36,18,50,43,20,24,60,49,60,51,58,51,53,62,19,50,30,41,29,18,41,35,53,24,48,59,49,37,26,23,29,45,27,53,31,50,50,34,19,47,28,37,21,64,58,24,31,39,47,30,18,22,23,33,27,45,57,47,42,64,38,61,53,44,19,41,51,40,45,35,53,30,18,51,50,31,35,60,21,29,62,39,19,22,53,39,27,30,30,58,33,42,64,21,18,23,45,40,19,18,25,46,33,54,28,36,20,24,23,47,33,45,26,18,44,60,64,56,36,41,39,63,36,28,58,36,42,36,56,35,59,21,59,23,57,53,60,51,23,27,55,37,61,46,53,49,20,48,25,25,57,37,38,55,36,51,40,18,57,61,25,50,26,42,43,44,23,49,33,41,37,22,23,21,51,25,32,57,36,22,57,64,36,54,47,62,61,43,19,18,19,49,60,26,49,60,26,27,44,63,32,22,18,59,44,33,24,43,45,61,35,62,62,38,34,43,50,19,57,62,41,26,39,46,45,32,59,44,39,18,53,18,50,18,19,62,56,42,37,42,25,57,51,30,44,34,31,54,24,43,48,19,29,63,46,52,35,51,44,21,39,50,34,22,19,26,29,48,26,45,36,54,34,31,27,20,44,43,45,34,24,26,38,50,38,27,39,39,63,33,36,30,24,24,48,47,29,28,47,25,51,48,43,61,48,38,59,19,26,54,21,51,22,47,18,47,21,19,23,54,37,46,55,30,18,61,54,22,45,22,19,35,18,20,28,55,43,43,22,25,49,44,64,49,47,27,55,48,45,24,32,24,57,59,36,29,42,48,39,63,54,37,63,21,54,60,32,47,21,28,63,18,32,38,32,62,39,55,57,52,56,47,55,23,22,50,18,51,22,52,25,33,53,29,58,37,54,49,50,26,45,54,38,48,28,23,55,41,25,33,30,23,46,53,27,23,63,55,35,34,19,39,27,57,52,28,50,44,26,33,19,50,41,52,39,50,52,60,20,55,42,18,58,43,35,48,36,19,23,20,32,43,34,30,18,41,35,57,29,32,37,18,43,56,38,29,22,52,40,23,31,42,24,25,48,23,45,20,62,43,23,31,41,58,48,31,19,19,41,40,31,37,46,22,51,18,35,59,36,37,59,36,39,18,52,27,18,40,29,46,38,30,40,50,20,41,33,38,42,56,58,52,20,54,58,45,26,63,58,37,25,52,64,22,28,18,28,45,33,18,32,24,19,20,40,34,42,51,54,55,52,32,28,41,43,49,64,55,24,20,45,26,25,43,35,26,57,22,32,39,25,48,47,18,18,61,47,28,36,20,44,38,19,21,46,58,20,18,28,33,19,45,62,25,43,42,24,29,32,25,41,42,33,34,19,30,18,19,18,35,39,31,62,62,42,31,61,42,51,23,52,57,23,52,50,18,18,21,61],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"age=%{x}<extra></extra>\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\"},\"name\":\"\",\"notched\":true,\"offsetgroup\":\"\",\"showlegend\":false,\"x\":[19,18,28,33,32,31,46,37,37,60,25,62,23,56,27,19,52,23,56,30,60,30,18,34,37,59,63,55,23,31,22,18,19,63,28,19,62,26,35,60,24,31,41,37,38,55,18,28,60,36,18,21,48,36,40,58,58,18,53,34,43,25,64,28,20,19,61,40,40,28,27,31,53,58,44,57,29,21,22,41,31,45,22,48,37,45,57,56,46,55,21,53,59,35,64,28,54,55,56,38,41,30,18,61,34,20,19,26,29,63,54,55,37,21,52,60,58,29,49,37,44,18,20,44,47,26,19,52,32,38,59,61,53,19,20,22,19,22,54,22,34,26,34,29,30,29,46,51,53,19,35,48,32,42,40,44,48,18,30,50,42,18,54,32,37,47,20,32,19,27,63,49,18,35,24,63,38,54,46,41,58,18,22,44,44,36,26,30,41,29,61,36,25,56,18,19,39,45,51,64,19,48,60,27,46,28,59,35,63,40,20,40,24,34,45,41,53,27,26,24,34,53,32,19,42,55,28,58,41,47,42,59,19,59,39,40,18,31,19,44,23,33,55,40,63,54,60,24,19,29,18,63,54,27,50,55,56,38,51,19,58,20,52,19,53,46,40,59,45,49,18,50,41,50,25,47,19,22,59,51,40,54,30,55,52,46,46,63,59,52,28,29,25,22,25,18,19,47,31,48,36,53,56,28,57,29,28,30,58,41,50,19,43,49,27,52,50,54,44,32,34,26,34,57,29,40,27,45,64,52,61,52,61,56,43,64,60,62,50,46,24,62,60,63,49,34,33,46,36,19,57,50,30,33,18,46,46,47,23,18,48,35,19,21,21,49,56,42,44,18,61,57,42,26,20,23,39,24,64,62,27,55,55,35,44,19,58,50,26,24,48,19,48,49,46,46,43,21,64,18,51,47,64,49,31,52,33,47,38,32,19,44,26,25,19,43,52,36,64,63,64,61,40,25,48,45,38,18,21,27,19,29,42,60,31,60,22,35,52,26,31,33,18,59,56,45,60,56,40,35,39,30,24,20,32,59,55,57,56,40,49,42,62,56,19,30,60,56,28,18,27,18,19,47,54,61,24,25,21,23,63,49,18,51,48,31,54,19,44,53,19,61,18,61,21,20,31,45,44,62,29,43,51,19,38,37,22,21,24,57,56,27,51,19,39,58,20,45,35,31,50,32,51,38,42,18,19,51,46,18,57,62,59,37,64,38,33,46,46,53,34,20,63,54,54,49,28,54,25,43,63,32,62,52,25,28,46,34,35,19,46,54,27,50,18,19,38,41,49,48,31,18,30,62,57,58,22,31,52,25,59,19,39,32,19,33,21,34,61,38,58,47,20,21,41,46,42,34,43,52,18,51,56,64,19,51,27,59,28,30,47,38,18,34,20,47,56,49,19,55,30,37,49,18,59,29,36,33,58,44,53,24,29,40,51,64,19,35,39,56,33,42,61,23,43,48,39,40,18,58,49,53,48,45,59,52,26,27,48,57,37,57,32,18,64,43,49,40,62,40,30,29,36,41,44,45,55,60,56,49,21,19,39,53,33,53,42,40,47,27,21,47,20,24,27,26,53,41,56,23,21,50,53,34,47,33,51,49,31,36,18,50,43,20,24,60,49,60,51,58,51,53,62,19,50,30,41,29,18,41,35,53,24,48,59,49,37,26,23,29,45,27,53,31,50,50,34,19,47,28,37,21,64,58,24,31,39,47,30,18,22,23,33,27,45,57,47,42,64,38,61,53,44,19,41,51,40,45,35,53,30,18,51,50,31,35,60,21,29,62,39,19,22,53,39,27,30,30,58,33,42,64,21,18,23,45,40,19,18,25,46,33,54,28,36,20,24,23,47,33,45,26,18,44,60,64,56,36,41,39,63,36,28,58,36,42,36,56,35,59,21,59,23,57,53,60,51,23,27,55,37,61,46,53,49,20,48,25,25,57,37,38,55,36,51,40,18,57,61,25,50,26,42,43,44,23,49,33,41,37,22,23,21,51,25,32,57,36,22,57,64,36,54,47,62,61,43,19,18,19,49,60,26,49,60,26,27,44,63,32,22,18,59,44,33,24,43,45,61,35,62,62,38,34,43,50,19,57,62,41,26,39,46,45,32,59,44,39,18,53,18,50,18,19,62,56,42,37,42,25,57,51,30,44,34,31,54,24,43,48,19,29,63,46,52,35,51,44,21,39,50,34,22,19,26,29,48,26,45,36,54,34,31,27,20,44,43,45,34,24,26,38,50,38,27,39,39,63,33,36,30,24,24,48,47,29,28,47,25,51,48,43,61,48,38,59,19,26,54,21,51,22,47,18,47,21,19,23,54,37,46,55,30,18,61,54,22,45,22,19,35,18,20,28,55,43,43,22,25,49,44,64,49,47,27,55,48,45,24,32,24,57,59,36,29,42,48,39,63,54,37,63,21,54,60,32,47,21,28,63,18,32,38,32,62,39,55,57,52,56,47,55,23,22,50,18,51,22,52,25,33,53,29,58,37,54,49,50,26,45,54,38,48,28,23,55,41,25,33,30,23,46,53,27,23,63,55,35,34,19,39,27,57,52,28,50,44,26,33,19,50,41,52,39,50,52,60,20,55,42,18,58,43,35,48,36,19,23,20,32,43,34,30,18,41,35,57,29,32,37,18,43,56,38,29,22,52,40,23,31,42,24,25,48,23,45,20,62,43,23,31,41,58,48,31,19,19,41,40,31,37,46,22,51,18,35,59,36,37,59,36,39,18,52,27,18,40,29,46,38,30,40,50,20,41,33,38,42,56,58,52,20,54,58,45,26,63,58,37,25,52,64,22,28,18,28,45,33,18,32,24,19,20,40,34,42,51,54,55,52,32,28,41,43,49,64,55,24,20,45,26,25,43,35,26,57,22,32,39,25,48,47,18,18,61,47,28,36,20,44,38,19,21,46,58,20,18,28,33,19,45,62,25,43,42,24,29,32,25,41,42,33,34,19,30,18,19,18,35,39,31,62,62,42,31,61,42,51,23,52,57,23,52,50,18,18,21,61],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"box\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"age\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,0.8316],\"title\":{\"text\":\"count\"}},\"xaxis2\":{\"anchor\":\"y2\",\"domain\":[0.0,1.0],\"matches\":\"x\",\"showticklabels\":false,\"showgrid\":true},\"yaxis2\":{\"anchor\":\"x2\",\"domain\":[0.8416,1.0],\"matches\":\"y2\",\"showticklabels\":false,\"showline\":false,\"ticks\":\"\",\"showgrid\":false},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Distribution of Age\"},\"barmode\":\"relative\",\"bargap\":0.1}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('97f3f177-3c9d-424c-863f-e541e0dddcd0');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
],
"source": [
"fig = px.histogram(medical_df, \n",
" x='age', \n",
" marginal='box', \n",
" nbins=47, \n",
" title='Distribution of Age')\n",
"fig.update_layout(bargap=0.1)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "75c5caa6",
"metadata": {
"id": "75c5caa6"
},
"source": [
"The distribution of ages in the dataset is almost uniform, with 20-30 customers at every age, except for the ages 18 and 19, which seem to have over twice as many customers as other ages. The uniform distribution might arise from the fact that there isn't a big variation in the [number of people of any given age](https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/) (between 18 & 64) in the USA.\n",
"\n",
"\n",
"\n",
"> **EXERCISE**: Can you explain why there are over twice as many customers with ages 18 and 19, compared to other ages?\n",
">\n",
"> ???\n"
]
},
{
"cell_type": "markdown",
"id": "cd8e283b",
"metadata": {
"id": "cd8e283b"
},
"source": [
"### Body Mass Index\n",
"\n",
"Let's look at the distribution of BMI (Body Mass Index) of customers, using a histogram and box plot."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8ab40b89",
"metadata": {
"scrolled": false,
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"id": "8ab40b89",
"outputId": "0a0198fc-c30d-4dda-9d12-b5253b6fc990"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"4304f028-6187-49db-84c5-5ffd2cf57c4e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"4304f028-6187-49db-84c5-5ffd2cf57c4e\")) { Plotly.newPlot( \"4304f028-6187-49db-84c5-5ffd2cf57c4e\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"bmi=%{x}<br>count=%{y}<extra></extra>\",\"legendgroup\":\"\",\"marker\":{\"color\":\"red\",\"pattern\":{\"shape\":\"\"}},\"name\":\"\",\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[27.9,33.77,33.0,22.705,28.88,25.74,33.44,27.74,29.83,25.84,26.22,26.29,34.4,39.82,42.13,24.6,30.78,23.845,40.3,35.3,36.005,32.4,34.1,31.92,28.025,27.72,23.085,32.775,17.385,36.3,35.6,26.315,28.6,28.31,36.4,20.425,32.965,20.8,36.67,39.9,26.6,36.63,21.78,30.8,37.05,37.3,38.665,34.77,24.53,35.2,35.625,33.63,28.0,34.43,28.69,36.955,31.825,31.68,22.88,37.335,27.36,33.66,24.7,25.935,22.42,28.9,39.1,26.315,36.19,23.98,24.75,28.5,28.1,32.01,27.4,34.01,29.59,35.53,39.805,32.965,26.885,38.285,37.62,41.23,34.8,22.895,31.16,27.2,27.74,26.98,39.49,24.795,29.83,34.77,31.3,37.62,30.8,38.28,19.95,19.3,31.6,25.46,30.115,29.92,27.5,28.025,28.4,30.875,27.94,35.09,33.63,29.7,30.8,35.72,32.205,28.595,49.06,27.94,27.17,23.37,37.1,23.75,28.975,31.35,33.915,28.785,28.3,37.4,17.765,34.7,26.505,22.04,35.9,25.555,28.785,28.05,34.1,25.175,31.9,36.0,22.42,32.49,25.3,29.735,28.69,38.83,30.495,37.73,37.43,28.4,24.13,29.7,37.145,23.37,25.46,39.52,24.42,25.175,35.53,27.83,26.6,36.85,39.6,29.8,29.64,28.215,37.0,33.155,31.825,18.905,41.47,30.3,15.96,34.8,33.345,37.7,27.835,29.2,28.9,33.155,28.595,38.28,19.95,26.41,30.69,41.895,29.92,30.9,32.2,32.11,31.57,26.2,25.74,26.6,34.43,30.59,32.8,28.6,18.05,39.33,32.11,32.23,24.035,36.08,22.3,28.88,26.4,27.74,31.8,41.23,33.0,30.875,28.5,26.73,30.9,37.1,26.6,23.1,29.92,23.21,33.7,33.25,30.8,34.8,24.64,33.88,38.06,41.91,31.635,25.46,36.195,27.83,17.8,27.5,24.51,22.22,26.73,38.39,29.07,38.06,36.67,22.135,26.8,35.3,27.74,30.02,38.06,35.86,20.9,28.975,17.29,32.2,34.21,30.3,31.825,25.365,33.63,40.15,24.415,31.92,25.2,26.84,24.32,36.955,38.06,42.35,19.8,32.395,30.2,25.84,29.37,34.2,37.05,27.455,27.55,26.6,20.615,24.3,31.79,21.56,28.12,40.565,27.645,32.395,31.2,26.62,48.07,26.22,36.765,26.4,33.4,29.64,45.54,28.82,26.8,22.99,27.7,25.41,34.39,28.88,27.55,22.61,37.51,33.0,38.0,33.345,27.5,33.33,34.865,33.06,26.6,24.7,35.97,35.86,31.4,33.25,32.205,32.775,27.645,37.335,25.27,29.64,30.8,40.945,27.2,34.105,23.21,36.48,33.8,36.7,36.385,27.36,31.16,28.785,35.72,34.5,25.74,27.55,32.3,27.72,27.6,30.02,27.55,36.765,41.47,29.26,35.75,33.345,29.92,27.835,23.18,25.6,27.7,35.245,38.28,27.6,43.89,29.83,41.91,20.79,32.3,30.5,21.7,26.4,21.89,30.78,32.3,24.985,32.015,30.4,21.09,22.23,33.155,32.9,33.33,28.31,24.89,40.15,30.115,31.46,17.955,30.685,33.0,43.34,22.135,34.4,39.05,25.365,22.61,30.21,35.625,37.43,31.445,31.35,32.3,19.855,34.4,31.02,25.6,38.17,20.6,47.52,32.965,32.3,20.4,38.38,24.31,23.6,21.12,30.03,17.48,20.235,17.195,23.9,35.15,35.64,34.1,22.6,39.16,26.98,33.88,35.86,32.775,30.59,30.2,24.31,27.265,29.165,16.815,30.4,33.1,20.235,26.9,30.5,28.595,33.11,31.73,28.9,46.75,29.45,32.68,33.5,43.01,36.52,26.695,33.1,29.64,25.65,29.6,38.6,29.6,24.13,23.4,29.735,46.53,37.4,30.14,30.495,39.6,33.0,36.63,30.0,38.095,25.935,25.175,28.38,28.7,33.82,24.32,24.09,32.67,30.115,29.8,33.345,25.1,28.31,28.5,35.625,36.85,32.56,41.325,37.51,31.35,39.5,34.3,31.065,21.47,28.7,38.06,31.16,32.9,25.08,25.08,43.4,25.7,27.93,23.6,28.7,23.98,39.2,34.4,26.03,23.21,30.25,28.93,30.875,31.35,23.75,25.27,28.7,32.11,33.66,22.42,30.4,28.3,35.7,35.31,30.495,31.0,30.875,27.36,44.22,33.915,37.73,26.07,33.88,30.59,25.8,39.425,25.46,42.13,31.73,29.7,36.19,40.48,28.025,38.9,30.2,28.05,31.35,38.0,31.79,36.3,47.41,30.21,25.84,35.435,46.7,28.595,46.2,30.8,28.93,21.4,31.73,41.325,23.8,33.44,34.21,34.105,35.53,19.95,32.68,30.5,44.77,32.12,30.495,40.565,30.59,31.9,40.565,29.1,37.29,43.12,36.86,34.295,27.17,26.84,38.095,30.2,23.465,25.46,30.59,45.43,23.65,20.7,28.27,20.235,30.21,35.91,30.69,29.0,19.57,31.13,21.85,40.26,33.725,29.48,33.25,32.6,37.525,39.16,31.635,25.3,39.05,28.31,34.1,25.175,23.655,26.98,37.8,29.37,34.8,33.155,19.0,33.0,36.63,28.595,25.6,33.11,37.1,31.4,34.1,21.3,33.535,28.785,26.03,28.88,42.46,38.0,38.95,36.1,29.3,35.53,22.705,39.7,38.19,24.51,38.095,26.41,33.66,42.4,28.31,33.915,34.96,35.31,30.78,26.22,23.37,28.5,32.965,42.68,39.6,31.13,36.3,35.2,25.3,42.4,33.155,35.91,28.785,46.53,23.98,31.54,33.66,22.99,38.06,28.7,32.775,32.015,29.81,31.57,31.16,29.7,31.02,43.89,21.375,40.81,31.35,36.1,23.18,17.4,20.3,35.3,24.32,18.5,26.41,26.125,41.69,24.1,31.13,27.36,36.2,32.395,23.655,34.8,40.185,32.3,35.75,33.725,39.27,34.87,44.745,41.47,26.41,29.545,32.9,38.06,28.69,30.495,27.74,35.2,23.54,30.685,40.47,22.6,28.9,22.61,24.32,36.67,33.44,40.66,36.6,37.4,35.4,27.075,39.05,28.405,21.755,40.28,36.08,24.42,21.4,30.1,27.265,32.1,34.77,38.39,23.7,31.73,35.5,24.035,29.15,34.105,26.62,26.41,30.115,27.0,21.755,36.0,30.875,26.4,28.975,37.905,22.77,33.63,27.645,22.8,27.83,37.43,38.17,34.58,35.2,27.1,26.03,25.175,31.825,32.3,29.0,39.7,19.475,36.1,26.7,36.48,28.88,34.2,33.33,32.3,39.805,34.32,28.88,24.4,41.14,35.97,27.6,29.26,27.7,36.955,36.86,22.515,29.92,41.8,27.6,23.18,20.9,31.92,28.5,44.22,22.895,33.1,24.795,26.18,35.97,22.3,42.24,26.51,35.815,41.42,36.575,30.14,25.84,30.8,42.94,21.01,22.515,34.43,31.46,24.225,37.1,26.125,35.53,33.7,17.67,31.13,29.81,24.32,31.825,31.79,28.025,30.78,21.85,33.1,25.84,23.845,34.39,33.82,35.97,31.5,28.31,23.465,31.35,31.1,24.7,32.78,29.81,30.495,32.45,34.2,50.38,24.1,32.775,30.78,32.3,35.53,23.75,23.845,29.6,33.11,24.13,32.23,28.1,47.6,28.0,33.535,19.855,25.4,29.9,37.29,43.7,23.655,24.3,36.2,29.48,24.86,30.1,21.85,28.12,27.1,33.44,28.8,29.5,34.8,27.36,22.135,37.05,26.695,28.93,28.975,30.02,39.5,33.63,26.885,29.04,24.035,38.94,32.11,44.0,20.045,25.555,40.26,22.515,22.515,40.92,27.265,36.85,35.1,29.355,32.585,32.34,39.8,24.6,28.31,31.73,26.695,27.5,24.605,33.99,26.885,22.895,28.2,34.21,25.0,33.2,31.0,35.815,23.2,32.11,23.4,20.1,39.16,34.21,46.53,32.5,25.8,35.3,37.18,27.5,29.735,24.225,26.18,29.48,23.21,46.09,40.185,22.61,39.93,35.8,35.8,34.2,31.255,29.7,18.335,42.9,28.405,30.2,27.835,39.49,30.8,26.79,34.96,36.67,39.615,25.9,35.2,24.795,36.765,27.1,24.795,25.365,25.745,34.32,28.16,23.56,20.235,40.5,35.42,22.895,40.15,29.15,39.995,29.92,25.46,21.375,25.9,30.59,30.115,25.8,30.115,27.645,34.675,20.52,19.8,27.835,31.6,28.27,20.045,23.275,34.1,36.85,36.29,26.885,22.99,32.7,25.8,29.6,19.19,31.73,29.26,28.215,24.985,27.74,22.8,20.13,33.33,32.3,27.6,25.46,24.605,34.2,35.815,32.68,37.0,31.02,36.08,23.32,45.32,34.6,26.03,18.715,31.6,17.29,23.655,35.2,27.93,21.565,38.38,23.0,37.07,30.495,28.88,27.265,28.025,23.085,30.685,25.8,35.245,24.7,25.08,52.58,22.515,30.9,36.955,26.41,29.83,29.8,21.47,27.645,28.9,31.79,39.49,33.82,32.01,27.94,41.14,28.595,25.6,25.3,37.29,42.655,21.66,31.9,37.07,31.445,31.255,28.88,18.335,29.59,32.0,26.03,31.68,33.66,21.78,27.835,19.95,31.5,30.495,18.3,28.975,31.54,47.74,22.1,36.19,29.83,32.7,30.4,33.7,31.35,34.96,33.77,30.875,33.99,19.095,28.6,38.94,36.08,29.8,31.24,29.925,26.22,30.0,20.35,32.3,38.39,25.85,26.315,24.51,32.67,29.64,33.33,35.75,19.95,31.4,38.17,36.86,32.395,42.75,25.08,29.9,35.86,32.8,18.6,23.87,45.9,40.28,18.335,33.82,28.12,25.0,22.23,30.25,32.49,37.07,32.6,24.86,32.34,32.3,32.775,32.8,31.92,21.5,34.1,30.305,36.48,32.56,35.815,27.93,22.135,44.88,23.18,30.59,41.1,34.58,42.13,38.83,28.215,28.31,26.125,40.37,24.6,35.2,34.105,27.36,26.7,41.91,29.26,32.11,27.1,24.13,27.4,34.865,29.81,41.325,29.925,30.3,27.36,28.49,23.56,35.625,32.68,25.27,28.0,32.775,21.755,32.395,36.575,21.755,27.93,30.02,33.55,29.355,25.8,24.32,40.375,32.11,32.3,27.28,17.86,34.8,33.4,25.555,37.1,30.875,34.1,21.47,33.3,31.255,39.14,25.08,37.29,34.6,30.21,21.945,24.97,25.3,24.42,23.94,39.82,16.815,37.18,34.43,30.305,34.485,21.8,24.605,23.3,27.83,31.065,21.66,28.215,22.705,42.13,41.8,36.96,21.28,33.11,33.33,24.3,25.7,29.4,39.82,33.63,29.83,19.8,27.3,29.3,27.72,37.9,36.385,27.645,37.715,23.18,20.52,37.1,28.05,29.9,33.345,23.76,30.5,31.065,33.3,27.5,33.915,34.485,25.52,27.61,27.06,23.7,30.4,29.735,29.925,26.79,33.33,27.645,21.66,30.03,36.3,24.32,17.29,25.9,39.4,34.32,19.95,34.9,23.21,25.745,25.175,22.0,26.125,26.51,27.455,25.745,30.36,30.875,20.8,27.8,24.605,27.72,21.85,28.12,30.2,32.2,26.315,26.695,42.9,34.7,23.655,28.31,20.6,53.13,39.71,26.315,31.065,26.695,38.83,40.37,25.935,33.535,32.87,30.03,24.225,38.6,25.74,33.4,44.7,30.97,31.92,36.85,25.8,29.07],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"bmi=%{x}<extra></extra>\",\"legendgroup\":\"\",\"marker\":{\"color\":\"red\"},\"name\":\"\",\"notched\":true,\"offsetgroup\":\"\",\"showlegend\":false,\"x\":[27.9,33.77,33.0,22.705,28.88,25.74,33.44,27.74,29.83,25.84,26.22,26.29,34.4,39.82,42.13,24.6,30.78,23.845,40.3,35.3,36.005,32.4,34.1,31.92,28.025,27.72,23.085,32.775,17.385,36.3,35.6,26.315,28.6,28.31,36.4,20.425,32.965,20.8,36.67,39.9,26.6,36.63,21.78,30.8,37.05,37.3,38.665,34.77,24.53,35.2,35.625,33.63,28.0,34.43,28.69,36.955,31.825,31.68,22.88,37.335,27.36,33.66,24.7,25.935,22.42,28.9,39.1,26.315,36.19,23.98,24.75,28.5,28.1,32.01,27.4,34.01,29.59,35.53,39.805,32.965,26.885,38.285,37.62,41.23,34.8,22.895,31.16,27.2,27.74,26.98,39.49,24.795,29.83,34.77,31.3,37.62,30.8,38.28,19.95,19.3,31.6,25.46,30.115,29.92,27.5,28.025,28.4,30.875,27.94,35.09,33.63,29.7,30.8,35.72,32.205,28.595,49.06,27.94,27.17,23.37,37.1,23.75,28.975,31.35,33.915,28.785,28.3,37.4,17.765,34.7,26.505,22.04,35.9,25.555,28.785,28.05,34.1,25.175,31.9,36.0,22.42,32.49,25.3,29.735,28.69,38.83,30.495,37.73,37.43,28.4,24.13,29.7,37.145,23.37,25.46,39.52,24.42,25.175,35.53,27.83,26.6,36.85,39.6,29.8,29.64,28.215,37.0,33.155,31.825,18.905,41.47,30.3,15.96,34.8,33.345,37.7,27.835,29.2,28.9,33.155,28.595,38.28,19.95,26.41,30.69,41.895,29.92,30.9,32.2,32.11,31.57,26.2,25.74,26.6,34.43,30.59,32.8,28.6,18.05,39.33,32.11,32.23,24.035,36.08,22.3,28.88,26.4,27.74,31.8,41.23,33.0,30.875,28.5,26.73,30.9,37.1,26.6,23.1,29.92,23.21,33.7,33.25,30.8,34.8,24.64,33.88,38.06,41.91,31.635,25.46,36.195,27.83,17.8,27.5,24.51,22.22,26.73,38.39,29.07,38.06,36.67,22.135,26.8,35.3,27.74,30.02,38.06,35.86,20.9,28.975,17.29,32.2,34.21,30.3,31.825,25.365,33.63,40.15,24.415,31.92,25.2,26.84,24.32,36.955,38.06,42.35,19.8,32.395,30.2,25.84,29.37,34.2,37.05,27.455,27.55,26.6,20.615,24.3,31.79,21.56,28.12,40.565,27.645,32.395,31.2,26.62,48.07,26.22,36.765,26.4,33.4,29.64,45.54,28.82,26.8,22.99,27.7,25.41,34.39,28.88,27.55,22.61,37.51,33.0,38.0,33.345,27.5,33.33,34.865,33.06,26.6,24.7,35.97,35.86,31.4,33.25,32.205,32.775,27.645,37.335,25.27,29.64,30.8,40.945,27.2,34.105,23.21,36.48,33.8,36.7,36.385,27.36,31.16,28.785,35.72,34.5,25.74,27.55,32.3,27.72,27.6,30.02,27.55,36.765,41.47,29.26,35.75,33.345,29.92,27.835,23.18,25.6,27.7,35.245,38.28,27.6,43.89,29.83,41.91,20.79,32.3,30.5,21.7,26.4,21.89,30.78,32.3,24.985,32.015,30.4,21.09,22.23,33.155,32.9,33.33,28.31,24.89,40.15,30.115,31.46,17.955,30.685,33.0,43.34,22.135,34.4,39.05,25.365,22.61,30.21,35.625,37.43,31.445,31.35,32.3,19.855,34.4,31.02,25.6,38.17,20.6,47.52,32.965,32.3,20.4,38.38,24.31,23.6,21.12,30.03,17.48,20.235,17.195,23.9,35.15,35.64,34.1,22.6,39.16,26.98,33.88,35.86,32.775,30.59,30.2,24.31,27.265,29.165,16.815,30.4,33.1,20.235,26.9,30.5,28.595,33.11,31.73,28.9,46.75,29.45,32.68,33.5,43.01,36.52,26.695,33.1,29.64,25.65,29.6,38.6,29.6,24.13,23.4,29.735,46.53,37.4,30.14,30.495,39.6,33.0,36.63,30.0,38.095,25.935,25.175,28.38,28.7,33.82,24.32,24.09,32.67,30.115,29.8,33.345,25.1,28.31,28.5,35.625,36.85,32.56,41.325,37.51,31.35,39.5,34.3,31.065,21.47,28.7,38.06,31.16,32.9,25.08,25.08,43.4,25.7,27.93,23.6,28.7,23.98,39.2,34.4,26.03,23.21,30.25,28.93,30.875,31.35,23.75,25.27,28.7,32.11,33.66,22.42,30.4,28.3,35.7,35.31,30.495,31.0,30.875,27.36,44.22,33.915,37.73,26.07,33.88,30.59,25.8,39.425,25.46,42.13,31.73,29.7,36.19,40.48,28.025,38.9,30.2,28.05,31.35,38.0,31.79,36.3,47.41,30.21,25.84,35.435,46.7,28.595,46.2,30.8,28.93,21.4,31.73,41.325,23.8,33.44,34.21,34.105,35.53,19.95,32.68,30.5,44.77,32.12,30.495,40.565,30.59,31.9,40.565,29.1,37.29,43.12,36.86,34.295,27.17,26.84,38.095,30.2,23.465,25.46,30.59,45.43,23.65,20.7,28.27,20.235,30.21,35.91,30.69,29.0,19.57,31.13,21.85,40.26,33.725,29.48,33.25,32.6,37.525,39.16,31.635,25.3,39.05,28.31,34.1,25.175,23.655,26.98,37.8,29.37,34.8,33.155,19.0,33.0,36.63,28.595,25.6,33.11,37.1,31.4,34.1,21.3,33.535,28.785,26.03,28.88,42.46,38.0,38.95,36.1,29.3,35.53,22.705,39.7,38.19,24.51,38.095,26.41,33.66,42.4,28.31,33.915,34.96,35.31,30.78,26.22,23.37,28.5,32.965,42.68,39.6,31.13,36.3,35.2,25.3,42.4,33.155,35.91,28.785,46.53,23.98,31.54,33.66,22.99,38.06,28.7,32.775,32.015,29.81,31.57,31.16,29.7,31.02,43.89,21.375,40.81,31.35,36.1,23.18,17.4,20.3,35.3,24.32,18.5,26.41,26.125,41.69,24.1,31.13,27.36,36.2,32.395,23.655,34.8,40.185,32.3,35.75,33.725,39.27,34.87,44.745,41.47,26.41,29.545,32.9,38.06,28.69,30.495,27.74,35.2,23.54,30.685,40.47,22.6,28.9,22.61,24.32,36.67,33.44,40.66,36.6,37.4,35.4,27.075,39.05,28.405,21.755,40.28,36.08,24.42,21.4,30.1,27.265,32.1,34.77,38.39,23.7,31.73,35.5,24.035,29.15,34.105,26.62,26.41,30.115,27.0,21.755,36.0,30.875,26.4,28.975,37.905,22.77,33.63,27.645,22.8,27.83,37.43,38.17,34.58,35.2,27.1,26.03,25.175,31.825,32.3,29.0,39.7,19.475,36.1,26.7,36.48,28.88,34.2,33.33,32.3,39.805,34.32,28.88,24.4,41.14,35.97,27.6,29.26,27.7,36.955,36.86,22.515,29.92,41.8,27.6,23.18,20.9,31.92,28.5,44.22,22.895,33.1,24.795,26.18,35.97,22.3,42.24,26.51,35.815,41.42,36.575,30.14,25.84,30.8,42.94,21.01,22.515,34.43,31.46,24.225,37.1,26.125,35.53,33.7,17.67,31.13,29.81,24.32,31.825,31.79,28.025,30.78,21.85,33.1,25.84,23.845,34.39,33.82,35.97,31.5,28.31,23.465,31.35,31.1,24.7,32.78,29.81,30.495,32.45,34.2,50.38,24.1,32.775,30.78,32.3,35.53,23.75,23.845,29.6,33.11,24.13,32.23,28.1,47.6,28.0,33.535,19.855,25.4,29.9,37.29,43.7,23.655,24.3,36.2,29.48,24.86,30.1,21.85,28.12,27.1,33.44,28.8,29.5,34.8,27.36,22.135,37.05,26.695,28.93,28.975,30.02,39.5,33.63,26.885,29.04,24.035,38.94,32.11,44.0,20.045,25.555,40.26,22.515,22.515,40.92,27.265,36.85,35.1,29.355,32.585,32.34,39.8,24.6,28.31,31.73,26.695,27.5,24.605,33.99,26.885,22.895,28.2,34.21,25.0,33.2,31.0,35.815,23.2,32.11,23.4,20.1,39.16,34.21,46.53,32.5,25.8,35.3,37.18,27.5,29.735,24.225,26.18,29.48,23.21,46.09,40.185,22.61,39.93,35.8,35.8,34.2,31.255,29.7,18.335,42.9,28.405,30.2,27.835,39.49,30.8,26.79,34.96,36.67,39.615,25.9,35.2,24.795,36.765,27.1,24.795,25.365,25.745,34.32,28.16,23.56,20.235,40.5,35.42,22.895,40.15,29.15,39.995,29.92,25.46,21.375,25.9,30.59,30.115,25.8,30.115,27.645,34.675,20.52,19.8,27.835,31.6,28.27,20.045,23.275,34.1,36.85,36.29,26.885,22.99,32.7,25.8,29.6,19.19,31.73,29.26,28.215,24.985,27.74,22.8,20.13,33.33,32.3,27.6,25.46,24.605,34.2,35.815,32.68,37.0,31.02,36.08,23.32,45.32,34.6,26.03,18.715,31.6,17.29,23.655,35.2,27.93,21.565,38.38,23.0,37.07,30.495,28.88,27.265,28.025,23.085,30.685,25.8,35.245,24.7,25.08,52.58,22.515,30.9,36.955,26.41,29.83,29.8,21.47,27.645,28.9,31.79,39.49,33.82,32.01,27.94,41.14,28.595,25.6,25.3,37.29,42.655,21.66,31.9,37.07,31.445,31.255,28.88,18.335,29.59,32.0,26.03,31.68,33.66,21.78,27.835,19.95,31.5,30.495,18.3,28.975,31.54,47.74,22.1,36.19,29.83,32.7,30.4,33.7,31.35,34.96,33.77,30.875,33.99,19.095,28.6,38.94,36.08,29.8,31.24,29.925,26.22,30.0,20.35,32.3,38.39,25.85,26.315,24.51,32.67,29.64,33.33,35.75,19.95,31.4,38.17,36.86,32.395,42.75,25.08,29.9,35.86,32.8,18.6,23.87,45.9,40.28,18.335,33.82,28.12,25.0,22.23,30.25,32.49,37.07,32.6,24.86,32.34,32.3,32.775,32.8,31.92,21.5,34.1,30.305,36.48,32.56,35.815,27.93,22.135,44.88,23.18,30.59,41.1,34.58,42.13,38.83,28.215,28.31,26.125,40.37,24.6,35.2,34.105,27.36,26.7,41.91,29.26,32.11,27.1,24.13,27.4,34.865,29.81,41.325,29.925,30.3,27.36,28.49,23.56,35.625,32.68,25.27,28.0,32.775,21.755,32.395,36.575,21.755,27.93,30.02,33.55,29.355,25.8,24.32,40.375,32.11,32.3,27.28,17.86,34.8,33.4,25.555,37.1,30.875,34.1,21.47,33.3,31.255,39.14,25.08,37.29,34.6,30.21,21.945,24.97,25.3,24.42,23.94,39.82,16.815,37.18,34.43,30.305,34.485,21.8,24.605,23.3,27.83,31.065,21.66,28.215,22.705,42.13,41.8,36.96,21.28,33.11,33.33,24.3,25.7,29.4,39.82,33.63,29.83,19.8,27.3,29.3,27.72,37.9,36.385,27.645,37.715,23.18,20.52,37.1,28.05,29.9,33.345,23.76,30.5,31.065,33.3,27.5,33.915,34.485,25.52,27.61,27.06,23.7,30.4,29.735,29.925,26.79,33.33,27.645,21.66,30.03,36.3,24.32,17.29,25.9,39.4,34.32,19.95,34.9,23.21,25.745,25.175,22.0,26.125,26.51,27.455,25.745,30.36,30.875,20.8,27.8,24.605,27.72,21.85,28.12,30.2,32.2,26.315,26.695,42.9,34.7,23.655,28.31,20.6,53.13,39.71,26.315,31.065,26.695,38.83,40.37,25.935,33.535,32.87,30.03,24.225,38.6,25.74,33.4,44.7,30.97,31.92,36.85,25.8,29.07],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"box\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"bmi\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,0.8316],\"title\":{\"text\":\"count\"}},\"xaxis2\":{\"anchor\":\"y2\",\"domain\":[0.0,1.0],\"matches\":\"x\",\"showticklabels\":false,\"showgrid\":true},\"yaxis2\":{\"anchor\":\"x2\",\"domain\":[0.8416,1.0],\"matches\":\"y2\",\"showticklabels\":false,\"showline\":false,\"ticks\":\"\",\"showgrid\":false},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Distribution of BMI (Body Mass Index)\"},\"barmode\":\"relative\",\"bargap\":0.1}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('4304f028-6187-49db-84c5-5ffd2cf57c4e');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
],
"source": [
"fig = px.histogram(medical_df, \n",
" x='bmi', \n",
" marginal='box', \n",
" color_discrete_sequence=['red'], \n",
" title='Distribution of BMI (Body Mass Index)')\n",
"fig.update_layout(bargap=0.1)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "028fe64f",
"metadata": {
"id": "028fe64f"
},
"source": [
"The measurements of body mass index seem to form a [Gaussian distribution](https://en.wikipedia.org/wiki/Normal_distribution) centered around the value 30, with a few outliers towards the right. Here's how BMI values can be interpreted ([source](https://study.com/academy/lesson/what-is-bmi-definition-formula-calculation.html)):\n",
"\n",
"![](https://i.imgur.com/lh23OiY.jpg)\n",
"\n",
"> **EXERCISE**: Can you explain why the distribution of ages forms a uniform distribution while the distribution of BMIs forms a gaussian distribution?\n",
">\n",
"> ???"
]
},
{
"cell_type": "markdown",
"id": "a6a6b297",
"metadata": {
"id": "a6a6b297"
},
"source": [
"### Charges\n",
"\n",
"Let's visualize the distribution of \"charges\" i.e. the annual medical charges for customers. This is the column we're trying to predict. Let's also use the categorical column \"smoker\" to distinguish the charges for smokers and non-smokers."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "56afc784",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"id": "56afc784",
"outputId": "d485e811-9611-441c-c682-3a9f3903963d"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"30c8db29-3a5f-4afa-8dd1-5a6b36eafa6a\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"30c8db29-3a5f-4afa-8dd1-5a6b36eafa6a\")) { Plotly.newPlot( \"30c8db29-3a5f-4afa-8dd1-5a6b36eafa6a\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"smoker=yes<br>charges=%{x}<br>count=%{y}<extra></extra>\",\"legendgroup\":\"yes\",\"marker\":{\"color\":\"green\",\"pattern\":{\"shape\":\"\"}},\"name\":\"yes\",\"offsetgroup\":\"yes\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[16884.924,27808.7251,39611.7577,36837.467,37701.8768,38711.0,35585.576,51194.55914,39774.2763,48173.361,38709.176,23568.272,37742.5757,47496.49445,34303.1672,23244.7902,14711.7438,17663.1442,16577.7795,37165.1638,39836.519,21098.55405,43578.9394,30184.9367,47291.055,22412.6485,15820.699,30942.1918,17560.37975,47055.5321,19107.7796,39556.4945,17081.08,32734.1863,18972.495,20745.9891,40720.55105,19964.7463,21223.6758,15518.18025,36950.2567,21348.706,36149.4835,48824.45,43753.33705,37133.8982,20984.0936,34779.615,19515.5416,19444.2658,17352.6803,38511.6283,29523.1656,12829.4551,47305.305,44260.7499,41097.16175,43921.1837,33750.2918,17085.2676,24869.8368,36219.40545,46151.1245,17179.522,42856.838,22331.5668,48549.17835,47896.79135,42112.2356,16297.846,21978.6769,38746.3551,24873.3849,42124.5153,34838.873,35491.64,42760.5022,47928.03,48517.56315,24393.6224,41919.097,13844.506,36085.219,18033.9679,21659.9301,38126.2465,15006.57945,42303.69215,19594.80965,14455.64405,18608.262,28950.4692,46889.2612,46599.1084,39125.33225,37079.372,26109.32905,22144.032,19521.9682,25382.297,28868.6639,35147.52848,48885.13561,17942.106,36197.699,22218.1149,32548.3405,21082.16,38245.59327,48675.5177,63770.42801,23807.2406,45863.205,39983.42595,45702.02235,58571.07448,43943.8761,15359.1045,17468.9839,25678.77845,39241.442,42969.8527,23306.547,34439.8559,40182.246,34617.84065,42983.4585,20149.3229,32787.45859,24667.419,27037.9141,42560.4304,40003.33225,45710.20785,46200.9851,46130.5265,40103.89,34806.4677,40273.6455,44400.4064,40932.4295,16657.71745,19361.9988,40419.0191,36189.1017,44585.45587,18246.4955,43254.41795,19539.243,23065.4207,36307.7983,19040.876,17748.5062,18259.216,24520.264,21195.818,18310.742,17904.52705,38792.6856,23401.30575,55135.40209,43813.8661,20773.62775,39597.4072,36021.0112,27533.9129,45008.9555,37270.1512,42111.6647,24106.91255,40974.1649,15817.9857,46113.511,46255.1125,19719.6947,27218.43725,29330.98315,44202.6536,19798.05455,48673.5588,17496.306,33732.6867,21774.32215,35069.37452,39047.285,19933.458,47462.894,38998.546,20009.63365,41999.52,41034.2214,23967.38305,16138.76205,19199.944,14571.8908,16420.49455,17361.7661,34472.841,24915.22085,18767.7377,35595.5898,42211.1382,16450.8947,21677.28345,44423.803,13747.87235,37484.4493,39725.51805,20234.85475,33475.81715,21880.82,44501.3982,39727.614,25309.489,48970.2476,39871.7043,34672.1472,19023.26,41676.0811,33907.548,44641.1974,16776.30405,41949.2441,24180.9335,36124.5737,38282.7495,34166.273,46661.4424,40904.1995,36898.73308,52590.82939,40941.2854,39722.7462,17178.6824,22478.6,23887.6627,19350.3689,18328.2381,37465.34375,21771.3423,33307.5508,18223.4512,38415.474,20296.86345,41661.602,26125.67477,60021.39897,20167.33603,47269.854,49577.6624,37607.5277,18648.4217,16232.847,26926.5144,34254.05335,17043.3414,22462.04375,24535.69855,14283.4594,47403.88,38344.566,34828.654,62592.87309,46718.16325,37829.7242,21259.37795,16115.3045,21472.4788,33900.653,36397.576,18765.87545,28101.33305,43896.3763,29141.3603],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"smoker=yes<br>charges=%{x}<extra></extra>\",\"legendgroup\":\"yes\",\"marker\":{\"color\":\"green\"},\"name\":\"yes\",\"notched\":true,\"offsetgroup\":\"yes\",\"showlegend\":false,\"x\":[16884.924,27808.7251,39611.7577,36837.467,37701.8768,38711.0,35585.576,51194.55914,39774.2763,48173.361,38709.176,23568.272,37742.5757,47496.49445,34303.1672,23244.7902,14711.7438,17663.1442,16577.7795,37165.1638,39836.519,21098.55405,43578.9394,30184.9367,47291.055,22412.6485,15820.699,30942.1918,17560.37975,47055.5321,19107.7796,39556.4945,17081.08,32734.1863,18972.495,20745.9891,40720.55105,19964.7463,21223.6758,15518.18025,36950.2567,21348.706,36149.4835,48824.45,43753.33705,37133.8982,20984.0936,34779.615,19515.5416,19444.2658,17352.6803,38511.6283,29523.1656,12829.4551,47305.305,44260.7499,41097.16175,43921.1837,33750.2918,17085.2676,24869.8368,36219.40545,46151.1245,17179.522,42856.838,22331.5668,48549.17835,47896.79135,42112.2356,16297.846,21978.6769,38746.3551,24873.3849,42124.5153,34838.873,35491.64,42760.5022,47928.03,48517.56315,24393.6224,41919.097,13844.506,36085.219,18033.9679,21659.9301,38126.2465,15006.57945,42303.69215,19594.80965,14455.64405,18608.262,28950.4692,46889.2612,46599.1084,39125.33225,37079.372,26109.32905,22144.032,19521.9682,25382.297,28868.6639,35147.52848,48885.13561,17942.106,36197.699,22218.1149,32548.3405,21082.16,38245.59327,48675.5177,63770.42801,23807.2406,45863.205,39983.42595,45702.02235,58571.07448,43943.8761,15359.1045,17468.9839,25678.77845,39241.442,42969.8527,23306.547,34439.8559,40182.246,34617.84065,42983.4585,20149.3229,32787.45859,24667.419,27037.9141,42560.4304,40003.33225,45710.20785,46200.9851,46130.5265,40103.89,34806.4677,40273.6455,44400.4064,40932.4295,16657.71745,19361.9988,40419.0191,36189.1017,44585.45587,18246.4955,43254.41795,19539.243,23065.4207,36307.7983,19040.876,17748.5062,18259.216,24520.264,21195.818,18310.742,17904.52705,38792.6856,23401.30575,55135.40209,43813.8661,20773.62775,39597.4072,36021.0112,27533.9129,45008.9555,37270.1512,42111.6647,24106.91255,40974.1649,15817.9857,46113.511,46255.1125,19719.6947,27218.43725,29330.98315,44202.6536,19798.05455,48673.5588,17496.306,33732.6867,21774.32215,35069.37452,39047.285,19933.458,47462.894,38998.546,20009.63365,41999.52,41034.2214,23967.38305,16138.76205,19199.944,14571.8908,16420.49455,17361.7661,34472.841,24915.22085,18767.7377,35595.5898,42211.1382,16450.8947,21677.28345,44423.803,13747.87235,37484.4493,39725.51805,20234.85475,33475.81715,21880.82,44501.3982,39727.614,25309.489,48970.2476,39871.7043,34672.1472,19023.26,41676.0811,33907.548,44641.1974,16776.30405,41949.2441,24180.9335,36124.5737,38282.7495,34166.273,46661.4424,40904.1995,36898.73308,52590.82939,40941.2854,39722.7462,17178.6824,22478.6,23887.6627,19350.3689,18328.2381,37465.34375,21771.3423,33307.5508,18223.4512,38415.474,20296.86345,41661.602,26125.67477,60021.39897,20167.33603,47269.854,49577.6624,37607.5277,18648.4217,16232.847,26926.5144,34254.05335,17043.3414,22462.04375,24535.69855,14283.4594,47403.88,38344.566,34828.654,62592.87309,46718.16325,37829.7242,21259.37795,16115.3045,21472.4788,33900.653,36397.576,18765.87545,28101.33305,43896.3763,29141.3603],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"box\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"smoker=no<br>charges=%{x}<br>count=%{y}<extra></extra>\",\"legendgroup\":\"no\",\"marker\":{\"color\":\"grey\",\"pattern\":{\"shape\":\"\"}},\"name\":\"no\",\"offsetgroup\":\"no\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[1725.5523,4449.462,21984.47061,3866.8552,3756.6216,8240.5896,7281.5056,6406.4107,28923.13692,2721.3208,1826.843,11090.7178,1837.237,10797.3362,2395.17155,10602.385,13228.84695,4149.736,1137.011,6203.90175,14001.1338,14451.83515,12268.63225,2775.19215,2198.18985,4687.797,13770.0979,1625.43375,15612.19335,2302.3,3046.062,4949.7587,6272.4772,6313.759,6079.6715,20630.28351,3393.35635,3556.9223,12629.8967,2211.13075,3579.8287,8059.6791,13607.36875,5989.52365,8606.2174,4504.6624,30166.61817,4133.64165,1743.214,14235.072,6389.37785,5920.1041,6799.458,11741.726,11946.6259,7726.854,11356.6609,3947.4131,1532.4697,2755.02095,6571.02435,4441.21315,7935.29115,11033.6617,11073.176,8026.6666,11082.5772,2026.9741,10942.13205,5729.0053,3766.8838,12105.32,10226.2842,6186.127,3645.0894,21344.8467,5003.853,2331.519,3877.30425,2867.1196,10825.2537,11881.358,4646.759,2404.7338,11488.31695,30259.99556,11381.3254,8601.3293,6686.4313,7740.337,1705.6245,2257.47525,10115.00885,3385.39915,9634.538,6082.405,12815.44495,13616.3586,11163.568,1632.56445,2457.21115,2155.6815,1261.442,2045.68525,27322.73386,2166.732,27375.90478,3490.5491,18157.876,5138.2567,9877.6077,10959.6947,1842.519,5125.2157,7789.635,6334.34355,7077.1894,6948.7008,19749.38338,10450.552,5152.134,5028.1466,10407.08585,4830.63,6128.79745,2719.27975,4827.90495,13405.3903,8116.68,1694.7964,5246.047,2855.43755,6455.86265,10436.096,8823.279,8538.28845,11735.87905,1631.8212,4005.4225,7419.4779,7731.4271,3981.9768,5325.651,6775.961,4922.9159,12557.6053,4883.866,2137.6536,12044.342,1137.4697,1639.5631,5649.715,8516.829,9644.2525,14901.5167,2130.6759,8871.1517,13012.20865,7147.105,4337.7352,11743.299,13880.949,6610.1097,1980.07,8162.71625,3537.703,5002.7827,8520.026,7371.772,10355.641,2483.736,3392.9768,25081.76784,5012.471,10564.8845,5253.524,11987.1682,2689.4954,24227.33724,7358.17565,9225.2564,7443.64305,14001.2867,1727.785,12333.828,6710.1919,1615.7667,4463.2051,7152.6714,5354.07465,35160.13457,7196.867,24476.47851,12648.7034,1986.9334,1832.094,4040.55825,4260.744,13047.33235,5400.9805,11520.09985,11837.16,20462.99766,14590.63205,7441.053,9282.4806,1719.4363,7265.7025,9617.66245,2523.1695,9715.841,2803.69785,2150.469,12928.7911,9855.1314,4237.12655,11879.10405,9625.92,7742.1098,9432.9253,14256.1928,25992.82104,3172.018,20277.80751,2156.7518,3906.127,1704.5681,9249.4952,6746.7425,12265.5069,4349.462,12646.207,19442.3535,20177.67113,4151.0287,11944.59435,7749.1564,8444.474,1737.376,8124.4084,9722.7695,8835.26495,10435.06525,7421.19455,4667.60765,4894.7533,24671.66334,11566.30055,2866.091,6600.20595,3561.8889,9144.565,13429.0354,11658.37915,19144.57652,13822.803,12142.5786,13937.6665,8232.6388,18955.22017,13352.0998,13217.0945,13981.85035,10977.2063,6184.2994,4889.9995,8334.45755,5478.0368,1635.73365,11830.6072,8932.084,3554.203,12404.8791,14133.03775,24603.04837,8944.1151,9620.3307,1837.2819,1607.5101,10043.249,4751.07,2597.779,3180.5101,9778.3472,13430.265,8017.06115,8116.26885,3481.868,13415.0381,12029.2867,7639.41745,1391.5287,16455.70785,27000.98473,20781.48892,5846.9176,8302.53565,1261.859,11856.4115,30284.64294,3176.8159,4618.0799,10736.87075,2138.0707,8964.06055,9290.1395,9411.005,7526.70645,8522.003,16586.49771,14988.432,1631.6683,9264.797,8083.9198,14692.66935,10269.46,3260.199,11396.9002,4185.0979,8539.671,6652.5288,4074.4537,1621.3402,5080.096,2134.9015,7345.7266,9140.951,14418.2804,2727.3951,8968.33,9788.8659,6555.07035,7323.734819,3167.45585,18804.7524,23082.95533,4906.40965,5969.723,12638.195,4243.59005,13919.8229,2254.7967,5926.846,12592.5345,2897.3235,4738.2682,1149.3959,28287.89766,7345.084,12730.9996,11454.0215,5910.944,4762.329,7512.267,4032.2407,1969.614,1769.53165,4686.3887,21797.0004,11881.9696,11840.77505,10601.412,7682.67,10381.4787,15230.32405,11165.41765,1632.03625,13224.693,12643.3778,23288.9284,2201.0971,2497.0383,2203.47185,1744.465,20878.78443,2534.39375,1534.3045,1824.2854,15555.18875,9304.7019,1622.1885,9880.068,9563.029,4347.02335,12475.3513,1253.936,10461.9794,1748.774,24513.09126,2196.4732,12574.049,1967.0227,4931.647,8027.968,8211.1002,13470.86,6837.3687,5974.3847,6796.86325,2643.2685,3077.0955,3044.2133,11455.28,11763.0009,2498.4144,9361.3268,1256.299,11362.755,27724.28875,8413.46305,5240.765,3857.75925,25656.57526,3994.1778,9866.30485,5397.6167,11482.63485,24059.68019,9861.025,8342.90875,1708.0014,14043.4767,12925.886,19214.70553,13831.1152,6067.12675,5972.378,8825.086,8233.0975,27346.04207,6196.448,3056.3881,13887.204,10231.4999,3268.84665,11538.421,3213.62205,13390.559,3972.9247,12957.118,11187.6567,17878.90068,3847.674,8334.5896,3935.1799,1646.4297,9193.8385,10923.9332,2494.022,9058.7303,2801.2588,2128.43105,6373.55735,7256.7231,11552.904,3761.292,2219.4451,4753.6368,31620.00106,13224.05705,12222.8983,1664.9996,9724.53,3206.49135,12913.9924,1639.5631,6356.2707,17626.23951,1242.816,4779.6023,3861.20965,13635.6379,5976.8311,11842.442,8428.0693,2566.4707,5709.1644,8823.98575,7640.3092,5594.8455,7441.501,33471.97189,1633.0444,9174.13565,11070.535,16085.1275,9283.562,3558.62025,4435.0942,8547.6913,6571.544,2207.69745,6753.038,1880.07,11658.11505,10713.644,3659.346,9182.17,12129.61415,3736.4647,6748.5912,11326.71487,11365.952,10085.846,1977.815,3366.6697,7173.35995,9391.346,14410.9321,2709.1119,24915.04626,12949.1554,6666.243,13143.86485,4466.6214,18806.14547,10141.1362,6123.5688,8252.2843,1712.227,12430.95335,9800.8882,10579.711,8280.6227,8527.532,12244.531,3410.324,4058.71245,26392.26029,14394.39815,6435.6237,22192.43711,5148.5526,1136.3994,8703.456,6500.2359,4837.5823,3943.5954,4399.731,6185.3208,7222.78625,12485.8009,12363.547,10156.7832,2585.269,1242.26,9863.4718,4766.022,11244.3769,7729.64575,5438.7491,26236.57997,2104.1134,8068.185,2362.22905,2352.96845,3577.999,3201.24515,29186.48236,10976.24575,3500.6123,2020.5523,9541.69555,9504.3103,5385.3379,8930.93455,5375.038,10264.4421,6113.23105,5469.0066,1727.54,10107.2206,8310.83915,1984.4533,2457.502,12146.971,9566.9909,13112.6048,10848.1343,12231.6136,9875.6804,11264.541,12979.358,1263.249,10106.13425,6664.68595,2217.6012,6781.3542,10065.413,4234.927,9447.25035,14007.222,9583.8933,3484.331,8604.48365,3757.8448,8827.2099,9910.35985,11737.84884,1627.28245,8556.907,3062.50825,1906.35825,14210.53595,11833.7823,17128.42608,5031.26955,7985.815,5428.7277,3925.7582,2416.955,3070.8087,9095.06825,11842.62375,8062.764,7050.642,14319.031,6933.24225,27941.28758,11150.78,12797.20962,7261.741,10560.4917,6986.697,7448.40395,5934.3798,9869.8102,1146.7966,9386.1613,4350.5144,6414.178,12741.16745,1917.3184,5209.57885,13457.9608,5662.225,1252.407,2731.9122,7209.4918,4266.1658,4719.52405,11848.141,7046.7222,14313.8463,2103.08,1815.8759,7731.85785,28476.73499,2136.88225,1131.5066,3309.7926,9414.92,6360.9936,11013.7119,4428.88785,5584.3057,1877.9294,2842.76075,3597.596,7445.918,2680.9493,1621.8827,8219.2039,12523.6048,16069.08475,6117.4945,13393.756,5266.3656,4719.73655,11743.9341,5377.4578,7160.3303,4402.233,11657.7189,6402.29135,12622.1795,1526.312,12323.936,10072.05505,9872.701,2438.0552,2974.126,10601.63225,14119.62,11729.6795,1875.344,18218.16139,10965.446,7151.092,12269.68865,5458.04645,8782.469,6600.361,1141.4451,11576.13,13129.60345,4391.652,8457.818,3392.3652,5966.8874,6849.026,8891.1395,2690.1138,26140.3603,6653.7886,6282.235,6311.952,3443.064,2789.0574,2585.85065,4877.98105,5272.1758,1682.597,11945.1327,7243.8136,10422.91665,13555.0049,13063.883,2221.56445,1634.5734,2117.33885,8688.85885,4661.28635,8125.7845,12644.589,4564.19145,4846.92015,7633.7206,15170.069,2639.0429,14382.70905,7626.993,5257.50795,2473.3341,13041.921,5245.2269,13451.122,13462.52,5488.262,4320.41085,6250.435,25333.33284,2913.569,12032.326,13470.8044,6289.7549,2927.0647,6238.298,10096.97,7348.142,4673.3922,12233.828,32108.66282,8965.79575,2304.0022,9487.6442,1121.8739,9549.5651,2217.46915,1628.4709,12982.8747,11674.13,7160.094,6358.77645,11534.87265,4527.18295,3875.7341,12609.88702,28468.91901,2730.10785,3353.284,14474.675,9500.57305,26467.09737,4746.344,7518.02535,3279.86855,8596.8278,10702.6424,4992.3764,2527.81865,1759.338,2322.6218,7804.1605,2902.9065,9704.66805,4889.0368,25517.11363,4500.33925,16796.41194,4915.05985,7624.63,8410.04685,28340.18885,4518.82625,3378.91,7144.86265,10118.424,5484.4673,7986.47525,7418.522,13887.9685,6551.7501,5267.81815,1972.95,21232.18226,8627.5411,4433.3877,4438.2634,23241.47453,9957.7216,8269.044,36580.28216,8765.249,5383.536,12124.9924,2709.24395,3987.926,12495.29085,26018.95052,8798.593,1711.0268,8569.8618,2020.177,21595.38229,9850.432,6877.9801,4137.5227,12950.0712,12094.478,2250.8352,22493.65964,1704.70015,3161.454,11394.06555,7325.0482,3594.17085,8023.13545,14394.5579,9288.0267,3353.4703,10594.50155,8277.523,17929.30337,2480.9791,4462.7218,1981.5819,11554.2236,6548.19505,5708.867,7045.499,8978.1851,5757.41345,14349.8544,10928.849,13974.45555,1909.52745,12096.6512,13204.28565,4562.8421,8551.347,2102.2647,15161.5344,11884.04858,4454.40265,5855.9025,4076.497,15019.76005,10796.35025,11353.2276,9748.9106,10577.087,11286.5387,3591.48,11299.343,4561.1885,1674.6323,23045.56616,3227.1211,11253.421,3471.4096,11363.2832,20420.60465,10338.9316,8988.15875,10493.9458,2904.088,8605.3615,11512.405,5312.16985,2396.0959,10807.4863,9222.4026,5693.4305,8347.1643,18903.49141,14254.6082,10214.636,5836.5204,14358.36437,1728.897,8582.3023,3693.428,20709.02034,9991.03765,19673.33573,11085.5868,7623.518,3176.2877,3704.3545,9048.0273,7954.517,27117.99378,6338.0756,9630.397,11289.10925,2261.5688,10791.96,5979.731,2203.73595,12235.8392,5630.45785,11015.1747,7228.21565,14426.07385,2459.7201,3989.841,7727.2532,5124.1887,18963.17192,2200.83085,7153.5539,5227.98875,10982.5013,4529.477,4670.64,6112.35295,11093.6229,6457.8434,4433.9159,2154.361,6496.886,2899.48935,7650.77375,2850.68375,2632.992,9447.3824,8603.8234,13844.7972,13126.67745,5327.40025,13725.47184,13019.16105,8671.19125,4134.08245,18838.70366,5699.8375,6393.60345,4934.705,6198.7518,8733.22925,2055.3249,9964.06,5116.5004,36910.60803,12347.172,5373.36425,23563.01618,1702.4553,10806.839,3956.07145,12890.05765,5415.6612,4058.1161,7537.1639,4718.20355,6593.5083,8442.667,6858.4796,4795.6568,6640.54485,7162.0122,10594.2257,11938.25595,12479.70895,11345.519,8515.7587,2699.56835,14449.8544,12224.35085,6985.50695,3238.4357,4296.2712,3171.6149,1135.9407,5615.369,9101.798,6059.173,1633.9618,1241.565,15828.82173,4415.1588,6474.013,11436.73815,11305.93455,30063.58055,10197.7722,4544.2348,3277.161,6770.1925,7337.748,10370.91255,10704.47,1880.487,8615.3,3292.52985,3021.80915,14478.33015,4747.0529,10959.33,2741.948,4357.04365,4189.1131,8283.6807,1720.3537,8534.6718,3732.6251,5472.449,7147.4728,7133.9025,1515.3449,9301.89355,11931.12525,1964.78,1708.92575,4340.4409,5261.46945,2710.82855,3208.787,2464.6188,6875.961,6940.90985,4571.41305,4536.259,11272.33139,1731.677,1163.4627,19496.71917,7201.70085,5425.02335,12981.3457,4239.89265,13143.33665,7050.0213,9377.9047,22395.74424,10325.206,12629.1656,10795.93733,11411.685,10600.5483,2205.9808,1629.8335,2007.945],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"smoker=no<br>charges=%{x}<extra></extra>\",\"legendgroup\":\"no\",\"marker\":{\"color\":\"grey\"},\"name\":\"no\",\"notched\":true,\"offsetgroup\":\"no\",\"showlegend\":false,\"x\":[1725.5523,4449.462,21984.47061,3866.8552,3756.6216,8240.5896,7281.5056,6406.4107,28923.13692,2721.3208,1826.843,11090.7178,1837.237,10797.3362,2395.17155,10602.385,13228.84695,4149.736,1137.011,6203.90175,14001.1338,14451.83515,12268.63225,2775.19215,2198.18985,4687.797,13770.0979,1625.43375,15612.19335,2302.3,3046.062,4949.7587,6272.4772,6313.759,6079.6715,20630.28351,3393.35635,3556.9223,12629.8967,2211.13075,3579.8287,8059.6791,13607.36875,5989.52365,8606.2174,4504.6624,30166.61817,4133.64165,1743.214,14235.072,6389.37785,5920.1041,6799.458,11741.726,11946.6259,7726.854,11356.6609,3947.4131,1532.4697,2755.02095,6571.02435,4441.21315,7935.29115,11033.6617,11073.176,8026.6666,11082.5772,2026.9741,10942.13205,5729.0053,3766.8838,12105.32,10226.2842,6186.127,3645.0894,21344.8467,5003.853,2331.519,3877.30425,2867.1196,10825.2537,11881.358,4646.759,2404.7338,11488.31695,30259.99556,11381.3254,8601.3293,6686.4313,7740.337,1705.6245,2257.47525,10115.00885,3385.39915,9634.538,6082.405,12815.44495,13616.3586,11163.568,1632.56445,2457.21115,2155.6815,1261.442,2045.68525,27322.73386,2166.732,27375.90478,3490.5491,18157.876,5138.2567,9877.6077,10959.6947,1842.519,5125.2157,7789.635,6334.34355,7077.1894,6948.7008,19749.38338,10450.552,5152.134,5028.1466,10407.08585,4830.63,6128.79745,2719.27975,4827.90495,13405.3903,8116.68,1694.7964,5246.047,2855.43755,6455.86265,10436.096,8823.279,8538.28845,11735.87905,1631.8212,4005.4225,7419.4779,7731.4271,3981.9768,5325.651,6775.961,4922.9159,12557.6053,4883.866,2137.6536,12044.342,1137.4697,1639.5631,5649.715,8516.829,9644.2525,14901.5167,2130.6759,8871.1517,13012.20865,7147.105,4337.7352,11743.299,13880.949,6610.1097,1980.07,8162.71625,3537.703,5002.7827,8520.026,7371.772,10355.641,2483.736,3392.9768,25081.76784,5012.471,10564.8845,5253.524,11987.1682,2689.4954,24227.33724,7358.17565,9225.2564,7443.64305,14001.2867,1727.785,12333.828,6710.1919,1615.7667,4463.2051,7152.6714,5354.07465,35160.13457,7196.867,24476.47851,12648.7034,1986.9334,1832.094,4040.55825,4260.744,13047.33235,5400.9805,11520.09985,11837.16,20462.99766,14590.63205,7441.053,9282.4806,1719.4363,7265.7025,9617.66245,2523.1695,9715.841,2803.69785,2150.469,12928.7911,9855.1314,4237.12655,11879.10405,9625.92,7742.1098,9432.9253,14256.1928,25992.82104,3172.018,20277.80751,2156.7518,3906.127,1704.5681,9249.4952,6746.7425,12265.5069,4349.462,12646.207,19442.3535,20177.67113,4151.0287,11944.59435,7749.1564,8444.474,1737.376,8124.4084,9722.7695,8835.26495,10435.06525,7421.19455,4667.60765,4894.7533,24671.66334,11566.30055,2866.091,6600.20595,3561.8889,9144.565,13429.0354,11658.37915,19144.57652,13822.803,12142.5786,13937.6665,8232.6388,18955.22017,13352.0998,13217.0945,13981.85035,10977.2063,6184.2994,4889.9995,8334.45755,5478.0368,1635.73365,11830.6072,8932.084,3554.203,12404.8791,14133.03775,24603.04837,8944.1151,9620.3307,1837.2819,1607.5101,10043.249,4751.07,2597.779,3180.5101,9778.3472,13430.265,8017.06115,8116.26885,3481.868,13415.0381,12029.2867,7639.41745,1391.5287,16455.70785,27000.98473,20781.48892,5846.9176,8302.53565,1261.859,11856.4115,30284.64294,3176.8159,4618.0799,10736.87075,2138.0707,8964.06055,9290.1395,9411.005,7526.70645,8522.003,16586.49771,14988.432,1631.6683,9264.797,8083.9198,14692.66935,10269.46,3260.199,11396.9002,4185.0979,8539.671,6652.5288,4074.4537,1621.3402,5080.096,2134.9015,7345.7266,9140.951,14418.2804,2727.3951,8968.33,9788.8659,6555.07035,7323.734819,3167.45585,18804.7524,23082.95533,4906.40965,5969.723,12638.195,4243.59005,13919.8229,2254.7967,5926.846,12592.5345,2897.3235,4738.2682,1149.3959,28287.89766,7345.084,12730.9996,11454.0215,5910.944,4762.329,7512.267,4032.2407,1969.614,1769.53165,4686.3887,21797.0004,11881.9696,11840.77505,10601.412,7682.67,10381.4787,15230.32405,11165.41765,1632.03625,13224.693,12643.3778,23288.9284,2201.0971,2497.0383,2203.47185,1744.465,20878.78443,2534.39375,1534.3045,1824.2854,15555.18875,9304.7019,1622.1885,9880.068,9563.029,4347.02335,12475.3513,1253.936,10461.9794,1748.774,24513.09126,2196.4732,12574.049,1967.0227,4931.647,8027.968,8211.1002,13470.86,6837.3687,5974.3847,6796.86325,2643.2685,3077.0955,3044.2133,11455.28,11763.0009,2498.4144,9361.3268,1256.299,11362.755,27724.28875,8413.46305,5240.765,3857.75925,25656.57526,3994.1778,9866.30485,5397.6167,11482.63485,24059.68019,9861.025,8342.90875,1708.0014,14043.4767,12925.886,19214.70553,13831.1152,6067.12675,5972.378,8825.086,8233.0975,27346.04207,6196.448,3056.3881,13887.204,10231.4999,3268.84665,11538.421,3213.62205,13390.559,3972.9247,12957.118,11187.6567,17878.90068,3847.674,8334.5896,3935.1799,1646.4297,9193.8385,10923.9332,2494.022,9058.7303,2801.2588,2128.43105,6373.55735,7256.7231,11552.904,3761.292,2219.4451,4753.6368,31620.00106,13224.05705,12222.8983,1664.9996,9724.53,3206.49135,12913.9924,1639.5631,6356.2707,17626.23951,1242.816,4779.6023,3861.20965,13635.6379,5976.8311,11842.442,8428.0693,2566.4707,5709.1644,8823.98575,7640.3092,5594.8455,7441.501,33471.97189,1633.0444,9174.13565,11070.535,16085.1275,9283.562,3558.62025,4435.0942,8547.6913,6571.544,2207.69745,6753.038,1880.07,11658.11505,10713.644,3659.346,9182.17,12129.61415,3736.4647,6748.5912,11326.71487,11365.952,10085.846,1977.815,3366.6697,7173.35995,9391.346,14410.9321,2709.1119,24915.04626,12949.1554,6666.243,13143.86485,4466.6214,18806.14547,10141.1362,6123.5688,8252.2843,1712.227,12430.95335,9800.8882,10579.711,8280.6227,8527.532,12244.531,3410.324,4058.71245,26392.26029,14394.39815,6435.6237,22192.43711,5148.5526,1136.3994,8703.456,6500.2359,4837.5823,3943.5954,4399.731,6185.3208,7222.78625,12485.8009,12363.547,10156.7832,2585.269,1242.26,9863.4718,4766.022,11244.3769,7729.64575,5438.7491,26236.57997,2104.1134,8068.185,2362.22905,2352.96845,3577.999,3201.24515,29186.48236,10976.24575,3500.6123,2020.5523,9541.69555,9504.3103,5385.3379,8930.93455,5375.038,10264.4421,6113.23105,5469.0066,1727.54,10107.2206,8310.83915,1984.4533,2457.502,12146.971,9566.9909,13112.6048,10848.1343,12231.6136,9875.6804,11264.541,12979.358,1263.249,10106.13425,6664.68595,2217.6012,6781.3542,10065.413,4234.927,9447.25035,14007.222,9583.8933,3484.331,8604.48365,3757.8448,8827.2099,9910.35985,11737.84884,1627.28245,8556.907,3062.50825,1906.35825,14210.53595,11833.7823,17128.42608,5031.26955,7985.815,5428.7277,3925.7582,2416.955,3070.8087,9095.06825,11842.62375,8062.764,7050.642,14319.031,6933.24225,27941.28758,11150.78,12797.20962,7261.741,10560.4917,6986.697,7448.40395,5934.3798,9869.8102,1146.7966,9386.1613,4350.5144,6414.178,12741.16745,1917.3184,5209.57885,13457.9608,5662.225,1252.407,2731.9122,7209.4918,4266.1658,4719.52405,11848.141,7046.7222,14313.8463,2103.08,1815.8759,7731.85785,28476.73499,2136.88225,1131.5066,3309.7926,9414.92,6360.9936,11013.7119,4428.88785,5584.3057,1877.9294,2842.76075,3597.596,7445.918,2680.9493,1621.8827,8219.2039,12523.6048,16069.08475,6117.4945,13393.756,5266.3656,4719.73655,11743.9341,5377.4578,7160.3303,4402.233,11657.7189,6402.29135,12622.1795,1526.312,12323.936,10072.05505,9872.701,2438.0552,2974.126,10601.63225,14119.62,11729.6795,1875.344,18218.16139,10965.446,7151.092,12269.68865,5458.04645,8782.469,6600.361,1141.4451,11576.13,13129.60345,4391.652,8457.818,3392.3652,5966.8874,6849.026,8891.1395,2690.1138,26140.3603,6653.7886,6282.235,6311.952,3443.064,2789.0574,2585.85065,4877.98105,5272.1758,1682.597,11945.1327,7243.8136,10422.91665,13555.0049,13063.883,2221.56445,1634.5734,2117.33885,8688.85885,4661.28635,8125.7845,12644.589,4564.19145,4846.92015,7633.7206,15170.069,2639.0429,14382.70905,7626.993,5257.50795,2473.3341,13041.921,5245.2269,13451.122,13462.52,5488.262,4320.41085,6250.435,25333.33284,2913.569,12032.326,13470.8044,6289.7549,2927.0647,6238.298,10096.97,7348.142,4673.3922,12233.828,32108.66282,8965.79575,2304.0022,9487.6442,1121.8739,9549.5651,2217.46915,1628.4709,12982.8747,11674.13,7160.094,6358.77645,11534.87265,4527.18295,3875.7341,12609.88702,28468.91901,2730.10785,3353.284,14474.675,9500.57305,26467.09737,4746.344,7518.02535,3279.86855,8596.8278,10702.6424,4992.3764,2527.81865,1759.338,2322.6218,7804.1605,2902.9065,9704.66805,4889.0368,25517.11363,4500.33925,16796.41194,4915.05985,7624.63,8410.04685,28340.18885,4518.82625,3378.91,7144.86265,10118.424,5484.4673,7986.47525,7418.522,13887.9685,6551.7501,5267.81815,1972.95,21232.18226,8627.5411,4433.3877,4438.2634,23241.47453,9957.7216,8269.044,36580.28216,8765.249,5383.536,12124.9924,2709.24395,3987.926,12495.29085,26018.95052,8798.593,1711.0268,8569.8618,2020.177,21595.38229,9850.432,6877.9801,4137.5227,12950.0712,12094.478,2250.8352,22493.65964,1704.70015,3161.454,11394.06555,7325.0482,3594.17085,8023.13545,14394.5579,9288.0267,3353.4703,10594.50155,8277.523,17929.30337,2480.9791,4462.7218,1981.5819,11554.2236,6548.19505,5708.867,7045.499,8978.1851,5757.41345,14349.8544,10928.849,13974.45555,1909.52745,12096.6512,13204.28565,4562.8421,8551.347,2102.2647,15161.5344,11884.04858,4454.40265,5855.9025,4076.497,15019.76005,10796.35025,11353.2276,9748.9106,10577.087,11286.5387,3591.48,11299.343,4561.1885,1674.6323,23045.56616,3227.1211,11253.421,3471.4096,11363.2832,20420.60465,10338.9316,8988.15875,10493.9458,2904.088,8605.3615,11512.405,5312.16985,2396.0959,10807.4863,9222.4026,5693.4305,8347.1643,18903.49141,14254.6082,10214.636,5836.5204,14358.36437,1728.897,8582.3023,3693.428,20709.02034,9991.03765,19673.33573,11085.5868,7623.518,3176.2877,3704.3545,9048.0273,7954.517,27117.99378,6338.0756,9630.397,11289.10925,2261.5688,10791.96,5979.731,2203.73595,12235.8392,5630.45785,11015.1747,7228.21565,14426.07385,2459.7201,3989.841,7727.2532,5124.1887,18963.17192,2200.83085,7153.5539,5227.98875,10982.5013,4529.477,4670.64,6112.35295,11093.6229,6457.8434,4433.9159,2154.361,6496.886,2899.48935,7650.77375,2850.68375,2632.992,9447.3824,8603.8234,13844.7972,13126.67745,5327.40025,13725.47184,13019.16105,8671.19125,4134.08245,18838.70366,5699.8375,6393.60345,4934.705,6198.7518,8733.22925,2055.3249,9964.06,5116.5004,36910.60803,12347.172,5373.36425,23563.01618,1702.4553,10806.839,3956.07145,12890.05765,5415.6612,4058.1161,7537.1639,4718.20355,6593.5083,8442.667,6858.4796,4795.6568,6640.54485,7162.0122,10594.2257,11938.25595,12479.70895,11345.519,8515.7587,2699.56835,14449.8544,12224.35085,6985.50695,3238.4357,4296.2712,3171.6149,1135.9407,5615.369,9101.798,6059.173,1633.9618,1241.565,15828.82173,4415.1588,6474.013,11436.73815,11305.93455,30063.58055,10197.7722,4544.2348,3277.161,6770.1925,7337.748,10370.91255,10704.47,1880.487,8615.3,3292.52985,3021.80915,14478.33015,4747.0529,10959.33,2741.948,4357.04365,4189.1131,8283.6807,1720.3537,8534.6718,3732.6251,5472.449,7147.4728,7133.9025,1515.3449,9301.89355,11931.12525,1964.78,1708.92575,4340.4409,5261.46945,2710.82855,3208.787,2464.6188,6875.961,6940.90985,4571.41305,4536.259,11272.33139,1731.677,1163.4627,19496.71917,7201.70085,5425.02335,12981.3457,4239.89265,13143.33665,7050.0213,9377.9047,22395.74424,10325.206,12629.1656,10795.93733,11411.685,10600.5483,2205.9808,1629.8335,2007.945],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"box\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"charges\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,0.7326],\"title\":{\"text\":\"count\"}},\"xaxis2\":{\"anchor\":\"y2\",\"domain\":[0.0,1.0],\"matches\":\"x\",\"showticklabels\":false,\"showgrid\":true},\"yaxis2\":{\"anchor\":\"x2\",\"domain\":[0.7426,1.0],\"matches\":\"y2\",\"showticklabels\":false,\"showline\":false,\"ticks\":\"\",\"showgrid\":false},\"legend\":{\"title\":{\"text\":\"smoker\"},\"tracegroupgap\":0},\"title\":{\"text\":\"Annual Medical Charges\"},\"barmode\":\"relative\",\"bargap\":0.1}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('30c8db29-3a5f-4afa-8dd1-5a6b36eafa6a');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
],
"source": [
"fig = px.histogram(medical_df, \n",
" x='charges', \n",
" marginal='box', \n",
" color='smoker', \n",
" color_discrete_sequence=['green', 'grey'], \n",
" title='Annual Medical Charges')\n",
"fig.update_layout(bargap=0.1)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "dc428947",
"metadata": {
"id": "dc428947"
},
"source": [
"We can make the following observations from the above graph:\n",
"\n",
"* For most customers, the annual medical charges are under \\\\$10,000. Only a small fraction of customer have higher medical expenses, possibly due to accidents, major illnesses and genetic diseases. The distribution follows a \"power law\"\n",
"* There is a significant difference in medical expenses between smokers and non-smokers. While the median for non-smokers is \\\\$7300, the median for smokers is close to \\\\$35,000.\n",
"\n",
"\n",
"> **EXERCISE**: Visualize the distribution of medical charges in connection with other factors like \"sex\" and \"region\". What do you observe?"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "ca6c00ba",
"metadata": {
"id": "ca6c00ba"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "1cfe24e5",
"metadata": {
"id": "1cfe24e5"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "87fe7cd2",
"metadata": {
"id": "87fe7cd2"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "810f3059",
"metadata": {
"id": "810f3059"
},
"source": [
"### Smoker\n",
"\n",
"Let's visualize the distribution of the \"smoker\" column (containing values \"yes\" and \"no\") using a histogram."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "b742e0d1",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "b742e0d1",
"outputId": "178e6a4f-aec8-42ed-d935-b062ff360eea"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"no 1064\n",
"yes 274\n",
"Name: smoker, dtype: int64"
]
},
"metadata": {},
"execution_count": 28
}
],
"source": [
"medical_df.smoker.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "131851de",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"id": "131851de",
"outputId": "9ec5b65d-5db4-44bd-a123-0f56bdf2a782"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"ff8a374f-f9f3-4035-9f0b-a5eb61847294\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"ff8a374f-f9f3-4035-9f0b-a5eb61847294\")) { Plotly.newPlot( \"ff8a374f-f9f3-4035-9f0b-a5eb61847294\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"sex=female<br>smoker=%{x}<br>count=%{y}<extra></extra>\",\"legendgroup\":\"female\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"female\",\"offsetgroup\":\"female\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\"],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"sex=male<br>smoker=%{x}<br>count=%{y}<extra></extra>\",\"legendgroup\":\"male\",\"marker\":{\"color\":\"#EF553B\",\"pattern\":{\"shape\":\"\"}},\"name\":\"male\",\"offsetgroup\":\"male\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"yes\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"yes\",\"no\",\"yes\",\"yes\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"yes\",\"yes\",\"yes\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\",\"yes\",\"no\",\"no\",\"no\",\"no\",\"no\",\"no\"],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"smoker\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"count\"}},\"legend\":{\"title\":{\"text\":\"sex\"},\"tracegroupgap\":0},\"title\":{\"text\":\"Smoker\"},\"barmode\":\"relative\"}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('ff8a374f-f9f3-4035-9f0b-a5eb61847294');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
],
"source": [
"px.histogram(medical_df, x='smoker', color='sex', title='Smoker')"
]
},
{
"cell_type": "markdown",
"id": "55bcfcbc",
"metadata": {
"id": "55bcfcbc"
},
"source": [
"It appears that 20% of customers have reported that they smoke. Can you verify whether this matches the national average, assuming the data was collected in 2010? We can also see that smoking appears a more common habit among males. Can you verify this?\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "08e5c1ff",
"metadata": {
"id": "08e5c1ff"
},
"source": [
"> **EXERCISE**: Visualize the distributions of the \"sex\", \"region\" and \"children\" columns and report your observations. "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "3a13c26d",
"metadata": {
"id": "3a13c26d"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "807ab8d4",
"metadata": {
"id": "807ab8d4"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5f7b0736",
"metadata": {
"id": "5f7b0736"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "f19bf6f1",
"metadata": {
"id": "f19bf6f1"
},
"source": [
"Having looked at individual columns, we can now visualize the relationship between \"charges\" (the value we wish to predict) and other columns.\n",
"\n",
"### Age and Charges\n",
"\n",
"Let's visualize the relationship between \"age\" and \"charges\" using a scatter plot. Each point in the scatter plot represents one customer. We'll also use values in the \"smoker\" column to color the points."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "5d6d5d24",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"id": "5d6d5d24",
"outputId": "0fd0f0d3-3099-412c-a7c5-317b64911b73"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"de370a4e-bb9e-4466-ae4a-ae7581e398c4\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"de370a4e-bb9e-4466-ae4a-ae7581e398c4\")) { Plotly.newPlot( \"de370a4e-bb9e-4466-ae4a-ae7581e398c4\", [{\"customdata\":[[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"]],\"hovertemplate\":\"smoker=yes<br>age=%{x}<br>charges=%{y}<br>sex=%{customdata[0]}<extra></extra>\",\"legendgroup\":\"yes\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.8,\"symbol\":\"circle\",\"size\":5},\"mode\":\"markers\",\"name\":\"yes\",\"showlegend\":true,\"x\":[19,62,27,30,34,31,22,28,35,60,36,48,36,58,18,53,20,28,27,22,37,45,57,59,64,56,38,61,20,63,29,44,19,32,34,30,46,42,48,18,30,42,18,63,36,27,35,19,42,40,19,23,63,18,63,54,50,56,19,20,52,19,46,40,50,40,54,59,25,19,47,31,53,43,27,34,45,64,61,52,50,19,26,23,39,24,27,55,44,26,36,63,64,61,40,33,56,42,30,54,61,24,44,21,29,51,19,39,42,57,54,49,43,35,48,31,34,21,19,59,30,47,49,19,37,18,44,39,42,52,64,43,40,62,44,60,39,27,41,51,30,29,35,37,23,29,27,53,37,47,18,33,19,30,50,53,27,33,18,47,33,56,36,41,23,57,60,37,46,49,48,25,37,51,32,57,64,47,43,60,32,18,43,45,37,25,51,44,34,54,43,51,29,31,24,27,30,24,47,43,22,47,19,46,55,18,22,45,35,20,43,22,49,47,59,37,28,39,47,22,51,33,38,48,25,33,23,53,23,19,60,43,19,18,43,52,31,23,20,43,19,18,36,37,46,20,52,20,52,64,32,24,20,64,24,26,39,47,18,61,20,19,45,62,43,42,29,32,25,19,30,62,42,61],\"xaxis\":\"x\",\"y\":[16884.924,27808.7251,39611.7577,36837.467,37701.8768,38711.0,35585.576,51194.55914,39774.2763,48173.361,38709.176,23568.272,37742.5757,47496.49445,34303.1672,23244.7902,14711.7438,17663.1442,16577.7795,37165.1638,39836.519,21098.55405,43578.9394,30184.9367,47291.055,22412.6485,15820.699,30942.1918,17560.37975,47055.5321,19107.7796,39556.4945,17081.08,32734.1863,18972.495,20745.9891,40720.55105,19964.7463,21223.6758,15518.18025,36950.2567,21348.706,36149.4835,48824.45,43753.33705,37133.8982,20984.0936,34779.615,19515.5416,19444.2658,17352.6803,38511.6283,29523.1656,12829.4551,47305.305,44260.7499,41097.16175,43921.1837,33750.2918,17085.2676,24869.8368,36219.40545,46151.1245,17179.522,42856.838,22331.5668,48549.17835,47896.79135,42112.2356,16297.846,21978.6769,38746.3551,24873.3849,42124.5153,34838.873,35491.64,42760.5022,47928.03,48517.56315,24393.6224,41919.097,13844.506,36085.219,18033.9679,21659.9301,38126.2465,15006.57945,42303.69215,19594.80965,14455.64405,18608.262,28950.4692,46889.2612,46599.1084,39125.33225,37079.372,26109.32905,22144.032,19521.9682,25382.297,28868.6639,35147.52848,48885.13561,17942.106,36197.699,22218.1149,32548.3405,21082.16,38245.59327,48675.5177,63770.42801,23807.2406,45863.205,39983.42595,45702.02235,58571.07448,43943.8761,15359.1045,17468.9839,25678.77845,39241.442,42969.8527,23306.547,34439.8559,40182.246,34617.84065,42983.4585,20149.3229,32787.45859,24667.419,27037.9141,42560.4304,40003.33225,45710.20785,46200.9851,46130.5265,40103.89,34806.4677,40273.6455,44400.4064,40932.4295,16657.71745,19361.9988,40419.0191,36189.1017,44585.45587,18246.4955,43254.41795,19539.243,23065.4207,36307.7983,19040.876,17748.5062,18259.216,24520.264,21195.818,18310.742,17904.52705,38792.6856,23401.30575,55135.40209,43813.8661,20773.62775,39597.4072,36021.0112,27533.9129,45008.9555,37270.1512,42111.6647,24106.91255,40974.1649,15817.9857,46113.511,46255.1125,19719.6947,27218.43725,29330.98315,44202.6536,19798.05455,48673.5588,17496.306,33732.6867,21774.32215,35069.37452,39047.285,19933.458,47462.894,38998.546,20009.63365,41999.52,41034.2214,23967.38305,16138.76205,19199.944,14571.8908,16420.49455,17361.7661,34472.841,24915.22085,18767.7377,35595.5898,42211.1382,16450.8947,21677.28345,44423.803,13747.87235,37484.4493,39725.51805,20234.85475,33475.81715,21880.82,44501.3982,39727.614,25309.489,48970.2476,39871.7043,34672.1472,19023.26,41676.0811,33907.548,44641.1974,16776.30405,41949.2441,24180.9335,36124.5737,38282.7495,34166.273,46661.4424,40904.1995,36898.73308,52590.82939,40941.2854,39722.7462,17178.6824,22478.6,23887.6627,19350.3689,18328.2381,37465.34375,21771.3423,33307.5508,18223.4512,38415.474,20296.86345,41661.602,26125.67477,60021.39897,20167.33603,47269.854,49577.6624,37607.5277,18648.4217,16232.847,26926.5144,34254.05335,17043.3414,22462.04375,24535.69855,14283.4594,47403.88,38344.566,34828.654,62592.87309,46718.16325,37829.7242,21259.37795,16115.3045,21472.4788,33900.653,36397.576,18765.87545,28101.33305,43896.3763,29141.3603],\"yaxis\":\"y\",\"type\":\"scattergl\"},{\"customdata\":[[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"]],\"hovertemplate\":\"smoker=no<br>age=%{x}<br>charges=%{y}<br>sex=%{customdata[0]}<extra></extra>\",\"legendgroup\":\"no\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.8,\"symbol\":\"circle\",\"size\":5},\"mode\":\"markers\",\"name\":\"no\",\"showlegend\":true,\"x\":[18,28,33,32,31,46,37,37,60,25,23,56,19,52,23,56,60,30,18,37,59,63,55,23,18,19,63,19,62,26,24,31,41,37,38,55,18,28,60,18,21,40,58,34,43,25,64,28,19,61,40,40,31,53,58,44,57,29,21,22,41,31,45,48,56,46,55,21,53,35,28,54,55,41,30,18,34,19,26,29,54,55,37,21,52,60,58,49,37,44,18,20,47,26,52,38,59,61,53,19,20,22,19,22,54,22,34,26,29,29,51,53,19,35,48,32,40,44,50,54,32,37,47,20,32,19,27,63,49,18,35,24,38,54,46,41,58,18,22,44,44,26,30,41,29,61,36,25,56,18,19,39,45,51,64,19,48,60,46,28,59,63,40,20,40,24,34,45,41,53,27,26,24,34,53,32,55,28,58,41,47,42,59,19,59,39,18,31,44,33,55,40,54,60,24,19,29,27,55,38,51,58,53,59,45,49,18,41,50,25,47,19,22,59,51,30,55,52,46,46,63,52,28,29,22,25,18,48,36,56,28,57,29,28,30,58,41,50,19,49,52,50,54,44,32,34,26,57,29,40,27,52,61,56,43,64,60,62,46,24,62,60,63,49,34,33,46,36,19,57,50,30,33,18,46,46,47,23,18,48,35,21,21,49,56,42,44,18,61,57,42,20,64,62,55,35,44,19,58,50,26,24,48,19,48,49,46,46,43,21,64,18,51,47,64,49,31,52,33,47,38,32,19,25,19,43,52,64,25,48,45,38,18,21,27,19,29,42,60,31,60,22,35,52,26,31,18,59,45,60,56,40,35,39,30,24,20,32,59,55,57,56,40,49,62,56,19,60,56,28,18,27,18,19,47,25,21,23,63,49,18,51,48,31,54,19,53,19,61,18,61,20,31,45,44,62,43,38,37,22,21,24,57,56,27,51,19,58,20,45,35,31,50,32,51,38,18,19,51,46,18,62,59,37,64,38,33,46,46,53,34,20,63,54,28,54,25,63,32,62,52,25,28,46,34,19,46,54,27,50,18,19,38,41,49,31,18,30,62,57,58,22,52,25,59,19,39,32,19,33,21,61,38,58,47,20,41,46,42,34,43,52,18,51,56,64,51,27,28,47,38,18,34,20,56,55,30,49,59,29,36,33,58,53,24,29,40,51,64,19,35,56,33,61,23,43,48,39,40,18,58,49,53,48,45,59,26,27,48,57,37,57,32,18,49,40,30,29,36,41,45,55,56,49,21,19,53,33,53,42,40,47,21,47,20,24,27,26,53,56,23,21,50,53,34,47,33,49,31,36,18,50,43,20,24,60,49,60,51,58,51,53,62,19,50,41,18,41,53,24,48,59,49,26,45,31,50,50,34,19,47,28,21,64,58,24,31,39,30,22,23,27,45,57,47,42,64,38,61,53,44,41,51,40,45,35,53,18,51,31,35,60,21,29,62,39,19,22,39,30,30,58,42,64,21,23,45,40,19,18,25,46,33,54,28,36,20,24,23,45,26,18,44,60,64,39,63,36,28,58,36,42,36,56,35,59,21,59,53,51,23,27,55,61,53,20,25,57,38,55,36,51,40,18,57,61,25,50,26,42,43,44,23,49,33,41,37,22,23,21,25,36,22,57,36,54,62,61,19,18,19,49,26,49,60,26,27,44,63,22,59,44,33,24,61,35,62,62,38,34,43,50,19,57,62,41,26,39,46,45,32,59,44,39,18,53,18,50,18,19,62,56,42,42,57,30,31,24,48,19,29,63,46,52,35,44,21,39,50,34,22,19,26,48,26,45,36,54,34,27,20,44,43,45,34,26,38,50,38,39,39,63,33,36,24,48,47,29,28,25,51,48,61,48,38,59,19,26,54,21,51,18,47,21,23,54,37,30,61,54,22,19,18,28,55,43,25,44,64,49,27,55,48,45,24,32,24,57,36,29,42,48,39,63,54,63,21,54,60,32,47,21,63,18,32,38,32,62,55,57,52,56,55,23,50,18,22,52,25,53,29,58,37,54,49,50,26,45,54,28,23,55,41,30,46,27,63,55,35,34,19,39,27,57,52,28,50,44,26,33,50,41,52,39,50,52,20,55,42,18,58,35,48,36,23,20,32,43,34,30,18,41,35,57,29,32,37,56,38,29,22,40,23,42,24,25,48,45,62,23,31,41,58,48,31,19,41,40,31,37,46,22,51,35,59,59,36,39,18,52,27,18,40,29,38,30,40,50,41,33,38,42,56,58,54,58,45,26,63,58,37,25,22,28,18,28,45,33,18,19,40,34,42,51,54,55,52,32,28,41,43,49,55,20,45,26,25,43,35,57,22,32,25,48,18,47,28,36,44,38,21,46,58,20,18,28,33,19,25,24,41,42,33,34,18,19,18,35,39,31,62,31,61,42,51,23,52,57,23,52,50,18,18,21],\"xaxis\":\"x\",\"y\":[1725.5523,4449.462,21984.47061,3866.8552,3756.6216,8240.5896,7281.5056,6406.4107,28923.13692,2721.3208,1826.843,11090.7178,1837.237,10797.3362,2395.17155,10602.385,13228.84695,4149.736,1137.011,6203.90175,14001.1338,14451.83515,12268.63225,2775.19215,2198.18985,4687.797,13770.0979,1625.43375,15612.19335,2302.3,3046.062,4949.7587,6272.4772,6313.759,6079.6715,20630.28351,3393.35635,3556.9223,12629.8967,2211.13075,3579.8287,8059.6791,13607.36875,5989.52365,8606.2174,4504.6624,30166.61817,4133.64165,1743.214,14235.072,6389.37785,5920.1041,6799.458,11741.726,11946.6259,7726.854,11356.6609,3947.4131,1532.4697,2755.02095,6571.02435,4441.21315,7935.29115,11033.6617,11073.176,8026.6666,11082.5772,2026.9741,10942.13205,5729.0053,3766.8838,12105.32,10226.2842,6186.127,3645.0894,21344.8467,5003.853,2331.519,3877.30425,2867.1196,10825.2537,11881.358,4646.759,2404.7338,11488.31695,30259.99556,11381.3254,8601.3293,6686.4313,7740.337,1705.6245,2257.47525,10115.00885,3385.39915,9634.538,6082.405,12815.44495,13616.3586,11163.568,1632.56445,2457.21115,2155.6815,1261.442,2045.68525,27322.73386,2166.732,27375.90478,3490.5491,18157.876,5138.2567,9877.6077,10959.6947,1842.519,5125.2157,7789.635,6334.34355,7077.1894,6948.7008,19749.38338,10450.552,5152.134,5028.1466,10407.08585,4830.63,6128.79745,2719.27975,4827.90495,13405.3903,8116.68,1694.7964,5246.047,2855.43755,6455.86265,10436.096,8823.279,8538.28845,11735.87905,1631.8212,4005.4225,7419.4779,7731.4271,3981.9768,5325.651,6775.961,4922.9159,12557.6053,4883.866,2137.6536,12044.342,1137.4697,1639.5631,5649.715,8516.829,9644.2525,14901.5167,2130.6759,8871.1517,13012.20865,7147.105,4337.7352,11743.299,13880.949,6610.1097,1980.07,8162.71625,3537.703,5002.7827,8520.026,7371.772,10355.641,2483.736,3392.9768,25081.76784,5012.471,10564.8845,5253.524,11987.1682,2689.4954,24227.33724,7358.17565,9225.2564,7443.64305,14001.2867,1727.785,12333.828,6710.1919,1615.7667,4463.2051,7152.6714,5354.07465,35160.13457,7196.867,24476.47851,12648.7034,1986.9334,1832.094,4040.55825,4260.744,13047.33235,5400.9805,11520.09985,11837.16,20462.99766,14590.63205,7441.053,9282.4806,1719.4363,7265.7025,9617.66245,2523.1695,9715.841,2803.69785,2150.469,12928.7911,9855.1314,4237.12655,11879.10405,9625.92,7742.1098,9432.9253,14256.1928,25992.82104,3172.018,20277.80751,2156.7518,3906.127,1704.5681,9249.4952,6746.7425,12265.5069,4349.462,12646.207,19442.3535,20177.67113,4151.0287,11944.59435,7749.1564,8444.474,1737.376,8124.4084,9722.7695,8835.26495,10435.06525,7421.19455,4667.60765,4894.7533,24671.66334,11566.30055,2866.091,6600.20595,3561.8889,9144.565,13429.0354,11658.37915,19144.57652,13822.803,12142.5786,13937.6665,8232.6388,18955.22017,13352.0998,13217.0945,13981.85035,10977.2063,6184.2994,4889.9995,8334.45755,5478.0368,1635.73365,11830.6072,8932.084,3554.203,12404.8791,14133.03775,24603.04837,8944.1151,9620.3307,1837.2819,1607.5101,10043.249,4751.07,2597.779,3180.5101,9778.3472,13430.265,8017.06115,8116.26885,3481.868,13415.0381,12029.2867,7639.41745,1391.5287,16455.70785,27000.98473,20781.48892,5846.9176,8302.53565,1261.859,11856.4115,30284.64294,3176.8159,4618.0799,10736.87075,2138.0707,8964.06055,9290.1395,9411.005,7526.70645,8522.003,16586.49771,14988.432,1631.6683,9264.797,8083.9198,14692.66935,10269.46,3260.199,11396.9002,4185.0979,8539.671,6652.5288,4074.4537,1621.3402,5080.096,2134.9015,7345.7266,9140.951,14418.2804,2727.3951,8968.33,9788.8659,6555.07035,7323.734819,3167.45585,18804.7524,23082.95533,4906.40965,5969.723,12638.195,4243.59005,13919.8229,2254.7967,5926.846,12592.5345,2897.3235,4738.2682,1149.3959,28287.89766,7345.084,12730.9996,11454.0215,5910.944,4762.329,7512.267,4032.2407,1969.614,1769.53165,4686.3887,21797.0004,11881.9696,11840.77505,10601.412,7682.67,10381.4787,15230.32405,11165.41765,1632.03625,13224.693,12643.3778,23288.9284,2201.0971,2497.0383,2203.47185,1744.465,20878.78443,2534.39375,1534.3045,1824.2854,15555.18875,9304.7019,1622.1885,9880.068,9563.029,4347.02335,12475.3513,1253.936,10461.9794,1748.774,24513.09126,2196.4732,12574.049,1967.0227,4931.647,8027.968,8211.1002,13470.86,6837.3687,5974.3847,6796.86325,2643.2685,3077.0955,3044.2133,11455.28,11763.0009,2498.4144,9361.3268,1256.299,11362.755,27724.28875,8413.46305,5240.765,3857.75925,25656.57526,3994.1778,9866.30485,5397.6167,11482.63485,24059.68019,9861.025,8342.90875,1708.0014,14043.4767,12925.886,19214.70553,13831.1152,6067.12675,5972.378,8825.086,8233.0975,27346.04207,6196.448,3056.3881,13887.204,10231.4999,3268.84665,11538.421,3213.62205,13390.559,3972.9247,12957.118,11187.6567,17878.90068,3847.674,8334.5896,3935.1799,1646.4297,9193.8385,10923.9332,2494.022,9058.7303,2801.2588,2128.43105,6373.55735,7256.7231,11552.904,3761.292,2219.4451,4753.6368,31620.00106,13224.05705,12222.8983,1664.9996,9724.53,3206.49135,12913.9924,1639.5631,6356.2707,17626.23951,1242.816,4779.6023,3861.20965,13635.6379,5976.8311,11842.442,8428.0693,2566.4707,5709.1644,8823.98575,7640.3092,5594.8455,7441.501,33471.97189,1633.0444,9174.13565,11070.535,16085.1275,9283.562,3558.62025,4435.0942,8547.6913,6571.544,2207.69745,6753.038,1880.07,11658.11505,10713.644,3659.346,9182.17,12129.61415,3736.4647,6748.5912,11326.71487,11365.952,10085.846,1977.815,3366.6697,7173.35995,9391.346,14410.9321,2709.1119,24915.04626,12949.1554,6666.243,13143.86485,4466.6214,18806.14547,10141.1362,6123.5688,8252.2843,1712.227,12430.95335,9800.8882,10579.711,8280.6227,8527.532,12244.531,3410.324,4058.71245,26392.26029,14394.39815,6435.6237,22192.43711,5148.5526,1136.3994,8703.456,6500.2359,4837.5823,3943.5954,4399.731,6185.3208,7222.78625,12485.8009,12363.547,10156.7832,2585.269,1242.26,9863.4718,4766.022,11244.3769,7729.64575,5438.7491,26236.57997,2104.1134,8068.185,2362.22905,2352.96845,3577.999,3201.24515,29186.48236,10976.24575,3500.6123,2020.5523,9541.69555,9504.3103,5385.3379,8930.93455,5375.038,10264.4421,6113.23105,5469.0066,1727.54,10107.2206,8310.83915,1984.4533,2457.502,12146.971,9566.9909,13112.6048,10848.1343,12231.6136,9875.6804,11264.541,12979.358,1263.249,10106.13425,6664.68595,2217.6012,6781.3542,10065.413,4234.927,9447.25035,14007.222,9583.8933,3484.331,8604.48365,3757.8448,8827.2099,9910.35985,11737.84884,1627.28245,8556.907,3062.50825,1906.35825,14210.53595,11833.7823,17128.42608,5031.26955,7985.815,5428.7277,3925.7582,2416.955,3070.8087,9095.06825,11842.62375,8062.764,7050.642,14319.031,6933.24225,27941.28758,11150.78,12797.20962,7261.741,10560.4917,6986.697,7448.40395,5934.3798,9869.8102,1146.7966,9386.1613,4350.5144,6414.178,12741.16745,1917.3184,5209.57885,13457.9608,5662.225,1252.407,2731.9122,7209.4918,4266.1658,4719.52405,11848.141,7046.7222,14313.8463,2103.08,1815.8759,7731.85785,28476.73499,2136.88225,1131.5066,3309.7926,9414.92,6360.9936,11013.7119,4428.88785,5584.3057,1877.9294,2842.76075,3597.596,7445.918,2680.9493,1621.8827,8219.2039,12523.6048,16069.08475,6117.4945,13393.756,5266.3656,4719.73655,11743.9341,5377.4578,7160.3303,4402.233,11657.7189,6402.29135,12622.1795,1526.312,12323.936,10072.05505,9872.701,2438.0552,2974.126,10601.63225,14119.62,11729.6795,1875.344,18218.16139,10965.446,7151.092,12269.68865,5458.04645,8782.469,6600.361,1141.4451,11576.13,13129.60345,4391.652,8457.818,3392.3652,5966.8874,6849.026,8891.1395,2690.1138,26140.3603,6653.7886,6282.235,6311.952,3443.064,2789.0574,2585.85065,4877.98105,5272.1758,1682.597,11945.1327,7243.8136,10422.91665,13555.0049,13063.883,2221.56445,1634.5734,2117.33885,8688.85885,4661.28635,8125.7845,12644.589,4564.19145,4846.92015,7633.7206,15170.069,2639.0429,14382.70905,7626.993,5257.50795,2473.3341,13041.921,5245.2269,13451.122,13462.52,5488.262,4320.41085,6250.435,25333.33284,2913.569,12032.326,13470.8044,6289.7549,2927.0647,6238.298,10096.97,7348.142,4673.3922,12233.828,32108.66282,8965.79575,2304.0022,9487.6442,1121.8739,9549.5651,2217.46915,1628.4709,12982.8747,11674.13,7160.094,6358.77645,11534.87265,4527.18295,3875.7341,12609.88702,28468.91901,2730.10785,3353.284,14474.675,9500.57305,26467.09737,4746.344,7518.02535,3279.86855,8596.8278,10702.6424,4992.3764,2527.81865,1759.338,2322.6218,7804.1605,2902.9065,9704.66805,4889.0368,25517.11363,4500.33925,16796.41194,4915.05985,7624.63,8410.04685,28340.18885,4518.82625,3378.91,7144.86265,10118.424,5484.4673,7986.47525,7418.522,13887.9685,6551.7501,5267.81815,1972.95,21232.18226,8627.5411,4433.3877,4438.2634,23241.47453,9957.7216,8269.044,36580.28216,8765.249,5383.536,12124.9924,2709.24395,3987.926,12495.29085,26018.95052,8798.593,1711.0268,8569.8618,2020.177,21595.38229,9850.432,6877.9801,4137.5227,12950.0712,12094.478,2250.8352,22493.65964,1704.70015,3161.454,11394.06555,7325.0482,3594.17085,8023.13545,14394.5579,9288.0267,3353.4703,10594.50155,8277.523,17929.30337,2480.9791,4462.7218,1981.5819,11554.2236,6548.19505,5708.867,7045.499,8978.1851,5757.41345,14349.8544,10928.849,13974.45555,1909.52745,12096.6512,13204.28565,4562.8421,8551.347,2102.2647,15161.5344,11884.04858,4454.40265,5855.9025,4076.497,15019.76005,10796.35025,11353.2276,9748.9106,10577.087,11286.5387,3591.48,11299.343,4561.1885,1674.6323,23045.56616,3227.1211,11253.421,3471.4096,11363.2832,20420.60465,10338.9316,8988.15875,10493.9458,2904.088,8605.3615,11512.405,5312.16985,2396.0959,10807.4863,9222.4026,5693.4305,8347.1643,18903.49141,14254.6082,10214.636,5836.5204,14358.36437,1728.897,8582.3023,3693.428,20709.02034,9991.03765,19673.33573,11085.5868,7623.518,3176.2877,3704.3545,9048.0273,7954.517,27117.99378,6338.0756,9630.397,11289.10925,2261.5688,10791.96,5979.731,2203.73595,12235.8392,5630.45785,11015.1747,7228.21565,14426.07385,2459.7201,3989.841,7727.2532,5124.1887,18963.17192,2200.83085,7153.5539,5227.98875,10982.5013,4529.477,4670.64,6112.35295,11093.6229,6457.8434,4433.9159,2154.361,6496.886,2899.48935,7650.77375,2850.68375,2632.992,9447.3824,8603.8234,13844.7972,13126.67745,5327.40025,13725.47184,13019.16105,8671.19125,4134.08245,18838.70366,5699.8375,6393.60345,4934.705,6198.7518,8733.22925,2055.3249,9964.06,5116.5004,36910.60803,12347.172,5373.36425,23563.01618,1702.4553,10806.839,3956.07145,12890.05765,5415.6612,4058.1161,7537.1639,4718.20355,6593.5083,8442.667,6858.4796,4795.6568,6640.54485,7162.0122,10594.2257,11938.25595,12479.70895,11345.519,8515.7587,2699.56835,14449.8544,12224.35085,6985.50695,3238.4357,4296.2712,3171.6149,1135.9407,5615.369,9101.798,6059.173,1633.9618,1241.565,15828.82173,4415.1588,6474.013,11436.73815,11305.93455,30063.58055,10197.7722,4544.2348,3277.161,6770.1925,7337.748,10370.91255,10704.47,1880.487,8615.3,3292.52985,3021.80915,14478.33015,4747.0529,10959.33,2741.948,4357.04365,4189.1131,8283.6807,1720.3537,8534.6718,3732.6251,5472.449,7147.4728,7133.9025,1515.3449,9301.89355,11931.12525,1964.78,1708.92575,4340.4409,5261.46945,2710.82855,3208.787,2464.6188,6875.961,6940.90985,4571.41305,4536.259,11272.33139,1731.677,1163.4627,19496.71917,7201.70085,5425.02335,12981.3457,4239.89265,13143.33665,7050.0213,9377.9047,22395.74424,10325.206,12629.1656,10795.93733,11411.685,10600.5483,2205.9808,1629.8335,2007.945],\"yaxis\":\"y\",\"type\":\"scattergl\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"age\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"charges\"}},\"legend\":{\"title\":{\"text\":\"smoker\"},\"tracegroupgap\":0},\"title\":{\"text\":\"Age vs. Charges\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('de370a4e-bb9e-4466-ae4a-ae7581e398c4');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
],
"source": [
"fig = px.scatter(medical_df, \n",
" x='age', \n",
" y='charges', \n",
" color='smoker', \n",
" opacity=0.8, \n",
" hover_data=['sex'], \n",
" title='Age vs. Charges')\n",
"fig.update_traces(marker_size=5)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "eec2d883",
"metadata": {
"id": "eec2d883"
},
"source": [
"We can make the following observations from the above chart:\n",
"\n",
"* The general trend seems to be that medical charges increase with age, as we might expect. However, there is significant variation at every age, and it's clear that age alone cannot be used to accurately determine medical charges.\n",
"\n",
"\n",
"* We can see three \"clusters\" of points, each of which seems to form a line with an increasing slope:\n",
"\n",
" 1. The first and the largest cluster consists primary of presumably \"healthy non-smokers\" who have relatively low medical charges compared to others\n",
" \n",
" 2. The second cluster contains a mix of smokers and non-smokers. It's possible that these are actually two distinct but overlapping clusters: \"non-smokers with medical issues\" and \"smokers without major medical issues\".\n",
" \n",
" 3. The final cluster consists exclusively of smokers, presumably smokers with major medical issues that are possibly related to or worsened by smoking.\n",
" \n",
"\n",
"> **EXERCISE**: What other inferences can you draw from the above chart?\n",
">\n",
"> ???"
]
},
{
"cell_type": "markdown",
"id": "585f06c7",
"metadata": {
"id": "585f06c7"
},
"source": [
"### BMI and Charges\n",
"\n",
"Let's visualize the relationship between BMI (body mass index) and charges using another scatter plot. Once again, we'll use the values from the \"smoker\" column to color the points."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "745f5099",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"id": "745f5099",
"outputId": "5f34c53c-33d8-4b42-d550-2ec92133179b"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"ccb44f27-7c54-4a91-8079-8791ab819392\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"ccb44f27-7c54-4a91-8079-8791ab819392\")) { Plotly.newPlot( \"ccb44f27-7c54-4a91-8079-8791ab819392\", [{\"customdata\":[[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"]],\"hovertemplate\":\"smoker=yes<br>bmi=%{x}<br>charges=%{y}<br>sex=%{customdata[0]}<extra></extra>\",\"legendgroup\":\"yes\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.8,\"symbol\":\"circle\",\"size\":5},\"mode\":\"markers\",\"name\":\"yes\",\"showlegend\":true,\"x\":[27.9,26.29,42.13,35.3,31.92,36.3,35.6,36.4,36.67,39.9,35.2,28.0,34.43,36.955,31.68,22.88,22.42,23.98,24.75,37.62,34.8,22.895,31.16,29.83,31.3,19.95,19.3,29.92,28.025,35.09,27.94,31.35,28.3,17.765,25.3,28.69,30.495,23.37,24.42,25.175,35.53,26.6,36.85,37.7,41.895,36.08,27.74,34.8,24.64,22.22,29.07,36.67,27.74,17.29,32.2,34.21,31.825,33.63,31.92,26.84,24.32,36.955,42.35,19.8,34.2,28.12,40.565,36.765,45.54,27.7,25.41,34.39,22.61,35.97,31.4,30.8,36.48,33.8,36.385,27.36,32.3,21.7,32.9,28.31,24.89,40.15,17.955,30.685,20.235,17.195,22.6,26.98,33.88,35.86,32.775,33.5,26.695,30.0,28.38,25.1,28.31,28.5,38.06,25.7,34.4,23.21,30.25,28.3,26.07,42.13,47.41,25.84,46.2,34.105,40.565,38.095,30.21,21.85,28.31,23.655,37.8,36.63,25.6,33.11,34.1,33.535,38.95,26.41,28.31,25.3,22.99,38.06,32.775,32.015,43.89,31.35,35.3,31.13,35.75,38.06,39.05,21.755,24.42,38.39,31.73,35.5,29.15,34.105,26.4,27.83,38.17,27.1,28.88,24.4,27.6,20.9,28.5,24.795,42.24,26.125,35.53,31.79,28.025,30.78,32.78,29.81,32.45,30.78,35.53,23.845,33.11,24.13,47.6,37.05,28.93,28.975,26.885,38.94,20.045,40.92,24.6,31.73,26.885,22.895,34.2,29.7,42.9,30.2,27.835,30.8,34.96,24.795,22.895,25.9,20.52,20.045,22.99,32.7,28.215,20.13,31.02,36.08,26.03,23.655,35.2,21.565,37.07,30.495,28.025,30.685,24.7,52.58,30.9,29.8,41.14,37.07,31.68,18.3,36.19,30.4,34.96,19.095,38.39,25.85,33.33,35.75,31.4,36.86,42.75,32.49,32.8,32.56,44.88,27.36,26.7,24.13,29.81,28.49,35.625,25.27,30.02,27.28,33.4,25.555,34.6,24.42,34.485,21.8,41.8,36.96,33.63,29.83,27.3,23.76,31.065,27.06,29.925,27.645,21.66,36.3,39.4,34.9,30.36,30.875,27.8,24.605,21.85,28.12,30.2,34.7,23.655,26.695,40.37,29.07],\"xaxis\":\"x\",\"y\":[16884.924,27808.7251,39611.7577,36837.467,37701.8768,38711.0,35585.576,51194.55914,39774.2763,48173.361,38709.176,23568.272,37742.5757,47496.49445,34303.1672,23244.7902,14711.7438,17663.1442,16577.7795,37165.1638,39836.519,21098.55405,43578.9394,30184.9367,47291.055,22412.6485,15820.699,30942.1918,17560.37975,47055.5321,19107.7796,39556.4945,17081.08,32734.1863,18972.495,20745.9891,40720.55105,19964.7463,21223.6758,15518.18025,36950.2567,21348.706,36149.4835,48824.45,43753.33705,37133.8982,20984.0936,34779.615,19515.5416,19444.2658,17352.6803,38511.6283,29523.1656,12829.4551,47305.305,44260.7499,41097.16175,43921.1837,33750.2918,17085.2676,24869.8368,36219.40545,46151.1245,17179.522,42856.838,22331.5668,48549.17835,47896.79135,42112.2356,16297.846,21978.6769,38746.3551,24873.3849,42124.5153,34838.873,35491.64,42760.5022,47928.03,48517.56315,24393.6224,41919.097,13844.506,36085.219,18033.9679,21659.9301,38126.2465,15006.57945,42303.69215,19594.80965,14455.64405,18608.262,28950.4692,46889.2612,46599.1084,39125.33225,37079.372,26109.32905,22144.032,19521.9682,25382.297,28868.6639,35147.52848,48885.13561,17942.106,36197.699,22218.1149,32548.3405,21082.16,38245.59327,48675.5177,63770.42801,23807.2406,45863.205,39983.42595,45702.02235,58571.07448,43943.8761,15359.1045,17468.9839,25678.77845,39241.442,42969.8527,23306.547,34439.8559,40182.246,34617.84065,42983.4585,20149.3229,32787.45859,24667.419,27037.9141,42560.4304,40003.33225,45710.20785,46200.9851,46130.5265,40103.89,34806.4677,40273.6455,44400.4064,40932.4295,16657.71745,19361.9988,40419.0191,36189.1017,44585.45587,18246.4955,43254.41795,19539.243,23065.4207,36307.7983,19040.876,17748.5062,18259.216,24520.264,21195.818,18310.742,17904.52705,38792.6856,23401.30575,55135.40209,43813.8661,20773.62775,39597.4072,36021.0112,27533.9129,45008.9555,37270.1512,42111.6647,24106.91255,40974.1649,15817.9857,46113.511,46255.1125,19719.6947,27218.43725,29330.98315,44202.6536,19798.05455,48673.5588,17496.306,33732.6867,21774.32215,35069.37452,39047.285,19933.458,47462.894,38998.546,20009.63365,41999.52,41034.2214,23967.38305,16138.76205,19199.944,14571.8908,16420.49455,17361.7661,34472.841,24915.22085,18767.7377,35595.5898,42211.1382,16450.8947,21677.28345,44423.803,13747.87235,37484.4493,39725.51805,20234.85475,33475.81715,21880.82,44501.3982,39727.614,25309.489,48970.2476,39871.7043,34672.1472,19023.26,41676.0811,33907.548,44641.1974,16776.30405,41949.2441,24180.9335,36124.5737,38282.7495,34166.273,46661.4424,40904.1995,36898.73308,52590.82939,40941.2854,39722.7462,17178.6824,22478.6,23887.6627,19350.3689,18328.2381,37465.34375,21771.3423,33307.5508,18223.4512,38415.474,20296.86345,41661.602,26125.67477,60021.39897,20167.33603,47269.854,49577.6624,37607.5277,18648.4217,16232.847,26926.5144,34254.05335,17043.3414,22462.04375,24535.69855,14283.4594,47403.88,38344.566,34828.654,62592.87309,46718.16325,37829.7242,21259.37795,16115.3045,21472.4788,33900.653,36397.576,18765.87545,28101.33305,43896.3763,29141.3603],\"yaxis\":\"y\",\"type\":\"scattergl\"},{\"customdata\":[[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"male\"],[\"male\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"],[\"male\"],[\"female\"],[\"female\"],[\"female\"]],\"hovertemplate\":\"smoker=no<br>bmi=%{x}<br>charges=%{y}<br>sex=%{customdata[0]}<extra></extra>\",\"legendgroup\":\"no\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.8,\"symbol\":\"circle\",\"size\":5},\"mode\":\"markers\",\"name\":\"no\",\"showlegend\":true,\"x\":[33.77,33.0,22.705,28.88,25.74,33.44,27.74,29.83,25.84,26.22,34.4,39.82,24.6,30.78,23.845,40.3,36.005,32.4,34.1,28.025,27.72,23.085,32.775,17.385,26.315,28.6,28.31,20.425,32.965,20.8,26.6,36.63,21.78,30.8,37.05,37.3,38.665,34.77,24.53,35.625,33.63,28.69,31.825,37.335,27.36,33.66,24.7,25.935,28.9,39.1,26.315,36.19,28.5,28.1,32.01,27.4,34.01,29.59,35.53,39.805,32.965,26.885,38.285,41.23,27.2,27.74,26.98,39.49,24.795,34.77,37.62,30.8,38.28,31.6,25.46,30.115,27.5,28.4,30.875,27.94,33.63,29.7,30.8,35.72,32.205,28.595,49.06,27.17,23.37,37.1,23.75,28.975,33.915,28.785,37.4,34.7,26.505,22.04,35.9,25.555,28.785,28.05,34.1,25.175,31.9,36.0,22.42,32.49,29.735,38.83,37.73,37.43,28.4,24.13,29.7,37.145,25.46,39.52,27.83,39.6,29.8,29.64,28.215,37.0,33.155,31.825,18.905,41.47,30.3,15.96,34.8,33.345,27.835,29.2,28.9,33.155,28.595,38.28,19.95,26.41,30.69,29.92,30.9,32.2,32.11,31.57,26.2,25.74,26.6,34.43,30.59,32.8,28.6,18.05,39.33,32.11,32.23,24.035,22.3,28.88,26.4,31.8,41.23,33.0,30.875,28.5,26.73,30.9,37.1,26.6,23.1,29.92,23.21,33.7,33.25,30.8,33.88,38.06,41.91,31.635,25.46,36.195,27.83,17.8,27.5,24.51,26.73,38.39,38.06,22.135,26.8,35.3,30.02,38.06,35.86,20.9,28.975,30.3,25.365,40.15,24.415,25.2,38.06,32.395,30.2,25.84,29.37,37.05,27.455,27.55,26.6,20.615,24.3,31.79,21.56,27.645,32.395,31.2,26.62,48.07,26.22,26.4,33.4,29.64,28.82,26.8,22.99,28.88,27.55,37.51,33.0,38.0,33.345,27.5,33.33,34.865,33.06,26.6,24.7,35.86,33.25,32.205,32.775,27.645,37.335,25.27,29.64,40.945,27.2,34.105,23.21,36.7,31.16,28.785,35.72,34.5,25.74,27.55,27.72,27.6,30.02,27.55,36.765,41.47,29.26,35.75,33.345,29.92,27.835,23.18,25.6,27.7,35.245,38.28,27.6,43.89,29.83,41.91,20.79,32.3,30.5,26.4,21.89,30.78,32.3,24.985,32.015,30.4,21.09,22.23,33.155,33.33,30.115,31.46,33.0,43.34,22.135,34.4,39.05,25.365,22.61,30.21,35.625,37.43,31.445,31.35,32.3,19.855,34.4,31.02,25.6,38.17,20.6,47.52,32.965,32.3,20.4,38.38,24.31,23.6,21.12,30.03,17.48,23.9,35.15,35.64,34.1,39.16,30.59,30.2,24.31,27.265,29.165,16.815,30.4,33.1,20.235,26.9,30.5,28.595,33.11,31.73,28.9,46.75,29.45,32.68,43.01,36.52,33.1,29.64,25.65,29.6,38.6,29.6,24.13,23.4,29.735,46.53,37.4,30.14,30.495,39.6,33.0,36.63,38.095,25.935,25.175,28.7,33.82,24.32,24.09,32.67,30.115,29.8,33.345,35.625,36.85,32.56,41.325,37.51,31.35,39.5,34.3,31.065,21.47,28.7,31.16,32.9,25.08,25.08,43.4,27.93,23.6,28.7,23.98,39.2,26.03,28.93,30.875,31.35,23.75,25.27,28.7,32.11,33.66,22.42,30.4,35.7,35.31,30.495,31.0,30.875,27.36,44.22,33.915,37.73,33.88,30.59,25.8,39.425,25.46,31.73,29.7,36.19,40.48,28.025,38.9,30.2,28.05,31.35,38.0,31.79,36.3,30.21,35.435,46.7,28.595,30.8,28.93,21.4,31.73,41.325,23.8,33.44,34.21,35.53,19.95,32.68,30.5,44.77,32.12,30.495,40.565,30.59,31.9,29.1,37.29,43.12,36.86,34.295,27.17,26.84,30.2,23.465,25.46,30.59,45.43,23.65,20.7,28.27,20.235,35.91,30.69,29.0,19.57,31.13,40.26,33.725,29.48,33.25,32.6,37.525,39.16,31.635,25.3,39.05,34.1,25.175,26.98,29.37,34.8,33.155,19.0,33.0,28.595,37.1,31.4,21.3,28.785,26.03,28.88,42.46,38.0,36.1,29.3,35.53,22.705,39.7,38.19,24.51,38.095,33.66,42.4,33.915,34.96,35.31,30.78,26.22,23.37,28.5,32.965,42.68,39.6,31.13,36.3,35.2,42.4,33.155,35.91,28.785,46.53,23.98,31.54,33.66,28.7,29.81,31.57,31.16,29.7,31.02,21.375,40.81,36.1,23.18,17.4,20.3,24.32,18.5,26.41,26.125,41.69,24.1,27.36,36.2,32.395,23.655,34.8,40.185,32.3,33.725,39.27,34.87,44.745,41.47,26.41,29.545,32.9,28.69,30.495,27.74,35.2,23.54,30.685,40.47,22.6,28.9,22.61,24.32,36.67,33.44,40.66,36.6,37.4,35.4,27.075,28.405,40.28,36.08,21.4,30.1,27.265,32.1,34.77,23.7,24.035,26.62,26.41,30.115,27.0,21.755,36.0,30.875,28.975,37.905,22.77,33.63,27.645,22.8,37.43,34.58,35.2,26.03,25.175,31.825,32.3,29.0,39.7,19.475,36.1,26.7,36.48,34.2,33.33,32.3,39.805,34.32,28.88,41.14,35.97,29.26,27.7,36.955,36.86,22.515,29.92,41.8,27.6,23.18,31.92,44.22,22.895,33.1,26.18,35.97,22.3,26.51,35.815,41.42,36.575,30.14,25.84,30.8,42.94,21.01,22.515,34.43,31.46,24.225,37.1,33.7,17.67,31.13,29.81,24.32,31.825,21.85,33.1,25.84,23.845,34.39,33.82,35.97,31.5,28.31,23.465,31.35,31.1,24.7,30.495,34.2,50.38,24.1,32.775,32.3,23.75,29.6,32.23,28.1,28.0,33.535,19.855,25.4,29.9,37.29,43.7,23.655,24.3,36.2,29.48,24.86,30.1,21.85,28.12,27.1,33.44,28.8,29.5,34.8,27.36,22.135,26.695,30.02,39.5,33.63,29.04,24.035,32.11,44.0,25.555,40.26,22.515,22.515,27.265,36.85,35.1,29.355,32.585,32.34,39.8,28.31,26.695,27.5,24.605,33.99,28.2,34.21,25.0,33.2,31.0,35.815,23.2,32.11,23.4,20.1,39.16,34.21,46.53,32.5,25.8,35.3,37.18,27.5,29.735,24.225,26.18,29.48,23.21,46.09,40.185,22.61,39.93,35.8,35.8,31.255,18.335,28.405,39.49,26.79,36.67,39.615,25.9,35.2,24.795,36.765,27.1,25.365,25.745,34.32,28.16,23.56,20.235,40.5,35.42,40.15,29.15,39.995,29.92,25.46,21.375,30.59,30.115,25.8,30.115,27.645,34.675,19.8,27.835,31.6,28.27,23.275,34.1,36.85,36.29,26.885,25.8,29.6,19.19,31.73,29.26,24.985,27.74,22.8,33.33,32.3,27.6,25.46,24.605,34.2,35.815,32.68,37.0,23.32,45.32,34.6,18.715,31.6,17.29,27.93,38.38,23.0,28.88,27.265,23.085,25.8,35.245,25.08,22.515,36.955,26.41,29.83,21.47,27.645,28.9,31.79,39.49,33.82,32.01,27.94,28.595,25.6,25.3,37.29,42.655,21.66,31.9,31.445,31.255,28.88,18.335,29.59,32.0,26.03,33.66,21.78,27.835,19.95,31.5,30.495,28.975,31.54,47.74,22.1,29.83,32.7,33.7,31.35,33.77,30.875,33.99,28.6,38.94,36.08,29.8,31.24,29.925,26.22,30.0,20.35,32.3,26.315,24.51,32.67,29.64,19.95,38.17,32.395,25.08,29.9,35.86,32.8,18.6,23.87,45.9,40.28,18.335,33.82,28.12,25.0,22.23,30.25,37.07,32.6,24.86,32.34,32.3,32.775,31.92,21.5,34.1,30.305,36.48,35.815,27.93,22.135,23.18,30.59,41.1,34.58,42.13,38.83,28.215,28.31,26.125,40.37,24.6,35.2,34.105,41.91,29.26,32.11,27.1,27.4,34.865,41.325,29.925,30.3,27.36,23.56,32.68,28.0,32.775,21.755,32.395,36.575,21.755,27.93,33.55,29.355,25.8,24.32,40.375,32.11,32.3,17.86,34.8,37.1,30.875,34.1,21.47,33.3,31.255,39.14,25.08,37.29,30.21,21.945,24.97,25.3,23.94,39.82,16.815,37.18,34.43,30.305,24.605,23.3,27.83,31.065,21.66,28.215,22.705,42.13,21.28,33.11,33.33,24.3,25.7,29.4,39.82,19.8,29.3,27.72,37.9,36.385,27.645,37.715,23.18,20.52,37.1,28.05,29.9,33.345,30.5,33.3,27.5,33.915,34.485,25.52,27.61,23.7,30.4,29.735,26.79,33.33,30.03,24.32,17.29,25.9,34.32,19.95,23.21,25.745,25.175,22.0,26.125,26.51,27.455,25.745,20.8,27.72,32.2,26.315,26.695,42.9,28.31,20.6,53.13,39.71,26.315,31.065,38.83,25.935,33.535,32.87,30.03,24.225,38.6,25.74,33.4,44.7,30.97,31.92,36.85,25.8],\"xaxis\":\"x\",\"y\":[1725.5523,4449.462,21984.47061,3866.8552,3756.6216,8240.5896,7281.5056,6406.4107,28923.13692,2721.3208,1826.843,11090.7178,1837.237,10797.3362,2395.17155,10602.385,13228.84695,4149.736,1137.011,6203.90175,14001.1338,14451.83515,12268.63225,2775.19215,2198.18985,4687.797,13770.0979,1625.43375,15612.19335,2302.3,3046.062,4949.7587,6272.4772,6313.759,6079.6715,20630.28351,3393.35635,3556.9223,12629.8967,2211.13075,3579.8287,8059.6791,13607.36875,5989.52365,8606.2174,4504.6624,30166.61817,4133.64165,1743.214,14235.072,6389.37785,5920.1041,6799.458,11741.726,11946.6259,7726.854,11356.6609,3947.4131,1532.4697,2755.02095,6571.02435,4441.21315,7935.29115,11033.6617,11073.176,8026.6666,11082.5772,2026.9741,10942.13205,5729.0053,3766.8838,12105.32,10226.2842,6186.127,3645.0894,21344.8467,5003.853,2331.519,3877.30425,2867.1196,10825.2537,11881.358,4646.759,2404.7338,11488.31695,30259.99556,11381.3254,8601.3293,6686.4313,7740.337,1705.6245,2257.47525,10115.00885,3385.39915,9634.538,6082.405,12815.44495,13616.3586,11163.568,1632.56445,2457.21115,2155.6815,1261.442,2045.68525,27322.73386,2166.732,27375.90478,3490.5491,18157.876,5138.2567,9877.6077,10959.6947,1842.519,5125.2157,7789.635,6334.34355,7077.1894,6948.7008,19749.38338,10450.552,5152.134,5028.1466,10407.08585,4830.63,6128.79745,2719.27975,4827.90495,13405.3903,8116.68,1694.7964,5246.047,2855.43755,6455.86265,10436.096,8823.279,8538.28845,11735.87905,1631.8212,4005.4225,7419.4779,7731.4271,3981.9768,5325.651,6775.961,4922.9159,12557.6053,4883.866,2137.6536,12044.342,1137.4697,1639.5631,5649.715,8516.829,9644.2525,14901.5167,2130.6759,8871.1517,13012.20865,7147.105,4337.7352,11743.299,13880.949,6610.1097,1980.07,8162.71625,3537.703,5002.7827,8520.026,7371.772,10355.641,2483.736,3392.9768,25081.76784,5012.471,10564.8845,5253.524,11987.1682,2689.4954,24227.33724,7358.17565,9225.2564,7443.64305,14001.2867,1727.785,12333.828,6710.1919,1615.7667,4463.2051,7152.6714,5354.07465,35160.13457,7196.867,24476.47851,12648.7034,1986.9334,1832.094,4040.55825,4260.744,13047.33235,5400.9805,11520.09985,11837.16,20462.99766,14590.63205,7441.053,9282.4806,1719.4363,7265.7025,9617.66245,2523.1695,9715.841,2803.69785,2150.469,12928.7911,9855.1314,4237.12655,11879.10405,9625.92,7742.1098,9432.9253,14256.1928,25992.82104,3172.018,20277.80751,2156.7518,3906.127,1704.5681,9249.4952,6746.7425,12265.5069,4349.462,12646.207,19442.3535,20177.67113,4151.0287,11944.59435,7749.1564,8444.474,1737.376,8124.4084,9722.7695,8835.26495,10435.06525,7421.19455,4667.60765,4894.7533,24671.66334,11566.30055,2866.091,6600.20595,3561.8889,9144.565,13429.0354,11658.37915,19144.57652,13822.803,12142.5786,13937.6665,8232.6388,18955.22017,13352.0998,13217.0945,13981.85035,10977.2063,6184.2994,4889.9995,8334.45755,5478.0368,1635.73365,11830.6072,8932.084,3554.203,12404.8791,14133.03775,24603.04837,8944.1151,9620.3307,1837.2819,1607.5101,10043.249,4751.07,2597.779,3180.5101,9778.3472,13430.265,8017.06115,8116.26885,3481.868,13415.0381,12029.2867,7639.41745,1391.5287,16455.70785,27000.98473,20781.48892,5846.9176,8302.53565,1261.859,11856.4115,30284.64294,3176.8159,4618.0799,10736.87075,2138.0707,8964.06055,9290.1395,9411.005,7526.70645,8522.003,16586.49771,14988.432,1631.6683,9264.797,8083.9198,14692.66935,10269.46,3260.199,11396.9002,4185.0979,8539.671,6652.5288,4074.4537,1621.3402,5080.096,2134.9015,7345.7266,9140.951,14418.2804,2727.3951,8968.33,9788.8659,6555.07035,7323.734819,3167.45585,18804.7524,23082.95533,4906.40965,5969.723,12638.195,4243.59005,13919.8229,2254.7967,5926.846,12592.5345,2897.3235,4738.2682,1149.3959,28287.89766,7345.084,12730.9996,11454.0215,5910.944,4762.329,7512.267,4032.2407,1969.614,1769.53165,4686.3887,21797.0004,11881.9696,11840.77505,10601.412,7682.67,10381.4787,15230.32405,11165.41765,1632.03625,13224.693,12643.3778,23288.9284,2201.0971,2497.0383,2203.47185,1744.465,20878.78443,2534.39375,1534.3045,1824.2854,15555.18875,9304.7019,1622.1885,9880.068,9563.029,4347.02335,12475.3513,1253.936,10461.9794,1748.774,24513.09126,2196.4732,12574.049,1967.0227,4931.647,8027.968,8211.1002,13470.86,6837.3687,5974.3847,6796.86325,2643.2685,3077.0955,3044.2133,11455.28,11763.0009,2498.4144,9361.3268,1256.299,11362.755,27724.28875,8413.46305,5240.765,3857.75925,25656.57526,3994.1778,9866.30485,5397.6167,11482.63485,24059.68019,9861.025,8342.90875,1708.0014,14043.4767,12925.886,19214.70553,13831.1152,6067.12675,5972.378,8825.086,8233.0975,27346.04207,6196.448,3056.3881,13887.204,10231.4999,3268.84665,11538.421,3213.62205,13390.559,3972.9247,12957.118,11187.6567,17878.90068,3847.674,8334.5896,3935.1799,1646.4297,9193.8385,10923.9332,2494.022,9058.7303,2801.2588,2128.43105,6373.55735,7256.7231,11552.904,3761.292,2219.4451,4753.6368,31620.00106,13224.05705,12222.8983,1664.9996,9724.53,3206.49135,12913.9924,1639.5631,6356.2707,17626.23951,1242.816,4779.6023,3861.20965,13635.6379,5976.8311,11842.442,8428.0693,2566.4707,5709.1644,8823.98575,7640.3092,5594.8455,7441.501,33471.97189,1633.0444,9174.13565,11070.535,16085.1275,9283.562,3558.62025,4435.0942,8547.6913,6571.544,2207.69745,6753.038,1880.07,11658.11505,10713.644,3659.346,9182.17,12129.61415,3736.4647,6748.5912,11326.71487,11365.952,10085.846,1977.815,3366.6697,7173.35995,9391.346,14410.9321,2709.1119,24915.04626,12949.1554,6666.243,13143.86485,4466.6214,18806.14547,10141.1362,6123.5688,8252.2843,1712.227,12430.95335,9800.8882,10579.711,8280.6227,8527.532,12244.531,3410.324,4058.71245,26392.26029,14394.39815,6435.6237,22192.43711,5148.5526,1136.3994,8703.456,6500.2359,4837.5823,3943.5954,4399.731,6185.3208,7222.78625,12485.8009,12363.547,10156.7832,2585.269,1242.26,9863.4718,4766.022,11244.3769,7729.64575,5438.7491,26236.57997,2104.1134,8068.185,2362.22905,2352.96845,3577.999,3201.24515,29186.48236,10976.24575,3500.6123,2020.5523,9541.69555,9504.3103,5385.3379,8930.93455,5375.038,10264.4421,6113.23105,5469.0066,1727.54,10107.2206,8310.83915,1984.4533,2457.502,12146.971,9566.9909,13112.6048,10848.1343,12231.6136,9875.6804,11264.541,12979.358,1263.249,10106.13425,6664.68595,2217.6012,6781.3542,10065.413,4234.927,9447.25035,14007.222,9583.8933,3484.331,8604.48365,3757.8448,8827.2099,9910.35985,11737.84884,1627.28245,8556.907,3062.50825,1906.35825,14210.53595,11833.7823,17128.42608,5031.26955,7985.815,5428.7277,3925.7582,2416.955,3070.8087,9095.06825,11842.62375,8062.764,7050.642,14319.031,6933.24225,27941.28758,11150.78,12797.20962,7261.741,10560.4917,6986.697,7448.40395,5934.3798,9869.8102,1146.7966,9386.1613,4350.5144,6414.178,12741.16745,1917.3184,5209.57885,13457.9608,5662.225,1252.407,2731.9122,7209.4918,4266.1658,4719.52405,11848.141,7046.7222,14313.8463,2103.08,1815.8759,7731.85785,28476.73499,2136.88225,1131.5066,3309.7926,9414.92,6360.9936,11013.7119,4428.88785,5584.3057,1877.9294,2842.76075,3597.596,7445.918,2680.9493,1621.8827,8219.2039,12523.6048,16069.08475,6117.4945,13393.756,5266.3656,4719.73655,11743.9341,5377.4578,7160.3303,4402.233,11657.7189,6402.29135,12622.1795,1526.312,12323.936,10072.05505,9872.701,2438.0552,2974.126,10601.63225,14119.62,11729.6795,1875.344,18218.16139,10965.446,7151.092,12269.68865,5458.04645,8782.469,6600.361,1141.4451,11576.13,13129.60345,4391.652,8457.818,3392.3652,5966.8874,6849.026,8891.1395,2690.1138,26140.3603,6653.7886,6282.235,6311.952,3443.064,2789.0574,2585.85065,4877.98105,5272.1758,1682.597,11945.1327,7243.8136,10422.91665,13555.0049,13063.883,2221.56445,1634.5734,2117.33885,8688.85885,4661.28635,8125.7845,12644.589,4564.19145,4846.92015,7633.7206,15170.069,2639.0429,14382.70905,7626.993,5257.50795,2473.3341,13041.921,5245.2269,13451.122,13462.52,5488.262,4320.41085,6250.435,25333.33284,2913.569,12032.326,13470.8044,6289.7549,2927.0647,6238.298,10096.97,7348.142,4673.3922,12233.828,32108.66282,8965.79575,2304.0022,9487.6442,1121.8739,9549.5651,2217.46915,1628.4709,12982.8747,11674.13,7160.094,6358.77645,11534.87265,4527.18295,3875.7341,12609.88702,28468.91901,2730.10785,3353.284,14474.675,9500.57305,26467.09737,4746.344,7518.02535,3279.86855,8596.8278,10702.6424,4992.3764,2527.81865,1759.338,2322.6218,7804.1605,2902.9065,9704.66805,4889.0368,25517.11363,4500.33925,16796.41194,4915.05985,7624.63,8410.04685,28340.18885,4518.82625,3378.91,7144.86265,10118.424,5484.4673,7986.47525,7418.522,13887.9685,6551.7501,5267.81815,1972.95,21232.18226,8627.5411,4433.3877,4438.2634,23241.47453,9957.7216,8269.044,36580.28216,8765.249,5383.536,12124.9924,2709.24395,3987.926,12495.29085,26018.95052,8798.593,1711.0268,8569.8618,2020.177,21595.38229,9850.432,6877.9801,4137.5227,12950.0712,12094.478,2250.8352,22493.65964,1704.70015,3161.454,11394.06555,7325.0482,3594.17085,8023.13545,14394.5579,9288.0267,3353.4703,10594.50155,8277.523,17929.30337,2480.9791,4462.7218,1981.5819,11554.2236,6548.19505,5708.867,7045.499,8978.1851,5757.41345,14349.8544,10928.849,13974.45555,1909.52745,12096.6512,13204.28565,4562.8421,8551.347,2102.2647,15161.5344,11884.04858,4454.40265,5855.9025,4076.497,15019.76005,10796.35025,11353.2276,9748.9106,10577.087,11286.5387,3591.48,11299.343,4561.1885,1674.6323,23045.56616,3227.1211,11253.421,3471.4096,11363.2832,20420.60465,10338.9316,8988.15875,10493.9458,2904.088,8605.3615,11512.405,5312.16985,2396.0959,10807.4863,9222.4026,5693.4305,8347.1643,18903.49141,14254.6082,10214.636,5836.5204,14358.36437,1728.897,8582.3023,3693.428,20709.02034,9991.03765,19673.33573,11085.5868,7623.518,3176.2877,3704.3545,9048.0273,7954.517,27117.99378,6338.0756,9630.397,11289.10925,2261.5688,10791.96,5979.731,2203.73595,12235.8392,5630.45785,11015.1747,7228.21565,14426.07385,2459.7201,3989.841,7727.2532,5124.1887,18963.17192,2200.83085,7153.5539,5227.98875,10982.5013,4529.477,4670.64,6112.35295,11093.6229,6457.8434,4433.9159,2154.361,6496.886,2899.48935,7650.77375,2850.68375,2632.992,9447.3824,8603.8234,13844.7972,13126.67745,5327.40025,13725.47184,13019.16105,8671.19125,4134.08245,18838.70366,5699.8375,6393.60345,4934.705,6198.7518,8733.22925,2055.3249,9964.06,5116.5004,36910.60803,12347.172,5373.36425,23563.01618,1702.4553,10806.839,3956.07145,12890.05765,5415.6612,4058.1161,7537.1639,4718.20355,6593.5083,8442.667,6858.4796,4795.6568,6640.54485,7162.0122,10594.2257,11938.25595,12479.70895,11345.519,8515.7587,2699.56835,14449.8544,12224.35085,6985.50695,3238.4357,4296.2712,3171.6149,1135.9407,5615.369,9101.798,6059.173,1633.9618,1241.565,15828.82173,4415.1588,6474.013,11436.73815,11305.93455,30063.58055,10197.7722,4544.2348,3277.161,6770.1925,7337.748,10370.91255,10704.47,1880.487,8615.3,3292.52985,3021.80915,14478.33015,4747.0529,10959.33,2741.948,4357.04365,4189.1131,8283.6807,1720.3537,8534.6718,3732.6251,5472.449,7147.4728,7133.9025,1515.3449,9301.89355,11931.12525,1964.78,1708.92575,4340.4409,5261.46945,2710.82855,3208.787,2464.6188,6875.961,6940.90985,4571.41305,4536.259,11272.33139,1731.677,1163.4627,19496.71917,7201.70085,5425.02335,12981.3457,4239.89265,13143.33665,7050.0213,9377.9047,22395.74424,10325.206,12629.1656,10795.93733,11411.685,10600.5483,2205.9808,1629.8335,2007.945],\"yaxis\":\"y\",\"type\":\"scattergl\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"bmi\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"charges\"}},\"legend\":{\"title\":{\"text\":\"smoker\"},\"tracegroupgap\":0},\"title\":{\"text\":\"BMI vs. Charges\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('ccb44f27-7c54-4a91-8079-8791ab819392');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
],
"source": [
"fig = px.scatter(medical_df, \n",
" x='bmi', \n",
" y='charges', \n",
" color='smoker', \n",
" opacity=0.8, \n",
" hover_data=['sex'], \n",
" title='BMI vs. Charges')\n",
"fig.update_traces(marker_size=5)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "227a0317",
"metadata": {
"id": "227a0317"
},
"source": [
"It appears that for non-smokers, an increase in BMI doesn't seem to be related to an increase in medical charges. However, medical charges seem to be significantly higher for smokers with a BMI greater than 30.\n",
"\n",
"What other insights can you gather from the above graph?"
]
},
{
"cell_type": "markdown",
"id": "94d4b458",
"metadata": {
"id": "94d4b458"
},
"source": [
"> **EXERCISE**: Create some more graphs to visualize how the \"charges\" column is related to other columns (\"children\", \"sex\", \"region\" and \"smoker\"). Summarize the insights gathered from these graphs.\n",
">\n",
"> *Hint*: Use violin plots (`px.violin`) and bar plots (`sns.barplot`)\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0f1d297b",
"metadata": {
"id": "0f1d297b"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "88e8137e",
"metadata": {
"id": "88e8137e"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "6f065a98",
"metadata": {
"id": "6f065a98"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "5049aaf4",
"metadata": {
"id": "5049aaf4"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "33d33ac6",
"metadata": {
"id": "33d33ac6"
},
"source": [
"### Correlation\n",
"\n",
"As you can tell from the analysis, the values in some columns are more closely related to the values in \"charges\" compared to other columns. E.g. \"age\" and \"charges\" seem to grow together, whereas \"bmi\" and \"charges\" don't.\n",
"\n",
"This relationship is often expressed numerically using a measure called the _correlation coefficient_, which can be computed using the `.corr` method of a Pandas series."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "bcd6d4d6",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bcd6d4d6",
"outputId": "45fe97b4-b672-4dd3-f729-b796553c0b93"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.2990081933306476"
]
},
"metadata": {},
"execution_count": 20
}
],
"source": [
"medical_df.charges.corr(medical_df.age)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d69e90e1",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "d69e90e1",
"outputId": "3958fd97-5355-4334-ad9d-64a237297580"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.19834096883362895"
]
},
"metadata": {},
"execution_count": 21
}
],
"source": [
"medical_df.charges.corr(medical_df.bmi)"
]
},
{
"cell_type": "markdown",
"id": "68aa0d91",
"metadata": {
"id": "68aa0d91"
},
"source": [
"To compute the correlation for categorical columns, they must first be converted into numeric columns."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "490888ba",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "490888ba",
"outputId": "43705a7f-7a33-4659-d4f6-58a8f8b65e7b"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.787251430498478"
]
},
"metadata": {},
"execution_count": 22
}
],
"source": [
"smoker_values = {'no': 0, 'yes': 1}\n",
"smoker_numeric = medical_df.smoker.map(smoker_values)\n",
"medical_df.charges.corr(smoker_numeric)"
]
},
{
"cell_type": "markdown",
"id": "8d9852b4",
"metadata": {
"id": "8d9852b4"
},
"source": [
"\n",
"\n",
"\n",
"Here's how correlation coefficients can be interpreted ([source](https://statisticsbyjim.com/basics/correlations)):\n",
"\n",
"* **Strength**: The greater the absolute value of the correlation coefficient, the stronger the relationship.\n",
"\n",
" * The extreme values of -1 and 1 indicate a perfectly linear relationship where a change in one variable is accompanied by a perfectly consistent change in the other. For these relationships, all of the data points fall on a line. In practice, you won’t see either type of perfect relationship.\n",
"\n",
" * A coefficient of zero represents no linear relationship. As one variable increases, there is no tendency in the other variable to either increase or decrease.\n",
" \n",
" * When the value is in-between 0 and +1/-1, there is a relationship, but the points don’t all fall on a line. As r approaches -1 or 1, the strength of the relationship increases and the data points tend to fall closer to a line.\n",
"\n",
"\n",
"* **Direction**: The sign of the correlation coefficient represents the direction of the relationship.\n",
"\n",
" * Positive coefficients indicate that when the value of one variable increases, the value of the other variable also tends to increase. Positive relationships produce an upward slope on a scatterplot.\n",
" \n",
" * Negative coefficients represent cases when the value of one variable increases, the value of the other variable tends to decrease. Negative relationships produce a downward slope.\n",
"\n",
"Here's the same relationship expressed visually ([source](https://www.cuemath.com/data/how-to-calculate-correlation-coefficient/)):\n",
"\n",
"<img src=\"https://i.imgur.com/3XUpDlw.png\" width=\"360\">\n",
"\n",
"The correlation coefficient has the following formula:\n",
"\n",
"<img src=\"https://i.imgur.com/unapugP.png\" width=\"360\">\n",
"\n",
"You can learn more about the mathematical definition and geometric interpretation of correlation here: https://www.youtube.com/watch?v=xZ_z8KWkhXE\n",
"\n",
"Pandas dataframes also provide a `.corr` method to compute the correlation coefficients between all pairs of numeric columns."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "53b625c7",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "53b625c7",
"outputId": "3a6312f4-4678-4f48-8345-52616746474f"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" age bmi children charges\n",
"age 1.000000 0.109272 0.042469 0.299008\n",
"bmi 0.109272 1.000000 0.012759 0.198341\n",
"children 0.042469 0.012759 1.000000 0.067998\n",
"charges 0.299008 0.198341 0.067998 1.000000"
],
"text/html": [
"\n",
" <div id=\"df-a2aed05d-7457-4c9a-9e17-62a318695c86\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>bmi</th>\n",
" <th>children</th>\n",
" <th>charges</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>age</th>\n",
" <td>1.000000</td>\n",
" <td>0.109272</td>\n",
" <td>0.042469</td>\n",
" <td>0.299008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>bmi</th>\n",
" <td>0.109272</td>\n",
" <td>1.000000</td>\n",
" <td>0.012759</td>\n",
" <td>0.198341</td>\n",
" </tr>\n",
" <tr>\n",
" <th>children</th>\n",
" <td>0.042469</td>\n",
" <td>0.012759</td>\n",
" <td>1.000000</td>\n",
" <td>0.067998</td>\n",
" </tr>\n",
" <tr>\n",
" <th>charges</th>\n",
" <td>0.299008</td>\n",
" <td>0.198341</td>\n",
" <td>0.067998</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a2aed05d-7457-4c9a-9e17-62a318695c86')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-a2aed05d-7457-4c9a-9e17-62a318695c86 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-a2aed05d-7457-4c9a-9e17-62a318695c86');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 23
}
],
"source": [
"medical_df.corr()"
]
},
{
"cell_type": "markdown",
"id": "69108b01",
"metadata": {
"id": "69108b01"
},
"source": [
"The result of `.corr` is called a correlation matrix and is often visualized using a heatmap."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "c94049f3",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 398
},
"id": "c94049f3",
"outputId": "3c51fbd4-1231-4f24-94c8-a86965dc08ad"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 720x432 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAF9CAYAAADFkShfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1dvG8W8SQJEaEnqXcugdEQFFEUUsNAsqIvgqYEEQRYogFgRsYAXEAtJ7VVCsP1FQOtI8NKW3FJAippD3j1liEjZlSVsm98drr2TPnpk5k8juk+c8cyYgLi4OEREREX8VmN0DEBEREUmJghURERHxawpWRERExK8pWBERERG/pmBFRERE/JqCFREREfFrClZEsokx5i9jzKQM3mdLY0ycMaZlRu73cqaficjlL1d2D0AkoxhjigLPAncCFYAAYBewFHjPWnso+0aXsYwxg4Ft1tqF2T2WC4wxLwHDgDiggrV2X5LXrwKOAvmBz6213S7hGH533iKS+ZRZEVcwxjQAtgB9gdXAc8AzwArgUeDHbBtc5hgMtPfS/hOQ1/M1u/wL3O+l/S6cscWkY9/JnXdK/OFnIiLpoMyKXPaMMYWAC39pN7TWbk3y+mBgQAYdK5+19kwyr11lrT2bEce5VNba88C57BwDTibrAeD1JO0PAN8CzbNiEBd+V37yMxGRdFCwIm7QEygLPJQ0UAGw1p7E+Ys8njGmEzAIqAmcBZYDAxJOXXjqSToD1YD3gJbAeqClMeYv4A/gTWAEUBcYBbxkjLkCGAh0AcoBYcBs4IWUghljTB7gBaAtUBm4EtgMjEg47WGMuXCPjIeNMQ97vv+ftbalpy7jB+BGa+2PCba5AXgFaIST2VgBDLTWbknQ5yWcaZxqnp9Ne5yptPnAkz4EYtOBucaYmhd+H8aYIkAb4P9IEqxk0Hl3AyYCrTzjvg8oBgQk/ZkYY4rhZOF2ANd7ghmMMWU8x/3VWntbGs9VRLKApoHEDe7C+ct5dlo6G2O6AHM9TwcB44E7gF+MMaFJugfiBDJ/A/2BKQleq+zZz/+Ap4FfjTEBwALgeeBLoLdnXE8ACz2vJ6cgTuD1C86H9wue4y8wxiT88HwIZ6plhef7h4DXUjjfG3EyGiWBl4C3cIKWX4wxVb1sMhMogPOzmQ10wwli0mol8BfwYIK2e3CCpAVe+mfkeb8PNPC0v+htcNbaY57jNcOpccLze/kMp97m/9J0liKSZZRZETeoAVhrbVRqHY0xuXE+rLcDLay1/3jav8H563sgTr3LBbmBL6y1/bzsrhLQzlq7OMH+H8DJINxorf1fgva1wFSgNU7w400kUN5a+2+C7T7AyeY8CyzDOdGpxpjxwB5r7dTUzhl4GzgJNLXWhnv2OxPYipMVujtJ/w3W2kcSjCEE5wM8rVNpcTgBz/3GmBestXE4gctia+1pY0zS/hl53qeBltbaFOtirLULjDFTgFeNMV/iZM1aA13cVIgt4hbKrIgbFAROpbFvI6A4MO5CoALgmTJZB9zuZZuxyezrQMJAxeNenOmFrcaY0AsPnOxLHHBjcgOz1sZe+MA2xuTxTJ0UxCkMbZiWk0vKGFMSqI9z9U14gmPtBBYDbYwxQUk2+zjJ8xVAiDGmoA+Hno5zRdZ1xphyOFM/07x1zODz/ji1QCWB3sBxYBbwBjDPWut1jCKSvZRZETf4G2faIi3Ke75aL69t5+Isw3mcKQ1v9nhpqwoYnA9Bb4qlNDhjzKM4VzFVx6kXuSDO+xapSu18OwGhOJcUX7AvSb9Iz9dgnJ91qqy1m40xW3AyKns9+/gquf4ZeN6709rRWnvSGPM4sAQIB3r5eCwRySIKVsQNtgMNjDF50jIV5KPoFP5S/8dLWyCwDeiTzDbJTjEYYx7EyWoswbmS5hhOnUd3nCtpskpsMu0p1dt4Mx3oBxwB5lhro711yuDz9vY7SUkbz9dC/FcMLSJ+RsGKuMFi4DqcIs7U0vh7PV8NF9eOVCP5LEpa7caZuvjOU6vhi3twsjXtEm5rjOnupW9a953wfJOqBpwh8z6gZ+AUuoYCT6bQLzPOO1XGmFY4hc9jcK4gmmyMaZiwdkZE/INqVsQNPgIOAm8bY6onfdEYU8AYc+GqkbU4Ux49jTFXJujTAqee5Yt0jmUWTk3M417GcYUxJqXpqgsZjfgMhjHmaqCDl75ncKZlUmStPYxTqNrVUwtyYb+VcK6iWmatTS6Tki7W2r9wMkxDcOpekpPh550aT/3NZ8AmnMLhbjhTUK+kd98ikvGUWZHLnrX2hDGmPc5iZOuNMdOBNTj1JrVwVlONwFnnJNoY0x+YDKwwxkwFiuJcenyQixcy89VUnLqXDz1rm/yM8yFscIpv7yH51XQXAx2BxcaYxUBpnL/8LVAvSd+1wM3GmOeAA8Axa+33yez3OZws0ipjzMc465g8iXO59wuXcI5pZq19Pw3dMuu8U/IuUAK40zM99ZMx5l3gOWPMQmvtqkvYp4hkEmVWxBWstWtxApP3gKbAaJwPpJbABOD6BH2n4AQUATjByRM4gU4za226pkQ8C4x1xFmTpQbOonEvA9fiXFX0ewrbfo6zPksNz3l0wik6XeSl+zPAbzjrpswgmTVFPPv9Aeey3KM4mYPncbItza21O3w5v8yQWeedHGPMnTiZlJettQl/H4NxAqTPPfcxEhE/ERAXl2FTwCIiIiIZTpkVERER8WuqWRERERGfGGOux6mHawiUArpbayelsk1t4APgGpw6wo+AV9Ny5aQyKyIiIuKr/Dg3BO1DGtY38lyB9w1O7Vxjz3b9cdZiSpVqVkREROSSGWNOA0+llFnxrBb9OlA8wT3ZhuAs81AmteyKMisiIiKS2ZoCKxLekw34GmcKqUJqG2d5zUqvgIJK5Vymxh1ck91DkHQIyJfutdQkG8V+Pyu7hyDpENSht6+3q0iX9H7W/lC1ZE+gR4KmCdbaCenYZQmctZESOprgtT9T2lgFtiIiIi6T3mkTT2CSnuAkQ2kaSERERDLbEZxbkSRUPMFrKVKwIiIi4jKBAQHpemSCVUCLhPdkw1lZ+xBpuIGspoFERERcJrMzEcaY/EDlBIcrZ4ypB0RYa/cZY0YC11hrW3n6TAeGAZOMMcOBqsBAnNteaJ0VERGRnCYwIH2PNGgEbPA88uLcA20D/925vCRQ6UJna+1JnExKKZwbkn4IvI1zH7dUKbMiIiIiPrHW/ohzM9jkXu/mpW0zCW4q6wsFKyIiIi7jtmkTBSsiIiIuk0lFstlGwYqIiIjLKLMiIiIifi2NRbKXDbcFXyIiIuIyyqyIiIi4jNsyEQpWREREXCZABbYiIiLiz5RZEREREb+mAlsRERGRLKTMioiIiMu4LROhYEVERMRltIKtiIiI+DW3ZVbcdj4iIiLiMsqsiIiIuIzbrgZSsCIiIuIybps2UbAiIiLiMoG4K7WiYEVERMRl3DYN5LZMkYiIiLiMMisiIiIu47ZMhIIVERERl3HbNJCCFREREZdRga2IiIj4tRyfWTHGNAIqAV9Ya88YY/IB/1prYzJ8dCIiIpLjpTlYMcYUBxYB1wBxQBVgDzAaOAf0yYwBioiIiG/cVmDry/mMAY4CIcDZBO1zgFsyclAiIiJy6QID0vfwN74EK62AF6y1kUnadwPlMm5IIiIikh6BBKTr4W98CVbyAlFe2oviTAOJiIiIZDhfCmx/AroBgz3P44wxQcAA4LsMHtdlpXKL62j93NOUb1iPwqVL8Xm3Xqz6fHp2DyvHm75wKZ/Oms/x8EgqVyjH4KcepVGdml77HguP4PWxn7Ft5272HjzMXa1bMmpg30R9dv65j/cnTWfbzt0cOHyUJx/uTO9uD2TFqbjetLkL+HTKDI6Hh1Pl6goMfuZpGtWvm2z/1es3MOqdD9i55y+KhYbw6EMPcH+n9l77fjRpCqPHTuDBezryYv9nAIiOieGdcR/z06pf2X/gEPnzXUWThg149qlelCpRPFPOMaebsWozn/20nuOnzlK5eBEG3tGCRhVLee27Zs9Bxny1ij/DIjkXFUOp4AJ0alyDR65vkMWjvnz541ROeviSWXkeeMwY8w1wBfA2sA1oBgzKhLFdNq7Mn59DW7Yxu88Aos6eTX0DyXRLv1/BiA8+pueD97Dg43eoX6saPQa8zKGjx732j4qOJrhQQR574G7qVK/qtc+5f/+ldIli9HmkC2VK6gMtoyz95jtGvP0uvbp3YeGUT6lfuxaP9e3PoSNHvfbff/AQPfo+T/3atVg45VN6duvC8Lfe4evvf7yo78bNW5m1YAmmcqVE7efOnWOb3cHj3bsyf8qnjH1rJIePHuPRPs8SE6MLGzPask07GblkBT1ubMS8p++jXrkS9Jy4hEMnTnntf1We3HRpVofJPTuypN+D9LypMR9+s5oZqzZn8cgvXwHpfPibNAcr1tptQG1gJbAcuBKnuLa+tXZ35gzv8rBl2XIWvfAK6+ct4vz589k9HAEmzVlEhzatuPeOW6lUvixDn+5J0ZBgZixe6rV/mRLFGfJ0Dzq2aUWhAvm99qldrQoDHn+EO2++gbxXXJGZw89RJk6fRYc7buPe9ndRqWIFhvZ/hqKhIcyYt8Br/5nzF1GsaChD+z9DpYoVuLf9XbS/vQ2fTZ2ZqN+p06d57sVXGDF0IIUKFkj0WoH8+Zn4wRjatm7F1eXLUadmDV4Z9By7/9zL7r/2ZtKZ5lyTft5I+4bVuOeamlQqVoQh7W6gaIGrmPmr9+CjZplitK1blSrFQyhTpCB31Tc0q1qOdX8dyuKRX77cVmDr0zor1tojwLBMGotIhoiKjmbrjl08cl/iaYFmjeqzYcsf2TQq8SYqOpqtf+zgkQfvT9TerEljNvy+xes2GzdvpVmTxonaml/bhIVffkV0TAy5czlva0NHvMmtN7Xk2kYN+PCTiamO5fQZJytaqECBVHqKL6JiYtl28BjdW9RP1N6sSjk27j2Spn1sO3icDXuP8OTN12TGEF3JH4tk08OXdVauT+alOJwC293W2ogMGZVIOkSe/JvY8+cJCS6cqD0kuDBh6zdl06jEm8gTJ4mNjSW0SHCi9pAiwaxc7f3tJCw8nKbXNEzUFlokmJjYWCJPnKBYaCizFy5m34EDvPnK0DSNIyo6mlHvfsCNLZpRonixSzsZ8erE2X+IPR9HaP68idpD8udl1a6Up81vHDGRiDPO9k+0akzna2tl5lDFj/mSWfkRJzCB/6a0Ej4/b4xZDDxkrT2TMcMTEfHNnr37GD12AtM/HhufZUlJTEwM/V98lVOnTjPurVFZMEJJqym9OnE2KopN+47y9rKVzpRQg2rZPazLgj9O5aSHL8HK7cCbwGvAb562JjjFtcOA8zgLx40CemfgGEV8ElyoIEGBgYRHnkjUHh55gtAk2RbJXsGFCxEUFERYROLlm8IjIikaUsTrNqEhIYQn6R8WEUmuoCCCCxfm519XE3niJHd07hr/emxsLGs2bGLm/EVs/N9y8uTJAziBSr8hL7Nj9x6mjHuP4MKFMvgMpfBVeQkKDCDs9D+J2sNP/0NogatS3LZMkYIAVC0RSvips3z47WoFK2nkthVsfQlWhgN9rLUJL1PeY4w5DrxurW1ojIkF3kfBimSjPLlzU7NqZX5Zu5E2LZvHt/+ybiO3XN80G0cmSeXJnZua1aqycvUabrv5xvj2lb+t4ZabbvC6Tb3aNfn2x58Sta1cvYZa1auRO1cubr6hBbVmJP5AG/TKSCqULUPP7g+RO3duwLl8ud8LLzmByvj3KBoaksFnJwB5cgVRo3QxVu3aR5s6lePbV+7aR+talVLYMrHzcXFExcRmxhBdyWWJFZ+ClRrAQS/tBz2vAWwGSqR3UJebK/Llo2jlqwEIDAwkuFxZytStzZmISCL3H8jm0eVM3e5px4CRY6hTvSoNalVn5uKvOB4WQec7bwNgwIgxALw++Jn4bbbv2gPAmbNnCQwMZPuuPeTOlYvKFZwFmqOio9m9dz8A/0ZFERZxgu279nBV3ispX9r7ehGSuu4P3Mfzw4ZTp0Z1GtStzYz5izgWFk7njk6B9PPDhgPwxstDAOjcsR3T5szntdHv0bnDXazftJkFXyzj7eFO7X/BAgUomKRI9qq8V1KoUEGqVnL+ncbExNBn4FA2b/+D8W+PIoAAjoeFA86VQldeqau9MlK35vUYMPsbapcpTv0KJZn16xaO/X2W+5o4NSgDZ30DwKj7WgMw9ZdNlClSkApFnVqmdX8eYuKKDdx/be3sOYHLUGCAu8IVX4KVbcALxphHrbX/AhhjrsBZJG6bp09ZIG3l3S5SvlF9+v343yWxd73yAne98gKrJk3j8+6PZ+PIcq62N7XgxN+nGDdlNscjIqhSoTwfjXqR0iWc4slDxy5eb6XDY4kXgfth5WpKFS/G9zM/AZyF4xL22XfoK2Yt+YrGdWsx5Z0RmXg27ta2dSsiT/7NuImTORYWTtVKFZkw5g1Kl3T+7jl8NPF6K2VLl2LCO28wcsz7zJi3kGKhobzwbB9uvallmo955NhxvvvpZwA6dn000WsjXxxExzvapuucJLHb6lbhxNlzjP9+LcdPnaFKiRA+6nYHpYOdaZ7DSdZbOR8Xx9vLVnEo8m+CAgMpG1KIfm2uiw9uJOcJiIuLS70XYIxpAizBmQq7cE1hLZxalTustauNMV2B4tbaN5PbT6+Agmk7oPidcQfXZPcQJB0C8gWn3kn8Vuz3s7J7CJIOQR16Z2mqY3Zw8XR91t4bedSvUjNpzqxYa38zxlQEHgQuTAhPB6Zba097+kzO+CGKiIiIL/wq0sgAvhYM/4uTVVkNbMRZX6WjJ6MiIiIifsBty+37sihcNZxpoIo45xLr2T4aJ4hRVkVEREQynC+ZlXeAdUAh4CxQHWiEk2HplPFDExERkUsREBCQroe/8SVYaQwM96xOex7IZa1dj3M35rczY3AiIiLiO7dNA/kSrATgZFQAjgOlPd8fACp73UJERESyXGA6H/7Gl3VWtgB1gT04BbYDPCvWPgbsyoSxiYiIyCXww5mcdPElWHkNyOf5fgjwJfADEAbcm8HjEhEREQF8W2fl6wTf7wGqG2OKAJHWWi30JiIi4icC/LLy5NL5klm5iLU2IqMGIiIiIhnDXaFKOoMVERER8T8KVkRERMSvBbosWvHHK5RERERE4imzIiIi4jIqsBURERG/5q5QRcGKiIiI6+TkReFERERE4hljngD6AyWBrUBfa+2KFPo/gHNPwarA38C3wHPW2iMpHUcFtiIiIi6TFTcyNMbcB7wLjADqAyuBZcaYcsn0bwZMAT4HagLtgRrAtNSOpcyKiIiIywRmTdVKP2CStfZjz/Pexpg2wOPAIC/9mwIHrLVjPM//NMa8D7yf2oEUrIiIiLhMZocqxpg8QEPgrSQvLQeuS2azX4ARxpg7gS+AEKAzsDS14ylYERERcZn0FtgaY3oAPRI0TbDWTkjwPBQIAo4m2fQocLO3fVprVxljOuNM++TFiUG+AR5ObTwKVkRERCQRT2AyIdWOPjDG1MCZ8nkV+BqnKPdN4COga0rbKlgRERFxmSyoWAkDYoHiSdqLA8ld2TMIWG2tfdPz/HdjzBlghTFmsLX2QHIH09VAIiIiLhOQzv9SY62NAtYBrZO81BrnqiBvrsIJcBK68DzFeESZFREREZfJohsZjgamGGNW4xTP9gJKAeMBjDGTAay1F6Z4lgAfG2Me579poHeA9dbafSkdSJkVERERl8mKdVastbOAvsAQYCPQHGhrrd3r6VLO87jQfxLO5c5PAVuAucAOoF1qx1JmRURERC6JtXYsMDaZ11p6aUvTuipJKVgRERFxGZfdGkjBioiIiNukpUj2cqJgRURExGXcdtdlFdiKiIiIX1NmRURExGXclolQsCIiIuIyLpsFUrAiIiLiNgEuK1pRsCIiIuIy7gpVsiFYGXdwTVYfUjLI46UbZ/cQJB3Gn9mf3UOQdAgob7J7CCLZRpkVERERl1FmRURERPyaalZERETEr2XRXZezjNsuxRYRERGXUWZFRETEZQJcllpRsCIiIuIyLitZUbAiIiLiNgpWRERExK+57WogFdiKiIiIX1NmRURExGVcllhRsCIiIuI2bpsGUrAiIiLiMi6LVRSsiIiIuE2gy6IVFdiKiIiIX1NmRURExGVcllhRsCIiIuI2KrAVERERvxbgsiIPl52OiIiIuI0yKyIiIi6jaSARERHxay6LVRSsiIiIuI0yKyIiIuLXXBarqMBWRERE/JsyKyIiIi7jtuX2FayIiIi4jMtiFQUrIiIibqMCWxEREfFrLotVVGArIiIi/k2ZFREREZdxW2ZFwYqIiIjLBAS6K1pRsCIiIuIyOSqzYoxpAGy01p73fJ8sa+36DB2ZiIiICKlnVtYCJYBjnu/jAG/xWhwQlLFDExERkUuR0xaFqwgcT/C9iIiI+DmXxSopByvW2r3evhcRERH/laMXhTPG5AFqAcVIskaLtXZpBo7LL0xfuJRPZ83neHgklSuUY/BTj9KoTk2vfY+FR/D62M/YtnM3ew8e5q7WLRk1sG+iPjv/3Mf7k6azbeduDhw+ypMPd6Z3twey4lQkBZVbXEfr556mfMN6FC5dis+79WLV59Oze1g5yrTZc/n08ykcDwunSqWrGfzcMzRqUD/Z/qvXrmfU6HfYuXsPxYqG8ujDD3H/PZ3iX1+zbj2fTp7G1u1/cOz4cUa+/CId77oj0T7e+XA8X337HUeOHCV37tzUqG7o83gvGtSrk2nnmZNNX/4Tn33xHcdP/E3lMiUZ1LUjjapV9tp3+eqNzPr2F7b/dYB/o6OpXLoEPdvfyk2NamfxqC9fLotV0r4onDGmNbAPp3ZlKfBFgseSTBldNlr6/QpGfPAxPR+8hwUfv0P9WtXoMeBlDh097rV/VHQ0wYUK8tgDd1OnelWvfc79+y+lSxSjzyNdKFOyeGYOX3xwZf78HNqyjdl9BhB19mx2DyfHWfr1N4x48216/V93Fs6YQv06tXnsqb4cOnzEa//9Bw/So3df6tepzcIZU+j5SDeGv/EWX3/7fXyfs2f/oWrlSrzQvx9XXnmF1/1UrFCeYQP7s2TODKZPnECZUqV49Kk+hIWHZ8p55mRLV61j5OR59Gh3C/NHDqB+lYr0HDWOQ2ERXvuv3b6La2tWYfzzPZk/cgDX16tB79Efs/aPXVk8cvEXvqxg+yFOYFIRuArIm+BxVcYPLXtNmrOIDm1ace8dt1KpfFmGPt2ToiHBzFjsPYFUpkRxhjzdg45tWlGoQH6vfWpXq8KAxx/hzptvIO8V3t9AJettWbacRS+8wvp5izh//nx2DyfHmTh1Oh3uvIN7O7an0tUVGTqwP0VDQ5kxZ57X/jPnzqdY0aIMHdifSldX5N6O7Wl/x+18NnlqfJ8bWjSjX+8naNO6FYEB3t/m2t1+G02bXEPZMqWpUqkSg57ty5kzZ9hud2TKeeZkn3/5A+2vb8K9rZpRqXQJhnS/h9DgQsz85mev/Qc/fDePtbuFOpUrUL5EUZ68uy01ry7Ld2t+z+KRX74CAgLS9fA3vkwDlQRG5ITalajoaLbu2MUj97VP1N6sUX02bPkjm0Yl4j5R0dFs3f4Hj3R9MFF7s6ZN2LDJ+wfTxk2bada0SaK25tddy8IvviQ6OobcuX1fPioqOppZ8xeSP38+qhvvmVG5NFExMWz9cz/d72iVqL1Z7Wps2PFnmvdz5p9/KZjPdX8XZxo/jDfSxZfMyhfAdZk1EH8SefJvYs+fJyS4cKL2kODChEWeyKZRibhPZOQJYmNjCS1SJFF7SJEiHE9mOiYsPJyQJP1DixQhJiaWyBO+/fv84acV1L/uBuo0ac6kqTOYOO4DQkNCfDsJSdGJv88476eFCiRqDylUgLCTf6dpH9OW/8SRiBPc1eKazBiiK+XkzEovYJoxpiGwBYhO+KK1dnJGDkxEJLM1adyIhTOnEnniBLPnL6Tv84OZ+fmnFCsamt1DE4/lv23krWkLGf10d0oXLZL6BgJAMrOfly1fgpVbgVZAW+AszkJwF8QBrglWggsVJCgwkPAkWZTwyBOEJsm2iMilCw4uTFBQEGERiQstwyMiKJpMhiM0JITwJP3DIiLIlSuI4MK+/fu8Km9eypcrS/lyZalXpza33NWJOQsW8WSP//PtRCRZhQvmc95PT55K1B5+8hShhQqmuO3Xv21g4NgpjHriIW5sqCuBcjJfYq+3gA+AAtba/NbaAgkeKf8fd5nJkzs3NatW5pe1GxO1/7JuI/VrVcumUYm4T57cualZvRorf12dqH3lr79Rv673S4jr1a3Nyl9/S9J/NbWqV7+kepWEzsedJyo6Kl37kMTy5MpFzYplWbk5cb3fys1/UL9q8muNLlu1ngEfTmFEry7c2iT5y9jFu5w8DVQYGG+tPZNZg/En3e5px4CRY6hTvSoNalVn5uKvOB4WQec7bwNgwIgxALw++Jn4bbbv2gPAmbNnCQwMZPuuPeTOlYvKFcoBThHf7r37Afg3KoqwiBNs37WHq/JeSfnSpbLy9CSBK/Llo2jlqwEIDAwkuFxZytStzZmISCL3H8jm0blf9y4P8PyQYdSpWYMG9eoyY+58jh0Po/PdHQF4fsgwAN4Y/jIAne/uyLSZc3jtzdF07tSB9Rs3sWDxF7w9cnj8Ps+cPcs+z+/ufNx5Dh0+wna7g0IFC1KqZAlOnz7Nx59P4abrW1A0NJSIyEimzZ7LkaPHuK31zVn8E3C/h2+/kYEfTqF2pfI0MFcz69ufOR55kvtubg7AgLFOYv71J7oC8OXKdQwcO5n+D3agUfXKHD/h1LbkzhVE4fz5suckLjc5+K7L84Cbgd2ZNBa/0vamFpz4+xTjpszmeEQEVSqU56NRL1K6RDEADh27eL2VDo8lXgTuh5WrKVW8GN/P/ARwFo5L2Gffoa+YteQrGtetxZR3RmTi2UhKyjeqT78f/7sk/a5XXuCuV15g1aRpfN798WwcWc7Q9tbWRJ48ybhPJnIsLIyqlSsx4f0xlC5VEoDDR44m6l+2dGkmvOLMDDkAACAASURBVP8OI98ew4w58yhWNJQXnn+WW2++Kb7Plm3b6frYf7+798dP4P3xE+hw5+2MemUYQUG52LV7D/MWLuHEyZMULlSI2jVrMO3Tj6hWtUrWnHgO0rZpQ06cOsP4BV9z/MTfVClbkvEDHo+vQTkcFpmo/6xvfyYm9jwjJ89j5OT/LmFvXL0yk1/sk6Vjv2z5YXYkPQLi4uJS7wUYY4YCfYCvgd+5uMB2dFr2E3fIpu2A4nceL904u4cg6TD+zP7sHoKkw/k/fku9k/itwAa3ZGn0cPLGeun6rC30w0a/inZ8yaw8ApzCuXw56SXMcUCaghURERHJXFlVd2KMeQLoj7MW21agr7V2RQr98wBDgIeAUsBR4C1r7XspHSfNwYq1Nr4SyhiT39N2Oq3bi4iISBbJgpoVY8x9wLvAE8DPnq/LjDE1rLX7ktlsJlAG6AHsBIrjrISfIl9vZNgX6AeU9jw/hJNRecdaTe+IiIj4hazJrPQDJllrP/Y8722MaQM8DgxK2tkYcwvOEiiVrLVhnua/0nKgNAcrxpg3cCKhN4FVnuamwIs46Z/n07ovERERyTwBmZxZ8UznNMRZ1iSh5SS/2n17YA3QzxjTFfgHWAYMTm2mxpfMyqPAo9bauQnavjfGWOAjFKyIiIi4gjGmB06C4oIJ1toJCZ6HAkE4NScJHcW5ctibq4HmwL9AJ5wlUd7HqV25O6Xx+LqCkrc7i/2Ob4vLiYiISGZK5zSQJzCZkGpH3wTiXJDzgLX2JIAx5inga2NMcWtt0sAn0YZpNRl40kv748AUH/YjIiIimSggMCBdjzQIA2JxCmQTKg4cSWabw8DBC4GKx3bP13IpHSzFzIoxJuGlRLmALsaYW4FfPW1NcNI301Laj4iIiGShTC6wtdZGGWPWAa2BOQleao2ziKw3vwD3GGPyJ6hRqer5ujel46U2DZT0zlHrPF/Le74e8Tx0wxwRERF/kTXL7Y8GphhjVuMEIr1wEhjjAYwxkwGstV09/acDQ4GJxpiXcGpW3gXmWmuPpXSgFIMVa+2Nl34OIiIi4lbW2lnGmBCcRd5KAluAttbaC1mSckn6nzbG3IxTVLsGiAQWAgNTO1b6blEqIiIifierVrC11o4FxibzWksvbRa4xdfjKFgRERFxmxx812URERG5HLjsrstaH0VERET8mjIrIiIiLhPgslSEghURERG3cdk0kIIVERERl8nsGxlmNQUrIiIibuOyzIrLZrVERETEbZRZERERcRtNA4mIiIg/y6oVbLOKghURERG3UWZFRERE/JrLMisqsBURERG/psyKiIiIy6hmRURERPybalZERETEn7kts6KaFREREfFryqyIiIi4jaaBRERExK+5bBpIwYqIiIjL6K7LIiIi4t9clllRga2IiIj4NWVWRERE3EbTQOkTkC84qw8pGWT8mf3ZPQRJh175ymb3ECQdxodty+4hyGXEbeusKLMiIiLiNsqsiIiIiF9zWWZFBbYiIiLi15RZERERcRuXZVYUrIiIiLiNghURERHxa4HuqvJw19mIiIiI6yizIiIi4jaaBhIRERG/pmBFRERE/JqCFREREfFrKrAVERERyTrKrIiIiLiNpoFERETErylYEREREb+W04MVY0wpoBhJ6l2steszalAiIiIiF6Q5WDHG1AemAtWApCFbHBCUgeMSERGRS+Wyq4F8yaxMAPYDjwGHcAIUERER8Tc5eBqoBlDfWrsjswYjIiIiGcBlwYoveaLNQInMGoiIiIhkkICA9D38jC+ZlcHAG8aYITiBS3TCF621ERk5MBERERHwLVj51vN1OYnrVQJQga2IiIjfCMjBBbY3ZtooREREJOP44VROeqQ5WLHW/i8zByIiIiIZJKcGKwDGmNpAT6AS8Ii19rAxpj2w11q7ITMGKCIiIj5yWbCS5kktY8wtwBqgNHATkNfzUiVgWMYPTURERMS3S5dfBfpZazsAUQnafwSuychBiYiISDoEBqbv4Wd8mQaqBSz10h4BFMmY4YiIiEi65dRpIJygpLSX9gbAgYwZjoiIiKSbyxaF8yVYmQ68aYwpg7OuSi5jzA3AW8DkzBiciIiIiC/TQEOAScBenIXgtnm+Tgdey/CRiYiIyKXxw+xIeqQpWDHGBAJVcC5bHooz9RMIbLDW7sy84YmIiIjPsqhI1hjzBNAfKAlsBfpaa1ekYbvmOBfo/GGtrZVa/7RmVuKAjUANa+0uYE8atxMREZGslgWZFWPMfcC7wBPAz56vy4wxNay1+1LYLhinfOQ7vNfCXiRNoZe1Ng6wQNG09BcREZFslDUFtv2ASdbaj6212621vYHDwOOpbPcp8DmwKq0H8iVP9DzwljGmnjHGXZNhIiIikmbGmDxAQ5ybGye0HLguhe2eAIoDw305ni/Bymycxd/WAeeMMX8nfPhyUH81be4Cbmp3L7Wbt6Jj1/9j7YZNKfZfvX4DHbv+H7Wbt6JV+3uZMW9hsn0/mjQFc00LXnlzTHxbdEwMb74/jjsfeJh617em+W3teHbIyxw6cjTDziknmTZ7Ljfd3o7aTZrT8YGurF2f8h0gVq9dT8cHulK7SXNa3dGeGXPmJXp9zbr19OrzLC1uuR1T/xrmL/7ion288+F42nS4h3pNr6fx9a14uOcTrN/4e4aelySvcovreHzRTEYd+IPxcX/T9OEHsntIOdK0eYu4qdOD1G7Zho7de7E2lX8DqzdsomP3XtRu2YZWd3dhxoIlF/U5FhbOgFdHcW3bjtRu2Ya2D3RndYL35DNn/+HV0e9zfbv7qNPyNm7t/DCTZs7N8HO7bKVzUThjTA9jzNoEjx5JjhAKBAFJP7COAiW8Dclzy55hQBdrbawvp+PL1UBP+bLjy83Sb75jxNvvMmxAPxrWrcP0uQt4rG9/vpw1hVIlil/Uf//BQ/To+zyd7mzLmy8PZd2m33n59dEUCS7MrTe1TNR34+atzFqwBFO5UqL2c+fOsc3u4PHuXalWtQqnT59m1Dsf8mifZ1k8bRK5cvl066YcbenX3zDizbcZNmgADevVZfrsuTz2VF++nDeLUiUv/nez/+BBevTuS6d2d/Lm8JdZt3ETL498nSLBwdx6800AnD37D1UrV6L9HW0Z8OJLXo9bsUJ5hg3sT5nSpTn37zkmTZ3Bo0/1YfmiuYSGhGTmKQtwZf78HNqyjd8mz6Db5I+yezg50tJvf2DEOx8y7Lk+NKxbi+nzF/PYs4P4ctpn3t87Dx2mx7OD6XRHG94cNoh1m7bw8lvvUqRwIW698XoA/j51mvt79aFhnVpMeGsEwYULceDQYUKCC8fvZ9R741i5dj1vvDiQMqVKsnbj7wwZNZrChQrR/rbWWXb+fiudNSvW2gnAhIwZDBhjrgBmAc9Za//0dXtf7rr8ua87v5xMnD6LDnfcxr3t7wJgaP9nWPHrambMW8CzT/a6qP/M+YsoVjSUof2fAaBSxQps2rKNz6bOTBSsnDp9mudefIURQwfy4ScTE+2jQP78TPxgTKK2VwY9x+2du7L7r70XBTeSvIlTp9Phzju4t2N7AIYO7M+Klb8yY848nn36yYv6z5w7n2JFizJ0YH8AKl1dkU2bt/DZ5KnxwcoNLZpxQ4tmAAwa9orX47a7/bZEzwc925e5Cxez3e6gxXVNM+z8xLsty5azZZmThe46aVw2jyZnmjhzLh3a3sq97W4HYGi/3qz4dQ0zFizh2ccfvaj/zAVLKBYawtB+vQGoVKE8m7Zt57Pps+ODlU+mzaRoSBHeeHFg/HZlS5VMtJ8Nm7fSrs3NXNuwPgBlSpZg7pJl/L5tu4IVyIoC2zAgFmdKJ6HiwBEv/UsC1YGJxpgLH4aBQIAxJgZoa61NOqUUL8VpIGNMubQ+0np2/igqOpqtf+ygWZPEtzhq1qQxG37f4nWbjZu30qxJ40Rtza9twpbtfxAdExPfNnTEm9x6U0uubdQgTWM5feYsAIUKFPDhDHK2qOhotm7/g2ZNmyRqb9a0CRs2eU9Hb9y0+aL+za+7li3btxMdHeN1m7SMY9b8heTPn4/qpuol7UPkchIVHc1Wu4NmTRolam92TUM2bN7qdZuNW7bR7JqGidqaN2nMlj92xL93fvvTL9StUY2+Q1+ladtOtHu4B1PnLiQuLi5+mwZ1a/HDz6s4fPQYAOs3b2X7zt20uDbx+3KOlckFttbaKJyykKSRYWtgpZdNDgK1gXoJHuOBXZ7vvW0TL7XMyl84ly2nRVAa+/mdyBMniY2NJbRIcKL2kCLBrFwd4XWbsPBwmib5BxdaJJiY2FgiT5ygWGgosxcuZt+BA7z5ytA0jSMqOppR737AjS2aUaJ4sUs7mRwoMvKE5/eX+BZVIUWKsDJ8tddtwsLDaZokOA0tUoSYGM/vr2homo//w08r6DdwCP+cO0fR0FAmjvtAU0CSIzjvnecJDfby3rl2vddtwiIiaNo48R9vocEX3jtPUiw0hP2HDjN9wWK63Xc3Pbp0ZvvO3Qwf8z4AXe52sqdDnnmKYa+PoWWH+8kV5Hz8DOnXmxubKaOZhUYDU4wxq4FfgF5AKZwgBGPMZABrbVdrbTSQ6K9/Y8wx4F9rrfesQAKpBSsJQ9SqwBueQVy43KgpzkJxA1I7UE6zZ+8+Ro+dwPSPx5I7DbUnMTEx9H/xVU6dOs24t0ZlwQglozRp3IiFM6cSeeIEs+cvpO/zg5n5+ac+BTwi8p+483HUqlY1fhqphqnC3gMHmDZvUXywMnXOAtZv2cq4N16lVInirN24mTc+GE/pksW5/tprUtp9zpAFi8JZa2cZY0JwVrgviROMtLXW7vV0ybBZlxQ/Ra216y58b4wZDTxjrU1Ybv29McYCfYAZGTWorBZcuBBBQUGERUQmag+PiKRoiPcbSoeGhBCepH9YRCS5goIILlyYn39dTeSJk9zRuWv867GxsazZsImZ8xex8X/LyZMnD+AEKv2GvMyO3XuYMu49ggsXyuAzdLfg4MKe31/iLFh4RARFk8lwOL+/xP3DIiLIlcv5/fniqrx5KV+uLOXLlaVendrcclcn5ixYxJM9/s+3ExG5zDjvnYGERXp57yySzHtnkSIXv3dGXnjvdN77ioYUoVLF8on6XF2+PIePLgDg3L//Mnr8p7wz/EVuau5cJVutciW279zFZ9PnKFiBLFtu31o7FhibzGstU9n2JeCltBzHl9DrGsBbAcDvONdaX7by5M5NzWpVWbl6TaL2lb+toX4d76sA16tdk5W/Jem/eg21qlcjd65c3HxDC5bM+JyFUz+Lf9SqXo3bW7di4dTPyJ07N+BcvvzMCy9hd+1m8rh3KRqq6QNf5cmdm5rVq7Hy18RTPit//Y36det43aZe3dqs/PW3JP1XU6t6dXLnTt9VWOfjzhMVHZWufYhcDvLkzk1NU5WVq9clal+5Zh31a9f0uk29WjVYuSZJ/9XrqFWtanwWukGdWvy5b3+iPn/tP0CpEs70eExMDNExMQQFJf4ICwoM5Pz58+k6J9fIwXdd/gtnKd2knsC5ueFlrfsD97Hgi2XMWbiE3X/+xfC33+VYWDidPVeXPD9sOM8P+28Nm84d23H0eBivjX6P3X/+xZyFS1jwxTIe6dIZgIIFClC10tWJHlflvZJChQpStdLVBAQEEBMTQ5+BQ9m4ZSujhw8jgACOh4VzPCycc+f+zZafw+Wqe5cHWLD4C+bMX8juPX8y/I23OXY8jM53dwTg+SHDeH7IsPj+ne/uyNFjx3ntzdHs3vMnc+YvZMHiL3ika5f4PmfOnmW73cF2u4Pzcec5dPgI2+0ODh12Ct1Pnz7NmA/HsWnzFg4dPsKWbdsZ9NKrHDl6jNta35y1P4Ac6op8+ShTtzZl6tYmMDCQ4HJlKVO3NsFly2T30HKM7p3vZsHSr5mz+Et2/7WX4WM+cN47298JwPOvjOL5V/6b2u7c4U6OHg/ntXc+ZPdfe5mz+EsWLP2aRx64N77Pw/d1YtOW7YybNI29Bw6y7Pv/MWXOAh7s1A6A/PnycU39urw99hN+W7+R/YcOM//Lr1i47Bta39A8a38AkiUCElZXp8QY0wZYgBOY/OppbgJUADpaa5elaUcnj6W1YDfLTZu7gE+nTOdYWDhVK1VkUN/eNG5QD4CHejmX2U0Z/358/9XrNzByzPvs3PMXxUJDeazrA9zfqX2y+3+oV2+qVLqaFz2XOx84dJhW7e/12nfki4PoeEfbjDq1jJH7iuweQYqmzZ7Lp5OmcCwsjKqVKzHo2b40bugU8j30qHP5+ZRPxsf3X712PSPfHsPO3XsoVjSUx7p15f57OsW//tvadXR97OJVozvceTujXhnGP/+c47kXhrJp81ZOnDxJ4UKFqF2zBr3+rxt1a6d6X64s1ytf2eweQoarekNz+v249KL2VZOm8Xn31Fb8vryMD9uW3UNI1rR5i/h02iyOhUdQ9eoKDHr6CRrXd7KaDz3ZD4ApH46O7796wyZGvjuWnX/upVhoCI916cz9He5MtM8ff/mV0R99yp/79lOqeDEe7NSeh+7pQIDnr/7j4RGMHvcJP69ey8m/T1GqRHHuuastj9x/T3wfvxJSJksHFTt2QLo+a4OeeN2vfohpDlYAjDFlcdb8r+Zp2g6Mt9buT36rJPw4WJFU+HmwIilzY7CSk/hzsCJpkNXByviB6QtWeo3yq2DFp8l5T1AyOJPGIiIiIhkhIPOvBspKKQYrxpi0rWQGWGu9X1QvIiIiWcsfp8LSIbXMylqcReFSO+s4LuNF4URERMR/pRasVMySUYiIiEjGyYJF4bJSaovCXfaXJIuIiOQ4OWkayFOzstFaez61+hXVrIiIiPiJnFRgi1OzUgI4Rsr1K6pZERER8Rc5KbOCU7NyPMH3IiIiIlkqzTUrql8RERG5TOSkAtukjDFXAfWAYiS5r5C1dn4GjktEREQuVQ6bBopnjLkZmAF4uy2walZERET8RQ4rsE3oXeBLYLC19lAmjUdEREQkEV+ClQrAXQpURERE/FxgDp0GAn4BDLA7k8YiIiIiGSEnTQMlWQhuPPCWMaYUsBmITthXi8KJiIj4iRxWYOttIbgJXvqpwFZERMRf5KTMCloITkRERLJZmheFM8a8Buy31o5P2McY0wsoDQzNlBGKiIiIb1xWYOtLnughYIOX9nVA14wZjoiIiKRbQED6Hn7Gl6uBivHffYISCgeKZ8xwREREJN1yWM1KQvuAFsCeJO3XAwcybEQiIiKSPi6bBvIlWPkIGGOMyQN872lrBYwEXs/ogYmIiIiAD8GKtfZtY0wo8B6Qx9McBbxrrX0jMwYnIiIil8Bl00A+nY21dhAQClzreRS11g7MjIGJiIjIJcrBBbYAWGvPAGsyYSwiIiKSEXJyZkVEREQkq/mcWRERERE/l4OvBhIREZHLgcumgRSsiIiIuI0fFsmmh4IVERERtwl0V2bFXWcjIiIirqPMioiIiNtoGkhERET8mgpsRURExK8psyIiIiJ+zWUFtlkerMR+PyurDykZJKC8ye4hSDqMD9uW3UOQdOgVWiO7hyDpMD7u7+wewmVNmRURERG30TSQiIiI+DUV2IqIiIhfc1lmxV2hl4iIiLiOMisiIiJuo2kgERER8WuB7poGUrAiIiLiNsqsiIiIiF9Tga2IiIhI1lFmRURExG00DSQiIiL+LMBl00AKVkRERNxGmRURERHxay4LVtx1NiIiIuI6yqyIiIi4TU5dFM4YcwNwzlr7m+d5N+BRYCvwrLX2dKaMUERERHyTRdNAxpgngP5ASZx4oK+1dkUyfTsCvYD6wJXANuA1a+3i1I7jy9m8A5TwHNAAHwG/A02BN33Yj4iIiGSmgID0PdLAGHMf8C4wAicAWQksM8aUS2aTG4Dvgds9/ZcCC4wxLVI7li/TQJWBzZ7vOwHfWGufMMY0AeYBj/uwLxEREbm89QMmWWs/9jzvbYxpgxMPDEra2VrbJ0nTy8aY24H2gNdszAW+ZFbOA0Ge71sBX3m+PwKE+LAfERERyUwBgel7pMIYkwdoCCxP8tJy4DofRloAiEytky+ZlTXAUGPMN0ALoIenvQJw2If9iIiISGZK56Jwxpge/Pc5DzDBWjshwfNQnATG0SSbHgVuTuMxngTKAFNS6+tLsNIXmA60wymI2e1pvwdY5cN+REREJDOls8DWE5hMSLXjJTLGdMKpd73PWrs3tf5pDlastVuAOl5eeg6ITfMIRUREJHNl/qXLYTif/cWTtBfHKQ9JljHmbmAy0NVauyQtB/M59DLGNDLG3GeMyedpCgLifN2PiIiIXJ6stVHAOqB1kpda41wV5JUx5l6caZ9u1tq5aT2eL+usFAcWAdfgBCdVgD3AaOAckLTKV0RERLJD1qyzMhqYYoxZDfyCs4ZKKWA8gDFmMoC1tqvneWecQOU54CdjTAnPfqKstREpHciXsxmDUzgTApxN0D4HuMWH/YiIiEhmyoJ1Vqy1s3DqWYcAG4HmQNsENSjlPI8LeuEkSd7BuTDnwmN+asfypcC2FdDKWhvprAkXb3eSwYiIiEh2yqIVbK21Y4GxybzWMqXnvvDlbPICUV7ai+JMA4mIiIhkOF+ClZ+AbgmexxljgoABwHcZOSgRERFJhyyYBspKvkwDPQ/8zxjTGLgCeBuoCRQCmmXC2ERERORSZNE0UFZJ89lYa7cBtXEuSVqOc8fEOUD9BAvEiYiISHYLDEzfw8/4klnBWnsEGJZJYxEREZEMEOCHUznp4cs6K9cn81IcToHt7tSukxYRERHxlS+ZlR/5b6XaCyFbwufnjTGLgYestWcyZngiIiLis5xaswLcDmwHugCVPY8uwFagk+dRDxiVwWMUERERX+Tgq4GGA32stQkvU95jjDkOvG6tbWiMiQXeB3pn5CBFRETEBy7LrPgSrNQADnppP+h5DWAzUMJLH9eYsWozn/20nuOnzlK5eBEG3tGCRhVLee27Zs9Bxny1ij/DIjkXFUOp4AJ0alyDR65vkMWjFoDpy3/isy++4/iJv6lcpiSDunakUbXKXvsuX72RWd/+wva/DvBvdDSVS5egZ/tbualR7Swedc4wbd4iPp0+m+Ph4VSpWIHBfZ6gUT1vN3l3rN6wiVHvjWPnn39RLDSURx+8j/s73Jmoz7GwcN4e9zH/W7WaM2fPUrZUSV7q35dr6tcF4MzZfxg9/hO++d/PnDj5NyVLFOP+9nfSrfPdmXmqkkDlFtfR+rmnKd+wHoVLl+Lzbr1Y9fn07B6WO/hhdiQ9fAm9tgEvGGOuuNDg+X6w5zWAsqRya+jL2bJNOxm5ZAU9bmzEvKfvo165EvScuIRDJ0557X9Vntx0aVaHyT07sqTfg/S8qTEffrOaGas2Z/HIZemqdYycPI8e7W5h/sgB1K9SkZ6jxnEozHtN+Nrtu7i2ZhXGP9+T+SMHcH29GvQe/TFr/9iVxSN3v6Xf/sCIdz6kV9cHWDjpI+rXrsljzw7i0JGjXvvvP3SYHs8Opn7tmiyc9BE9H7qf4aPf5+sfforv8/ep09zfqw9xcTDhrREsnT6Rof16ExJcOL7PqPfG8ePK33jjxYEsnTGRxx9+kLfGfcLCZd9k+jmL48r8+Tm0ZRuz+wwg6uzZ1DeQHMuXzMoTwBLgoDFmi6etFnAeuMPz/GqSuUeAG0z6eSPtG1bjnmtqAjCk3Q38vGMfM3/dTL82113Uv2aZYtQsUyz+eZkiBfl2y27W/XWI+5vqL/Ss9PmXP9D++ibc28pZv3BI93tY8ft2Zn7zM/3uv+ui/oMfTvzX9ZN3t+V/G7fy3Zrfk83GyKWZOHMuHdreyr3tbgdgaL/erPh1DTMWLOHZxx+9qP/MBUsoFhrC0H7ObHOlCuXZtG07n02fza03OhctfjJtJkVDivDGiwPjtytbqmSi/WzYvJV2bW7m2ob1AShTsgRzlyzj923baX9b0rveS2bYsmw5W5YtB6DrpHHZPBqX8cO1UtLDl0XhfgMqAi8A6z2PwcDV1trVnj6TrbVvZsZAs1tUTCzbDh7juiqJ79nYrEo5Nu5NWzJp28HjbNh7hEYVS2fGECUZUTExbP1zP83qVE/U3qx2NTbs+DPN+znzz78UzHdVRg8vR4uKjmar3UGzJo0StTe7piEbNm/1us3GLdtodk3DRG3NmzRmyx87iI6JAeDbn36hbo1q9B36Kk3bdqLdwz2YOnchcXFx8ds0qFuLH35exeGjxwBYv3kr23fupsW1jTPyFEWyR04ssDXG5Ab249x1+aPMHZJ/OnH2H2LPxxGaP2+i9pD8eVm1K+X05Y0jJhJxxtn+iVaN6XxtrcwcqiRx4u8zxJ4/T0ihAonaQwoVYNUWm6Z9TFv+E0ciTnBXi2syY4g5VuSJk8TGnic0ODhRe0iRYFauXe91m7CICJo2Tlz3FRocTExsLJEnTlIsNIT9hw4zfcFiut13Nz26dGb7zt0MH/M+AF3ubg/AkGeeYtjrY2jZ4X5yBQU5bf16c2Ozphl9miJZLycW2Fpro40x0fy3ror4YEqvTpyNimLTvqO8vWwlZYoU5K4G1bJ7WJJGy3/byFvTFjL66e6ULloku4cjaRB3Po5a1arGTyPVMFXYe+AA0+Ytig9Wps5ZwPotWxn3xquUKlGctRs388YH4yldsjjXX6ugVMSf+FKz8j4wyBjT3Vobk1kD8leFr8pLUGAAYaf/SdQefvofQgukPDVQpkhBAKqWCCX81Fk+/Ha1gpUsVLhgPoICAwk/mbgQOvzkKUILFUxx269/28DAsVMY9cRD3NhQdUYZLbhwIYKCAgmLjEzUHh4RSdEi3gPD0CJFCI9I3D8sMpJcQUEEFy4EQNGQIlSqWD5Rn6vLl+fw0QUAnPv3X0aP/5R3hr/ITc2derNqlSuxfecuPps+R8GKXP78cConeNC3oAAADN1JREFUPXzJE7UA2uEU2H5njFmc8JFJ4/MbeXIFUaN0MVbt2peofeWufdQrn/artc/HxREVE5vRw5MU5MmVi5oVy7Jy8x+J2ldu/oP6VSsmu92yVesZ8OEURvTqwq1N6mf2MHOkPLlzU9NUZeXqdYnaV65ZR/3aNb1uU69WDVauSdJ/9br/b+/Og6QozziOf3dX8cAyUU4RZcXjEQREFDGReESqYryiogFiBDHh8IgHRkENxkgQUUFRuVQU0dWghWDhESVR4xEVBERReNDIGTQiongiyOaPt3cdhpWd2ZnZ7Z35faq2dqbn7Z5nuqe7n36PHtodeADbbxeuvzp1aMfSFSu3KLNs5SpaNA8d3jdt2sTGTZsoKdnyEFhSXMzmzZsz+kwi8VCU4V+8pFOz8jEwLVeB1AfndO3I4Idn0b5lMw4p3YOpry7ko/Vf0aNL6IMyZGoY8nhDjzCS4IGXF9By910pbRLa4+cuXc29L86n1xG6Qq9tfU48liFj76f9vq3oZK2Z+o+XWLPuM3p06wrA4HFTABh5fm8Anvj3XIaMm8LlZ53GYW32Y82n6wHYfrsSfrxLw7r5EHmqb88zuOK6G+jQ1ujUoR0PTZ/JRx+vpeep4b4pV1wXbopdMbKn52knUzbtMYbfOpaep57EvDcXMv3Jpxn1l6srl9mnR3d6DbiI8ZPLOKHbMbyz5D3uf2Q6gwaeC8AuDRty+CEHM2rc3ey80060aN6MOfMXMOOpWVx+Qf9aXgOFa4eGDWmyX2sAiouL2W3vvWh5cHu+/GQd61auquPo6rk8q1kpSuwdXxu+m357ve738tArbzHpX/NY8/mX7N+8EUNO7MphrcPonj4THwXgvgGnAzDlpTd4ZPY7rF63npLiYvZq9CPO6NyWHl3aUVxc/75IRa2srkPIyIPPvMCkmeGmcPvvtQdDzj6dzm3CMOTe140BYMo1F1c+n7No63uqdG6zX2WZ+qa4VdvqC9WRsmmPMalsKh+t/YQDWpdy5UXn0/mQcFO4sy8YBMD9Y0dXlp89fwEjxozj3aXLadq4Ef1+23Orm8I9//KrjJ44iaUrVtKiWVPO6n4qZ595WuWv0a5Z+wmjx9/NS7Nf57P1n9OieTPOPOUEzu11Zix/sXZg4/huv5o64OiuDHr+ya2mvzK5jPv6nlcHEeXOhPL1tfqlKl+1KKNzbVHLNrHaCZSsSMrqe7JS6OKcrEj18jFZKSRKVjKTTjMQZtYX6AXsDTRIfM3dW2cxLhEREamxWOUaGUu5g62ZXQ6MAuYCpcAMYCGwO3BPLoITERGRGsizm8KlMxqoH9Df3a8ENgJ3uPsphASm1TbnFBERkdqTX4OB0kpWWgKzo8dfAxU3qHgI6J7NoERERCQT+ZWtpJOsfAg0jh4vByruSb0furOtiIiI5Eg6ycqzQMXP004CRpvZc8BU4NFsByYiIiI1lGd9VtIZDdSfKLlx9wlmtg44knCjuIL8cUMREZFYimHCkYmUkxV33wxsTng+lVCrIiIiIrFSoMkKgJntDHQEmpLUhOTuagoSERGRrEs5WTGzboSRP42qeLkcKMlWUCIiIpKBQm0GAsYATwBXufvqHMUjIiIiGSvcZKUUOEWJioiISMzlWc1KOkOXXwb0S3YiIiJxV0hDl82sU8LTCcDNZtYCeItwy/1K7j4v++GJiIhIoauuGeh1QufZxDTrzirKqYOtiIhIbMSvdiQT1SUr+9RKFCIiIpI1RTFsysnENpMVd19e8djMhgMr3X1CYhkzGwjsCQzNSYQiIiKSnjxLVtLpYHs2ML+K6XOB3tkJR0RERDJXuL+63BRYU8X0tUCz7IQjIiIisqV0kpUVwM+qmH4UsCo74YiIiEjGCmnocpKJwC1m1gB4Npp2HDACGJntwERERKSGYphwZCKdX10eZWaNgduABtHkb4Ex7n5jLoITERGRmsivZCWdZiDc/UqgMXBE9NfE3YfkIjARERERSK8ZCAB3/xKYk4NYREREJBsKtRlIRERE6on8ylWUrIiIiOSf/MpWlKyIiIjkmzxrBkqrg62IiIhIbVPNioiISL7Js5oVJSsiIiJ5R8mKiIiIxJlqVkRERCTW8ixZUQdbERERiTXVrIiIiOSd/KpZUbIiIiKSb/KsGaiovLy8rmMQERER+UHqsyIiIiKxpmRFREREYk3JioiIiMSakhURERGJNSUrIiIiEmtKVkRERCTWdJ8VyWtm9jyw0N0vzOIyS4GlQGd3fz1byy00qazH5DIpznMYMAfYx92XZT9yAe0HUruUrIikbyWwB/BxXQdSALSuRUTJiki63P074MO6jqMQ5GJdm1kxUBQtW2LGzBq4+7d1HYfEi5KVFJjZ8cDVQDugnFDFfIm7L4pe7wKMB9oCi6KyTwDHuvvzUZm2wE3AUcDXwD+BS91dJ73c287MxgC9o+d3A4PdfbOZLQPuAVoD3YFPgT8CTwMTgJOAD4AL3P0ZUPV3usysCBgEDAT2BtYA9wMToyKtzGwEcCSwDLjY3WdF85ZSfbPP8cCtQClh3xyf9Po5wB3Ar4EbgQOBjma2BBgGnAXsDrwN/Mndn47mOwZ4DugGXA+0B94B+rv7vBqvkHomw+1XAtwJ/BxoDqwC7gJudvfNUZnJQGPgReAPQAOgaTaOq2bWnvDd6Ezoo/kfwrH7ueyuJck1dbBNTUPCF/5w4BjgM2CmmTUws12Ax4HFwKHAFYSdp5KZ7QG8ACyMltEN2AV4LLrKk9w6i/Bd/wkwAOgPXJLw+iXAbKAT8DBwH/Ag8CTQkbDtHjCzHWsx5nxyPTAUGAEcBJxJaN6pMBy4DTiYkGz8LdqvqmVmewEzgFmEbXU7ISFJtmMUwwDCyW85cC9wNPAbwoXIfYT9+uCkeUcAQwjfj7VAWXQCLxSZbL9i4L+ERLENIeG4Cuib9B5HAx2A44HjsnhcfZBwsXE44ftxLfBNjdaC1CnVrKTA3aclPjezvsB6wg5wEFAC/M7dvwbeNrPhQFnCLOcBC9x9cMIyegOfAIcRTpSSOx8AF7l7ObDYzA4gXCmOjl5/2t3HAZjZn6PX3nP3KdG0YcC5hBOaalLSEJ10LiVczd4TTX4PeCWqNQG4xd1nRuWvItSAdQReSuEtzgNWsPX2HZZUrgS40N3nRu+zL9ALKHX3FVGZO8ysGyGhOT9h3qEVV+Jmdl0U156EWoK8lun2c/eNwDUJi1xmZp0I635SwvRvgHPdfUO0nAFk57jailCLszghdqmHlKykIDqwDQO6AE0IVwvFhCrRAwmjTb5OmOW1pEUcChxlZl9Usfh9UbKSa69GJ7IKrwDDzGzX6PmbFS+4+xdm9hXwVkL5/0X/m+Y2zLzUFtiBUD3/Q95MeLw6+p/qum5D1ds32SbgjYTnnYAi4B0zSyy3A/BsivHlfbJCFrafmQ0Efk9IHHYCtifUbCVaWJGoRLJ1XB0N3G1mfaLPMC0hcZF6RE0QqXmckKQMICQshxAOfg1SnL+Y0NbaMelv/2jZUrc2Jj0vT5pWcSLU/pIbles6IenI9rrekNShtpiwXTuz5T7ZhlCLVmV86LtQlR/cfmbWg9CEPhn4BWEdj2PrY+eXNXjfao+r7n4tIeGaAfwUeNPMkrev1AOqWamGmTUiZPnnJ1QFd+L7dbcY6GNmOyVcBRyetJh5hDbb5VG1qNSuLmZWlHAgPQJY7e7rk66qJfsWARuA44B3c7T87lVs3+rMJ9SsNFdny23KdPt1BV5z9zsqJkQ11dXJ2nHV3d8lxH6bmY0n1PLc80PlJZ6UrFRvHeEeD/3MbCWhrfomQs0KhA5cfwXuMrPrgRaEDmTw/VXYWKAfMNXMRhJ607cm7GiXufvntfFBClgL4FYzG0cY0XE5YZtJjrn759FIrBFmtoHQIbIRoQr/qSy8xQTgMrbcvgNTiGuJmZUBk83sMsKJb3dCB/r33f3RLMRW72Vh+y0BzjGzXxL6i/QkdKZdV818GR9XCcfom4FHCKOUmhElTynELTGjqsxqRMPrehB6qi8k7CBDCVcbRInGyYSOtvMJicy10ezfRGVWE4b1bQb+ThgiOTZaRmI7reRGGaGz3muEYZOTgFvqNKLCciUwkrDfLAKmAS2zseCoc+zphFEkCwidQYekOHtfwoigGwlX8o8ThsAm96codJlsv4mEEXYPEkYKlQKjqpspS8fV74DdCE1QDkwn9GcalGLsEiNF5eXl1ZeStJjZrwg7RlN31503RUQypONqYVMzUBZEPc3fJ9x7oB2hQ9lM7VAiIjWj46okUrKSHc2AvxB+w+RDQg/1wducQ0REtkXHVamkZiARERGJNXWwFRERkVhTsiIiIiKxpmRFREREYk3JioiIiMSakhURERGJNSUrIiIiEmv/B2WnE2J+RcBqAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"sns.heatmap(medical_df.corr(), cmap='Reds', annot=True)\n",
"plt.title('Correlation Matrix');"
]
},
{
"cell_type": "markdown",
"id": "68de3f2a",
"metadata": {
"id": "68de3f2a"
},
"source": [
"**Correlation vs causation fallacy:** Note that a high correlation cannot be used to interpret a cause-effect relationship between features. Two features $X$ and $Y$ can be correlated if $X$ causes $Y$ or if $Y$ causes $X$, or if both are caused independently by some other factor $Z$, and the correlation will no longer hold true if one of the cause-effect relationships is broken. It's also possible that $X$ are $Y$ simply appear to be correlated because the sample is too small. \n",
"\n",
"While this may seem obvious, computers can't differentiate between correlation and causation, and decisions based on automated system can often have major consequences on society, so it's important to study why automated systems lead to a given result. Determining cause-effect relationships requires human insight."
]
},
{
"cell_type": "markdown",
"id": "324e1d52",
"metadata": {
"id": "324e1d52"
},
"source": [
"Let's save our work before continuing."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "72623ae5",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 169
},
"id": "72623ae5",
"outputId": "37c914c8-eea5-4064-db48-bbed55f35a94"
},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-25-7f2017c1a3df>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mjovian\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'jovian' is not defined"
]
}
],
"source": [
"jovian.commit()"
]
},
{
"cell_type": "markdown",
"id": "eab02335",
"metadata": {
"id": "eab02335"
},
"source": [
"## Linear Regression using a Single Feature\n",
"\n",
"We now know that the \"smoker\" and \"age\" columns have the strongest correlation with \"charges\". Let's try to find a way of estimating the value of \"charges\" using the value of \"age\" for non-smokers. First, let's create a data frame containing just the data for non-smokers."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc5f95a2",
"metadata": {
"id": "fc5f95a2"
},
"outputs": [],
"source": [
"non_smoker_df = medical_df[medical_df.smoker == 'no']"
]
},
{
"cell_type": "markdown",
"id": "47dae464",
"metadata": {
"id": "47dae464"
},
"source": [
"Next, let's visualize the relationship between \"age\" and \"charges\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b6e218f7",
"metadata": {
"id": "b6e218f7",
"outputId": "5c13ae86-9912-44a0-f2fb-0368e680d1fe"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAGNCAYAAACLy6x3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB7BklEQVR4nO3dd5xcV3nw8d/0vjvbd6VdNUs6kmzjgjs22LRQTH0hhBIglNDfUF9eYkwItkMCAQIkJsAbh5LQQg89NhhcMOCCDZZ01CxLK23fnZ3e5/3jzozH671XO/bOTtnn+/noo525RefO1cw+85xznmMrlUoIIYQQQojOZW92A4QQQgghRGNJwCeEEEII0eEk4BNCCCGE6HAS8AkhhBBCdDgJ+IQQQgghOpwEfEIIIYQQHc7Z7AYIIUQtpdS/Aa8B/lZr/cEmN6dhlFLdwNuAFwPbgDRwP/BprfW3avZ7NfDvwA6t9aEmNFUI0QEkwyeEaBlKqSDwp8AfgNcppRxNblJDKKV2AHcDbwC+DLwAeC1wHPimUuojTWyeEKIDSYZPCNFK/hTwAG8GbgGeC3ynqS1aZUopJ/ANoAA8Xms9XbP5+0qpKeA9SqkfaK1/1ZRGCiE6jgR8QohW8hrgl1rrW5VS9wJvYknAp5R6N0ZAOIKRJft74PvAFVrrm8v77AH+AXgSRk/GzcC7tNZ6uX9UKXUxcDvwAq31d2ue3wYcBl6jtf53pdSfAf8X2Amkyud9n9b6QB3X+CzgbOAlS4K9imsBH0ZAWOt8pdQNwAXAPHAD8Dda60K5rf3A3wJXYrw2ceCX5es+Ut7nC8AYsB/4c2AG2I0RZP8jRqbRD/wAuAP4hNbaVvN6PAe4GjgTiAHfAv6v1nqxvN0GXAO8FBgFpoHvll+jeB2vkRBilUmXrhCiJSilFPAE4Ivlp/4deKpSanvNPh/ACOS+ATwPIyj5+pLzbMcI3jYCfwG8GhgCblNKjS33b2utfw0cAv5syaaXAUmMbtYnAP8BfA8jaHsTRuD2o3Kgs1LPwgjmfmTSlojW+i1a69uWbPpXjOD3WcB/A1cBfwnVQOuHwNMxAtKnAR8EngJ8bsl5ngichhHcvUdrnS1f05+Wj/lTIIQRSFcppf60vN8R4IXlf/9/AT8uZy0B3gu8Bbiu3IZ/AF4HfPJUL4oQorEkwyeEaBWvAaLAt8uP/wP4CMY4t/copQIYwcz1Wuv/W97nZ+Xn31Bzng8COeApWusFAKXUTzAClfcv2bfWl4H3KqUCWutE+bmXAd/VWseUUpdiZPU+rLVOl887DjwbCGJkvFZiDJh9FBmvq7TW/1z+d28GngM8FfgMRkYvAfwfrfUvy/v/shz8vnnJeZzAG7XWR8vnejJwBfCiymSR8uv1R4zsXyWg/EfgF1rralCslLoPI+h+MfBVjIzqXVrrG8q7/EopFQO66rxWIcQqk4BPCNF05QzRKzG6Zt1KKTdGFuxnwF8opd4PXIzR1fmtJYd/lYcHcU/B6MqM1WSe0sBNGBkwM1/GCBafC3xVKXUORsDzjvL2m4G/A/6olPo28BPgFq317XVebh54NJNRbqn8oLUuKqWOAj3lxyeBJyulbEqpLcAOYBdGxtShlHJUun6BxUqwV/ZkjNf6e0vO/3WM1wOMLuwx4KM1rynAXcAExuv6VYzX+KNKqdswuoV/pLX+IkKIppMuXSFEK3gWMAy8Alio+XMl0IeRQRoo7zuz5NipJY/7Mboac0v+/BlGN++ytNYPALdijD8DI7s3AdxY3v4bjMDmAEY5lZuASaXU39bZpfsg0FuekbwspdToMk8nljwuUvMZrpR6efncDwBfA56P0R0NUNu+pZnFAWBBa51f8nzt69pf/vtTPPJ1HeGh1/VjwBsBF8ZYxN8rpQ4ppV60zPUIIdaQBHxCiFbwGmAco2tx6Z9JjPFy4+V9h5YcO7jkcQT4L+D8Zf5ccop2fBn4E6VUGCNA/EpNZgyt9U1a62dhZNb+BCPr9wGgnoDmpxifvc9YbqNSKgQcUEp9eaUnLHc3fwljgsSY1rpPa/0U4NcrOHwcIwBd2uNT+7pGyn//X5Z/Xd8GoLUuaa0/q7W+oHz8yzC6ur+qlNqw0usRQqw+6dIVQjSVUmoIYxzcJyqzbJds/0/gXRjj+xYxJhv8vGaXFy455JfAHuBerXWu5jw3YMxuvdOiOd/AyGL9LcYs0y/VHP8xjAkPF5TH8P1MKXV3+d/fvJJrLfspRp3B65RSN2utZ5dsr8zSXXHAhxHI2jGKVc+V2+vAmDgB1l/uf1ne/jzK3eXljOULavbZjzHjdpvW+h8qTyqlejAmzfwnoJVStwN3aq3/d7kdX1VK5TAC8A3AyTquSQixiiTgE0I02ysxPov+02T7FzACvjdgTOK4pjwR4BcYkwTeVN6vWP77QxiZrR8ppf4Foyv0NRgZu1dZNURrvaiU+j7GTNN7tdb31Wy+CWM835eVUl/CCJLegjE+8HsASqkBjBmwe7XWUZN/I6+UeiXG+MS7lFKfBH4P9GKUSnku8Pda659ZtXWJ35b//qdyYNsDvBU4q/x8AMiatOdXSqn/AT5fbv9RjCLQjwNK5X0KSqmrgM8ppfLl6w0Cfw0o4O3l090CvFMpNVP+eRBjHKAuX6MQokmkS1cI0Wx/gREg3bvcRq31HzEmB7wC+DRGF+orMCYFPBGjFAiUx6aVg7RLMQKcL2GUMjkN+FOt9Zc4tS9hTKp42L5a6x9hdFHuwsiE/RdGIPVUrfXB8m7Pxgg2z7X6B7TWv8foCv0Oxpi3/wauxyiH8nyt9ftW0M7a892MEXxeAvwY+ARwjIeyn5ed4hQvwQjiPgx8E8hgzP6tjvfTWv+/8n4XYEyu+TzGOL8naa33lne7CqMkyysxJrX8C3AP8LRlxggKIdaQrVQqNbsNQghxSuUxZi/DKA1yvOb5N2MEgn1a60iTmte2lFKbMWZAf09rnap5/hvAdq21ZfAqhGgPEvAJIdqGUup+jOzTtcAsxooP12LUyvuLZratXZWLUR/EyPD9G0bZmGdgdKO/RsqqCNEZpEtXCNFOrsQoi/IZ4H8wxo59gvKKE6J+5WzpMzHG230Do3v5CuAVEuwJ0TkkwyeEEEII0eEkwyeEEEII0eEk4BNCCCGE6HBSh89CsVgsFQrt2eXtcNho17avd3Lv2pPct/Yk9619yb17JJfLMctDy1A+jAR8FgqFEpFI8tQ7tqBw2N+2bV/v5N61J7lv7UnuW/uSe/dIAwOhB822SZeuEEIIIUSHk4BPCCGEEKLDScAnhBBCCNHhJOATQgghhOhwEvAJIYQQQnQ4CfiEEEIIITqcBHxCCCGEEB1OAj4hhBBCiA4nAZ8QQgghRIeTgE8IIYQQosNJwCeEEEKIpoukc+ybjhNJ55rdlI4ka+kKIYQQoqki6Rz/cstRZuMZ+oMe3nLZFsJeV7Ob1VEkwyeEEEKIppqIZpiNZwCYjWeYiGaa3KLOIwGfEEIIIZpqpMtDf9ADQH/Qw0iXZ9XOLV3FBunSFUIIIURThb0u3nLZFiaiGUa6PKvWnStdxQ+RgE8IIYQQTRf2ulY9GFuuq3i9BnzSpSuEEEKIjtTIruJ2Ixk+IYQQQnSkRnUVtyMJ+IQQQgjRsRrRVdyOpEtXCCGEEKLDScAnhBBCCNHhJOATQgghhOhwEvAJIYQQQnS4NZ20oZTaBfwzcBEwB/yz1vqj5W2fBf5yySHv0Fr/U3n7FcAnge3Ab4HXaa0P1Zz7bcB7gW7gm8BbtdaJ8jYP8GngxUAG+LjW+iMNukwhhBBCiJayZhk+pZQL+DFwDDgbeAtwtVLq5eVdTgfeA4zU/Plc+dgx4PvAfwDnAZPA95RS9vL2FwLXAm8GrgDOBz5W889/FLgYeCrwBuD9Sqk/a9ClCiGEEEK0lLXM8G3EyMy9RWudAg4ppW4EngT8J7AbeL/WenKZY18P3FvJyimlXoMR9D0ZuBF4O/BprfX3y9vfCNyolHo3UCof/xyt9V3AXUqpjwBvBb7WqIsVQgghmiWSzkntOfEwaxbwaa2PAi8BUErZgEuAJwJvUUoNA72ANjn8IuBXNedKKqXuBi5WSv0CI6N3bc3+d2Bc2zlAAfAAt9ZsvxUju+jQWhce+9UJIYQQrUHWjxXLadakjXGMoOvXGOPt9gB54Bql1Aml1L1KqVfX7D8CnFxyjilgFAgD3trtWus8xhjB0fKx81rr9JJj3cDg6l2SEEII0XzLrR8rRLNW2ngesAH4DPAJHsrs3Qt8Crgc+KxSKqG1/i/AjzHZolYGI3Pnr3m83HanyTbK2005HDbCYb/VLi3L4bC3bdvXO7l37UnuW3vqxPu2w+lgpMdfzfDt2NBNONh5a8h24r1rpKYEfFrrOwGUUn7gi0AX8FWt9Xx5l/uUUjuANwH/BaR5ZHDmwcjipWseL92exBjDt9w2yttNFQolIhHLXVpWOOxv27avd3Lv2pPct/bUiffNCfzlRWPVMXzOfKHjrhE68949VgMDIdNtazlLd6NS6rlLnt6L0bUaqgn2KvZhTPQAOAEML9k+DEzwUNBX3a6UcgJ95e0ngB6llHvJsRlg6b8phBBCtL2w18XuwaCM3RNVazmGbzfwbaVU7bi5xwMzwPuUUj9Ysv85wP7yz3cAl1Y2lDOD5wB3aK2LwO9qt2OUYMkD9wC/B7IYk0QqLgXuKo/1E0IIIYToaGvZpftLjIzeF5RS7wJOA/4euA5j7N7blVL/G/gh8EzglcBTysfeALxHKXUV8B3gaox6fjeVt18PfF4pdV/5+euBG7TWcQCl1BeB68sTQYaBd2OUahFCCCGE6HhrluHTWueAZ2Nk3n4DfBb4J+BTWuubgZdirLRxP0YB5ZdqrW8tH3sUeCHw58CdwBDwvHJ2D6311zDKsnwGoy7fncC7av75d2JkAX8O/CvwIa31Nxp2sUIIIYQQLcRWKpWa3YaWlcsVSu06IFQGs7YvuXftSe5be5L71r7k3j3SwEDoLowVyR6hWXX4hBBCCCHEGpGATwghhBCiw0nAJ4QQQgjR4STgE0IIIYTocBLwCSGEEKsoks6xbzpOJJ1rdlOEqGrWWrpCCCFEx4mkc/zLLUer69i+5bItstqFaAmS4RNCCCFWyUQ0w2w8A8BsPMNENNPkFglhkIBPCCGEWCUjXR76gx4A+oMeRro8TW6REAbp0hVCCCFWSdjr4i2XbWEimmGkyyPduaJlSMAnhBBCrKKw1yWBnmg50qUrhBBCCNHhJOATQgghhOhwEvAJIYQQQnQ4CfiEEEIIITqcBHxCCCGEEB1OAj4hhFhnZOkvIdYfKcsihBDriCz9JcT6JBk+IYRYR2TpLyHWJwn4hBBiHZGlv4RYn6RLVwgh1hFZ+ksIc5F0rmPfGxLwCSHEOiNLfwnxSJ0+vlW6dIUQQgix7nX6+FYJ+IQQQgix7nX6+Fbp0hVCCCHEutfp41sl4BNCCCGEoLPHt0qXrhBCCCFEh5OATwghhBCiw0nAJ4QQQgjR4STgE0IIIYTocBLwCSGEEEJ0uDWdpauU2gX8M3ARMAf8s9b6o+Vtm4HPA08AjgHv1Fr/uObYK4BPAtuB3wKv01ofqtn+NuC9QDfwTeCtWutEeZsH+DTwYiADfFxr/ZHGXq0QQohWFknnODoeIey0dezMTCEq1izDp5RyAT/GCObOBt4CXK2UerlSygZ8DyMIPB/4IvAtpdTW8rFjwPeB/wDOAyaB7yml7OXtLwSuBd4MXFE+x8dq/vmPAhcDTwXeALxfKfVnjbxeIYQQrauyjNb1Nx/mX245SiSda3aTRB0i6Ry/H4+0zX2LpHPsm443tb1rmeHbiJGZe4vWOgUcUkrdCDwJmAAUcJnWOgbsVUo9FXgt8H7g9cC9laycUuo1GEHfk4EbgbcDn9Zaf7+8/Y3AjUqpdwOl8vHP0VrfBdyllPoI8Fbga2ty5UIIIVpKZRktl8tRXUark7J8kXSuYwsIV4L1xUyebo+z5de8bZU1etcsw6e1Pqq1fonWOqWUsimlngA8EbgJo4v3nnKwV3ErRlaO8vZf1ZwrCdwNXKyUcmBk9H5Vc+wdGMHsOcBZgKd8vtpzn18+VgghxDrTyctoVQKMz912tCOzl+225m2rtLdZK22MAxuAH2CMt/sn4OSSfaaA0fLPIxbbw4C3drvWOq+UmitvzwLzWuv0kmPdwCBGdlEIIcQ6UllGK5IvddwYvuUCjE66vkqwvpjJt0WwXmlvJcPXrPY2K+B7HkbA9xngE4AfYzJFrQxGZo5TbPfXPF5uu9NkGzXnX5bDYSMc9lvt0rIcDnvbtn29k3vXnuS+tZ8wxn0rFIrNbsqq2uF0MNLjrwYYOzZ0Ew62dlBUjzDw3mfu4uRimg3d3mqmtlWFMdo7HkkxGvY1rb1NCfi01ncCKKX8GBM0bsCYXVvLAyTLP6d5ZHDmwZjkka55vNzxJZNt1Jx/WYVCiUjEcpeWFQ7727bt653cu/Yk9609deJ9cwJ/edFYdQyfM1/oyGt83MZuIpFkW1ybE9gSdEOD78XAQMh021rO0t2olHrukqf3YnStTgDDS7YN81B36wmL7ZWgr7pdKeUE+srbTwA9Sin3kmMzwPyjvR4hhBCiVYW9LnYPBjuqK1c8NmtZeHk38G2l1GDNc48HZjAmUZytlArUbLsUY/IF5b8vrWwoZwbPAe7QWheB39Vux5jskQfuAX6PMY7vkiXnvktrnX/slyWEEEII0drWskv3lxgZvS8opd4FnAb8PXBdeduD5W0fBK7EmJn72vKxNwDvUUpdBXwHuBqjnt9N5e3XA59XSt1Xfv564AatdRxAKfVF4Hql1KsxsnvvxijVIoQQQjRNJ5dPEa1lLcuy5IBnY2TefgN8FmN27qe01gWMiRyDwF3AK4EXaK2Plo89CrwQ+HPgTmAIeF45u4fW+msYhZc/g1GX707gXTX//DsxsoA/B/4V+JDW+hsNu1ghhBDiFDq9fIpoLbZSqdTsNrSsXK5QaofBoMvpxIHI64Xcu/Yk9609NfO+7ZuO87nbjlYf/+UTtrB7MNiUtrQjec890sBA6C6MFckeYS3H8AkhhBCirJOLPzdauy2t1gqaVYdPCCGEWNcqxZ9lDF992m1ptVYhAZ8QQgjRJGGvS4KVOnX6OsiNIl26QgjxGEn3UmNF0jn2Tcfl9RWAdIU/WpLhE0KIx6DTu5eaXTak8vpWlgnrtNdX1K+T10FuJAn4hBDiMejk7qVWCLYqry/Qca+veLh6vlyEvS62yCzdukjAJ4QQj0Gle2kxk++47qVWCLYqr28l6Oyk11c8pBW+XHQ6CfiEEOIx6OTupVYItmQm6/rQCl8uOp0EfEII8Rh1avdSqwRbMpO18zXyy0Wzx6G2Cgn4hBBCmJJgS6yFRn25kK7ih0jA14Ei6RxHxyMd170khBCiczXiy4V0FT9EAr4O0+klIoQQQoiVaoVxqK1CAr4O08klIkTrkbExQohW1irjUFuBBHwdppNLRIjWImNjhHjs6vnSJF+wHh0Zh2qQgK/DdHKJCNFaZGyMEI9NPV+a5AuWeKxkLd0OFPa6OHs0LB8GoqFkPUshlrfStX+X+9K0GvsKsRzJ8AkhHhUZGyPEI9WTiatnQoFMPlgbndxtLgGfEOJRk7ExQjxcPUMd6vnSJF+wGq/Tu80l4BNCCCFWSb2ZuHq+NMkXrMbq9HHJEvAJIYQQq0Qyce2r07vNJeATQgghxLrX6cG6BHxCCCFaWjsNpO/0cWCdrpO7zSXgE0IIseZWGsS1WwDV6ePARPuSgE8IIcSaqieIqzeAanY2sNPHgYn2JQGfaPoHpBBifakniKsngGqFbGDY6+JVF45xaDbB9v6AfKaKliEB3zrXCh+QQoj1pZ4grp6B9K3QnRpJ5/jib47LZ6poORLwrXOt8AEphFhf6p0NudKB9K3QnSqfqaJVScC3zrXCB6QQYv1pxGzIegPJSDrH0fEIYadt1doin6miVUnAt851et0hIcT6stJAsjKcZTGTp9vjXLWu10Z+psp4a/FYrGnAp5Q6Dfgn4FIgAXwduEprnVZKfRb4yyWHvENr/U/lY68APglsB34LvE5rfajm3G8D3gt0A98E3qq1TpS3eYBPAy8GMsDHtdYfadBltp1OrjskhBDLmYhmcDigP+ihWCysatdrIz5TZby1eKzsa/UPKaXcwH9jBFyXAC8Hng9cV97ldOA9wEjNn8+Vjx0Dvg/8B3AeMAl8TyllL29/IXAt8GbgCuB84GM1//xHgYuBpwJvAN6vlPqzxlypEEKIVhfyOtGTCX6+fxo9mSDkbe0Or+XGBgpRj7X8H34BRnbuAq11HNinlLoa+DjwLmA38H6t9eQyx74euLeSlVNKvQYj6HsycCPwduDTWuvvl7e/EbhRKfVuoFQ+/jla67uAu5RSHwHeCnytURcr6iNdFUKItRRL5wl6HGzp8+Oy24il89DV7FaZk7GB4rFay4BPA88qB3sVJSCslBoGesv7LOci4FfVE2mdVErdDVyslPoFRkbv2pr978C4tnOAAuABbq3ZfitwtVLKobUuPLbLEo+VdFUIIdbaSJeH4S5vdQxfqwdQMt5aPFZrFvBprWcwsnEAlLtj31p+bg+QB65RSj0TmAU+obX+Qnn3EeDkklNOAaNAGPDWbtda55VSc+XtWWBea51ecqwbGAQmVucKxaMlZQzWB8niilZSCaAi+dKqztJtJBlvLR6LZg5a+DhGBu584PLyc/cCnyo//qxSKqG1/i/AjzH2r1YGI3Pnr3m83HanyTbK2005HDbCYb/VLi3L4bC3Tdt3OB2M9PirGb4dG7oJB1v723YjtdO9W6nZeIbP3XGkeo/f+dQd9HfYPe7E+9bpwhj3rVAoNrsp4lGQ91x91jzgU0rZMGbqvhl4kdb6fqXUXuCrWuv58m73KaV2AG8C/gtI88jgzAPMlbdhsj2J0W283DbK200VCiUiEctdWlY47G+btjuBv7xorJr9ceYLq9b2dswqtdO9W6mD03EmFoxrmlhIcvDkIs7BYJNbtbo68b7VS95vYi3JvXukgYGQ6ba1LstiB/4NY4buS7TW3wPQWpeA+SW77wOeXv75BDC8ZPsw8EceCvoqj1FKOYE+jO7aAtCjlHJrrbM1x2aW+TdFk0gZg84mA847n7zfGq8dA+pWIK+bYa0zfB8DXga8UGv9g8qTSqmPAUprfWXNvucA+8s/3wE8sWZ/f3n7tVrrolLqdxi1/SpjBC/GGBN4D1DEGMd3CXBzefulwF1a6/yqXp1oKTI2sHXIgPPOJ++3xpKA+tGR1+0haxbwKaUuwiif8j7gzvLM3Ir/Bt6ulPrfwA+BZwKvBJ5S3n4D8B6l1FXAd4CrgWPATeXt1wOfV0rdV37+euCGyoxgpdQXgeuVUq/GyO69G6NUi+hgklVqLTLgvLPJ+62xJKB+dOR1e8haZvheVP77w+U/tVzAS4EPAB8BjgAv1VrfCqC1PlourvwJ4CqMjN/ztNbF8vavKaU2A5/BGJ/3HYzafhXvLG/7ORAFPqS1/saqX6FoKZJVEmLtyPutsdo1oG52d2q7vm6NYCuVSs1uQ8vK5QqlVhkQWu+bRgazti+5d+1J7lt7aqf71uzgqV6N7k5d6b1rt9ftsRgYCN2FsSLZI7T2WjICkDEIQggh2m9YRKt0p7bb69Yoa7aWrnj0ZA1FIYQQ7abSnQqs++7UViAZvjYgYxCEEEK0GxnX2Vok4GsD8qYRYu2tp3E/QjSKdKe2Dgn42oS8aYRYOzJuVgjRaWQMnxCPQiSdY990nEg61+ymiAaQcbNCiE4jGT7Rdprd1SbZn84n42aFEJ1GAr420ewgp1W0QrDVKqUGROPIuFnxWMjntWhFEvC1gVYIclpFKwRbkv1ZH2TcrHg05PNatCoJ+NpAKwQ5raIVgi3J/gghzMjntWhVEvC1gVYIclpFqwRbkv0RQixHPq9Fq5KArw20SpDTKiTYEkK0Kvm8Fq1KAj4hhBBiFcmXUtGKJOBrA+06CFhmqgkhhBCtQQK+NtCOg4DbNUgVQghhTb7MtycJ+NpAOw4CbscgVQghhDX5Mt++JOBrA+04CLgdg1RhkG/vQggz8mW+fUnA1ybabRBwOwapQr69CyGsyZf59iUBn2iYdgtShXx7F0JYa+SXeeldaCwJ+ETDyJu3/ci3dyHEqTTiy7z0LjTeow74lFIe4HHAAa314uo1SXQCefO2J+mKF0I0g/QuNN6KAz6l1E7g34H3AH8Ebgf2ADGl1LO11rc2pomdq5MzYPLmbV/SFS+EWGvSu9B49WT4/hmYAA4CfwEMAGPAa4CPAxeseus6WKdnwOTNK4RYLZ385VgYpHeh8eoJ+J4AnKm1nlFKPQ/4ntb6hFLqS8D7GtO8ztXpGTB58wohVkOnfzkWD5Hehcay17FvHAgrpfqBS4Eflp/fCcytdsM6XSUDBnRsBizsdbF7MChvYCHEo7bcl2MhRP3qyfB9G/g6kAJmgR8rpV4CfBK4oQFt62iSARNCrGcr7aaV4SFCrI56Ar63lf9sBj6rtc4qpdzAtcC/NKJxnU7S10KI9aieblr5cvzoyLhHsdSKAz6tdR74hFLKDmxWSjmBr2utsw1rnRBCiI5T7xhm+XJcn0g6xydvPsJ4JMVo2MdfXb5NCiSLusqyuIC/w8jyOTHG7v29UioPvF5rnWhME4UQQnQS6aZtrCPzSX53LEK2UGQimuHIfJJzN3SvyrllEk37qmfSxoeAPyn/SZef+xRwDvCxVW6XEEKsSCSdY990nEg61+ymiBWqdNP+5RO2rPuAoRH/f512O2Gfkc8J+5w47fX8qrcmk2jaVz1j+F4KvFxrfZtSqgSgtb5VKfUa4HvAG091AqXUacA/YczyTWBMArlKa51WSm0GPo9R/uUY8E6t9Y9rjr0CY4LIduC3wOu01odqtr8NeC/QDXwTeGsl61heFeTTwIuBDPBxrfVH6rh2IR416f5oHMk2tC/ppm3c/99NYS+XnNbPYipLt8/NprB3FVprkOxs+6on7O8Hppd5PgH4TnVweYLHf2MEXJcALweeD1ynlLJhBI1zwPnAF4FvKaW2lo8dA74P/AdwHjAJfK88nhCl1AsxJo+8GbiifI7arONHgYuBpwJvAN6vlPqzlV+6EA+30m/llQ/0z912lH+55ahkoVaZZBtEO2vU/9+w18XLzt3A888c4WXnbljVwFqys+2rngzfjcB7lVKvLz8uKaW6gQ8DP1/B8RdgZOcu0FrHgX1KqasxVun4IaCAy7TWMWCvUuqpwGuB9wOvB+6tZOXKWcVJ4Mnldr0d+LTW+vvl7W8EblRKvRsolY9/jtb6LuAupdRHgLcCX6vj+oUA6vtW3ukFtptNsg2inTXy/28jM6iSnW1P9QR8bwG+g5Hl82EEaWPAA8BzVnC8Bp5VDvYqSkAYuAi4pxzsVdwKXFb++SLgV9UTaZ1USt0NXKyU+gVGRu/ammPvwLi2c4AC4Cmfr/bcVyulHFrrwgraLkRVPUGcBCSNJSU7RDuT/79iLdVTluUEcIFS6inArvKxGviZ1rq4guNnMLJxAJS7Y99afm4EOLnkkClgtPyz1fYw4K3drrXOK6XmytuzwLzWOr3kWDcwiLE+sBArVk8QJx/ojSfZBtHO5P+vWCv1ZPgA0FrfBNy0Cv/2xzEycOcD78QY21crg5GZA/BbbPfXPF5uu9NkGzXnX5bDYSMc9lvt0rIcDnvbtr3VhYE3Xn4a+ydj7BoOsWUgeMr9twyv/Pxy79qT3Lf2MxvPcN+JRTZ0e6tLXYr2Ie+5+tRTh6+I0QW7nCxGpuwbwNVaa9OR6eUJGv+EMcHiRVrr+5VSaYzZtbU8QLL8c5pHBmcejEke6ZrHyx1fMtlGzfmXVSiUiEQsd2lZ4bC/bdve6iLpHP/awJmhcu/ak9y39lIZi7uYydPtccoEhDYk77lHGhgImW6rZ5bumzC6Qt8EnI2RnXs9RlfqR4D/Azybh4+le5hyN+4N5XO8RGv9vfKmE8DSHMgwD3W3Wm2vBH3V7eVVQPrK208APeVZwrXHZoB560sW4pHqnVkndeIM8jqIViIzvMV6U0+X7nuA12itf1Lz3H1KqWPAZ7TWO5RSJ4BvYdTDW87HgJcBL9Ra/6Dm+TuAv1ZKBWpW7Li0/Hxl+xMrOyul/BgB57Va66JS6nfl/StjBC8G8sA9QBEjA3kJcHPNue8qLxcnRF3qGcMndeIM8jqIVlN5Hy9m8jKhSqwL9QR8QxjZsqWmgQ3lnyeAruUOVkpdhFE+5X3AnUqp2ozdL4EHgS8opT4IXIkxM/e15e03AO9RSl2FMVP4aozizJWxhNcDn1dK3Vd+/nrghsqMYKXUF4HrlVKvxsjuvRsjOylE3eqZiCFlWQyNfB2ksLV4NCrv40i+RNhpk/87ouPV06X7PxhB02mVJ8o/fwq4SSnlwAjQ/mBy/IvKf38YIzCs/WMDnocxa/Yu4JXAC7TWRwHKf78Q+HPgTozg83mV2cFa669hdCV/BiPLdyfwrpp/+53A7zDqBf4r8CGt9TfquHYhHibsdbF7MHjKXxKVLAKwrrMIjXodpLD1Q6TLvH5hr4uzR8MS7Il1wVYqmc3DeDilVC/GUmhPARYxgrQQ8FPgNRizbW/ACMRub0hr11guVyi164DQdhvM2slZmnquLZLOdWzGoRH3eN90nM/ddrT6+C+fsIXdg9azphulme856TJ/9Nrts1I8RO7dIw0MhO7CWJHsEerp0h0Bno6xWsbjMMbI7dVaHwRQSt0IDGqtVxZBirp0ekDUCr+sxqNpDs0m2N4fYLRr9daeXGmdrU6fNdiIemNS2NowEc3gcMBglwebjXU7dEAIYa6egO8XwDPLy5MdXLpRa51atVaJh2mVgKhRWmGc23g0zdU/2M+JxRQbu31cc+WuVQ36VqLyOrhcjnU93q8eUtjaEPI60ZOJ6v/f0Hl1l1gVQnS4esbwjQMbG9UQYa7Tywe0wji3Q7PGL0uAE4spDs0mTnHE6muF16EdrXQ8ZSeLpfMEPQ429/gIehzE0lKAQAjxcPV8DbwP+JZS6h7gKA8VPAZAa/3KVWyXqNHp3VatkKXZ3h9gY7evmiHZ3h9Y8zbIrEHxaI10eRju8nbsZ4QQ4rGrJ+ArAf/RqIYIc60QEDVas9eTHO3ycs2Vuxoyhq8eYa+LLTIQWdRpPXxGCCEemxUHfFrrv2hkQ4S1ZgdEraRRE1hGu7xNC/SEeKzkM0IIYaWetXTtGLXwTgcc5adtGOvSnqO1ftrqN0+Ih2vHCSydPMNaCCFEe6inS/efgb/AWK7sAuB24DSMlSv+ZfWbJsQjtcKM3nq0Y4AqhBCi89QzS/fFwMu11pcAh4A3AZuArwL+BrRNiEcY6fIQ9rmIZ/KEfa6WH5ze6TOsReeTFTyE6Az1BHxdGMuTgbF82oVa6wLGUmnPXO2GCWFmoMvLtoEAA20w3k5KrYh2JkvXCdE56unSPQycCxwH7sfo1r0BI2jsWv2mCfFIE9EMB6diAExHW79Lt1VmT8o4QvFotNsQCiGEuXoCvo8CX1VKvQZjTd27lVIl4GLg1kY0Toil2rEmYbNnT8o4QvFoteP7TQixvHrKsvy7UuoAkNJa71NKPR94HXAH8MHGNE+Ih2uVjFk7kSyNeLTk/SZE56hrwUWt9W01P/8U+Omqt0iIU2h2xqzdSJZGPBbyfhOiM9RTh68HeB9wFuDFqMFXpbV+4uo2TawnMsascSRLI4QQop4M35eAc4BvAIuNaY5Yj2SMWeNJlkYIIda3egK+pwBP0lr/7pR7ClEHGWMmhBBCNFY9dfhOAMVGNUSsX61Sq04KzAohhOhUlhk+pdS2mofXAzcopf4PcAQo1O6rtT6y+s0T60ErjDGTbmUhhBCd7FRduoeAUvnnyiSNH5V/rn2+BDhWvXViTbTChIlmjzGTbmUhhBCd7FQB39Ylj18OJIDvYgR6fwPsxZjIIdqQZLYMUrpECCFEo7RCYsUy4NNaP1j5WSn1PuDdwFsqzyulHgT+L5ABPtXAdooGkcyWoRW6lYUQQnSeVkms1DNp403AS7TWX608obX+IPAK4B2r3C6xRlplwkQrCHtd7B4MSrAnhBBi1SyXWGmGesqyhIHxZZ5/ABhcldaINSeZLSGEEKJxRro8nLu5h0gqS9jnblpipZ4M36+Aa5RSwcoT5Z//Brh1tRsm1o5ktoQQQojGiGcL3LR/mu/+foKb9k8TzxZOfVAD1JPheyvwM2BCKXWo/NxpwHHgeavdMCGEaBeRdI6j4xHCTpt8cRJCPMyh2QQnF9M47DZOLqY5NJtgtMu75u1YccCntT6qlDoDeBqwG8gCB4Gfaq2lILMQYl2qDMhezOTp9jjX7Ux3IcTytvcH2Njt48Riio3dPrb3B5rSjnoyfGits8APy3+EEGLdqwzIdrkc63qmuxCdoJ7yKSvdd7TLyzVX7uLQbILt/YGmZPegzoBPCCHEw1Vmui9m8ut+prsQ7aye8in1lloZ7fI2LdCraErAp5TyAHcBb9da31h+7n3A3y3Z9ZNa67eXt58F/CtwFrAPeKPW+nc15/zT8vEbgP8BXq+1ni5vswHXAq8HXMC/Ae/VWjdn5KQQomNUZrpH8iUZwydEG6unLm071rCtZ5buqlBKeYGvAqcv2XQ6RvHmkZo/V5ePCQA/Bu4AHg/cAvxQKRUqbz8f+CJGUHcR0AV8qebc7wBeBbwIeAHwUuA9q391Qoj1KOx1cfZouOU/8IUQ5ka6POwYCjFY/tsqW9+ONWzXNMOnlNoDfIWH1uWttQf4lNZ6cpltLwFywLu01kWl1DuAZ5ef/3/A24Bvaa2/UP53XgkcU0pt11ofAt4OfFBr/avy9vcCHwb+fhUvTwghhBBtbCaaZjySYjRsPRc17HXxksdvZN90jN2Dobb4srfWGb4nAb8ALq59UillBxSgTY67CLitMhtYa10Cbqs5z0UYdQIpbz8OPAhcrJTaAIzVbseoGziqlBp7rBckhBBCiPY3Ec3gcdvZNhDA47ZbrogxHk1z3U8O8OlfHOG6nxxgPJq2PHcknWPfdJxIOrfazV6xNc3waa0/U/lZKVW7aQvgB16vlPoakARuAD5WDvJGeGQwOAWcXf55BDi5zPbR8jaWbJ8q/z2KUUdQCCGEEOtYyOtETyaq5VNC55mHSIdmjf0ATiymLGvrRdI5PnnzkXLm0MdfXb6tKRnBVpmlu7v89wngSuBc4JPl5z6KEQwuDbUzQKXT3Gq7v+YxS3627HR3OGyEw36rXVqWw2Fv27avd3Lv2pPct/Yk9619rfa9OxrP0u134XHZ8boc5O3m5z9zrMhYj58TkRQbwz7OHOsx3fePh2e5a3yRbL7IVDzLeCLHluHuVWv3SrVEwKe1/qFSql9rPVd+6g9KqX7gLRgBX5pHBmcejEwgp9iernmcq/mZmuOXVSiUiEQsd2lZ4bC/bdu+3sm9a09y39qT3LfWUU8NPFj9exd22hgIuI1SKwE3YafN9Px9Ljt/+yxVra3X57Kb7lvMFTh9JEgyV8TvslPMFRr2f25gIGS6rSUCPoCaYK9iH0aJFTAyf8NLtg8DEyvYfqLm8aGan6k5Xggh2lq9vyyFaCX11rVrhEqJpZW+j4JuB0NBD0G3w3K/Xr+LuUSeicUUI90+ev3NeX+ueVmW5Sil/kopdd+Sp8/hoXF7dwCXlOvpVerqPaH8fGX7pTXnGwM2AXdorU8Cx2q3l38+WZ7cIRqkFQapisaSe9waKr8sP3fbUf7llqNyP0RDNeJ9PxHN4HDAYJcHhwPLCRONFPa62D0YXNEqG9//4xQ/0TN8/49Tlq9FLJ3nsh19PPvMES7b0UcsnV/tZq9Iq2T4fgL8vVLqwxhFkS8A3gu8sbz9mxglVD6tlLoeo4ByCPhaeftngF8qpW7DCP4+CfxYa32wZvuHlVLHgAJGSZbKGEHRAK3wbU00ltzj1tGORWBFe2rU+76eCRP1akT2+8Bskp/tn2YymmG4y8Ou4RAXjC4/Lq9ks3GznmEqmmGoy8PjR8Or0oZ6tUSGT2utMSZrPBW4D6OA8nu11l8pb49i1N27BLgbI7v3LK11rLz91xhB4PuBXwOLGIWWKz6KUf/vW+U/XwX+seEXdgqdnB1Z7heQ6Cxyj1tHOxaBFe2pUe/7WDpP0ONgc4+PoMexalmwSDrHV+4+yXf/MMFX7j65ar9vJ+NpHphLspjK8cBcksm4eVmWI3MJDk7HmY5lODgd58hcYlXaUK+mZfi01rYlj28CzrfY/3cYs3fNtn8RY7WN5bYVgHeV/7SETs+OVH4BVa5PfgF1HrnHraPesUdCPFqNet+PdHno8jmZS2YZ7Fq98x6LpLn98CzT8SyDQTeXbuslPGz+/lhpNjDgdjIQdDMdyzAQdBNwm4dTLoeDoNdFKpch6HXhcliP+WuUVunSXXc6vQtGfgF1PrnHrSXsdck9EA3XqPf9bDJHtlCiy+siWygxm8xZnjuSznF0PHLK9avzxSKRlJEtjKTy5IvmK2jUUy9vJORl53CQDd0+gj4HI6Hla/ABDAZd7B4KMdbjI+h2MhhszvtUAr4mWQ/ZEfkF1PnkHgux/jTifb9vOsZthx4q1vHEHX1s712+rl2lh2wxk6fb47TsIdvW6+f8TeFqELfN5JwAR+aTzCZz+L1OZpM5jswnOXfD8uPyjkVSzMWyOOx25mJZjkVS7BkILLvv1h4fZ2zsYj6ZpdfvZmuPz7QNjSQBX5NIdkSI9UnKpwjxSLsHQ4z1+jg+n2Ks18fuQfN6cpUeMpfLccoesrDXxcsvGFvRmrc2m43JaJoTCyk29viw2Wym+xaLJSaiGWZiGQZCHorFkum+8WyBwzMJYpkcC4kc8WxhXa+0sS5JdkSI9aXTx+4KsdRKv+Bs7/Vz3XP2VAMzs+wePNRDtpjJn7KHrLLmbWX27zVX7jJdAq1UMoK2ofL5Ko+XMxhys2c4RLzHR9DjZDDkNt330GyC3x6drz5+quo3bUMjScAnhBBrpNPH7or21Kisc71fcLb3+i0DvYpKD1kkXzrlGL5DswkW0zkCbgeL6ZzlmreDQQ9DXR5ORtIMdXkYDJoHktt7/TzjjCFOLKTZ2OO1bPf2/gAbu33VoHN7//Jdv40mAZ8QQqyR9TB2V7SXRmadG/kFJ+x1sWUFS6sNhrzYbDbGF1KM9foZtJhccXwxjdthpz/owe2wc3wxbRocziZzfO6WB6pd0Fues8f02ka7vFxz5a7qMmzNyO6BBHxCCLFmZOyuaDWPJihbaUawkV9w9s4k2Hf/FLsHg6aTJQCmY2me/7hhkvkifqed6VjadP+j8yluqZk4cv6WXi4eCy+7777pGOPzKWzA+HyKfdMxyyzfaJe3aYFehQR8omFkcLoQjyRjd8VaaFRQVk9GMOx18aoLx6qZrdX6f793JsGHf6aZWMww0u3hfU9XpkFcT8DDl39znMlYhuGQh//95O2m593W52dTr5/j80nGev1s6zMP4OqZZNIqJOBrok4OiGRwuhBCNEcjg7J6MoKRdI4v/ub4in8PHJpPrmjSxr7pOEdmkmQLRVLZAvum46YB3/GFJMcjKQrFEscjKY4vJDlrKLjsvqrfz189eRsPzqbY3O9D9VuMy6tjkkmrkICvSTo9IJLB6UK0rk7+sikaG5TVkxGspx2H5pP89X/vrWbM/u45e0yDqG6fk56Ai6lohp6Ai26feSjjdzvxu52ciKTYGPbht1gR42Qsyyd/fqSa4bvmyt2rMsmkVUjA1ySdHhDJ4HQhWlOnf9kUjQvKoL6MYD3tuH8yxtFZYwLG0dkk90+aj4nb1R/gyjOHiaYLdHkd7LKY9epz2RkIuRnq8lAslfC57Kb77p2KcXzeaMPx+SR7p2KW4wPbjQR8TdLpAVG9g9Ml4yDE2uj0L5utoNmfZ/V8/o50eQj7XNWVKFYyhu/7f5xiMZVl72Scl527wbK7eKXt2Bj2cun2fuKZPEGPk41h8wkO6XyR4wsp4pk8ix4n6bz5cmm7BwL0B9w8MJdka5+f3RYB3J6hEGM1Y/j2DLX+uLx6SMDXJOthtt5KB6dLxqG1NPuXlWisTv+y2WyN/Dxb6Ri3eg10eXG77HT7zIsHVxyLpLn98CzT8SyDQTeXbuslPPzYr2846CFXKDKXyOBx2hm2qIF3YCbBwak4c4ksfQE3B2YSpq9HPFvAYbcz1OXBYbdbrnKxZyDANVfuNjJ7Q6GOyu6BBHxNJbP1DJJxaB0SfHe+9fBls5ka9Xl2aD7JVTVj3K6zGONWz/t4Ipohms4CEE1nT9nefLFIJJU3/p1UnnzRPLtWTzti6Ty7hoJs6ffjddiJpfPQtfx5i6USE9E06VyRbKFI0WJFjHpXudgzEOi4QK/CvDNbiDVSyTgAknFosuV+WYnOE/a62D0YlGCvARr1ebZvOsbx+RQAx8t138xMRDNgg26/G2xYvo9DXif7J+PcuH+G/ZNxQl7rPNC2Xj/nbwqzucfH+ZvCbLPINE5EM2zq96NGutjU77dsR8lm446j8/z4j1PccXSeksU6tn0BN4NBDx6nncGgh76AeWayssoF0NRVLlqBZPhE00nGoXVId58Qj02jPs92D4Y4fUMXE9E0I11ey7pvLqed+04sVrOBLzl3o+m+0/EMi6kcXpeDxVSO6XjGMgMW9rr4q8u3rej6siX47j0THFtIsqnHz+M2dJvue3guwVQ0A5SYimY4PJcwzbTtHgjwhO19zMQzDAQ9luPyWmWVi1YgAZ9oCdK93Rok+BbisWvU51lv0IXLYSfkc1juNx5JkSuUGOrykCuUGI+kTLt/iyUAGwuJDENd3vJja7PJHIfmE7icdsvrPDgTpy/oYkNPL5lcgYMzcdMaeAG3k4DbWZ08ErAonxLPFphP5Ehli8wncpbj8qA1VrloBRLwNZEMjhetSIJvIVrPvukYtxx4aNmvS0/rMw3iRsM++oPu8koUbkbDPtPzuh12dg0H2NTnw++y43ZYj/Q6NJ/kAz/cx7H5FJt6fXzo2btN27Gpx8dcPMexhUU29fjZ1GPejmKxSF/IzWCXh0KpRNFibGBlXJ7dZqNYKp1yXJ4wyBi+JqkMZv3cbUf5l1uOEknnmt0kIeoWSefYNx2X/79CPErj0TQ3H5ljPJq23K+ylBdwyqW85pM5gh4nI91egh4n80nz9+emsJc9I91sHwiwZ6SbTRblUAD+MBnj8EyCTL7I4ZkEf5g0H0t4fCFFLJOjx+8ilslxfCFluu+uwSBuu43JaBq33cauweUzgSDj8h4tyfA1icxMFe1OZvQK8diMR9Nc/YP9nFhMsbHbxzVX7jLNVNWzlNdELM3th+colsBugyft7AfMx8+5nQ6cDgdup3VXMUDA42S0x8/JSIoNYR8Bj3kYEfK6CHqcHF9IMdbjI2Tx+RB0O7h4Wx+RVJawz03Qbd6Wyri8BxczbO72SHZvhSTga5J6i10K0WrkS4toRY0aKlPPeVe676HZBCcWjazXicUUh2YTlsGL12kn5HbidVp3zp0+FGJLf4DxhRSjPT5OtyggrGeTfOPO4xxbSLGpx8eWXh8XjpoHh0NBDy86dwPRdJ4ur5Mhi3p5xVKJMzZ0cdZomELRunzKRDTD3Q8ulB8lOG+0+5Tj8s7Y1EskkjTdRzycBHxNVE+xSyHWykp/WcmMXtFqGpV1jqRzfOXukyymsnT73JarS0TSOf5773Q1U/WcPYOm+1a6JisZPquuyXqzgR945q5qAWGrbOCxhRTHyl2tlZ+tAr5IMsvvji4QzxQIehxssAhQzxgKcmwuSSSdJ+z1cIbJhA2Qz5O1IAFfk9Rb7FKItVDPL0yZ0StaTb1Z50g6x9HxCGGnzXK/elaXeGAhxc/2TTEVzTDU5eGMkRDnjCy/72iXl7c/ZTv7JmPsHg5ZZvcOzSbwuu3sHgmRzRcts4GRdI6bD86ymMoyHc2wIeQ2vb5NPT421SwnZjWxAowZsvun4szEMgyEPDwlWzDddy6V53/2T1czjRdu7WXUpJiyfJ40ngR8TRLyOtGTieq3tdB5citE8z2ahdTlg1m0inqyRJWsXTxbIOh2WGbt6lldYiaR5fh8imy+SDZfZCaRNd330HySj910kIlImpGwlw88Q1nOvJ0vn3us12c58/ZYJM1th2eZjGYY7vJYBqiq389rn7CFqViaoZAX1W+9ZJvLYSOezmED4ukcLod5geR9kzGOzhldrkfnkuybjJmWZQH5PGk0iTKaJJbOE/Q42Nzjw+tyWC4jI8RakW4V0YrGo+kVFc4Ne1286sKx6r4rydrNJnL0B1yWQVFldYnKmGur1SVCHichn5OpxQx9Pichi0kNe6eNGa/ZfJFkrsDe6ZhpwJfLFwn7XDj6bYQ8TnJ586AzkSswsZghXf47kTPPws0mc3z39yeZXEwz3O1lZ7/f8nXbMxjkZReMEU0X6PI62GMxm3b3cIhNPf5q4eXdw+ZjCUXjScDXJCNdHoa7vPKLVbQU6VYRraaesWuRdI4v/ub4ioYk1JO1C3tdvPaSzSsKJAMuB6ePhNjSGyDgsRNwmc82Dbid9PhdTEUz9PhdlsWGQ14npRIspvIE3U7LJdACLgdb+vzVlSis2rB/Os6+iSjpfJGFZJb903HLMX/pfJGbD8xwfD7NWK+Xp+4cMN33rKEgH3j2rmqXtVV2TzSeBHxNsh5+sUph6fYk3SqilRyaTTCbyOBx2plNZCzHrtUzJKGStZuIZRgJeSyzdvUEkpvCXvYMdTGXytHnc1nWtfO7HJw92k0yW8TvtuO3CMwmY5lySRQffpeDyZj5Emibwl5ecM6GasBn1Qa7zUbI5yIdyxDyubBbrGELRgHoY3PlSR5zxpq+VgHiWUNBCfRahAR8TdTJv1ilRpsQYjWMhn343Y4VjV2rZ0hC2Ovi5ReMcWA2ecpuzHoCyXi2wK1H5plYTDHS7ePJO/tN9w24HNhsNmw2sNlslpm4+VSOOx9cIJMv4nHaeeYZQ6b7ziZz/PLAbLV0yu7BoGkbdg4EePKuflLZIj63nZ0W69LCQwWgK/fDqgC0aC0S8ImGkBptQojVkMsXedzGbnYPd+Fy2CzHrtXTczIeTfORGw8xGU0z3OXlA8/YaZoxG+nysGMoVC3LYhVIHppNcHQuAcDRuYRlRnJT2MtZo93MJ7P0+t2WmbiBgJst/f7q7N+BgHk5r/3TCfZOxqozafdPJyyzcIenE9UJHqdSTwFo0VqaEvAppTzAXcDbtdY3lp/rBT4L/AkwD/yN1vqLNcecBfwrcBawD3ij1vp3Ndv/FPg7YAPwP8DrtdbT5W024Frg9YAL+DfgvVpr85Gs4jGRwf9CCCv11HukBIvJ7Io+S+LZAlPxDCGv0/K8eibBgakY2UKRaCqHnrEuejwTTZcnbZgHnFBfbb14tsBP75/iRCTFxrCPizaFTdu8tcfHqy7ezImFNBt7vGy1WpeWErHycoexdI4i5gWP90/H+cOJqDGjOJY55Rg+MII+CfTaz5oHfEopL/AV4PQlm74ABIEnAOcDn1VKHdRa366UCgA/Br4OvAZ4A/BDpdRpWuuYUup84IvAm4C7gU8CXwKeUT73O4BXAS/CWD/4P4FZ4O8bdZ3r3XoYoyiEeHQaVe9xPJrmQz/WnFhMs7HbyweeqUyDuG6vkx6/m6lYmh6/m26LSRAT0QyRlLE+bSSVs+yxGO3yctUzdlYzYFZB5N7pOPsnY2TyRWLpPHun46b7n4xl+dEfpohn8gQ9TjaEvOYFnfsC7BnpYiqaZqjLy/Y+86CzL+CmN+BmcjFNb8BNn0XmULS3NQ34lFJ7MII925LnTwOeA+zQWh8C/qCUugR4M3A78BIgB7xLa11USr0DeHb5+f8HvA34ltb6C+XzvRI4ppTaXj7f24EPaq1/Vd7+XuDDSMDXUJ08RlEI8ehNRDNMRtOkcwXyxdKqDfnYOx3nwHScbL5IImMdQG3v83P5zv5qWZbtfeYZq3rr+/3nb48zHklxdzjCX12+zfTaXHY74fIs3bDfhctuvmTa4bkEB2dizMay9IfcHJ5LsMdkvN2egQBvuHQr+6di7BoKme4HsHsgwFPUADOJDAMBD7tPMYZPtK+1zvA9CfgFcBWQqHn+QmCiHJxV3ApcXf75IuA2rXURQGtdUkrdBlyMEfBdBPxj5UCt9XGl1IPAxUqpJDAG/GrJuUeVUmNa6+OreYFCCLFerbSbNuR1Es8UHio8b5Fdi6RzfPLmI9UaeFYBlNNuI+h1MhXN0Ot14rRbzzhdqXqyjEfmk/z2wQXS+SInF9McmU9y7obllyrb0e/nlRdtJpLKEfa52GFR9NjvdhBJ5sgXS0SSOfxu8wke49E0n/7F4RWVsgl7Xbzq/FHpjVkH1jTg01p/pvKzUqp20whwcsnuU8BozXa9zPazV3D8SPnxySXbKG+XgE8IIR6jerppY+k8ajjAzqEANhuWheePzCf53bEI2UKRiWjGMoDq8jjZORhkU48fr8tOl0XR430zCX66d4p8sYTTbuOCLT1cPBY23f/IQpr9UzFShRDnmiyVBlAsgdvpYCGZo8vromg+fI50vsh//2GiutLGORvNq+8P+N2c1h9gKpZhKORhwG/e9Xpo1ljFCeDEYspy4ghIb8x60SqzdP1AZslzGcBdnnBhtr2SV7fa7q95zJKfLUf/Ohw2wuH2HJjqcNjbtu3rndy79tSp9202nqlm1/qD5h+ZR8cjLGbyuFwOFjN5IvkSW0xejx1OB/a909XgcMeGbsIm5w5EUvQEXMzEsvQEXAT8btPX+Wyng1sfmK/OTj17c6/peYvHF/G6HNV1XouYf97ffGCa636sqytGXH3lLi7fObjsvqFIil3DQUZ7fAQ9DkIB8/YeODDLAzMJsoUi6ZkCB2aTnLetf9l99zgdPP30YRYSOXoCLvaMhk2v7cyxImM9/upkkDPHejry/2anvucapVUCvjSPDL48QKrcfWu2PXmK45PlbZXHuZqfqTl+WYVCiUjEcpeWFQ7727bt653cu/bUifetst5spRyJ1XqzYaeNbo+zGsSFnTbT18MJvOzcDdWVK5z5gum+Q14nF2/tq7ZhyOs03XcymmY2liWeyWPDxuR8Amd++WIMdko8brSbszeFKRZL2DH/vN97MsqxBWPbsYUke09GOdtkSbGA3YbNbmT6bHbjsdl5Qx4HYb+LyfIYvpDHYbpvPJ3j4ES0GnzH42nTa+tz2fnbZ6nq69vnsnfc/03ozPfcYzUwYF4XsVUCvhPA8JLnhoGJVdh+oubxoZqfqTleCCHEEpX1ZqfjWQaDbsv1ZusZ5xZJ5/j+H6dYTGXZOxm3DiS9Lp57xtCKljU7NJvA47Th93goFEqWXZlj3V7GF1LVLNhYt3mX50i3l009Po4tpNjU42PEYt8H5lNMRbM4bDamogUemE+ZzxT2ODlrLMz2TIGAx0G3RRd0PTOFwZgtbNWNK9Yf8ylBa+sOYKNSakvNc5eWn69sv6TcvVupq/eEJdsvrRyolBoDNgF3aK1PAsdqt5d/PikTNoQQwlw9682CUTrk/uk4J2NZy/0qgeQvDsxy++FZjkXSpvtG0jl+cWiOP0xE+cWhOSLpnOm+gyEvvx+P8t17Jvj9eJTBkHVgdngmzmIyx+GZOA/Mp0z3DXkcvOLCMd74pK284sIxQh7zCROxbJ6JxTT3HI8wsZgmls2b7rsp7OXs0W52jwQ5e7TbsvByZaYwILVNxaPSEhk+rfURpdRPgS8ppd4KPB54OXBFeZdvYpRQ+bRS6nqMAsoh4Gvl7Z8BflmeuXsHRh2+H2utD9Zs/7BS6hhQwCjJ8snGX5kQQrSvynqzlW5Eq/Vm984k+H+3P0g8k+f2w/O87pLNpuVA6gkkH1hI8f37JjixkGJjj48zRkKcYzJpYjqWpi/oYrirl1yxwHQsbdqGRC6P3+0kkcnQ43aSyJkHZsNBD3cdW2QxnSefL3G+xeSOfr+bXUNBRsPGGL5+i8kV8WyBH9w3wfGFFGM91oWXpbapeKxaIuAreyVGiZXfAJPA67TWvwbQWkeVUs/GWInjdcB9wLO01rHy9l8rpV4PfAjow1hp4y9rzv1RYAD4FkbA9+/UlHERQoi1stLSJa0g7HXxV5dvW1F7D88l0FMPLedlVSduW6+fc8a6eXA+yeZev2UgOZvIcjKSogScjKSYTZhnD7t8bubiOY7PLzLW66fLZx5sGcWJQ8R6fYQ8TsvixMcX0/z0/imOR1KMhX08bmOXaXfpzn4/Z2/sZi6Vo8/nYqdFqZVDswlOLqZx2G2cXEzLbFrRUE0L+LTWtiWPp4HnWuz/O+Bci+1fxFhtY7ltBeBd5T9CCNEU9ZQuaRUrXarM73YQTecoAdG0dZ04gJFuH363g26LoAxga6+fsV5/dTbtVovg8MGFJJl8gYGQh0y+wIMLSc4dWX4Q+/ZeP6+4YBP7p+LsGgpaLhU2vphmvFzmZHwxxfhi2qjuuoyw18Ul23qrK21YvWb1LMMmxGPVShk+IYRoGY3IxE1EM8zGjapQs/HMqq0w0Sjj0TRX/2D/igr4Dvjd7B4OMRXNMNRlXSduIpohmjYyddF01vJ1yOWL/PmFY8zEswwE3eTy5t2//QE32/oDpHNFvC47/RbLhI1H03zipoPVQPLaK3ebXttw0M3mmqBzOGh93ut+cmBFr9lol5drrtxVnZAikyxEI0nAJ4QQSzQqE1fPEl2NtNJgtp4Cvr1+F2du6GZrf4Gg20Gv33qlDT2ZeGiljfPMfxWVbDZuuP0Yx+eTjPX6uebK3ab7bu3xkcoWqmMOt/b4TPfdNx3nRCSNzWbjRCTNPotl2Lb2+vnTx49WV8SwyjLWW/RYZtOKtSIBnxBCLNGoTFwrDLyvJ5itp8vxZDTDycUU8UyBoMfByWjGNJCJpfMEPQ429/jwuhyWK20cnInTF3SxIdxLJl/g4EzcdGxgLJ3HboMevwv7KVbw6PK66PI6q6VWuizuRdDt4PfHF3hgLsnWPj9P29Fnuq9004pWJQGfEEIsMdLl4dzNPURSWcI+96pm4ho18H6lWbt6gtnRLi9vu+I09k/F2DUUssxEzSaz3HsiWp20cdmO5VeMAOP1ffqeIabjGQZPkekc7vIyF8txbGGRTT1+hi3a4HLaWUjlOD6fYqzXh8tpXnksnskz3OVhtNdHPl8knjGfpXtkPsm941GyhSLRVN5yeTfpphWtSgI+IYRYIp4tcNP+6Wq5jCu2961akNaIsYH1rIhRT7fy3pkEH//5wepar3/9dGWaXQu5nSQyRoYtkckTcpv/enlwMcMvDswSz+QJepxs6vWbtjeazhHP5ugLuIhnc0Qt6vA9MJ8k4HZy1mg3mXyRB+aTppMx1ECAXcNdxLNGF7QyuS4Ap91O2OdkOp4l7HPitFuXsJVuWtGKJOATQogl6i2XsVKNGht4LJImnc9TskE6n+dYJG25IsarLhxb0coV+6biPDCTLK/1mmTflHl36pnDQS7c0sPR+SRbev2cObz80mMAR+YS7K8p4XJkLsFZQ8vvv3swyEiXtxp87zZZ0gyMSRvxTB49adTss5q0kc4X+fUDc9XzPnPP8mvjglEg+ZLT+qsBtVWBZCFalQR8QgixRL3jsCLpHEfHI4SdtlXrTq1HOl/ktkPz1eDl0m3m3amVlSsiqSzHI2mes2fQtA1+j4OegIupaIaegAu/xQoTJ2NZSkCP323UzItlTc/rctqIlTN1sXQOl9O27H5gZMv+9xXbV9StvLXHx3MfN1LtireetBHj6GwSbHB0Nsm+6ZhpNjDsdfGycze0Tf1EIZYjAZ8QQixRzzisSDrHx35xmOMLacZ6vLzritNWpTu1HovpHJNRIyM5GU2zaNXtWV65olJixGrlirDXyfmbe4hl8oQ8TsJe818Z90/F+OWBWUqADbhga69pNnBXf5DzNvVUZ9Pu6jfP2u2dSXDdT/TDZumanTfsdfH4sTB7p2LsGbKugbd7MMRYr88Iknt97B40X3S+cm4J9EQ7k4BPCCEeg30zCW47PE86X+DYfJJnnTHMxSZLb9XTnQorH++3ezDIjsHgiro9J2NZ/G4HZ27sJpMvMBnLwojJeQcC7JvyMZ/I0RtwsdtinFuP38XGsI/xSIqNYR89FmVZANwuGwNBD26XeXYPYO9UjOPzSQCOzyeNYM6kHYfmk/ztj/ZVJ21c95w9plm77b1+rnvOHg7MJtnZ77csvCxEJ5CATwghlqin4HAuXyTkc5KOFQj5nJaFgSPpHF/8zfEVjeGrZ7zfaJeXa6/cvaKM5EDQRTxTYP9kjNEePwNB68Asmc4TT+fxOqwDsw0hL5erfpLZIn63nQ0h8zbsm45xy4G56uNLT+szDbj2DIUY6/VXM3x7hswzcfumYxyfN2rgHZ9PWXbTghH0nbetn0gkaXltQnQCCfiEEGKJeornbuvzc+aG7uqM02195gHGRDTDZDRNOlcgXyxZjuGbiGZwOGCwy4PNxinH+wXdDoaCHoKnWNLMDtgoMdzlxUYJq/mmR+aT6OkEdjvMJbKW5UhspRK9ATceZ4GAx4GtVDI9b7U7df7U3al7BgJc9QxVHcNnlt2r97xCrDcS8AkhxBL1TNoY7fLy6gvHql2DVtm1kNdJPFN4aIUJizFxIa+TXBGiqRxdPpflvvVkA70uJ2eNhYmm83R5nXhd5ue12YwxgScWjFmvNpt5li/kdfLzfTPVa7viNIvixOXu1Mp6s5br2EbTfPoXh1eUba3nvEKsNxLwCSHWjZWOiRvt8nLVM3ZWA4dTTdr4+l0nWMzkuedBp2WwFUvnUcMBdg4FsJ1iJYjji2l+e3SeqcUMQ90enqoGTNtRz+zf6USGA1MxJhczDHd7mE5kTLNmpVKJQrFEX9BNoViiZJG1i6XzbB8MsLnPj8ths7w2MIKzlQRk9S5VttLzCrHeSMAnhFgX6smCRdI5frZ/hsVUluPzafotChlXgi2Xy3HKYGuky0MiU+DB+SSbe/2Ws3TnElkWEsZs24VEjrlE1nTfkS4PW/oDzCQyDASsZ/9Ox7LoyTglYDGVYzpmft5tvX6efeYw88kcvX4X2ywCqZDXyaHpxIqyl/WQpcqEWB0S8DVRIyruC9EJxqPpFS9N1YglxY5F0tx+eJbpeJbBoJtLt/WaFjKulFpZzORPWWolni1wxsYwY31+ur1u4tmCaRu29QXY0u9nMpJmOOxlW595oDObzPHHk1Emo2mGu7zMJnMWQaf7YbNpR7rMixM/uJjhp3unGJ9PMdrr47xNPZbZy5Wuj1sPWapMiNUhAV+TNKrivhDtrp4ZsvW8j+rJguWLRQa6vAx1+yiWSuSL5jNvw14XL3n8xuoYPqv38QMLSX7zwBzxTIGgx8GGbrfptdlKJV554SYmFjOMdHssJ0Hsn46zbzJGNl9kIZlj/3TctFuzVITnnjVCIlsg4HZQMr809k/GeGDWmMH6wGyS/ZMx0xUxRro89AfcjEdS9AdWd/1hWapMiMfOekFA0TDLZRuEEMuP2TJTO5PV4cDyfTSbzHHX8Qi/fWCBu45HmE2aFyfu8ro4EUlx++E5TkRSdFkEcePRNF/4zTF+/MdJvvCbY4xH06b7RtMF9k/Fued4hP1TcaLpgum+JZuNmw/McOexBW4+MEPJYsJEX8BNb3kZsd6Amz6LJcX6gx5u0tN8954T3KSn6Q+aB2aben1sKq9WsanHx6Ze85UrAAa6vGwbCDAgwZkQLUcyfE3SqIr7QrS7esZshbxOjsymmFhMMXKKcWP7pmMcnIoDEEvHLWu0jUdSpLIF+oNuUtkC45GU6b4HZhPcc3yxui7sAYtJBV0eJ+dtCuOw2ykUi3R5zNt7dCHJ4ZkEs/Es/UE3RxeSppMrdg8EeIoaqGYvrQokT8fSRBI53E47kUSO6Vja8rx/et4Y88ksvX635XknohkOTsWMfyO6esvGCSFWhwR8TRL2unjLZVtkDJ941FphDGgj2jDa5eU9T9tRXR7LqitvOp5hfCFJKldgfCHJdDxjuv9pfUE2hH3VAr6n9ZmvRrG9P0B/wLOioLNYLD1sXdhi0bzrdaTLw9H5BBORDCNh6y96uWKRk5E06XyRbL5I7hTdys8+fag6q9hyBnLYR8DjqNaqGw2bZ+3CXhd/srNvRfdYvsQK0dok4GsiWZtRPFqNHAO60gkTjWrDeDTNR//n4IrG8BVL4HHaWUjmCPtcWMRa2EolXnrBKIvJHN1+l+WYuHrKsuwaDHLGxm4mFtOMdHvZZbGs2cHZJA/MJMnki6RzBQ7OJk0zh70+N/1BD1OxNP1BD70+827a8Wia635yYMUrgzxZDZAtFHE77JYrg8DKP6fkS6wQrU0CPiHaUD0zTusxHk3zr7c9SCyTI+Rx8cYnbF6V2m/1ODSbwOu2s3skRDZfPGXdtS19AYa6vPhc1itMuJx2vn33iWpm6+xn7zbdt1Jbbzae4b7j0VMua/bqizZxYCbOzoGgZVttNuj2u5iKZoyg02K1sjOHgjxpZx/TsQyDIQ9nmkyWgPpq1Y10eZiNZRuSiZMvsUK0Lgn4hGhDjeo+OzKX5A8nF5mJZhjo8nBkLmkZONTThpVmDkfDPuYT2RV1OboddkZ7vaSzRbxuO26H+Ty0o/NJEtkC3X4XiWyBo/Pm2bV6gtm7J2J86heHqxm+dz5lB+eOLL+kV7fXyRkbutjaZyw/1m0x5jDsdfGiszZUXzOrQKqecY+SiRNifZKAT4g2VO8v7ZWOtXM57cTTeex2G/F0HpfTPICqpw31lFrJ5Yv0+t14nHYCbqdll6Pf7WAhkSOWyRPyOPFbrCNrt9uxY+NkNM1o2Ifdbn5tI10ezt3cQySVJeyzLjFyaDbBA7NJsoUi6VySQ7MJ04Av4HJwzlgPi+kc3V4XAYusZCSd499uf5DxSIrRsI+/unybZZZxpV3QIJk4IdYjCfiEaFMr/aUdSef4yt0nWUxl6fa5eZnFqhFj3V5O6w9wYjHNxm4vY93WgUM8W2AqniHkdVq2pd4ux9Gwb0WZw+ORNPFMgUy+iI0CxyNp06xdIpunx+9iIOQhXyiSyOYtr+uWg7PV1+GK7X2m19cbcNETMLppewIuegPmr4PTYee7955gfCHFaI+PM5+xy3TfI/NJfncsQrZQZCKa4ch8knM3dC+7bz1d0EKI9UkCPiHa1EqzdvWsGhFL53n85jBnlgf0W62WUE/WrlFdjvlSiYnFVLV0Sd5iIsbuwSDfLpV4cD7Bhi4vuy0mV+iZBIdnE2TLkyv0jHmAuqs/wKWn9bGQzNHjd7HL4toOzsQ5MpOgWIIjMwkOzsRNS6I47XbCPifT8SxhnxOnRUayUeMphRCdQwI+IdpQPTNk88UikZSRzYqk8parRoS8Tn59ZJ7jCynGenw8e8+Q6b6HZhOMR1IUSyXGI9ZZu3pKrcDKs5elUomJxTTpXJFcoUjJIuADeNLOAeLZAkGLrl8At9OO3+0gms4T9rtwW3Rtj3Z5ee6ZI+ybjrN70HrSRrfPxYZuY1mzDd0+un3m17gp7OUpu4eqNfA2hc3PKyVRhBCnIgGfEG2onozOtl4/528KV8eCbTPp8gSjrl00na8GO1Z17UbDPnoDrhVNrhiPpvnKncdZTOX5/fEIb3zCllVZKqvX52Ig5GU6mmYg5KXXIoA6PJfkruMRMrkiHpedkW6vxfJjJU4bMOr2+VwOShb1XiplZCaiaUbK676aZjr7/DxpZz+JTJ6Ax8n2PvN7MZvM8YsDM0wuphnu9nLZtl7TeywTMYQQpyIBnxANVk9x4kg6x9HxCGGnbdWK3Ia9Lv7q8m0raoPTbsfvsjOdydPtte5GrKeeWz2rUdRje5+fK3b0MZvI0R9wWQZQdruNB2YTTEUzDHV5sNvNa6Js6/NzWn+gmg3cZnHeyvhEu812yvGJo11enr5rcEWZzn3TMQ6VVwY5dIqVQUAmYgghrEnAJ8SjsNIgrp6u18q+i5k83R6n5b71ZnRWGgxsCnu55LT+6gSPU3UjFooQT+fpPsVM1myhxHCXh41hH4VikWzBuut1pa9v2OviFeeNrmjfoNtBKlvA7bCROkW3bjpf5K5jC9Ws3TP3DJruWxmfOBFNn3J8Yj1FpXcPhhjr9VUzqLsHl5/5K4QQKyEBnxB1qieIq6frdSKaYTKaJlcskcrkmzLwPux18bJzN6w4kJyJpstdxdarNfQHXCSyecYX0oz2eOm3mMkaSef4zh+nqmPXXnDG0CmDvpW8TrsHAlywpYcH5pJs7fNbrgu7bzrGgcq6uynr7FplfOJKxvDVM1t5e6+f656zp1pqxSq7J4QQp9JSAZ9S6qXAV5Y8/T2t9fOVUpuBzwNPAI4B79Ra/7jm2CuATwLbgd8Cr9NaH6rZ/jbgvUA38E3grVrrRCOvR3SmSmCWzhXIF0uWgVk9Xa8hr5NYJl8t2RGyKMobSef45M1HVlSjrV4rLbUyEc3gcdvZNhDAZsPydbADhSIMBN0UisZjM/tmEvxcTzO5mGG428OuoSAXj4Uf0zWBcV1DXV4CHidBj5N4tmDa3nqya3WN4atjtjIYQZ8EekKI1dBSAR9wOvAd4M01z6WVUjbge8A+4HzgucC3lFKna60fUEqNAd8HrgF+AHwA+J5S6kytdVEp9ULgWuDPgZPAF4CPAW9cm8sSnSTkdRLPFKq/tK0Cs7DXxasuHFvRagnT8Qwhr4szNropFEuWEybqqdEGK+8iHY+m+ea9EyRzeX5/IsqLzhoxbUPI60RPJh56Hc4zfx229fq5eFsvM/EMA0GP5cSRyViG8YUU2XyJ8YUUk7GM6b712DeT4Gf7pqvjCE/f0LUq2bV6x/Bdc+WuFa04IoQQq6nVAr49wH1a68naJ5VSTwYUcJnWOgbsVUo9FXgt8H7g9cC9WuuPlPd/DTAJPBm4EXg78Gmt9ffL298I3KiUerfWOr4mVyZWTT2TIBohls6jhgPsHDIyW1a16upZLcFpt7OQyFQnIFhNmKinRlskneM/7hyvnvcV542atuGB+SS/OjhbzTI+fqzbNCiJpfNsHwywuc+Py2GzfB1OxrLMxDPE0wUgw8lY1rQNfo+TgMdJPJOhJ+DB71mdj6lMrkAsnSu3PUcmV7Dcf6XZtXrG8IER9EmgJ4RYa60Y8P3XMs9fBNxTDvYqbgUuq9n+q8oGrXVSKXU3cLFS6hcYWcFra469A+PazwFuWb3mi0arZ/xco4x0eSgUWFE37ZH5JPeejJIrFJlL5iwzcZUJE5WZoVYTJjaFvTx59yDziRy9AZflvofmktykZ5mKphnq8nLR1l7O27h8G+LZIicX0wCcXEwTz1rX7Ds6l6wGs1aZzkNzCe4dj1azaxdvS5gWHC4UimzpC7Ch24fbaadQsB4fuNIvALsGg+waCjEZTTPc5WWXReHlelSydg8uZtjc7ZFgTgjRklom4FNKuYHTgCuVUtcANozg72+AEYyu2FpTwGj5Z6vtYcBbu11rnVdKzdUc31HGo2luO77Ykb98JqIZHA4Y7PKcctxYvcaj6RV1tdUzQ9ZmsxHwOJiKGgV8bTbzUiBhr4vnnjFUDRysznsyluXneobJSJrhsJeLNpvXaFtM51lIZgFYSGZZTJsvKXbmcJCdQwGOzaXY1OfjzGHzoOjgXJLDswkyuSKH8wkOziVNXze30/6w7JpVIeOd/QFu9zmr6+PutMiY1fMFYHuvn/c+bUdDJkGMdnk5Y1MvkUhy1c4phBCrqWUCPmAHRnsSwP/CCP4+CYQwAralA3kyQCW14rfY7q95bHb8shwOG+FwawyYno1nqpmU/qB5sw/PxPmbH2lORFJsDPv4yP86k9MGVieT0QoGc0UOTier1zfY41+Ve1Tv65aPZ/DlSwSDXsIW98M2k6A/4CHgceJzOrA5HabtnY1n+MXheeYTGY4EPLz0/DHTe73v/ikOVmaRTsXZNx3nkh0Dy+579qYip2/o4uRimg3dXs7e1GPahrzTwSsu2MzEYpqRbi/DvQHT60vlZvC5HMTKq1GkcgXT856/uZcrzxhmPpmj1+/i/M29pvv25Ip4XA4yhRIel4OekNd036PjERYzeVwuB4uZPJF8iS0W/x/OC/s5b1u/6fbHwuGwt8znhVg5uW/tS+5dfVom4NNa36+U6tdaz5Wfurc8WeOrGLNzl/ZBeYDK1+k0jwzePMBceRsm2y2/jhcKpYZ+Y29ELbc/HF/g+EISu83G8YUkfzi+QJ/Lak5ka1jpazG9kMTvsjMW9uJ12ZleSFpe30qzdpXXDTjl61bP/Sjm8hyYipHOF/E67RRzedP/U3ePL/Lde05UlzVTAwEuGF2+63V7f4DRsJ9jC0k29fjZ3h8wPa+jUOBpe4aq7XUUCqb7/v7kIj+5f4p4Jk/Q46TX7+Q8ky7okMfJaQMBNoZ9eF12Qh6n6XmnIin+MBFlIpJmJOxlKpIyfX3/cHyBWw7OVh9ftq3XdN+w00bAaa9+GQo7bU3LsoXDfsnwtSG5b+1L7t0jDQyYVxRomYAPoCbYq9gHuDC6Y89asm0YmCj/fKL8eOn2P/JQ0Fd5jFLKCfTVHL/mGlXLrd4B5I3UiIB2pMtDf8DNeCRFf8C62O94NM3VP9i/oiK39ZTLmIhmwAbdfjecolt5W6+fZ54+VJ0wYTU7dSKWJpLK0eVzEknlmIileeT3HIPbBs87a5h4tkjQbcdt3lOMnk3y2wfmiGcKBD0ORkIeLjQJJKdjWfZPxapj7aZjWdPznjkUZG7XALOxLP0hN2cOmWdE907FODBZzkhOxo2VJkzG8NVbumSgy4vbZafb57bcTwgh1rOWCfjKpVM+A4xprSu/Zc4BIhiTLN6nlArU1M67tPw85b+fWHMuf/nYa8tlWX5X3v/G8i4XA3ngnsZdkbV6grh6arm1ygDyRgW0ANsGg/SG3IRP8Qu+niK39ZTLcDntxDI5oukCXV4HLovxaACFEuRLRU6xuAQ7+oP0+N0cX0gy1uNnR795AOVy2pmKZUjliiRcdss2zCayRDMFsrkixfJjMyGPk3g6hw2Ip3OELGbIziZzfPuek9Ws3RlDIdP7tmcoxFivn+PzScZ6/ewZMv8WWilkvJLlxyaiGQ5OGXO5pqOn/r8jhBDrVcsEfMAvMSZqfE4p9XcYY/o+Wv5zM/Ag8AWl1AeBKzFm5r62fOwNwHuUUldh1PG7GqM4803l7dcDn1dK3Vd+/nrghmaWZKl3LdR6ltFq5ADylWbt6g1odwyFqst5Wb0WxyJpfnr/JNPxLINBN2dt6CI8bJ3tXGmmKOh2MBT0WC65BXA0kmLfZJzpaIbBLg9HIynTCQCH5pLcfOChGbJP2GY+Q9ZWKnH6hi52DAVwOxzYSuYR4kQ0zXQsQyJTIOBxMBFNm7bBZoMHZhPV9lrMG+HM4SCXbe+rrkZhNWlj73SMw9MJsoUiyWyBvRarUewZCHDNlburQZxZdg/qW36snveREEKsZy0T8Gmt55RSfwJ8HLgbWAT+Ffiw1rqklHoe8G/AXcBh4AVa66PlY4+WM4SfAK7CyPg9T2tdLG//Wnmljs9gjN37DvCutby+pRq1Fmoj1d31Wscv4pUu0ZUvFukJeOgLeSgWjcdm6sna1XNtC8kcs7Es+WKJ2ViWhWTO9Lz1zJB1Oe2kcnli6QIhb8kya5fMlXhwLslcIktfwE0yZx4chtxO0tkCHqeddLZAyG1dKPpNl25dUaHooNtJT8DFVDRDT8BF0OK8YAR9VoFeRT2Z2XrfR0IIsV61TMAHoLW+B7jCZNsh4EkWx/4Y+LHF9n8A/uGxtnE1tUIQV496lhSr5xfxRDRDJJUj6CmPXbM472DQQyydq05sGLSYIVvvtfWH3HT5nbgddss2nNYXYGu/vzqT9bQ+8yBGDQS4fOcAi+k83V4nyiLgeTCS4vhCitl4lv6gmwctMoc2W4mJaJp0rki2UMRmMw/4tvb62DEU5GQkzYawl629PtN9I+kcX/zN8RUFvjv7A1y4tZdoKkeXz2VZPqUe9WZm2+19JIQQzdBSAZ9ojpV204a8TjKFEpOxDCOnWFIMVv6LuJ5sYCydx+dysDHsrZYEMVvdYTya5v0/2FcNDq+9crdppsjltPNzPVNdO/UpO5cvcQLgc9h45UWbmFjMMNLtweew6CMF5hLZarkXK6lsgfH5FOl8kXS2QCprvhJEr8/FUJeX6WiawS4vvT7z1/mBhRQuh53hLi8uh50HFlKmr0M9XfGjXV5eeu7Gal271RovKsuPCSHE6pOAb52rpytzPpmjL+DE5w7gd9mZT+ZW5ZdxPdnAkNdJOldkMpphY7fdMujcNx3n4HSCUqnEwekE+6bjpu0dj6SYT+TwuR3MJ3KMW2TXQl4nt/9+nlg6zwNzTl530SbTNuydjvOHE4tk80XmE1n2WrShL+BmtMfLTDzHQNBFX8B8UkrY52LbgJ/BoIegz0HYIuCbjmW5+0Fj3V23w87lJvX6oL7gO5LO8fW7TjAbz3Df8eiqrnoiy48JIcTqkoBvnasno5MvFvnDiVg1cHjxOauz5BWsPBsYS+e5aFsP2UI3bofdMsPXH3CzIezlxEKKDWEv/RYB1Pb+AFv7A0wsphg5RTfiZCzDvccjTEYzDHd5mDx9yDQ4cdptBL1OpqIZer1OnHbzbODugQBP2zPEQjJHj9/Fbovu30NzSeZiWRx2O3OxLIfmkqYB6liP92Fd0GM91quIvOrCsRWN4at3drUQQojmkYCvieoJiBplpMtD2OeqFq61yuhs6/Vz/qZwdV+rmnKRdI7/uHO8Wn/uFeeNnrIW30ozfHccWaiO73r2niHTfbf2+HjlRZuYiWcYCHrY2mPepRp0O9g1HKQv6GLgFDN1jYkYxkSNhWTOciJGl8fJzsEgm3r8eF12uizKnMSzBe58MFINzJ6+c8C8oHPJGENZqZdXtJjRu7PPz0vOG62+Djv7rO/bSsfwyQxZIYRoHxLwNUkkneOTNx+pBk9/dfm2pgV9Ky1cG/a6eO0lm1eU/Tk0l+Qm/VA5kou2mpcjqadbOZbOE/Q42Nzjw3uKMXzxbIFj80niGWM8XHxDl/kKJZNxfrZ3inyhhNNh4/xNPVy2pWfZfTf3+NjU52dyMc1wt5fNFoHk9j4/V+wcYDqeYTDoYbtFsKVnEuw9GSVbKLKQyKJnzGen7uwPcMaGEPG0n6DXYTlhIux1cdmWnlUvpyMzZIUQon1IwNckR+aT/O6YMa5qIprhyHySc02WsGqkiWiGaNooGxJNZy1/wdeT/amnHEm9NfvUULCaObTKKh2YS3JoOkEiWyDgdnBgLmkaQGWKRXwuJ+MJIwDPWJR7yeWLPP+sESKpHGGfi1zefN/ZZI4v//ZYdTLI7qGg6bV1e530+N1MxdL0+N10W4xP3N7r59UXbq7WtTPrzq1oxASaes4rhBCiuSTgaxKn3U7Y52Q6niXsc+K0N2e925DXybGFNBORFCNh65m39QRmaiDAzqFQdUycVTmSeoKMeLbAQipHPJPHYTcem7Uhms5zIpKq1qqLWgSdHrud3oCLgZCHQrGIx+J+uJx2fnL/VHWW7uOeapJiBPZNxxifT2EDxudT7LMoTry9z89TVD/zqTy9PqdlNjCSzvGd359kNp5BT8TYsEoTJiRrJ4QQnUkCvibZFPZyyWn91dUlNoVXb0ZiJJ3j6HiEsNN2yl/YxxfTHJ1NkCuUODqb4PhielVWNRjt8vKBZ+xcUWmNsNfFSx7/UHkPqzbvm0nwx5PRaq26fRbdnl6X/WG16rwu8yDuzOEggyHPilaYODSXZP9kjHSuyGLKesLE7sEQY72+hzJ8g+ZLioW9xljHSL50ynvXyAkTkrUTQojOIwFfk4S9Ll527oYVZ1JWOqmhMh5uMZOn2+M8ZamMfKGI1+VgNp5itMdHvmDePVlv9melS5WNR9Nc95MDK1pKK5nLczKSJp0vks0XSebMs3aUSgyFvEzH0gyGvGAxsQFgz0gXG8LeU67RWyyWCHpdpHIZgl4XxaL5ebf3+rnuOXuqwexKul63hP2nXBZPJkwIIYSohwR8baCeCR6VzI/L5VhR5sfpsNMfdDNYnunpdKxO13IkneNjvzjMg/NJNvf6edcVp5m249Bsgh3DAdRIiGKpaLmUVq/PTV/QzXQ0Q1/QTa9FcNYf8LCp109vwE3Q46Q/sDpr9PYH3OwaCjIa9hH0OCzLvQB4nXZCbidei6XS6iVdr0IIIeohAV+T1DMz9ch8kuGwj94uL267zXKCRyXzs5jJryjzs3sgwFDIUw3MrGq/RdI5bjm6UC3vcdmWHtM275tJcPuReTL5IiciaZ51xjAXj4WX3bcn4OGuo4scW0iyqcfPs08fMW3DmUNBLt3eV+3SPXPIvOv16HwSr8tOt89HJl/g6HyS8zYsP94uXywSSRnZwkgqb7lG785+P2du7GY+maXX72Znv3nWbjya5uof7F9R9rJe0vUqhBBipSTga5J6xmBlivCzvVMcW0ixqcfH40bNZ/NWCuc+uJhhc/fKCh6/9Lyx6mxPq/0PzCX5+p3j1TpxQyEPF5iUWknnivjdRtmUHr+LdM48gDq2kGAylsbtsDMZS3NsIcFZJoHcbDJHJJkjlSsQSeaYTeZM27ytL8BXfzteDSRfdM5G0zbUU2MQjGXQsjnr5c/AyF6eWEwBcGIxZZm9FEIIIRpFAr4mqWcM1tG5JMcXjJmexxdSHJ1LcrFJ0BdJ5/jufRPVmZ6nKnh8aD7JB3+0rzqp4O+es8d0nNnxhTQPzCbJFoqkc0mOL6RNA76Qx8Glp/WTLRZx2+2EPObj+HYPhnja7kFi6Twhr9NyYsO+6Tg3H5glky/icdq5cGuvaXujqSx2O4z1+LDbjcdmwl4Xzz9nI/smY+wetg58J6IZDk7FAJiOWgfr2/sDbOz2VTN8Vit4CCGEEI0iAV+T1LOE1Z7hEGM9/mqmas+weUB0aC7Jrx+YZyaeZSDotix4DHD/ZIyjs8YEgaOzSe6fNC8bMhhy0xNwMRXN0BNwMRgyH7vmcjr4w8nFajbwGaebr4iRLZQ4PBOv7pstmE+C8LsdhP1GG8J+F36LCSHb+wP0+FycWEyzsdtrGWztnUnwoR/t5/h8krFeP9dcuZs9Jt3b9c5WvubKXSuarSyEEEI0igR8TRJJ57hzPMJMPEcknSO4rc806Nvc7eFNl2/lxEKajT1eNndbLGifyjGbyFIolphNZImkcpbt2Bj2MtbrrwY6Gy3Kw5w5FOTlF4wxn8jTG3Bajp87OBPnRCSFw2bjRCTFwZm4aTft/ZMx9k/GAVhMxbl/MmYabKn+AOdt6mExnafb60SdImO2ocdHyOeyrC8IsHcqxvF5I/A9Pp80urhN2lDvhInRLq8EekIIIZpKAr4muW8qxpfvOF4dl9cbcPPEzb3L7nsskuZ3R+eJJPOcXEwy6HebziANeJwE3E7GF4wyKwGLtVvBKBvypidu5UQkzcaw17JsyKH5FHc9GCGWyRPyONkxEOS8Dcu3Y89QiN6ApxpI7hkyz0pu7vWxqSaDubnXfKmy0S4vrzh/tFrmxCqQOjSb4PbDc9XHl2/vM91/z1DoYYGvVXtBJkwIIYRoLxLwNcmxhRTHFlIP/3nz8vvOJnPcdnieqWiGoS4PF27pMz1vMlvg8VvCnLelhxIlkqeYVHAyluXWw3PE0nkemEuwoctrGsg8uJBk72SMmViGgZCHBxfMZ73uGQhwzZW7q5NBzLJlADv7/LzhSVuZiKQZCXvZeYoVJr5+1wlm4xnuOx61nN1cz/i5etorhBBCtBsJ+JrktP7gw7Jap/Wbd4/OJrIsJIyu2YWE0WVrpsfv5sBknMlomuEuL8/cPWzZjqORJHc+uFANJi/Y2mMa7PjdTmJpox2xdA6/e3X++zy4mOHztzxQzUoOPXPXKesMwqlnN9c7fm7PQEACPSGEEB1JAr4muXi0m3c/fQeHZuNs7w+azroF2Nzj4zWXbiaRyRPwONncY97lOb6Y4sG5JJl8kUwuyfhiinNHzLsn4+nCw4LJeNo8I3jmUJALNvdUu6GtxvDtnUlw9Q/2rWgSxL7JGEfnyhNH5pLsm4yZjverd4UJGT8nhBBCSMDXNL8eX+Rbd58glslz77FFANOgL1ss8JM/TnFsPsmmXj87B82zUMUi+D1OEtkMPR4nFvWDAaPbc2u/vzpD1qrbM50vYrfb6A24sdttpPPmJ69nEsTu4dDDsp27LWYhywoTQgghRP0k4GuSqWj6YePhLo2mgeUDvvGFzMMyYOMLGdi0/Hk3dHvYNRQqL/vlZIPFjF6Ac0dCvPXy0zg4G2dHf9AyG7hvOsZthx6aBPHEHX2mkzzqmQRx1lCQDzx7V7UGnll2r0ImTAghhBD1kYCvWewQK5dMiaVyYLHMal/AxViPj+MLKcZ6fPQFzIOdnX1+rtjZz3Qiw2DAYzkBAoyu14/+z8EVdb3uHgwx1uurFmm2KpBc7ySIs4aCpwz0hBBCCPHoSMDXJMNBL7tHQkwuZhju9jAcNB9n1uV18ZLzxlhMZ+n2uuk6RXbr+EKKeLZAJluErT2W+9bT9bq91891z9lTLYliVcIFZBKEEEII0Sok4GuSi0a7KV2ypTpp4yKLSRs24Ad/OFkNDt/6pNNM960s++VyOZjIFSxnsUL99ee29/pPGegJIYQQorVIwNckd4wv8o8/O1idqPCep+8wDfoOzMarK1FEUjkOzMa50GTfyizWxUx+RbNYpf6cEEII0fkk4GuSg7Nxji0YXanHFpIcnI2bBnw7l9Ts22lRs68yizWSLxF22lY0uUG6XoUQQojOJgFfk+xYEsTtsAjiLhzt5v88fQcHZuPs7A+aZvcqwl4XW8J+IpHkajdbCCGEEG1IAr4muWi0m/c8fUe1HIrVGD4wgr5TBXpCCCGEEMuRgK+JLhrtPmWgJ4QQQgjxWK2bgE8p5QE+DbwYyAAf11p/pLmtEkIIIYRoPItyvx3no8DFwFOBNwDvV0r9WXObJIQQQgjReOsi4FNKBYDXA+/QWt+ltf4e8BHgrc1tmRBCCCFE462LgA84C/AAt9Y8dytwvlLK0ZwmCSGEEEKsjfUS8I0A81rrdM1zU4AbGGxOk4QQQggh1sZ6mbThx5ioUavy2HQpCofDRjjcnsuIORz2tm37eif3rj3JfWtPct/al9y7+qyXgC/NIwO7ymPT6sSFQqltixeHpfBy25J7157kvrUnuW/tS+7dIw0MhEy3rZcu3RNAj1LKXfPcMEaWb745TRJCCCGEWBvrJeD7PZAFLql57lLgLq11viktEkIIIYRYI+uiS1drnVRKfRG4Xin1aozs3rsxSrUIIYQQQnS0dRHwlb0T+AzwcyAKfEhr/Y3mNkkIIYQQovFspVKp2W1oZTPAg81uhBBCCCHECmwGBpbbIAGfEEIIIUSHWy+TNoQQQggh1i0J+IQQQgghOpwEfEIIIYQQHU4CPiGEEEKIDicBnxBCCCFEh1tPdfg6klLqNOCfMFYOSQBfB67SWqeVUpuBzwNPAI4B79Ra/7hZbRUPp5TaBfwzcBEwB/yz1vqj5W1y71qcUurzwA6t9eXlx2cB/wqcBewD3qi1/l3zWihqKaVeCnxlydPf01o/X95vrUsp5QL+AXglYAO+Abxda52R+1YfyfC1sfLawP+NsSbwJcDLgecD1ymlbMD3MAKJ84EvAt9SSm1tTmtFrfKH2I8xPqTOBt4CXK2Uerncu9anlHoK8LqaxwGM+3kH8HjgFuCHSinzlczFWjsd+A4wUvPn1fJ+a3kfBV4IPA94DvBMjM9KuW91kgxfe7sA2A5coLWOA/uUUlcDHwd+CCjgMq11DNirlHoq8Frg/c1qsKjaCPwWeIvWOgUcUkrdCDwJmEDuXcsqB3efA26refolQA54l9a6qJR6B/Ds8vP/b+1bKZaxB7hPaz1Z+6RS6snI+60lKaXCwJuAK7XWt5Wf+yDG++oK5L7VRTJ87U0DzyoHexUlIIzRTXhP+Y1QcStw8do1T5jRWh/VWr9Ea51SStmUUk8AngjchNy7VncdcHP5T8VFwG1a6yKA1rqEERDKPWsdezA+M5eS91vruhRIAjdWntBaf0Fr/UzkvtVNMnxtTGs9Q80bQSllB95afm4EOLnkkClgdM0aKFZqHNgA/AD4JsaYTLl3LUgpdTHwYuAM4F01m0Z4ZDAxhdFdL5qsPPzlNOBKpdQ1GGPB/gv4G+SzspWdhrG86UuVUlcBQYz79tfIfaubBHyd5ePAORjjGd6JMbavVgbwrHWjxCk9DyPg+wzwCcCP3LuWo5TyAP+GMWB8QSlVu1nuWWvbgfH7LgH8L4xA4pNACPAi965VhYCtwNuAN5QffwbjXsp7rk4S8HWA8uDVfwLeDLxIa32/UioNdC/Z1YORHhctRGt9J4BSyo8x8PgG5N61og8AB7XW/7XMtjSP/EUj96xFlD8T+7XWc+Wn7i1/bn4VY5anvN9aUx7oAl6htT4MoJR6N/Bl4AvIfauLBHxtrtyN+28YM3RforX+XnnTCYzyELWGMSYEiCZTSm0EHq+1/n7N03sBN8Y9OnPJIXLvmu9lwIhSqjJm1g04yo+/gnGPask9ayE1wV7FPsCF0S0on5Wt6SSQrwR7ZRojKzuJfE7WRSZttL+PYfwieqHW+ts1z98BnF2eUVhxafl50Xy7gW8rpQZrnns8MIMx8FjuXeu5HGPs3tnlP58H7iz/fAdwSTlrVMm6PwG5Zy1BKfVCpdRUeSxfxTlABPmsbGW/BpxKqdrAbg8QK2+T+1YHW6lUanYbxKOklLoI4z/9+zDS27VmgPswskYfBK7E6JI6XWt9dM0aKZZVrsN3F8aEjXdhjCn6N+DvMIoxy71rcUqpa4FLtdaXK6W6gEMYRWGvB16P8UVs+5JZhKIJlFJ9GBm9H2G8x3ZgBOz/jFHUV95vLUop9V2MiRhvwBi39yXg28D/Qe5bXSTD195eVP77wxhp7No/NozJAIMYgcUrgRfIG6E1aK1zGHXa8sBvgM9ijMP8lNa6gNy7tqK1jmLcz0uAuzGye8+SYK81lLtz/wTYjHF/PoexKsqH5f3W8v4cI7D7OfBdjOLZ75P7Vj/J8AkhhBBCdDjJ8AkhhBBCdDgJ+IQQQgghOpwEfEIIIYQQHU4CPiGEEEKIDicBnxBCCCFEh5OATwghhBCiw0nAJ4QQQgjR4STgE0IIIYTocBLwCSGEEEJ0OGezGyCEEJ1CKXUx8BHg8UAJuAV4rdb6hFLq6cDHgO3AzRhr74a01q8uH/t84DpgK7Af+Gut9U/W+BKEEB1KMnxCCLEKlFIh4IfAjcDpwNOBbcBVSqltwPeB/wLOBn4HvKXm2LOALwN/D5yJsdbrd5RSZ6/dFQghOplk+IQQYnUEgL8DPqa1LgEPKKW+BVwCvA64W2v9ofK+H1BKPa3m2HcDN2itv1x+fFgpdSHwNuC1a9N8IUQnk4BPCCFWgdZ6Uin1BeAd5czcHuAs4DfA4zCyerV+DfSWf94NnKmUqg3uXMBvG9lmIcT6IQGfEEKsAqXURuBO4B7gp8DngWcDlwJ5wLbkkNrHTuAfgX9fsk+mIY0VQqw7EvAJIcTqeAEQ1Vo/q/KEUuptGIHd/cDlS/Z/PHCk/LMGtmmtD9Uc+7fAHPCpBrZZCLFOSMAnhBCrYw7YWB6bdxh4MfC/MDJ+nwPerZT6a+Cb5ecvK+8H8AngVqXUb4H/Bp4KXAU8d02vQAjRsWSWrhBCrI5vYMy0/QZwF/AU4B3ALmAaeBHwauAPwBOA7wJZAK31HcDLgddjZAPfAfyF1vpHa3kBQojOZSuVSs1ugxBCdDSl1BmAS2t9T81zPwR+p7X+YNMaJoRYN6RLVwghGu804N+VUi8BDgBPw8gAvq+prRJCrBuS4RNCiDWglLoKeAMwiDFJ4wNa6+81t1VCiPVCAj4hhBBCiA4nkzaEEEIIITqcBHxCCCGEEB1OAj4hhBBCiA4nAZ8QQgghRIeTgE8IIYQQosNJwCeEEEII0eH+P9Bd4cDr8MZ/AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.title('Age vs. Charges')\n",
"sns.scatterplot(data=non_smoker_df, x='age', y='charges', alpha=0.7, s=15);"
]
},
{
"cell_type": "markdown",
"id": "2baffd91",
"metadata": {
"id": "2baffd91"
},
"source": [
"Apart from a few exceptions, the points seem to form a line. We'll try and \"fit\" a line using this points, and use the line to predict charges for a given age. A line on the X&Y coordinates has the following formula:\n",
"\n",
"$y = wx + b$\n",
"\n",
"The line is characterized two numbers: $w$ (called \"slope\") and $b$ (called \"intercept\"). \n",
"\n",
"### Model\n",
"\n",
"In the above case, the x axis shows \"age\" and the y axis shows \"charges\". Thus, we're assume the following relationship between the two:\n",
"\n",
"$charges = w \\times age + b$\n",
"\n",
"We'll try determine $w$ and $b$ for the line that best fits the data. \n",
"\n",
"* This technique is called _linear regression_, and we call the above equation a _linear regression model_, because it models the relationship between \"age\" and \"charges\" as a straight line. \n",
"\n",
"* The numbers $w$ and $b$ are called the _parameters_ or _weights_ of the model.\n",
"\n",
"* The values in the \"age\" column of the dataset are called the _inputs_ to the model and the values in the charges column are called \"targets\". \n",
"\n",
"Let define a helper function `estimate_charges`, to compute $charges$, given $age$, $w$ and $b$.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a718186",
"metadata": {
"id": "5a718186"
},
"outputs": [],
"source": [
"def estimate_charges(age, w, b):\n",
" return w * age + b"
]
},
{
"cell_type": "markdown",
"id": "f58fc89c",
"metadata": {
"id": "f58fc89c"
},
"source": [
"The `estimate_charges` function is our very first _model_.\n",
"\n",
"Let's _guess_ the values for $w$ and $b$ and use them to estimate the value for charges."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f171033",
"metadata": {
"id": "3f171033"
},
"outputs": [],
"source": [
"w = 50\n",
"b = 100"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d98596e8",
"metadata": {
"id": "d98596e8"
},
"outputs": [],
"source": [
"ages = non_smoker_df.age\n",
"estimated_charges = estimate_charges(ages, w, b)"
]
},
{
"cell_type": "markdown",
"id": "33ca95fc",
"metadata": {
"id": "33ca95fc"
},
"source": [
"We can plot the estimated charges using a line graph."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ca70529",
"metadata": {
"id": "2ca70529",
"outputId": "51930c59-0746-47fa-ba0d-2206b10f938d"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAF7CAYAAABb1xaHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2dUlEQVR4nO3deZhcVZ3/8XensxFMCEk6bLKDXwFRGJAJi7IMo6OijLjwQxSVxQEFZXFDwG1wHxREEQZhRBkEFREUcQEdWQRkk90jqCwKZOmkE7KSpOv3x71VVFdXdyqhu6pu9/v1PPWk7j33Vp/OoZtPzr3fcztKpRKSJEkqrjGt7oAkSZJeGAOdJElSwRnoJEmSCs5AJ0mSVHAGOkmSpIIz0EmSJBXc2FZ3oJV6e3tLq1cXd9mWzs4Oitz/0cpxKybHrbgcu2Jy3PobN65zHtBVr21UB7rVq0v09CxtdTfW2dSpkwrd/9HKcSsmx624HLtictz66+qa/PhAbV5ylSRJKjgDnSRJUsEZ6CRJkgrOQCdJklRwBjpJkqSCM9BJkiQVnIFOkiSp4Ax0kiRJBWegkyRJKrhR/aQISZKkF2L6zCl0VG2XgO45i5reD2foJEmS1kE5zNW+ps+c0vS+OEMnSZK0DsoBrnZfKzhDJ0mSVHAGOkmSpLWxahVTX39gy2bj6jHQSZIkNWi9879B16bTGHfnH4CsCKJaqc6+ZjDQSZIkrcHYe++ha+YUXvTJTwCw4sDXMPeZnkqAq361osrVoghJkqQq9ZYiqZ4Bm3f/I5Q22ghoTXirxxk6SZKkXL2lSMphqefyHzN3zqJKmGsnBjpJkqRcvaVIIJulW3nAgU3uTeMMdJIkScCYp59qq8rVtWGgkyRJo9vq1WxwyEFMf8VLW92TdWagkyRJo9bEiy6ga5MNGX/zjQD00j5LkawNq1wlSdKIt6bK1edetR8Lf3AVdHb2exZrq5YiWRsGOkmSNKJVV66WVb/vvvdP9G6y6fPbbR7e6jHQSZKkEW2wytV5BQxv9XgPnSRJUsEZ6CRJ0ojUMXs2XTX3zo1UBjpJkjSy9PYy5bC3MGPn7Su7ili5ujYMdJIkacSY+L3v0LXxVCbc8GsAFn/m89njuqDfq4jFDwOxKEKSJBVS7VIk1e9X7jGLnp/8HMZmUWckhbd6DHSSJKlw6i1FUtZ91wP0br5Fs7vUUl5ylSRJhTPYUiSjLcyBgU6SJBXMuJt+NyoqV9eGl1wlSVIhdMybx4wdt2l1N9qSM3SSJKm99fYy5d3v6BPmehn5S5GsDWfoJElS26iuXJ1BFtCqZ58Wn/4Zln3wpMqx1UbaUiRrw0AnSZLaQr3K1fL7la/YlZ6fXw/jxlXaRmt4q8dAJ0mS2sJglas9v/5dk3tTLN5DJ0mSVHAGOkmS1FLjbr2FrpqnPmjteMlVkiS1RMf8bma8dOvKdrlCtTrYjebK1bXhDJ0kSWquUonJ73tPnzC34JpfMm/OokqAq35Z/LBmztBJkqRhNb3mcmr1+yUf/QRLP/zxynY5vE2dOomenqXN6eAIYKCTJEnDpt5SJJAtDNz95FyYMKEFvRp5vOQqSZKGzUBLkXSAYW4IGegkSdKwmPS1r1i52iRNveQaES8FvgHMArqBb6SUvpK3bQlcCOwNPAGcnFK6rurc/YFzgO2APwBHp5QerWo/AfgYsAHwI+D4lNKSZnxfkiTpeWPvuJ0N3/Cvre7GqNK0GbqIGAdcRxbWdgE+AJwREYdHRAdwNVnIeyVwCXBlRGydn7s5cA1wKbA78AxwdUSMydsPAc4E3g/sn3/GWc363iRJEnQs7GHG5l19wlwv/ZcdcSmSodfMGbrNyGbWPpBSWgY8GhHXA/sCTwMBvCql9CzwUEQcCBwFnA4cA9ybUvoyQEQcSRbqDgCuB04Ezk0pXZO3HwtcHxEfTiktbuL3KEnSqFBbuVqi7yxRz1XXsnLvV1WOpeZYlyIZWk0LdCmlx4BDAfIZub2AV5PN1M0C7snDXNnNwKvy97OAG6s+a2lE3A3sGRG/JZuRO7Pq3NvIvrddgZuG4/uRJGm0qle5Wn6/5KQPs/TUT/Y53vA2/FpVFPF3ssB2K9n9bpsAT9UcMxt4cf5+sPapwMTq9pTSKrLLty9GkiQNqYEqV0vQL8ypOVq1Dt3BwKbAt4CvAZOAFTXHrADK9cyDtU+q2h7o/Lo6OzuYOnXSYIe0tc7OMYXu/2jluBWT41Zcjt0QW7ly0Oah+rt23NZOSwJdSulOgIiYRFYAcTFZdWq1CUB5iejl9A9nE8hm4ZZXbQ90fl2rV5cKvQq1q2gXk+NWTI5bcTl2Q2e9b5zDiz57xqDHDNXftePWX1fX5AHbmhboImIzYLdy4ULuIWA8WVHEzjWnbJzvB/hHvl3b/gDPh7ryNhExFphedb4kSVpHY++5iw1fu39lu5f+l12tXG2tZt5DtwPw44iYWbVvN2Au2f10u0TE+lVt+5AVN5D/uU+5IZ/Z2xW4LaXUC9xR3Q7sCawC7hnqb0KSpNGi49lFTN9u8z5hbt4Dj9I9Z1ElwFW/LH5onWZecv0d2YzcdyLiFGBb4IvA5/K2x/O2TwMHkVW2HpWfezHwkYg4DbgKOINsPbsb8vbzgAsj4r58/3nAxS5ZIklS42qXIql+3/ODn7ByvwMq24a39tK0GbqU0krgDWQzZ7cDFwBnA19PKa0mK5SYCdwFHAG8OV/qpLzkySHAu4A7gY2Ag/PZOVJKl5MtW/ItsnXp7gROac53JklS8VUvRVJ9ObUXmDtnUZ8wp/bTUSqN3iveK1euLhX5hktvGC0mx62YHLficuwaM6Nmdq6sBMxrwWyc49ZfV9fku8iemNVPq9ahkyRJ7WDVKjY4+HV1w5yKw0AnSdIoNfHb59O16TTG33pLq7uiF6hVCwtLkqQW6bz/Pqb9y/OLQzy37/6M/d1vXYqkwAx0kiSNYLWVqyX6Xp7rvi/Ru/EmlWOpOdZq1mIw0EmSNEJVV66Wld8vvOyHPHfga/scb3grLu+hkyRphKoNc2Ul6BfmVGwGOkmSRqAxs5+xcnUUMdBJkjSSrF7NBm87mOk7v6TVPVETGegkSRohJl5yMV2bbMj43/0WyJ7yUFulauXqyGRRhCRJBbOmytXn9tybhVf+FMaOtXJ1lDDQSZJUIINVrgJ03/MQvZu9+Pltw9uoYKCTJKlABqtcbcUzV9UevIdOkiSp4Ax0kiQVQMecOXTV3DsnlRnoJElqZ729THnn25nxsu0qu6xcVS0DnSRJbWriZd+ja+OpTPjVLwBY/Mn/ZO6cRZUAV/2y+GF0syhCkqQ2ULsUSfX7lbvtTs81v4Rx4wDDm/oz0EmS1GL1liIp677zfnq32LLZXVLBeMlVkqQWG2wpEsOcGmGgkySphcbdcpOVq3rBvOQqSVILdHR3M2OHrVvdDY0QztBJktRMpRJTjnxXnzDXi0uR6IVxhk6SpGFSW7laou9MypJTz2DpSR+pHEvNsVazqlEGOkmShkG9ytXy+5Uvezk9v/gNjB9faTO86YUw0EmSNAwGq1zt+c3NTe6NRjrvoZMkSSo4A50kSUNo7B9up6vm3jlpuHnJVZKkIdDRs4DpO21Hx8qVwPMVqrVFEVauajg4QydJ0gtRKjH5uKOZ8ZItK2Gu55pfMG/OokqAq35Z/KDh4AydJElroXYpkur3S07+KEs/fnpl2/CmZjHQSZLUoHpLkUC2MHD3k3NhwoQW9ErykqskSQ0baCmSDjDMqaUMdJIkNWC9c8+2clVty0uukiQNYuzdd7Lhvx3Q6m5IgzLQSZJUR8eihUx7xQ6MWbK4sq+X/pddXYpE7cBAJ0ka9WorV0v0vSep58qfsvJV+1aOpeZYq1nVagY6SdKoVq9ytfx+6fEnsuSTn+1zvOFN7ciiCEnSqDZQ5WoJ+oU5qV0Z6CRJo9eqVa3ugTQkDHSSpFFpvfO/Qdem01yKRCOC99BJkkaVsff9kQ0PfHVl28pVjQQGOknSqNCx+Fmm7b4zY+bPr+zrvv/P9G60sZWrKjwDnSRpRKpeimQGfWfgei6/kpUH/Gtl2/CmojPQSZJGnHpLkUB2edXwppHIoghJ0ogz0FIkFkBopFrnQBcRXRHhz4YkqX2sXs0Gb3mjwU2jTkOXXCNiI+CrwFeAh4DrgP2AJyLijSmlB4ath5IkNWDixRcy+eOntLobUks0OkN3HrA5sAA4AtgNeDXwC+Drw9M1SZLWrPPBB+iaOaUS5p7b59X00n/ZEZci0UjWaFHEgcA/p5Qej4g3Az9NKd0SEU8D9w9f9yRJel515SpkAa16ZqL73j/Ru8mmlWOpOdaCCI1UjQa6VcCYiFgf2B84Kt+/EfDscHRMkqRq9SpXy+8XXnoFz73mdX2OL4e3qVMn0dOztCl9lFql0UB3PXARsBh4DvhpRBwInAtcPUx9kySpYqDK1RL0C3PSaNPoPXTHAH8AlgAHp5QWAzsB1wIfGqa+SZIEQMfs2VauSoNoaIYupbSIPLhFxNh83znD2C9JkqC3lymHv40JN/y61T2R2lrDT4qIiA8AJwFbRMRLgY8D84DTU0q9DX7GtsDZwD5ks31XAKellJZHxAXA+2pOOSmldHZ+7v7AOcB2ZLOFR6eUHq367BOAjwEbAD8Cjk8pLWn0+5MktZeJl17C5JNPqGz30v+yq5WrUqahS64RcTLwUeCzwMp896+AI4EzG/yM8cBPgRXAXsDhwL8Dn8sP2Qn4CLBJ1eu/83M3B64BLgV2B54Bro6IMXn7IXk/3k9WtPFK4KxG+iVJai+d6U/ZMiR5mFu5xyzmPjWf7jmLKgGu+mXlqtT4DN2xwPtSSr+MiG8CpJR+FBELgf8BPtHAZ+xBNru2R34P3sMRcQbZgsWnADuQzfY9U+fcY4B7U0pfBoiII8lC3QFkBRsnAuemlK7J248Fro+ID+dfS5LUpmqXIql+333XA/RuvsXz24Y3qa5GiyJeDDxSZ/+TwIYNfkYCXl8TsErA1IjYGJiWH1PPLODGygeltBS4G9gzIjrJZuRurDr+NrKwumuDfZMktUD1UiTVl1N7gblzFvUJc5IG1miguxV4b9V2Kb/c+THg9kY+IKU0N6V0fXk7P/94shm2HcnWuvvPiPhHRNwbEe+pOn0T4Kmaj5xNFjSnAhOr21NKq4DuvF2S1KYGWorEilZp7TR6yfWDwHURcRBZeLoAeAkwAfi3dfzaXyWbQXsl2XNhAe4le5TYfsAFEbEkpfRDYBLZvXfVVuRff1LVdr32AXV2djB16qTBDmlrnZ1jCt3/0cpxKybHbYjNncu4zTYZ9JCh+vt27IrJcVs7jS5b8mBEvISskOGl+Xk/Bi5d23vUIqKDrNL1/cBb889+CPh+Sml+fth9EbE9cBzwQ2A5/cPZBLJZuOVV27Xtgy4Nvnp1qdCrh7v6eTE5bsXkuA2RUokp730nE37+0zUeOlR/345dMTlu/XV1TR6wreFlS1JKy8meFrHO8susF5EFw0NTSlfnn10C5tcc/jDwmvz9P4CNa9o3Bh7g+VBX3i6vlTcdePqF9FeSNHQmXHEZU044trK9+PTPMOnMT7kUiTQEGgp0EfE36v98lcgeBfY08IOU0vlr+KizgHcAh6SUflb1+WcBkVI6qOrYXYE/5e9vA15ddfykvP3MlFJvRNxBtrZd+R69Pcnuybunke9PkjR0aqtWS/S9YXvlK3al5+fXw7hxLPvgSUyfOaXP+S5FIq29RmfovgF8Kv/zVrJ/TO1Odm/dRWSB7vSImFJeWqRWRMwiW17kVODOvLK17KfAiRHxQbLHib0OOAL4l7z9YuAjEXEacBVwBvAEcEPefh5wYUTcl+8/D7jYJUskqbmqq1bL+ixD8od76d1q6z7nGN6kF67RQHcE2Tp0l1ftuyYi7iVbO27XiPgjcCFQN9ABb83//EL+qjYOOAz4ZH7+X4HDUko3A6SUHssXD/4acBrZjN3B5SdUpJQuj4gtgW+R3Tt3FdnadpKkJhqoarUEzDO4ScOm0UC3HfDHOvsfJCuSAPgzsNFAH5BS+jDw4UG+xg/y10DnXwdcN0j7l4AvDfL5kiRJI9LarEN3ZkRUyivy958le64qwBuov/iwJGmE61gwnxkbbeD6cVKLNDpDdwzZvW1PRcSjZDPq2wKPA4dExGvILoe+bVh6KUlqT6USk489kolXXfn8LqxalZqt0UC3ENiZrEhhZ7IK0geBG1JKpYhYAGyeUpo7PN2UJLVSvcrVxedfxJRjj6rsW/LRT7D0wx+3alVqgUYD3b1kRQi/An5V22iQk6SRa6DK1XKYW7XDjiz41e9gQra+u+FNar5GA129JzVIkkaBgSpXAebfdjert9mumd2RVEejge4XwK8i4jrgMZ5/3BYAKaVPDnG/JEltrgSGOalNNBroXgbcCXTlr2re6ypJI9TYO263clUqgIYCXUpp/+HuiCSpfXQs7GH6y4OOZcvqtlu5KrWXRmfoiIjdgZ2AznxXB9l9dbumlI4Zhr5JkpqtVGLyB49j4hWXVXb1XHUtU978hn5VrhY/SO2joUAXEZ8he37qM2RPg/hH/udY4MpBTpUktal6S5FUrza/9EOnsOS0TwGGN6ndNfqkiGOAY1NKmwJPAvuRBbpfkxVJSJIKpHopkvKr/D+EVVtvw9zHZ1fCnKT212igm05W6QpwD7BXSqkHOA14+zD0S5I0jAZaiqQELLj9j7Dees3tkKQXpNFA93dgm/z9w8A/5e+fBWYMdackSZLUuEaLIv4buCIi3gv8BLghImaTPQrsj8PTNUnSUBv7x7vZ8DX7tbobkoZYQzN0KaUvAScDS1JKfwBOAt4K9AJHDXauJKn1Op5dxPTtNu8T5mqXHXEpEqm4Gl62JKX0v1Xvvw18e1h6JElaZ/UqV1e8672s973/qezr+cFPWLnfAUyfOaXPuS5FIhVXo8uWjAeOBl4BTKTmXtqU0hFD3zVJ0tqorlwt64BKmFt63Aks+cznKm2GN2nkaHSG7kLgELJlShYOX3ckSetqsMrVeY89A5MmNblHkpql0UD3FuBNKaXfDGdnJEnDxDAnjWiNLluygOwpEZKkNjTx2+fXnZ2TNDoMOEMXEdVh73PAuRHxfuCvwOrqY1NKvcPTPUnSYDofuJ9pB+xd2S5Bv6IIK1elkW+wS66r6Pt7oAN4aIBjO4esR5KkNVu8mGmzdqVzzuzKru77Ehu+PPocZuWqNDoMFuj2b1ovJEkDqrcUSfUllIWX/ZDnDnwtYHiTRqsBA11K6XcAETExpbS8ui0itgeerN0vSRpaAy1FArDsqPex+Av/1YJeSWo3gxZFRMSRwJMR8cqapm8CT0XEO4etZ5KkQZciMcxJKhsw0EXEIcD5wLnAn2uaD8/3XxwRbxi+7knSKNZrvZmkxgx2D91HgY+mlM6ubUgpzQU+FREl4BPAtcPTPUkanSZecjGTP3Jiq7shqSAGC3Q7Ates4fzLgZOGrjuSNLp1PvwQ0/adVdnupf9lV5cikVRrsEC3BNhgDedPAJYNXXckaXSoV7la2nwLOp98orKv+56H6N3sxUyfOaXPuS5FIqnWYIHuN8CxwH8McsxxwO1D2iNJGuEGrFzNw9zCS77Pc697/vZkw5ukNRks0J0J3BYRHcBXUkqPlBsiYgfgFOAwYN/h7aIkjSyDVa7Om70QOnyIl6S1M9g6dA9HxL8B/wMcFRHPAouAqcD6wIPAa1NKdzajo5I0KhjmJK2DwWboSCndCrw0IvYGXk4W5uYBd6SU/jjsvZOkkaS3lynvPqzu7JwkvRCDBrqylNItwC3D3BdJGrEmfP9Spnzo/ZXtElauSho6gz4pQpL0wnQ+8me6Zk6phLmVu+3O3H90VwJc9cviB0nrqqEZOknSmtVbiqT6X83dd95P7xZbZu8Nb5KGkDN0kjQEqpciKb/Kv2AXXvRd5s5ZVAlzkjTUDHSSNAQGW4rkuTf+e3M7I2nUGfCSa0T8jQbv0U0pbTNkPZKkguno7rZyVVJLrWlh4bKtgA8BFwB3AiuBfyJ7UsQ5w9U5SWprpRKTj3kPE6+5qtU9kTTKDbaw8EXl9xHxB+ColNIPqw75cUTcCfwn8Nnh66IktZ8JP7qCKe8/prLdS//Lri5FIqlZGq1y3RG4v87+v5LN3knSiFRduTqD/pWrq3bamQW//C2MH8/0mVP6nOtSJJKapdFAdxNwdkQck1J6EiAitge+CfxyuDonSa1UXblaVv2++7Z76N1m2+e3DW+SWqTRQHckcCXweEQsJPudNhn4LXDMYCdKUlENVrk6z/AmqY00+uivp4G9ImJHssuvAA+klP40bD2TJElSQxpehy4iJgK7AjsDvwE2iYiNh6tjktQqHT0LmLHZdJcikVQYDQW6iNgOSGTVrKcCU4FjgQcjYrdh650kNVOpxOTjjmbGS7akY+XKbFftIXX2SVKrNTpD93XgamA7YEW+7zDgR8DZQ98tSWqu8ddcRddGGzDxyh8AsOTkjzJ3zqJKgKt+Wfwgqd00WhSxF3BiSqkUEQCklHoj4svAvcPVOUkaDtVLkUDfwodV27+EBTfcDBMnAs+Ht6lTJ9HTs7R5nZSktdBooFsMbAL8uWb/y4AFQ9ojSRpG9ZYiKZv/+7tYvd32ze6SJL1gjV5yPR+4ICIOJvs9uENEHAP8N3DRoGdKUhsZbCkSw5ykomp02ZIz8/XnzgUmAT8F5gBnAf81fN2TpKEz9p67rFyVNCI1FOgiYgvgmymlcyNifWBsSmlhRHQCuwB3N/g525IVUewDLAGuAE5LKS2PiC2BC4G9gSeAk1NK11Wduz9wDllhxh+Ao1NKj1a1nwB8DNiArFjj+JTSkkb6JWlk61i0kGm77MiYxc+2uiuSNCwaveT6N2A6QEppSUppYb5/G+DmRj4gIsaTzeytICuyOBz4d+BzEdFBVkXbDbwSuAS4MiK2zs/dHLgGuBTYHXgGuDoixuTthwBnAu8H9s8/46wGvzdJI1WpxItOPoEZ221eCXO9uBSJpJFnwBm6iHgfcHq+2QHcExG9NYdtADzQ4Nfag2x2bY+U0mLg4Yg4A/gqcC0QwKtSSs8CD0XEgcBReR+OAe5NKX0579uRZKHuAOB64ETg3JTSNXn7scD1EfHh/GtJGuFqK1dL9P0X69LjT2TJJz9bOZaaY12KRFKRDXbJ9X+A5WS/Ey8GvgwsrGovkVW//qbBr5WA19cErBLZIsWzgHvyMFd2M/Cq/P0s4MbKB6W0NCLuBvaMiN+SzcidWXXubfn3titwU4P9k1RQ9SpXy+9Xb7EV82+6HdZbr9JmeJM00gwY6FJKK4HvAkTE34BbUkqr1vULpZTmks2mkX/mGOD4fN8mwFM1p8wGXpy/H6x9KjCxuj2ltCoiuqvOlzSCDVa5Ov/O+5rcG0lqvkbXobsJOCQidgI6830dwARg15TSv67D1/4q2QzaK4GTef4JFGUr8s+HrLJ2oPZJVdsDnV9XZ2cHU6dOGuyQttbZOabQ/R+tHLfmGqq/a8etuBy7YnLc1k6jge4bwHuBe8juhfs9sC2wMfDNtfmCeQHE2WQFDG9NKT0YEcvJ7serNgEoL8u+nP7hbAJZEcXyqu2Bzq9r9epSoVd+d+X6YnLchs7Y+/7Ihge+etBjhurv2nErLseumBy3/rq6Jg/Y1miV69uAw1NKewGPAscBWwDf5/kZsjXKL7NenJ9/aErp6rzpH2ThsNrGwNMNtJdDXaU9IsaSVeU+jaQRp2Pxs0zfYes+Yc7KVUmjWaOBbgpwR/7+fuCfU0qrgS8Ar1uLr3cW8A7gkJTSj6v23wbskq9xV7ZPvr/cvk+5ISImkV2uvS2l1Jv3bZ+qc/cEVpHNKEoaQV708VOYsc1mjOnuBqDn8iuZO2dRJcBVvyx+kDRaNHrJ9S/APwFPAg+SXXa9mCwQThnkvIqImEW2vMipwJ0RUT3j9jvgceA7EfFp4CCyytaj8vaLgY9ExGnAVcAZZIsP35C3nwdcGBH35fvPAy52yRKp2GqXIql+v/R9x7HkzC9Vtg1vkkazRgPdV4Dv5+u/XQHcHRElspmwhhYWBt6a//mF/FVtHHAw2XNh7yILkG9OKT0GkFJ6LF88+GvAaWQzdgfns3OklC7PnzTxLbJ7564CTmmwX5LaUL2lSCBbGLj7b0/D+uvXOUuSRqeOUqmxu0wiYm9gWUrp7oh4LXA02f1rn04pPTOMfRw2K1euLhX5hktvGC0mx60xM2pm58pKwLwWzMY5bsXl2BWT49ZfV9fku8iemNVPozN0pJRuqXr/S+CXL7xrktTfxIsvrBvmJEn1NRToIiLInsTwUuqs7ZZSeskQ90vSKNT50INM22/PVndDkgqn0Rm67wOrye5xWzZ83ZE0Ki1ZwrS9dqPz6ecfCNNL/ydAuBSJJNXXaKAL4JUppYeGszOSRr7aytUSfddPWnjpFTz3mtdVjqXmWKtZJam/RgPdL8gqWg10ktZZvcrV8vtl7zmKxV/+Wp/jDW+S1JhGA91JwD0R8U6y9eJ6qxtTSkcOdcckjTz1liGBbOatNsxJkhrXaKC7gPxqB9CZvySpcb29az5GkrROGg10+wL7pJTuHs7OSBqZJl56CZNPPqHV3ZCkEavRQPcAMHUY+yFpBOpMf2Laq/aobFu5KknDo9FAdyFwaURcAvyN7MH3FSmli4e6Y5KKo17lamnLreh8/LHKvu67HqB38y2sXJWkYdBooPsEsAL4f3XaSoCBThqlBqxczcPcwosv5bmD3lRpM7xJ0tBrKNCllLYe7o5IKqbBKlfnzV4IHT7ES5KG24CBLiIOAG5MKa3K3w+klFL67dB3TVLhGeYkqSkGm6G7HtgYmJO/H0gJlzGRRp9SiSnvfWfd2TlJUnMNGOhSSmPqvZekCVdcxpQTjq1sl7ByVZJaqaGgFhF/jYhpdfZvGhFzhr5bktpR518eoWvmlEqYW/nyXZj793mVAFf9svhBkppnsHvo3g4clG9uBZwfEctrDtsSWDk8XZPUSvWWIqn+F2D3H+6ld6usXsrwJkmtNdgM3W/J1ptbnW/35u/Lr1XAvcDBw9lBSc1XvRRJ+VX+ZbHogouZO2dRJcxJklpvsHvo5gJHAkTEY8BXUkpLm9QvSS002FIkK9781ib3RpK0Jg3dQ5dS+gywd0TMBIiId0fEtRHxmYgYN6w9lNRUHQvmt7oLkqS11GhRxMeBnwDbRMTewLeBp4BDgf8att5Jap5SicnHHsmM2MqlSCSpYBpdjuRY4O0ppduAdwG/TykdAxxB/ceBSSqQCT+5kq6NNmDij38EZDfM1i474lIkktS+Gn2W60zgvvz9QcDZ+ftuYL0h7pOkYbKmytVVL92BBb++ESZMYPrMKX3OdSkSSWpfjQa6h4D35GvObQpcHRHjgY8AfxymvkkaQtWVq2XV7+ffdjert9musm14k6TiaDTQfRj4ETANODel9EhEfBN4E8+vVSepjQ1WuTrP8CZJhdZolev/kV12nZ5S+lC++7PAlimlu4epb5IkSWrAgIEuIt5UvSRJSqk3pbSgans2MCEivjzMfZT0AnQs7GHGVhtbuSpJI9hgM3RXARtW74iIJyJiy6pd6wOnDEfHJL1ApRKTP3gcM7bfgo6l2ZrgVq5K0sg0WKCr9w/6DYHOYeqLpCEy/mfXZMuQXP6/ACz90CnMnbOoEuCqXxY/SFLxNVoUIalN1S5FUv1+1dbbsOD/boX1stWFDG+SNDIZ6KQCq7cUSdn8m+9g9Uui2V2SJLVAo0+KkNSGBluKxDAnSaPHmmboDouIZ6u2O4G3RcTcfHtKnXMkNcHYP95t5aokCRg80D0BnFizbzbZc11rj5PUJB2Ln2XaP+3EmJ6eVndFktQmBgx0KaWtmtgPSWtSKvGij5zEet+9uLKrl/6XXV2KRJJGH4sipDZUW7laou8Nr0uPO4Eln/lc5VhqjrWaVZJGFwOd1GbqVa6W36/e7MXMv+VOmDSp0mZ4kyQZ6KQ2M1jl6vx7HmpybyRJReCyJZIkSQVnoJPaROcD99NVc++cJEmN8JKr1GqLFzNt1q50zpld2VXCylVJUuOcoZNaaP3TP0bXNptWwtzC//0Bc+csqgS46pfFD5KkgThDJzVJ9VIkM+g7A7fsyGNY/MWzKtuGN0nS2jDQSU1QbykSyBYG7v7rU/CiF7WgV5KkkcJLrlITDLQUSQcY5iRJL5iBThpmE7/7P1auSpKGlZdcpWHS+aeHmfbqf251NyRJo4CBThpqy5Yx7VV70PnE45VdvfS/7OpSJJKkoWKgk16A6TULAZfoex/Dwu9cxnOvP6hyLDXHWs0qSRoKBjppHdWrXC2/X/au97D4v86Bjudby+Ft6tRJ9PQsbVo/JUkjn4FOWkcDVa6WgMVnfb3JvZEkjWZWuUrrore31T2QJKnCQCetpQmX/y9dG091KRJJUttoySXXiJgA3AWcmFK6Pt93KvD5mkPPSSmdmLe/AjgfeAXwMHBsSumOqs98e37+psCvgWNSSnOG+VvRKNL56CNM22u3yraVq5KkdtH0GbqImAh8H9ippmkn4OvAJlWvM/Jz1geuA24DdgNuAq6NiMl5+yuBS4AzgVnAFOC7w/29aJRYvpwN99qtT5jrvuM+uucsqgS46peVq5KkZmvqDF1E7AhcRv17yXcEvp5SeqZO26HASuCUlFJvRJwEvCHf/23gBODKlNJ38q9zBPBERGyXUnp06L8TjWS1S5FUv1/47Ut47k1vrmwb3iRJ7aDZM3T7Ar8F9qzeGRFjgADSAOfNAm5JKfUCpJRKwC1VnzMLuLF8cErpSeDx2q8jrUn1UiTVl1N7gbmzF/YJc5IktYumztCllL5Vfh8R1U1bAZOAYyLicmApcDFwVh7iNqF/2JsN7JK/3wR4qk77i4eo6xolBlqKpAP6rCknSVI7aZd16HbI//wHcBDwT8A5+b6vkIW9FTXnrAAm5O/X1F5XZ2cHU6dOWscut15n55hC97+tlEp0Hv6OQStXh+rv2nErJsetuBy7YnLc1k5bBLqU0rURMSOl1J3vuj8iZgAfIAt0y+kfziaQzeTRQHtdq1eXCr1iv08cGBoTrvwBU447eo3HDdXfteNWTI5bcTl2xeS49dfVNXnAtrYIdABVYa7sYbIlSCCbudu4pn1j4OkG26V+xvz1L0yftWtle9VOOzPmwftdikSSVDhtsbBwRHwoIu6r2b0rz983dxuwV0R05Md3AHvn+8vt+1R93ubAFlXtGuWmz5zCjKrX9JlT+oS57tvuYcFvb3EpEklSIbXLDN0vgC9GxBeAi4A9gI8Bx+btPwK+CJwbEecBxwCTgcvz9m8Bv4uIW8hC3DnAdSmlR5r3LahdVVeulpXfLzrvQla89dA+xxveJElF0xYzdCmlRFYMcSBwH9kCwR9LKV2Wty8iW3duL+Bustm516eUns3bbyULeacDtwILgXc3+dtQmxqocrUE/cKcJElF1FEqjd67g1auXF0q8g2X3jC6Zh09C5j+ki0HDHTzWjAb57gVk+NWXI5dMTlu/XV1Tb4L2L1eW1vM0ElDrlRi8gfex4wBwpwkSSNJu9xDJw2Z8ddcxQZHP3/FvZf+l12tXJUkjSQGOhVW7TNXS/Sdcl61/UtYcMPNMHEi02dO6XOulauSpJHEQKdCGqxyFWD+7+9i9XbbV7YNb5KkkcxAp0IarHK1FYUOkiS1kkURkiRJBWegU6F0PLuI6dtsZuWqJElVDHQqhlKJF518AjO2fTFjFj+b7ao9pM4+SZJGAwOd2t74666la6MNWO/SSwBYevyJzPWZq5IkVVgUobZSuxRJ9fvVW2zJ/Btvh0mTAMObJEllBjq1jXpLkZTNv/F2Vr90h2Z3SZKkQvCSq9rGYEuRGOYkSRqYgU5tYez991q5KknSOvKSq1pr8WKm7/Fyxsyb1+qeSJJUWM7QqWVedOqH6dpm00qY68WlSCRJWhfO0GnY1Vauluj7L4ml7zuOJWd+qXIsNcdazSpJ0uAMdBpW9SpXy+9Xb7Qx82+7B9Zfv9JmeJMkae0Z6DSsBqtcnX//n5vcG0mSRibvoZMkSSo4A52GRedDD9JVc++cJEkaHl5y1dBaupRpe+9O5z/+XtlVgn5FEVauSpI0dJyh05BZ/1On0bXVxpUwt/B7VzB3zqJKgKt+WfwgSdLQcYZO66R2KZLq98vefRSLv/xV6Mj2Gt4kSRpeBjqttXpLkUC2MPD8v/yd0uQpdc6SJEnDxUuuWmsDLUXSAYY5SZJawECntTLxsu9ZuSpJUpvxkqsa0vnnxLR9XtnqbkiSpDoMdBrcsmVM23cWnY/9rbKrl/6XXV2KRJKk1jHQqaK2crVE32vyCy/6Hs+98eDKsdQcazWrJEmtYaATUL9ytfx+2WHvZPHZ36wsQwKGN0mS2omBTsDAlaslYPE55zW5N5IkaW1Y5SooefebJElFZqAb5Sb84Pt0bbSBS5FIklRgXnIdpTr/8gjT9tytsm3lqiRJxeUM3WizYgUbvvqf+4S57j/cS/ecRZUAV/2y+EGSpPbnDN0IV7sUSfX7RRdczIo3v7WybXiTJKmYDHQjWL2lSCC7vNo9e2GfZUgkSVJxecl1BBtoKZIOMMxJkjSCOEM3EpVKjP/ZNa3uhSRJahJn6EaYzocfYoO3vokNjnpXq7siSZKaxEA3QnT0LGD9T3yEDQ/Ym7H338uzXzyr7rIjLkUiSdLI4yXXAqquXJ1BHtCmTaOjp4fl7z6SJR87jdK06Sw/8himz5zS51yXIpEkaeQx0BVMvcrVDqB3/nwW/OYWVr9s5z7HG94kSRr5vORaMINVrtaGOUmSNDoY6Ipk+fJW90CSJLUhA10RlEqMv+5apr1qj7qzc5IkaXQz0LW5zj8nNjj0zWzw7sMorbcevVi5KkmS+jLQtamORQtZ/4xT2XC/PRl7z90s/tyXWHDDzXTPWVQJcNUvix8kSRq9rHJtE9VLkUAW0jo6Olj+zvew5NQzKM2YUWkrh7epUyfR07O0uR2VJEltx0DXBuotRQJQKpVYfNY5reiSJEkqEANdG6gX5ix+kCRJjTLQtdKKFax3wXmt7oUkSSq4lgS6iJgA3AWcmFK6Pt83DbgAeC0wH/hUSumSqnNeAZwPvAJ4GDg2pXRHVfvbgc8DmwK/Bo5JKc1pzne09sb/+hesf/rHGfu3v1qhKkmSXpCmV7lGxETg+8BONU3fAaYDewOfBS6IiL3yc9YHrgNuA3YDbgKujYjJefsrgUuAM4FZwBTgu8P9vayLzkcfYcphb2GDw98OY8fSc8VVdZcdcSkSSZLUqKbO0EXEjsBl1NwiFhHbAm8Etk8pPQrcn4e59wO/Bw4FVgKnpJR6I+Ik4A35/m8DJwBXppS+k3/eEcATEbFd/nktUbdyddw4ShPXY/FnP8+yo/4Dxo2je84ips+c0udclyKRJEmNavYM3b7Ab4E9a/b/M/B0Tfi6ueq4WcAtKaVegJRSCbilpv3G8okppSeBx+t8naaprlytfpVWrmT+rXez7NjjYdy4yvHdcxYxr+plmJMkSY1q6gxdSulb5fcRUd20CfBUzeGzgRdXtac67bs0eH7TDVa5Wpo5s8m9kSRJI1m7VLlOAlbU7FsBjI+IjkHaJ6zh/AkMorOzg6lTJ61Th1+IofqanZ1jWtJ/vTCOWzE5bsXl2BWT47Z22iXQLad/+JoALEsplSJioPbyYxLW1F7X6tWlYXvSwoxB2obqa/qkiGJy3IrJcSsux66YHLf+uromD9jWLs9y/Qewcc2+jYGnh6i96axclSRJzdIuge42YLOI2Kpq3z75/nL7XvnlV/I/965p36d8YkRsDmxR1d503XMWVQJc9ctiB0mSNNTa4pJrSumvEfFL4LsRcTzZWnOHA/vnh/wI+CJwbkScBxwDTAYuz9u/BfwuIm4hC3HnANellB5p4rfRj+FNkiQ1Q7vM0AEcAfQAtwOfBI5OKd0KkFJaRLbu3F7A3WSzc69PKT2bt99KFvJOB24FFgLvbnL/JUmSWqKjVBq9d3WtXLm6VOQbLr1htJgct2Jy3IrLsSsmx62/rq7JdwG712trpxk6SZIkrQMDnSRJUsEZ6CRJkgrOQCdJklRwBjpJkqSCM9BJkiQVnIFOkiSp4Ax0kiRJBTeqFxYG5gKPt7oTkiRJDdgS6KrXMNoDnSRJUuF5yVWSJKngDHSSJEkFZ6CTJEkqOAOdJElSwRnoJEmSCm5sqzugwUXEtsDZwD7AEuAK4LSU0vKI2BK4ENgbeAI4OaV0Xav6qr4i4qXAN4BZQDfwjZTSV/I2x64AIuJCYPuU0n759iuA84FXAA8Dx6aU7mhdD1UWEYcBl9Xsvjql9O/+vLW3iBgHfAk4AugAfgCcmFJa4dg1zhm6NhYR44GfAiuAvYDDgX8HPhcRHcDVZEHhlcAlwJURsXVreqtq+S+o68h+Ae0CfAA4IyIOd+yKISL+BTi6ant9sjG9DdgNuAm4NiImt6aHqrETcBWwSdXrPf68FcJXgEOAg4E3Aq8j+33p2K0FZ+ja2x7AdsAeKaXFwMMRcQbwVeBaIIBXpZSeBR6KiAOBo4DTW9VhVWwG/AH4QEppGfBoRFwP7As8jWPX1vLw9t/ALVW7DwVWAqeklHoj4iTgDfn+bze/l6qxI3BfSumZ6p0RcQD+vLWtiJgKHAcclFK6Jd/3abKfq/1x7BrmDF17S8Dr8zBXVgKmkl3Guyf/j7zsZmDP5nVPA0kpPZZSOjSltCwiOiJib+DVwA04dkXwOeD/8lfZLOCWlFIvQEqpRBb4HLf2sCPZ78xa/ry1t32ApcD15R0ppe+klF6HY7dWnKFrYymluVT9Rx4RY4Dj832bAE/VnDIbeHHTOqhG/R3YFPgZ8COyeyIduzYVEXsCbwNeBpxS1bQJ/QPDbLJL6mqh/PaUbYGDIuI/ye7D+iHwKfxd2e62JXsE52ERcRrwIrKx+wSO3Vox0BXLV4Fdye4lOJns3rpqK4AJze6U1uhgskD3LeBrwCQcu7YUEROAi8huyF4QEdXNjlv72p7s/2dLgLeQhYRzgMnARBy3djYZ2Bo4AfiPfPtbZOPpz9xaMNAVQH5j6NnA+4G3ppQejIjlwAY1h04gm7pWG0kp3QkQEZPIbuq9GMeuXX0SeCSl9MM6bcvp/z8Sx60N5L8TZ6SUuvNd9+a/N79PViHpz1v7WgVMAd6ZUvoLQER8GPge8B0cu4YZ6Npcfpn1IrIK10NTSlfnTf8gWzqh2sZkN9yrxSJiM2C3lNI1VbsfAsaTjdHONac4du3hHcAmEVG+b3U80JlvX0Y2TtUctzZRFebKHgbGkV2y83dl+3oKWFUOc7lENrP6DP6ubJhFEe3vLLL/yRySUvpx1f7bgF3yaryyffL9ar0dgB9HxMyqfbsBc8lu6nXs2tN+ZPfO7ZK/LgTuzN/fBuyVz/yUZ873xnFruYg4JCJm5/fSle0K9ODvynZ3KzA2IqqD247As3mbY9egjlKp1Oo+aAARMYvsP+hTyaaeq80F7iOb9fk0cBDZ5aKdUkqPNa2Tqitfh+4usoKIU8ju6bkI+DzZYsOOXQFExJnAPiml/SJiCvAo2aKn5wHHkP1ja7uaKjw1WURMJ5uR+znZz9j2ZGH8G2QL1vrz1sYi4idkhQ7/QXbf3HeBHwMfxbFrmDN07e2t+Z9fIJtirn51kN1sP5MsOBwBvNn/yNtDSmkl2Rplq4DbgQvI7oP8ekppNY5d4aSUFpGN6V7A3WSzc683zLVefrn1tcCWZGPz32RP9PiCP2+F8C6y4PYb4CdkC0Sf6titHWfoJEmSCs4ZOkmSpIIz0EmSJBWcgU6SJKngDHSSJEkFZ6CTJEkqOAOdJElSwRnoJGktRcRhEVGKiFNa3RdJAgOdJK2Lw8ieGvHuVndEksBAJ0lrJSKmkT2V4NPAzhGxa2t7JEkwttUdkKSCeQuwAriC7LmS7wHuAYiIMWTPEj2a7PF8X8vbj04p/V9ETCB7tujhZP+gvgE4IaU0u7nfgqSRxhk6SVo77wCuSymtAq4G3hER4/K2U8kuwx4OHEj2MPFtqs79PLBnvn9fst/BP4uIjib1XdIIZaCTpAZFxKbAq8keIA7wY2AG8Pp8+/3Ap1JKv0wp3UMW7jrycycBxwPHppRuTyk9QPZQ8p2AfZr2TUgakQx0ktS4/wesBn6eb98OPAW8OyJmAJsCd5QPTiklYEG+uQ0wHrgpIhZHxGJgLjAReElzui9ppPIeOklq3GHAOKA7Isr7xgBvAEr5du3l0/J2+fftvsDCmmPmDm03JY02ztBJUgMiYntgd+AkYJeq10FkM2/vIJut263qnG2AqfnmX8hm92aklB5NKT1KFuS+CmzZhG9B0gjmDJ0kNeYwoAc4P6W0vGr/AxHxe7L75c4FPhURjwFzgK/nx5RSSs9GxIXANyLiP8jC3xeBlwOPNOdbkDRSOUMnSY05DLisJsyVfYtsZu5nwJXAD4HfANcCq4Dn8uNOAX5FtuTJHcB6wGtSSsuGt+uSRrqOUqm05qMkSWsUEf8G3JVSmptvd5HN1G2dUnqslX2TNLIZ6CRpiETEVWRFEx8lK5L4LLBlSmmPlnZM0ojnJVdJGjrHk11i/T1wG9AJvLmlPZI0KjhDJ0mSVHDO0EmSJBWcgU6SJKngDHSSJEkFZ6CTJEkqOAOdJElSwRnoJEmSCu7/A7R6TsaJ6X73AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(ages, estimated_charges, 'r-o');\n",
"plt.xlabel('Age');\n",
"plt.ylabel('Estimated Charges');"
]
},
{
"cell_type": "markdown",
"id": "8ad1a4b5",
"metadata": {
"id": "8ad1a4b5"
},
"source": [
"As expected, the points lie on a straight line. \n",
"\n",
"We can overlay this line on the actual data, so see how well our _model_ fits the _data_."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c410ea9",
"metadata": {
"id": "6c410ea9",
"outputId": "0dd655bb-ef3a-4aa2-a133-4b64e36c8363"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF7CAYAAABIAFZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB1YklEQVR4nO3deXzcVb3/8dfMZE+ztU2bhlIKtBwKUkAoFGSRRUBBQAQRlSsqXBHwuqBy+SHX5YoLCooCwuXKhasgyCbIfgvIIhSh1JalHNtCKW2apk2bPZNMZr6/P74z6TfTzDeZNpNZ8n4+Hn00Z77fmZzJNzP5zOec8zkBx3EQERERkcIVzHYHRERERCSzFPCJiIiIFDgFfCIiIiIFTgGfiIiISIFTwCciIiJS4BTwiYiIiBS4omx3IJfFYjEnGs3PsjWhUIB87ftEp2uXn3Td8pOuW/7StdtecXFoM1A/3DEFfD6iUYe2tp5sd2OH1NZW5G3fJzpdu/yk65afdN3yl67d9urrq95LdUxDuiIiIiIFTgGfiIiISIFTwCciIiJS4BTwiYiIiBQ4BXwiIiIiBU6rdHeQ4zh0dbXT29tFLBbNdne2s3FjAMeZmMvVg8EQ5eWTmDSphkAgkO3uiIiIZJ0Cvh20desmAoEAkydPJxQqyrnAIhQKEo3Gst2Ncec4DtHoAJ2dbWzduonJk6dlu0siIiJZpyHdHdTfH6a2dgpFRcU5F+xNZIFAgKKiYmprp9DfH852d0RERHKCAr4d5hAI6MeXq9xrMzGHtEVERJIpYhEREREpcAr4REREJOuaO8I8u2ozzR2ajpMJWrQxwZx55sdpbt4w7LEf//gXHHXUh1Ped+vWLbz22qscd9wJABxxxMH88pc3sGDBoWPax0gkwiOPPMTpp39yTB9XRERyU3NHmK/d/waRaIziUJDrzvgADdVl2e5WQVHANwFdcsnX+chHTtru9qqqat/7/fa3v2FgYGAw4Hvwwceprq4Z8/4tWvQEt9/+OwV8IiIThG3pIhKNMam0iK6+AWxLlwK+MaaAbwKqrJzElClT075fcl2/HXmMHfk+IiJS2My0SRSHgnT1DVAcCmKmTRqzx27uCGNbujDTJk3oIFIBnwzx2muvcv31v2LNmnepra3lE584k3PP/QK/+93NPPbYwwAsX/4P7r33L0OGdM888+Oce+4X+Mtf/sw776zmgAMO5DvfuYJf//paXn75RWbN2o3vfe8qZs/eHYBHHnmIO+/8X9avX0dlZSXHHHM8X//6t1m+/B/8+Mc/ANwh43vueYiGhhncfvvv+POf76O3t4d9953PN77xbXbddVbWfk4iIjJ2GqrLuO6MD4x5YKah4m0U8I2hkoceoOyB+8b1e4Y/8Un6T/3EmDxWNBrlu9+9jE9+8lNcddXVrF69iv/4j8vZa6+9Oeecc3nvvTXEYlEuvfTyYe//u9/dzJVX/oCqqmq++c2v8oUvfJYLL7yE88//Mldd9QNuueVGrrrq5yxb9g+uueZnfO97/4kx81ix4k3+8z//gwMPPJijjvow//Zvl3LHHbdz661/oLa2jvvuu5vHH3+UK6/8IVOn1nPffXfzta99hTvvvI+yson5whURKTQN1WVjHoxpqHgbBXwT0C9/eTW//vU1Q26bNKmK22//Ix0d7UyePIUZMxqZMaOR6667kcbGXaioqKC0tJRoNEpdXd2wj3vSSR9jwYKFABx44Adpb2/ntNPOAOCEE07iL395EIDS0lL+/d+v5OijjwWgoWEGd911B2vWvMNxx32ESZMmEQwGB4eM77zz93zta9/ioIMWAPCNb3yHl156kb/+9SlOOunksf8BiYhIQcjkUHG+UcA3hvpP/cSYZdsy6QtfuIBjjjl+yG3BYJDq6ho++clPcc01P+X223/H4YcfwYknnjzquXqNjbsMfl1aWsb06eWedimRSD8Ae+89j9LSUn73u5t5993VrF69inXr3h8M6Lx6enpoadnID3/4XYLBbVWE+vv7ef/9tWk9bxERmVgyNVScjxTwTUC1tXXMnLnrsMe+8Y3v8MlPfornn3+Wv/3teb761X/lssu+y8knnzri44ZCQ3+dvAGa18svv8Tll1/KiSeezKGHHs4XvvCvXHPNT4c9NxqNAvCDH/yY2bP3GHJs0qSqEfskIiITWyaGivORCi/LoNbWzfziFz9l+vQZfPazn+fGG/+bj33s4zz99CKAMdsz+C9/eYCTTjqZyy67go9//HR2220269evG1yd6/0+VVVV1NVNZvPmzcycuSszZ+7KjBmN3HzzDaxa9c8x6Y+IiEihU4ZvAuru7qK1dfN2t5eWlvH8888Qi0X5zGf+hY6OdpYtWzo4/FteXs7Klf9k06YW6uun7fD3r66u4c03X2fVqpUEg0H+8IfbaG3dTCQSGfw+XV1drF37Ho2Nu3D22Z/hv//7JiZPnsIee+zJnXf+L6+88jJf+9qlO9wHERGRiUQB3wR0/fW/4vrrf7Xd7Z/+9Of42c9+yXXXXcMXvvAZSktLOfbYj3DeeecDcNJJJ/PXvz7Neeedw8MPL9rh7//FL36ZH//4+1x44ReorKzk0EMP54wzzmLlSgvABz+4gN12m815553DjTf+N+eccy7hcJhrr/0ZnZ0d7LWX4dprf8PUqfU73AcREZGJJKAit6lFIlGnra1n2GPNze/R0LDbOPdo9EKhINFoLNvdyKpcv0ap1NZWkOr3TnKXrlt+0nXLX7p226uvr1oCHDzcsXHN8Blj9gauBxYCrcD11tqfx4/dDPxr0l2+Ya39Vfz4McB1wBzg78D51tpVnsf+KnAZUAPcC1xire2OHysFfgOcBfQB11prr87Q0xQRERHJKeO2aMMYUww8BqwFDgAuBq40xnw2fsq+wLeBGZ5//xW/767AQ8AfcCPXZuBBY0wwfvwM4EfARcAxwALAW2ju58BhwPHAl4HvGmM+naGnKiIiIpJTxjPDtwtuZu5ia20vsMoYswg4GrgDmAd811rbPMx9LwCWJbJyxpgv4gZ9xwKLgK8Dv7HWPhQ/fiGwyBjzLcCJ3//j1tolwBJjzNXAJcBdmXqyIiIi2aL9YyXZuAV81to1wNkAxpgAcDhwFHCxMaYBmAzYFHdfCDzneaweY8xrwGHGmGdwM3o/8py/GPe5HQhEgVLgBc/xF3CziyFrbXTnn52IiEhu0P6xMpxs1eFbhxt0vYQ7324fYAD4T2PMemPMMmPMeZ7zZwBNSY+xEZgJ1AJl3uPW2gHcOYIz4/fdYq0NJ923BNjx2iIiIiI5yLt/bCQaw7Z0ZbtLkgOyVZblNKAR+C3wS7Zl9pYBvwY+DNxsjOm21t4DVOAutvDqw83cVXjawx0vSnGM+PGUQqEAtbUVwx7buDFAKJTbdatzvX+ZFgikvn65LBQK5mW/Jzpdt/xUiNdtwZx6yl5aS08kRllJEQvm1FNbWz7yHfNMIV67TMpKwGetfRXAGFMB3A5UA3+01m6Jn7LcGDMX+ApwDxBm++CsFDeLF/a0k4/34M7hG+4Y8eMpRaNOyiXfjuPkdNkTlWVxr1E+LtlXqYH8pOuWnwrxulUA1562z+Acvgry871wJIV47XZWfX3qLUfHc5XuLsaY5A1Z38IdWq3yBHsJK3AXegCsBxqSjjcAG9gW9A0eN8YUAVPix9cDdcaYkqT79gHJ31NERCTvNVSXcfScqZq7J4PGc8xvHnC/McY7b+4gYBNwuTHm4aTzDwTejn+9GDgicSCeGTwQWGytjQGveI/jlmAZAJYC/wD6cReJJBwBLInP9RMREREpaOMZ8D2Lm9G7zRgzzxhzCvBT4CrgL8BHjTH/ZozZ0xhzCfAvuPXzAG4FDjXGXGGM2Qf4HW49v6fix28ELjXGnGGMOTjevtVa22Wt7cEdNr7RGHNIPMv4LdwizhPa//3f4xxxxMH88Y9/GPV9enp6ePTRv4zJ93/00b/wiU98bEweS0RERFIbt4DPWhsBTsbNvL0M3Az8Cvi1tfavwDm4O228iVtA+Rxr7Qvx+64BzgDOBV4FpgOnxbN7WGvvwi3L8lvcunyvApd6vv03cbOATwM3AT+01v4pY082Tyxa9AQzZ+7K448nJ1dTu+uuP/CXv/w5c50SERGRMTeuizaste8DyfP4Esf+BKQMwqy1j+Hu1JHq+M+An6U41gN8Pv5PgI6Odv7+98Vcfvl/8MMfXsk///k2e+2194j3097LIiIi+Wdi1+2YwP7616cpLi7h2GM/wq67zuLRR7dl+aLRKP/93zdx+ukf5YQTjubf//2bbN68mUcf/Qv/8z+38PrryzjiCHdv5jPP/PiQjN9rr73KEUcczMCAOz3yjTeWc9FF53PccR/i+OOP4Jvf/CqbNrWM63MVERGZ6BTwTVD/93+Ps3Dh4RQVFXHkkUezaNHjg0Harbf+F3/5y5+57LIruOWW2+nr6+NHP/oPjjvuI3z6059j3rx9efDBx0f8Hj093Xz721/n4IMP4fe//xPXXns9TU3ruf32WzP99ERERMRDAV8OaO4I8+yqzTR3hEc+eQxs3ryJZcuWcuSRRwNw1FHH0tbWxksvvYDjODz44P2cf/6FHHbYEey222y+9a3LmTdvX4qLSygvL6eoqIgpU6aO+H16e3s599wv8IUvXEBj4y7Mn38AH/7wsaxZ806mn6KIiIh4ZGunDYnLxp6HixY9QTAY5LDD3Eo2++77AaZOreexxx7hAx/Yn7a2rRizbT7fLrvM5Mtfvjjt7zNlylQ+9rGPc/fdd7By5T9Zs+ZdVq36J/vs84Exey4iIiIyMgV8Webd87CrbwDb0jUOAd+TDAwMcPLJxw3eFovFeOmlF+jrSy/LGAgEhrSj0ejg15s2tXD++ecyd67hkEMO49RTP8GLL77A8uX/2Kn+i4jksuaO8OAuFyp8LLlCAV+WmWmTKA4F6eoboDgUxEyblNHv9/77a3n77bf4t3/7JgcffMjg7Rs3NvPtb3+dF154ltraOv75Tzu4avf999dy0UXnc8cd92wX4BUVFdHT0z3YbmpaP/j1c889Q0VFJb/4xa8Hb7v33rtxd7sTESk82Ri1ERkNBXxZ1lBdxnVnfGDcPg0uWvQEkyZVcdppn6S0dNsWw3vsMYf99pvPY489wllnfZpbb/0vpk+fTn39dK677hfstdfeVFfXUF5eQWvrZpqa1tPYuAvz5u3Lo48+zIIFh9Le3s7dd98x+JjV1TVs3ryJV15ZTGPjTJ55ZhHPPvs0c+eajD5HEZFsycaojchoaNFGDhjPPQ8XLXqCj3zkpCHBXsLpp5+JtSs48sijOe64E/jBD77Ll798HpMmVfHd734fgA9/+FiCwSDnnvsptm7dwgUXfIWqqiq+9KVz+dWvfs4FF3xl8PGOPfYjnHjix7jyysv50pfOZcmSV/jqV7/J2rVr0h46FhHJB+M9aiMyWgEV0k0tEok6bW09wx5rbn6PhobdxrlHoxcKBYlGY9nuRlbl+jVKpba2glS/d5K7dN3yUyaum+bwjQ+95rZXX1+1BDh4uGMa0hURERlDDdVlCvQk52hIV0RERKTAKeATERERKXAK+EREREQKnAK+naAFL7lL10ZERGQbBXw7KBQqIhLpz3Y3JIVIpJ9QSGuSREREQAHfDps0qZa2tk309/cpm5RDHMehv7+PtrZNTJpUm+3uiOSk5o4wz67aTHOH6mGKTBRKgeyg8vJKANrbNxONDmS5N9sLBAITNhANhYqoqqobvEYiso22/hKZmBTw7YTy8sqcDSpUkFJEhqOtv0QmJg3piohMINr6S2RiUoZPRGQCaagu47ozPqCtv0SGUcjb4ingExGZYLT1l8j2Cn1+q4Z0RUREZMLzzm+NRGPYlq5sd2lMKeATERGRCa/Q57dqSFdEREQmvEKf36qAT0RERITCnt+qIV0RERGRAqeAT0RERKTAKeATERERKXAK+EREREQKnAI+ERERkQI3rqt0jTF7A9cDC4FW4Hpr7c/jx3YDbgE+BKwFvmmtfcxz32OA64A5wN+B8621qzzHvwpcBtQA9wKXWGu748dKgd8AZwF9wLXW2qsz+2xFRCSXNXeEeXVDJzMriwt2ZWah0rVL37hl+IwxxcBjuMHcAcDFwJXGmM8aYwLAg7hB4ALgduA+Y8zu8fvuCjwE/AE4GGgGHjTGBOPHzwB+BFwEHBN/jGs83/7nwGHA8cCXge8aYz6dyecrIiK5K7GN1k8ft3zt/jdo7ghnu0sySvl47Zo7wjy7anNW+zqeGb5dcDNzF1tre4FVxphFwNHABsAAR1prO4G3jDHHA18CvgtcACxLZOWMMV/EDfqOBRYBXwd+Y619KH78QmCRMeZbgBO//8ettUuAJcaYq4FLgLvG5ZmLiEhOSWyjVVNRQntPP7alq6AyRc0d4YItIJxv1y5X9ugdt4DPWrsGOBsgntE7HDgKN9O3EFgaD/YSXgCOjH+9EHjO81g9xpjXgMOMMc/gZvR+5LnvYtzndiAQBUrjj+d97CuNMSFrbXSsnqOIiOSHxDZaneHC20YrVwKMTMm3a+fdo7erbyBrAWq2dtpYBzQCD+POt/sV0JR0zkZgZvzrGT7Ha4Ey73Fr7YAxpjV+vB/YYq0NJ923BJiGm10UEZEJJLGN1rruSMHNA8uVACNT8u3a5coevdkK+E7DDfh+C/wSqMBdTOHVh5uZY4TjFZ72cMeLUhzD8/jDCoUC1NZW+J2Ss0KhYN72faLTtctPum75p7a2gn1DQaLRWLa7MqYWzKmn7KW19ERilJUUsWBOPbW15dnu1pjKp2tXW1vB/5y3gLc2dLDPjGoas3QtshLwWWtfBTDGVOAu0LgVd3WtVynQE/86zPbBWSnuIo+wpz3c/Z0Ux/A8/rCiUYe2Nt9TclZtbUXe9n2i07XLT7pu+akQr1sFcO1p+wzO4asgf/+W+cmna1cBHDyjCjJ8Lerrq1IeG89VursYY05Nuvkt3KHVDUBD0rEGtg23rvc5ngj6Bo8bY4qAKfHj64E6Y0xJ0n37gC07+nxERERyVUN1GUfPmZrzw50yfsaz8PI84H5jzDTPbQcBm3AXURxgjKn0HDsCd/EF8f+PSByIZwYPBBZba2PAK97juCVYBoClwD9w5/EdnvTYS6y1Azv/tERERERy23gO6T6Lm9G7zRhzKbAn8FPgqvix9+LHvg+cgrsy90vx+94KfNsYcwXwAHAlbj2/p+LHbwRuMcYsj99+I3CrtbYLwBhzO3CjMeY83Ozet3BLtYiIiGRNIZdPkdwybhk+a20EOBk38/YycDPu6txfx0ujnIa7anYJ8C/AJ+KlXBIlXc4AzgVeBaYDp8Wze1hr78Ity/Jb3Lp8rwKXer79N3GzgE8DNwE/tNb+KWNPVkREZASJ8inXPftO3hQQlvwVcBwn233IWZFI1MmXCaHJ8mkyqwyla5efdN3yUzav27OrNnPds+8Mlk/52tF7cPScqVnpS75p7gjnTVmW8VRfX7UEd0ey7WSrLIuIiMiEliv12fJNIjMadSAUoOAKS2eKAj4REZEsSBQQ1hy+9OTb1mq5QgGfiIhIljRUlylYSVO+ba2WKxTwiYjspOaOMK9u6NR8ogzRSlbxyret1XKFAj4RkZ1Q6POJsh1sJX6+kWiM4lCw4H6+smMaqsvYe9ZkLZRKgwI+EZGdUMjziXIh2Er8fBMrWQvp5ytDZfvDRaFTwCcishMKeT5RLgRbWsk6MeTCh4tCp4BPRGQnFPJ8olwItrSSdWLIhQ8XhU4Bn4jITirU+US5EmxpJWvhy+SHCw0VuxTwFSCtGBSRsaJgS8ZDpj5caKh4GwV8BabQVwyKiEhhysSHCw0VbxPMdgdkbCV+uavKiohEY9iWrmx3SUREJCtyYR5qrlCGr8AU8opByT2aGyOyc/QayqxcmYeaCxTwFZhCXjEouUVzY0R2TrqvIQWHO0bzUF0K+ApQoa4YlNyiuTEiwxttYJbOa0gfsGRnKeATkR2iuTEi20snMEvnNaQPWOOjkLOoCvhEZIdobozI9tIJzNJ5DekDVuYVehZVAZ+I7DDNjREZKt3AbLSvIX3AyrxCz6Iq4BMRERkjmQzM9AErswo9i6qAT0REZAwpMMtPhZ5FVcAnIiI5Ld8m0udbf2WbQg7WFfCJiEjOyreJ9PnWX5k4tLWaiIiMu+aOMM+u2kxzR9j3PO9E+tFsFznax82UdPsrMl6U4RMNP4jIuMpUrbpcyK4V+sR/yV8K+Ca4XHiDFJGJJVO16nKhrEZDdRlXnDCX51dv4cg9J+v9VHKGAr4JLhfeIEVkYslUrbpcyK41d4S56smVRKIxnlvdqg/RkjMU8E1wufAGKSITS6bKX6T7uM0dYV7d0MnMyuIx64M+REuuUsA3wRV63SERyU2ZKn8x2sdNTGeJOhAKMGaZOH2IllylgE8Kuu6QiMhwEpm4mooS2nv6xywTl8kP0VpgJztjXAM+Y8yewK+AI4Bu4G7gCmtt2BhzM/CvSXf5hrX2V/H7HgNcB8wB/g6cb61d5XnsrwKXATXAvcAl1tru+LFS4DfAWUAfcK219uoMPU0REclxZtokAsDGjjDlRWObicvEh2gtsJOdNW51+IwxJcBfcAOuw4HPAqcDV8VP2Rf4NjDD8++/4vfdFXgI+ANwMNAMPGiMCcaPnwH8CLgIOAZYAFzj+fY/Bw4Djge+DHzXGPPpzDxTERHJC4HA0P9zmOr7yc4azwzfIbjZuUOstV3ACmPMlcC1wKXAPOC71trmYe57AbAskZUzxnwRN+g7FlgEfB34jbX2ofjxC4FFxphvAU78/h+31i4BlhhjrgYuAe7K1JOV9GioQkTGk23pwnEcpleXjemQbqZobqDsrPEM+CzwsXiwl+AAtcaYBmBy/JzhLASeG3wga3uMMa8BhxljnsHN6P3Ic/5i3Od2IBAFSoEXPMdfAK40xoSstdGde1qyszRUISLjLRFAdYbzI4DSAjvZWeMW8FlrN+Fm4wCID8deEr9tH2AA+E9jzEeBzcAvrbW3xU+fATQlPeRGYCZQC5R5j1trB4wxrfHj/cAWa2046b4lwDRgw9g8Q9lRKmMwMSiLK7kkEUCt646MaVmWTNICO9kZ2Vyley1uBm4B8OH4bcuAX8fbNxtjuq219wAVuHP/vPpwM3cVnvZwx4tSHCN+PKVQKEBtbYXfKTkrFArmTd8XzKmn7KW19ERilJUUsWBOPbW15dnuVtbk07Ubraa2Xr754Fv0D8QoKQry3+ceRGOBXeNCvG6Frra2gn1DQaLRWLa7IjtAr7n0jHvAZ4wJ4K7UvQg401r7pjHmLeCP1tot8dOWG2PmAl8B7gHCbB+clQKt8WOkON6DO2w83DHix1OKRh3a2nxPyVm1tRV50/cK4NrT9hnM/lQwdj/3fMwq5dO1G61XVm0m3D8wmMV9ZdUmjp4zNdvdGlOFeN3SpdebjCddu+3V11elPDbeZVmCwO9wV+ieba19EMBa6wBbkk5fAZwQ/3o90JB0vAF4g21BX6KNMaYImII7XBsF6owxJdbafs99+4b5npIlKmNQ2DThvPDp9ZZ5+RhQ5wL93FzjneG7BvgMcIa19uHEjcaYawBjrT3Fc+6BwNvxrxcDR3nOr4gf/5G1NmaMeQW3tl9ijuBhuHMClwIx3Hl8hwN/jR8/AlhirR0Y02cnOUVzA3OHJpwXPr3eMksB9Y7Rz22bcQv4jDELccunXA68Gl+Zm/AX4OvGmH8DHgE+CvwLcFz8+K3At40xVwAPAFcCa4Gn4sdvBG4xxiyP334jcGtiRbAx5nbgRmPMebjZvW/hlmqRAqasUm7RhPPCptdbZuVrQJ3t7Fq+/twyYTwzfGfG//9J/J9XMXAO8B/A1cA7wDnW2hcArLVr4sWVfwlcgZvxO81aG4sfv8sYsxvwW9z5eQ/g1vZL+Gb82NNAB/BDa+2fxvwZSk5RVklk/Oj1lln5GFDnQnYtH39umRJwHCfbfchZkUjUyZUJoel+StJk1vyla5efdN3yUz5dt2xny9L17KrNXPfsO4PZta8dvceYLtYa7bXLt5/bzqivr1qCuyPZdrJZlkVGKRc+JYmISHbl27SIXMmu5dvPLVMU8OUBzUEQEZF8o2H+3KKALw/kyqckERGRdCi7ljsU8OUBfUoSGX8Tad6PiBQ+BXx5Qp+SRMaP5s2KSKEJZrsDIulq7gjz7KrNNHeERz65gPsgmeOdNxuJxrAtXdnukojITlGGT/JKLmRecqEPklmaNysihUYBX57QfCJXLqxYzoU+SGZp3qzsDL1fSy5SwJcHlFHaJhcyL7nQB8k8zZuVHaH3a8lVCvjygDJK2+RC5iUX+iAiuUnv15KrFPDlAWWUhsqFzEsu9EFEco/eryVXKeDLA8ooiYjkB71fS65SwCcZo4nLIjIRaQRAcpECvjyQj5OA87HPIiIihUqFl/NAPhaBzcc+i4jIyFR4Pj8pw5cH8nEScD72WURE/Gn0Jn8p4MsD+TgJOB/7LC7NvRSRVFR2Jn8p4MsT+TgJOB/7PNHp07uI+Mnk6I0+bGaWAj4RGaRP7yLiJ1OjN/qwmXlpB3zGmKC1NmaMaQCOBP5hrV059l2TfKdPa/lHcy9FZCSZGL3Rh83MG3XAZ4xZCNwDnGuMWQG8ClQDpcaYT1trH8hQHyUP6dNaftLcSxHJBn3YzLx0MnzXAg/iBnr/BgwA9cDngP8EFPClqZAzYPq0lr8091JExps+bGZeOgHfgcA51touY8ypwJ+ttX3GmEXA9ZnpXuEq9AyYPq2JyFgp5A/Hso0+bGZWOgFfKzDLGBMAFgBXxm8/GNgw1h0rdIWeAdOnNREZC4X+4VhkvKQT8N0K/BnoB1YCTxljLgJ+Dlwx9l0rbBMhA6ZPayKyswr9w7HIeBl1wGet/Q9jzFJgN+CP8ZW6a4CzrbUPZ6qDhUoZMBGZyEY7TDsRPhyLjIeA4zhp3cEYswuwF7AYqLbWbsxEx3JBJBJ12tp6st2NHVJbW0G+9n2i07XLT7puo5fuMG0m5/AV6nXL5M8sV+ZUFuq12xn19VVLcKfabSedsiyTgP8BPgnEcIO+Xxpj6oHTrbUtY9BXEREpcOkO02p6SHqaO8JcfO/r9PQPUFFSxA1n7qcCyUIwjXOvAaYCuwO98dsuBRzg12PcLxERKVAapt2muSPMs6s209wRHrPHXLxmK03tvbSHB2hq72Xxmq1j9tjeYD0SjWFbusbssSWz0lm0cSrwMWvte8YYAKy1q+ILN54ZzQMYY/YEfgUcAXQDdwNXWGvDxpjdgFuADwFrgW9aax/z3PcY4DpgDvB34Hxr7SrP8a8ClwE1wL3AJdba7vixUuA3wFlAH3CttfbqNJ67iOSoXBlektHTHGZXZrNlATcdQ2CMHs+lYD1/pZPhK8ddoZuslFH8RhljSoC/4AZchwOfBU4HroqXenkQt/TLAuB24D5jzO7x++4KPAT8AXdsuhl40BgTjB8/A/gRcBFwTPwxrvF8+58DhwHHA18GvmuM+fTon7rIjsvEJ3hxJf5gXvfsO3zt/jf0M84jDdVlHD1n6oQN9iBz2bKFs+torC6lpryIxupSFs6uG5PHhW3B+teO3kPDuXkmnQzfg8BPjDH/Em87xpi5uJmz0azSPQQ3O3eItbYLWGGMuRJ3B49HAAMcaa3tBN4yxhwPfAn4LnABsCyRlTPGfBE36DsWWAR8HfiNtfah+PELgUXGmG/hfsa5APi4tXYJsMQYczVwCXBXGs9fZNBos0qa75JZKtkh+SxT2bKG6jJuOGt+xjKomlOZn9IJ+L6Ku2ijFTej9w9gEvAE8LVR3N/iDgl7P8I4QC2wEFgaD/YSXgCOjH+9EHhu8IGs7THGvAYcZox5Bjej9yPPfRfjPrcDgShuFvKFpMe+0hgTstZGR9F3kUHpBHEKSDJLw0uSzzI5tK2gTJKlU4evA/ikMWYPYF78vtZa+/Yo778JNxsHQHw49pL4bTOApqS7bARmxr/2O14LlHmPW2sHjDGt8eP9wBZrbTjpviXANLRLiKQpnSBOAUlmaS6Y5DsFZjJe0inLMiv+5QDwuuf2XXGDqs1pZsuuxc3ALQC+iTu3z6sPNzMHUOFzvMLTHu54UYpjeB5/WKFQgNraCr9TclYoFMzbvue6BXPqKXtpLT2RGGUlRSyYU09tbfmw59bWVvA/5y3grQ0d7DOjmsYU53np2qWntraCvWdNznY3dN3yUFNbL6/ZTew9fdKoXpuSW/SaS086Q7qr2bbII0B8/Y9HxBjzZ+CCpKHZIeILNH6Fu8DiTGvtm8aYMO7qWq9SIFFRMcz2wVkp7vBy2NMe7v5OimN4Hn9Y0aiTt0UdVZAycyqAfz9uT55fvYUj95xMBf6/JxXAwTOqYITzEnTt8pOuW35JTM2IOhAKoPm1eUivue3V11elPJbOKt0v4+6h+1Hc4KwO+AjwFvD/cOfbTcfN3A0rPox7K/AV3C3ZHowfWg80JJ3ewLbhVr/jiaBv8LgxpgiYEj++HqiLrxL23rcP2DLCcxbZTnNHmKueXMlT/9zEVU+u1MrQUdJqZckliakZVWWqJycTQzoB3w+AL1prn7TWdlprO6y1T+OugL3EWvsK7tDs6T6PcQ3wGeAMa+39ntsXAwcYYyo9tx0Rvz1x/IjEAWNMBe5w8GJrbQx4xXsctwTLALAUd3FJP24pGO9jL7HWDozmiYt4pVtKQYGOyqdI7knMr+0Ma36tTAzpDOlW4QZRyRy2Dcd24C6G2I4xZiFu+ZTLgVeNMd6M3bPAe8BtxpjvA6fgrsz9Uvz4rcC3jTFXAA8AV+IWZ34qfvxG4BZjzPL47TcCtyZWBBtjbgduNMach5vd+xZuoCqStnQWYqgsi0urlSXXJBb8rOuOMLOyWL+PUvDSCfjuxQ3Ivgq8ijuP7yDc+Xh/jmfdLsfdBWM4Z8b//0n8n1cxcBrwO2AJ7nzBT1hr1wBYa9fEiyv/ErgCN+N3Wjy7h7X2rvhOHb/FnZ/3AO62bwnfjB97Gjco/aG19k9pPHeRQemsDFWg48rkamXttOHSzyF9DdVl7D1rsuaByYQQcJzktRfDM8aU4RZZPhc3QAN3qPQ23IzZ8cD3gM+MtlRLrotEok6+vhFoMmtu2JEMX6Feu0wEJLmUQc3mdculn0O+KdTX20Sga7e9+vqqJbg7km0nnQzfUcA3cIdl98Yd3l2V2K8WdyeOB4e/q4i/XMhOZKIP6daJa+4I8+qGzoIcYspEvTFlUF36OYjISNIJ+P4IHG2tfQN32FXGUS4ERJmSC9mJ5o4wF9/7Oj39A1SUFHHDmfuNadA3msdSmYj0qbC1y0ybRADY1NVHRXFowv4cRCS1dAK+ZbilV97IUF8khVwIiDIpF7ITi9dspam9l0AgQFtvhMVrtnL6/Bnj2ofEz6GmooT2nn5laUZBO214BAJD/xcR8Ugn4OsErjfG/ABYw7aCxwBYa48aw36JRy4ERJmUO1maQLyceHb+YKpMxI7R1lTue4TjONRPKi3I9wgR2XnpBHyvxf/JOMudgCgzciFLs3B2HY3VpfREolQUh1g4u27c+6AyEbKjCv09QkR23qhX6U5EubRKN905fFq9lL5cmSepa5efsn3dcuX3N99k+7rJjtO1296YrNI1xkwCLgT2BULxmwO4de8OtNbO3cl+ig8NW22TqT9smfoZ6w+xjAe9R4iIn3SGdP8bOBZYBJwF3A3MBRYA3x/znokMI98WsORbf0VEpDCls5fuSbhFlT8DvAX80lp7KO7uF/tlonMiydLdxzbb8q2/Ism0F7RIYUgnw1cK/DP+9Zu4mb0lwE3AC2PcL5FhmWmTCAQCbr2xkqKcn5yuyfSSz5ShFikc6QR8bwEfwd3v9g3cmnw3AXW4waDI+EgsNMqDBUe5sAJZZEcVekkokYkknYDve8C9xpgQ8HvgLWPMY8AHgMcz0TmRZLalCwfyqt5YLkym18IR2RHKUIsUjlEHfNbah40xewNF1tr3jTFHAJ8DngV+nakOinjpD1D6NCwnO0oZapHCkU6GD2vtGs/Xy3C3WxMZN/oDlD4Ny8nOyIUMtYjsvHTq8O0G/BzYHygjaf8pa+2sse2ayPD0Byg9yoqKiEg6Gb7fAzXADUB7ZrojE5XmmGWOsqIiIpJOwLcAONha+2amOiMTk+aYZZ6yoiIiE1s6hZctMDVTHZGJS8WJRUREMss3w2eMOdbTvA/4vTHmKuAdIOo911r79Nh3TyaCXJljpmFlEREpVCMN6S4a5rbfDnObA4R2vjuSDdkOdHJhjpmGlUVEpJD5BnzW2iCAMeYQ4HVrbW/imDHmNKDFWvtSZrsomZQrgU6255ipdImIiGRKthMrMPKQbgj4H+CzwLG4RZYTzgHOMsbcClxorY0O8xCS4xTouHJlWFlERApLriRWRhrS/RZuoHeMtfY57wFr7aeNMTcDdwNvAr/KSA8loxTouHJhWFlERApPriRWRgr4zgO+mhzsJVhrnzHGfBv4Ngr48pICnW2yPawsIiKFx0ybRADY1NVHRXEoa4mVkQK+WcBrI5zzPHDj2HRHskGBjoiISOYMOA59AzFKitKphje2RvrOzcDuI5wzC9g8Nt0RERERKRyL12ylpbOfcCRGS2c/i9dszUo/Rgr47gd+YIwpHu5g/PbvA4+Ocb9ERPJGc0eYRSs20twRznZXRCQnORCI/58lIw3p/gj4O7DEGPMb4FXcfXTrgEOAS4Ay4NOZ7KSISK5KrMCLOhAKoBqOInksE+VTFs6uo7GmnJ7+ASpKilg4u25MHjddI9XhazfGLASuBq4BKuOHAsAW4I/AD6y1GtIVkQkpsQKvpqKE9p7+CVvaSCTfpVs+ZbTBYUN1GTecuV/WF0eOlOHDWrsVuMAYczGwJ1CLO2dvtbU2tiPf1BhTCiwBvm6tXRS/7XLgx0mnXmet/Xr8+P7ATcD+wArc2n+veB7zU/H7NwL/B1xgrW2JHwvgZisvAIqB3wGXqXagiOysRGmjzvDELm0kku/SKZ+SbnCYC4sjRwz4Eqy1/biB1k4xxpQBdwL7Jh3aF/g18BPPbd3x+1QCj+HW/Psi8GXgEWPMntbaTmPMAuB24Cu4q4qvA/4XOCn+ON8APg+ciTtv8Q7coPWnO/t8RGRiS5Q2WtcdYWZlcdbf1EVkx6RTPiVXauulY9QB31gwxuyDG+wFhjm8D/Bra23zMMfOBiLApdbamDHmG8DJ8dv/G/gqcJ+19rb49/kXYK0xZo61dhXwdeD7iXqCxpjLcANLBXwistMaqsvYe9Zk2tp6st0VEdkZgcDQ/1Mw0yYRjTmsa+ulqrQoLzL7410Q5mjgGeAw743GmCBgAJvifguBvyWGkK21DvA3z+MsBAaLQ1tr3wfeAw4zxjQCu3qPAy8AM40xu+7sExIREZH8l8jalRWFiERj2JaulOe2dPWxqauf7v4om7r6aenq833s5o4wz67anNWV/OOa4bPW/jbxtTHGe2g2UIE7V/AuoAe4FbgmHuTNYPtgcCNwQPzrGUDTMMdnxo+RdHxj/P+ZwPvpPxMREREpJHUVxWzu7icWcwgGA9RVDFuRDoDnV28h5jiUhIJEojGeX72F+Y01w57b3BHm4ntfH1yle8OZ++Xk1mrjZV78//XAKcAHcefhAfwcNxhMDp/7gNL4137HKzxtkr4uxUcoFKC2tsLvlJwVCgXztu8Tna5dftJ1y0+6bvlrrK9d/4ZOplWVEgoGiMYc+gOpH/9j+zdy55J1DMRihIIBPrZ/Y8pzn1zVSlN7mGAgQFvvAMtbutl71uQx6/do5UTAZ619xBgz1VrbGr/pdWPMVOBi3IAvzPbBWSluJpARjoc97Yjnazz3H1Y06uTtnJza2oq87ftEp2uXn3Td8pOuW/4a62s3s7KY0njGrjQUZGZlccrH3726lN9+aj7Pr97CkXtOZvfq0pTn9vT04zgOUccZbGfqd66+virlsZwI+AA8wV7CCtwSK+Bm/hqSjjcAG0ZxfL2nvcrzNZ77i4iISBZlouhxOhIr7kfbh/mNNSmHcb32mFpBMBAg6jiEAgH2mJqdjHL2dvH1MMZ8zRizPOnmA9k2b28xcHi8nl6irt6H4rcnjh/hebxdcff4XWytbQLWeo/Hv26KL+6QDMmFSaoiE4VebzJeMvG71twR5uJ7lvPTRSu5+J7lWfs9bqgu4+g5U0cVcD6zchOXPfQWz6zc5Hve1p4IlSUhSkJBKktCbO2J+J6fKbmS4Xsc+Kkx5ie4RZEPAS4DLowfvxe3hMpvjDE34hZQrgLuih//LfCsMeZvuMHfdcBj1tqVnuM/McasBaK4JVkScwQlA9ItSin5KdufyMWl15uMl0z9ri1es5Wmjj4CQFvvAIvXbOX0+TNGvF+2PLNyE995yC1N/PTKzVx9Khwzt37Yc1u7+2kLDwAQHojR2t0/bv30yokMn7XW4i7WOB5YjrsrxmXW2jvjxztw6+4djltY+UPAx6y1nfHjL+EGgd8FXsLd7/fznm/xc9z6f/fF//0R+EXGn9gE5i1KOdLydslPiTf+6559h6/d/4YyS1mk15uMl8z+rjnxKr3OGD5mZjKSf17e7Nv2evLtTb7t8ZK1DJ+1NpDUfgpY4HP+K7ird1Mdvx13t43hjkWBS+P/ckYhZ0cS20119Wm7qUKVj5XmC5VebzJeMvW7tnB2HY015YOlSxbOrhuTx00MFfdEolQUh7jhrPljsj9uTVmRb9urJBTwbY+XXBnSnXAKfQgm3cmvkn8UZOQOvd5kvGTqd62huozPHrQLD7+5kVP2nT7i4zZ3hHl1Q+eI2xmmM1ScTr28ytIi37bXQbvW8tJ7bUPa2aCAL0smQnYkFzaLlsxRkJFb9HqT8ZKJ37VnVm7iJ4vcQhqvb+ikrqI45Zy4RMIk6kAowCgSJo67VZrjP1S8eM1W1rf1QsBdaOEXHM6tr/Rte504bxp/XLqejt4BqsuLOHHeNN9+ZEpOzOGbiJQdkUKQzoo2cWk1rcj2Hl/hzmsLJLWHk0iYVJWNPI8wMVRcU1ZEY02571Bxe2+EqAPRGEQdt53K4ne3+ra9Wrr63MeOObT3Rkbchi1TlOHLEmVHRCaeQp/KIZJstHPiTppXz9MrNw8u1zhp3vDZPdiWMOkMj5wwaagu45IjZ/P4ik2cNK/ef15eeTGhgLtkJBBvp7I5aaVtctvr+dVbcBwoKRp5G7ZMUsCXRRqCEZlYJsJUDsk/mVpAmM4HnGPm1nP1qQwGZqmGc2FbwmRdd2TEOXzLm9r5fw+/TTTm8NzqVm4+uyRlsLXH1AocIOZAMIBvgeQPzqzh9ebOIe1UjtxzMncsWUckGiMYDHDknuO/rRoo4BMRGTeayiG5JpNZ53Q/4Bwz1z/Q82qoLmPvWZNH3KLsvn9sYCDm5g0HYg73/WNDyoDv3qVNxE8l5rjtVOeeeWAjD7y+ga6+KJNKQ5x5YOOw54G7I8dNnm3YspHdAwV8IiLjRlM5JNfsSNZ5tBnBTH7AuX9ZE4/bTZxk6jlj/9TBVjqWrm/3bXut2NhJR18UgI6+KCs2dvr+LEa7DVsmKeCTjCnkOoMiO0pTOSSXpBuUpZMRzNQHnPuXNQ2u6F36vhuUpQr6PnnADB5d0TKkncqBjTU8ZjcNaafiXWTixNujzU5mi1bpSkZoFwYRkewZ7WrwhuoyrjhhLsftVc8VJ8wdMSjL5E4bo+3zA8s3+La9Vm3q9m17XXTU7iTqJ5cVue1UEotKRrPIJFcow5dFhZwB0+R0EZHsSCcL19wR5qonVxKJxnhudeuIc/jSyQim248v3fWPwVp1v/v0ASnP3X1yBW+3dA9pp/KnpU3btVNlA198dwvxLW8JD7jtVOems8gkVyjDlyWFngHT5HSR3KVagIUtnSxcuhm7xDDt147eY8TgMJ3HvndpEy2d/YQHYrR09nNvUqDm9cGknSqS217TJpX4tr0efnOjbzvZMXPr+dmp++RFsAfK8GVNoWfA0p27UcjZTpFcolqAmZft97N0PnCbaZMIBAJs6uqjoqRoVB/OW7r6eCO+G8ZYZQNXbu72bXvVlBf5tr3OP3w3Xn6vjRhuhuv8w3dLee4p+07n9Q2dQ9qFRAFflkyEDNhoJ6frD5DI+Cn0D5vZlsn3s2dWbhp1nborTpg7WAZkxO+f2HJshK3HwK1rd+GflhOLOdyxZB03fWp+ytWn6XzwP3rOFF5cs3VIO5UHlm3Yrp3q5zFtUilTq0oGh4qnTSpN+biJ4dvEfr5jtfo3VyjgyxKVZ9hGf4ByS7azE5JZE+HDZjZl6v3smZWb+M5DKwB4euVmrj4V371mRzsvz7Z0EYk5lBWFiMScEfv7/OotxGIOxaGx3TViSmUJVSVBegdilBcFmVKZeui1qT3s2/ZavGYrW7r7CQQCbOnu990fF9ygr9ACvQQFfFmk8gwu/QHKHcq2Fj592MysTL2fpVMGxLZ00dU3QDTmEArGfIO4uopiNnf1E3UcQoEAdRWptxOD9HaNaO4Ic96dSweza7d95sCU/Wjt7qezPwZAZ3+MVp+tyg6eVct7bc1D2v7i+6UN7tQ7MSngk6zTH6DcoWzrxKAPm5mTqfezdPaajTkOLV39Q9qpvLO5h5jjEAwEiDkO72zu8c3YpbNrxG2L19LaHQGgtTvCbYvX8u8n7DXsuU++vWm7dqpM23mHzmLRPzfT2TdAVWkR5x06K2UfFs6uo7G6lJ5IlIriEAtn16U8t9Ap4JOcoD9AuUHZVpGdl+33s7eauwgGIBAI4DgObzV3+c75S5wXCIxtBuzNjZ2+bS8nKShNbnu1dPXR3e/WT+nuH6Clq8+3+PMNZ81XQgGVZckqlUaQXJNOyQURGT/eIV1vezj7NEwi5kA05hBz3HYqe0ytAJz4eg0n3k5teVM7/3rXMm77+/v8613LWN6UevuxTyTNlUtueyW/14w0j9BxoKQoiOO4bT8N1WUcPWfqhH8/U8CXJYVeh0/yVzpvjvrQIrJzlje1c8Pz7/oGTpDezg5vNnX6tr229kSYXFFCXUUxkytK2NoT8e3HH/6+jmi8E1HHbaey9P0237bXJw+YQSgekYSC/lugHbnnZILBAAOjmEco22hIN0s0V0rynRZ4iOycdEqcpLOzQzo17RKLNhJ16kZatLG5p9+37fXUytbt2v+Z4txpk0qZPql0cF6eX/mUxDzCV9Z3sGCX6jFZJTwRKMOXJd5il4FAQHOlJO9kck9NkR2VqaxzOo872nO9JU5iMWfEockplSXMqiv3LVkCcPr8Bt+216NvbCQW/zoWb/v54C41vm2vuvJi37aXbekiFAwws7acUDAw4vvJ/MYaLv2IUbCXBmX4simNYpciuUYLPCTXZCrr3NwR5uJ7lg+u9LzhrPm+e8J++e5lg5mqm8/eP+W56ZQ4STcbePnxkcECwn7ZwHQWVgBUloV8217fOm7PwdqBiXYqej/JPGX4smS4YpciuWC02Qkt8JBck27WubkjzKIVG0f8XV+8ZitNHX209w7Q1NHHYs+OEMmeWNFCU0cfnX1Rmjr6eGJFS8pz5zfWcMFhs5hZW8YFh83yzVY9v3oL0ahbPiUa9c8GNneEuePVdWyI/+/3/I7da6pvO9nDSRnA5LZX8nxAv/mBej/JPGX4sqSuopjN3f3EYg7B4MjFLkXGQ7oZkmyXnxDxSidLlPhdjzoQCjCKIMOBQGDEEZl3Wnt8217PrNzEjS+8B8CNL7zH7MkVKbNx+zRMIgbEYs5gO5VEgBoA2noHfHeX2GNKJdWlIXojMcqLg+wxpdLn2UF5cci37XX/8g3btf12sdD7SWYpw5clW3siTK0sYUZ1GVMrR14ZJTIeNC9PctFoV7KmkyWyLV30RqI4jkNvJOr7u75wdh2NNeXUlBXRWFPuW7y3flKJb9vr7teafNtewUCAKZXFVJUWMaWymOAINfMcHJz4/37qKorp6osSiTl09UVHTD586bBZvm2vDzRU+bZlfCnDlyVm2iTKi0NEojHKi0KaryA5QfNoJNekM3ctHYlRlkTBYb9Ap6G6jBvO3G9UxXtn1pYTiicCAwG3nUp1WZFvO7m/7b3x7dIi/v3dY2oFQQKD26X51dZ79M2kRRtvbvT9+R4zt55zD+7g8RUtnDRvmu/8wPMOncWzq7fQEY5QXVbsuyOGZJ4CviyZCNuJNXeEC/r5FaKJ8Hsp+cW7kjUSjfH86i0pA5J0piQkRlmKi4JEBmJjNsqycHYdUyaVDO4f65cNXDi7jmdWtQ5pp7L0/XYG4sO5AzGHpe+3p/w5bO2JUFkSIjwQo6wo6Pvc/rG+w7ed7JmVm/j9q+sB+P2r69mvsTpl0NdQXcb/fOYAvZ/kCAV8WVTI8xVUoy1/FfLvpeSfI/eczB2vrqM/GiMU8F/Jmk5900Q2u7c/Snmx/yhLOu9nLV19bO2OEHUctnZHfLf92tDRRxAIBMGJue1U0pkb2NrdT1vY3XosPBCjtTt1rbwDdqlmteexDtilOuW5MHTHDyfe9svy6f0kd2gOn2SE5oKJyFiYNqmU+qoSKktC1FeV+BbkTXdKwkA0Rt9AjIFozPe8bfP9GHG+3/OrtxBzHEpCQWKO/2raI/ecTCAAsZg7/OsXzO4xpcK37fXk25t8217nHTqLyhI3FKgsCY447JrOjh+SWxTwSUZoLpiI+Blt+R/b0kUoEC/IG/AvyJvOoo3Fa7bS0tVPd/8ALV39vqVWEvP9NnSE2dzd7zt/LrHt12hq6wEQiAdP/mswOHHeNKpLQwSB6tIQJ86blvJcJ+b4tr1efHcL3f1uwNvdH+PFd/2LP7s7fszj2LlTufrUeb7ZPcktWRnSNcaUAkuAr1trF8VvmwzcDJwIbAG+Z6293XOf/YGbgP2BFcCF1tpXPMc/BfwYaAT+D7jAWtsSPxYAfgRcABQDvwMus9ZGM/xUJyzNBRORVNIZIk33w+OL724ZLDjsVwKkPRwZnBMHDu3h1PPcEvP9QgF3IYTfnLj5jTVcdfLeg1ug+S2AeOytFhLJxWjMbac6/8V3t9DR5/7J6uiL8uK7W1I+v4aaMmjqGNpO4eE3N27X9vu5gRv0KdDLP+Oe4TPGlAF/BPZNOnQbMAX4EPBD4GZjzOHx+1QCjwGLgYOA54FHjDFV8eMLgNtxg7qFQDXwv57H/gbweeBM4BPAOcC3x/7ZiVdDdRlHz5mqYE9EhkhnykdDdRlXnDCX4/aq54oT5vq+n9y/rImfLFrF6xs6+cmiVdy/LHWZk5qyYoqCAUJBKAoGqClLnbVLVFUIBBjVfL/rn1/D8qZ2rn9+jW8Gs7Ik5Nse8tyGqWmXyicPmDH4xz0Yb6dyyr7TfdtSOMY14DPG7IMbtO2ZdPuewMeBf7XWvm6tvRX4A3BR/JSzgQhwqbV2BW4A1x6/HeCrwH3W2tustcuBfwFONMbMiR//OvB9a+1z1tq/ApcBF2fmWYqITEyjHaZNZy/x5o4wP3j8nzz8ZjM/ePyfvo/9QFIQlNz2Wji7jtryIkKBALUjrKZNd6i4qb2X9vAATe29vkPFySVb/Eq4pDOHDyAYDBCI/+/njP0bufz4Oew3o4rLj58zYnZP8td4Z/iOBp4BDku6/VBgg7V2lee2FzznLQT+Zq2NAVhrHeBvScefS9zRWvs+8B5wmDGmEdjVezz+2DONMbuOxZMSEZnoEsO01z37Dl+7/40Rg77R7iWeTgC1b1Jh3+S214qNnWzujtAfddjcHWHFCHvItnT18caGTlq6Uq+k3SYQ3xHDP9iKJT335LbXB2fWkojdggG3ncrzq7fgOA6lRUGcERaOgBv03fqZAxXsFbhxDfistb+11n7DWpu8nnwGkJx73wjMHIPjiVx2U9IxPPcXEZFhpLO4YrTDtLalCweon1SKE2/7G93KhvMOnUVNaRHBANSUFvmuOP3z8mbfttfypnYuuGsZt/39fS64a5nvjh9ukWMnHsc6vkWPX36vzbfttXB2HQ1VpVSVhmioKvXNSKa9cEQmhFypw1cBJH9s6gNK4gsuUh1PrM/3O17haZP0der1/UAoFKC21j9tnqtCoWDe9n2i07XLT4V43Zraevnq/W/Q3TdAZWkRt5+3gMYUw44L5tRT9tJaeiIxykqKWDCnnlqfc0MvrGFzdz+Vpf7nnjC/kTteWz/YhxPmN6Y8992OPnoibv25nsgAvaR+D99vZg0verKF+82sSXnuNXcsJbG+I+bANc+8w4MXf2jYc/s3dFJdVkxvxK3v1x9I/Xvxwd3qeHrl5iHtVOf2EKCkOERZzKGkOER1dXnKn8NRtRXc8cUynrYtHGumceCs1MFhPivE11wm5UrAF2b74KsU6LXWOsaYVMcTmUK/42FPO+L5Gs/9hxWNOrS1+Z6Ss2prK/K27xOdrl1+KsTr9uTyDazb2ksAd6Xqk8ubOH3+8AsAKoBrT9tncGV+BanfPzs6wvQPRAlHohSHAnR09FKRYs/XCuDKE+by/OotHLnnZN/HfXRZEwMxd8hzIOa2d68e/nP9KfOmceff36erP8qkkhCnzJuW8nHXtHZt10517tqWTrbEV/H2RmKsbemkbcbwQ8ubO8IEcGvwOY7bTvW4r6zaTDQaY2plCV19A7yyahNHz5k67LkAu1eX8qUF7qylQvu9TCjE19zOqq9PPY0hV+rwrQcakm5rADaMwfH1njZJX6ee0SsiIoATH0n1n2sH7ry4R99qGXE+3OI1W2np7CccidHS6V8Dr7kjzJWPvM19y5q48pG3fYeWZ1S7Q8RRx+3tjBTBHrhlTjr7ozhAZ3/Ut/7cUXtM8W17PWk3+ba9jtxz8uC+u6ERCi+rtqnsrFwJ+BYDuxhjZntuOyJ+e+L44fHh3URdvQ8lHT8iccf4YoxZwGJrbROw1ns8/nVTfHGHiIgMY+HsOhpryqkpK6Kxptx33tgzKzfxnYdW8PTKzXznoRU8szJ1oOMaXSD5xIoWmjr66OyL0tTRxxMrWlKeu6Gjj2CAwX9+W5UNV38uleP3nkZxfPpgccBtp1JdWuTb3k4gMPT/FNJZKSwynJwY0rXWvmOMeQL4X2PMJbi19j4LHBM/5V7gp8BvjDE34hZQrgLuih//LfCsMeZvuMHfdcBj1tqVnuM/McasBaLAT+LniIiMq+aOcN4UJG+oLuOGM/cbVX/vfq1pu3aq4rwLZ9cxraqUzvAAVWX+JVGaO/t82177NEzCu6nEPg2ps2Cn7Dud1zd0Dmmn8k5rN5H440Yct51qOPVzC2by7KpWYrgZlc8tSL020LuaNhKN8fzqLb6FmrUvreyMXMnwgVs7rw14GfgP4Hxr7UsA1toO4GTgcOA13Ozex6y1nfHjL+EGgd8FXsKt0fd5z2P/HLgTuC/+74/ALzL+jEREPNIuXZIDRluOpCQU8G0nKwoEKC0KUjRCZuuQ3Wp9214vJw0NJ7e9zti/kYuO2I3dp1Zw0RG7+ZYkefiNjb5tr/mNNVwWr2t32fFzfAM4raaV8ZS1DJ+1NpDUbgFO9Tn/FeCDPsdvx91tY7hjUeDS+D8RkRFlIhPnLV3S1TeAbenK6YzN8qZ2LvzTcmIxhzuWrOOmT81PGcActGstL3nKihy0a23Kx7UtXURiDmVFISIxx/fnEAwEqC4N0RuJUV4cJOgTIL7Z3Onb9mruCPPn15vp6ovy59eb+ei86Sn7UF4c8m17LW9q5xfPrCYWc3i7pYs59ZUpf2bzG2u46VPzBxek+AWHIjsrlzJ8IiI5IVOZuFyZeD/a2nrPr95CLOZQHAoSi/kX8D1w15rBKnmBeDuVuopiNnf3s6EjzObufuoqUm9r1trdT0dflEjMoaMvSmt3f8pzj91rqm/b64kVLTS199ERHqCp3X9u4JcOm+Xb9krnZwZu0Hfxkbsr2JOMU8AnIpIknSLC6ciFiffpBLPpDDk+t7J1cPmFE2+nsrUnwtTKEmZUlzG1soStPZGU5z67qtW37bXHlEqqSkMUBQNUlYbYY0plynPf3NDp2/Y6Zm49Fx2xG7vVlXHREbulnJsIGqaV3JUTizZERHKJmTaJaMxhXVsvVaVFY5qJy9TE+9EOQaczrDy/sYZPH9jI4ytaOGneNN8s1BtJw6fJbS8zbRIBoD0cGfHnO6Oq1LftFXMcOvuiAHT2RX23KisvCfm2vZY3tXPLS2uJxRxueWktB+1aq2FayTvK8ImIJGnp6mNTVz/d/VE2dfWPcv/U0RntcGq6j3nxPcv56aKVXHzPct/HTmdY+f5lTfz+1fVs6o7w+1fXc/+y5B0st/lAUnHh5LZXS1cfG+KlVjZ09Pn+fGfUlPm2vf6etDVZctvrkwfMIBHiheLtVDRMK4VAAZ+ISJLnV28h5jiUhILERrH5/Ghlam7g4jVbWd8eZmtPhPXtYd9CxukMK9/+9/d9215nHtBIdWmIAFBdGuLMA1Kver3huXeHDP/e8Ny7Kc+tKS8mFISiYIBQ0G2n0pCU/Utue02bVEpdZTEloQB1lcVMm5T6XA3TSiFQwCcikiTdP/DNHWEWrdg4YgCXqbmB7b0Rog6D/9p7U8+Jg9HviDEQc3zbXi++u4WOPnfnio4+/50r3m/r9W17LZxdR3VpMeBQXVrsW7PvxHnTaKwupao0RGN1KSfOS10g+YkVLWzujtAfddjcHfFdtJEYpj13wa6+K5VFcpnm8ImIJElnHlZzR5iL732d3kiU8uIQN5y5X8qsWcZW6SZXKvEpbZfYEQPg6ZWbufpUUi5COHKPydy3vHlIO5U7lqzbrp2qtt3BM2t5zLPl2MEza1M+7ovvbmFrPIDd2hvhxXe3pHzchuoyPn/Irjz85kZO2Td1mRXYVsA5gJtl9CvoDO7vhAI9yWfK8ImI7AR3OLU3PpzaO2bDqTD6+X41ZcXukGfAHfqsKUs97PlnTwA3XNvrvENnUVdeRFEA6sqLOO/Q1OVIyotCvm2vMz/Y6Nv2SmcLtGdWbuIni1bx+oZOfrJole/2bh/dZxrFwQCBABQHA3x0n9TZQJFCoIBPRCRJouDw7195nwv/tJzlTe0pz23vjRCNucOd0djIw6mjlc58v4Wz62isLqWuopjG6lLfYc90Vr2Cu3o18c/PGfvP8G17LX2/3bftlbzlmd8WaI+vcAO8QFJ7OPMba7jp7Pn865G7c9PZGqaVwqchXRGRJN5VmSPtcVpTXkwoAIEAOI7/ooLE8G9P/wAVJUW+w7+2pYveSJRQIEBvJOpbPqWhuozvfdQMDkH7ZQ73bqgi8HozDm5gtHdD6tW0i9dsZWNHHwSgpz/K4jVbOX3+8IHclMoSasuKCA/EKCsKMqWyJPXPIY3h1DP2b2RdW+9gaRi/LdBOmlfP0ys3Dy4IOWle6np54AZ9R+0zg7a2Ht/zRAqBMnwiIknSWbSxcHYd06tKqSgpYnqVf3Zt8ZqtNLX30h4eoGmE4d+6imJaOvtY1x6mpbPPdzeK5o4wVz25kqf+uYmrnlzpmw2MOc6QFbJ+teoGF4PERl4MUldRTHckSiQaozsS9e1vOsOpy5vauWtpE1t6Ity1tMk323rM3HquPnUex86dytWnzvMtkCwy0SjDJyITxmiLE89vrOGqk/fm8RWbOGle/YjDfUWhIKVFDkWh0XyGDriRlt/KCuC5Va1E47FY1HHbqfqRTjHl+5dt2K6dKmu2LXsZwHEc3+zl1p4IdeXFRGMOoWDAd/eMxHDqaBbFpJNtBTfoU6Ansj0FfCIyISTmxEWiMYpDQd9FE80dYa5/7l16IlFWbepi3vQq36FXx3GYXl1Ge0+/b7C1cHYdkyuL6egdoLq8yDcbuHJTt2/by0ybRCAQYFNXHxUl/jtXdPYN+LaT+1tXEe9vhX9JlLqKYrb2RojFHILBgG+GD0a/6vXIPSdzx5J1qoEnspM0pJtFmai4L1II0nltjPbcdGrgLV6zlaaOPtp7B2jq6PMdek2UWukMj1xqpaWrj02d/YQHYmzq9N/B4+g5U3zbybr7B2jvHaC7P3UAB7BXfaVv22vFxk63Vl3MrVXnV7cvnf1x06EaeCJjQxm+LEkn2yAykSS2CeuJRKkoDnHDWfN9M3GjfR2ZaZPoi8bY1NpDdfnI++PGYs62VQU+GqrLuPBDu/HUqlaOmzPF93X8h1fWDZk/94dX1nH1acMHMFMqS5hUEqQ3EqO82H8RxL1Lm2jtdgOs1u4I9y5t4pKj9xj23KlJO0okt73ufq1pu3aq4dJE4JtYkDKW+w+rBp7IzlOGL0syVXFfJN+lk11L53W0YmMnLfHsWktnv2+2qqa8iBgQcyAWb6eyvKmdKx5+m/9b0cIVD7/tu6hgc3e/b9urtbufrv4YUQe6+mO0+py7cnO3b9trblJGL7ntVRIK+La3k1gA4rMQRESyQwFflmSs4r5IQYhn10ZIr5lpk4jGHNa19RKNOb6vo3RqtL3V3EUoAMUht5jxW82pA8nH3mohEnOIORCJOTz2Vuotuj44s8a37XXf8g2+ba/T5zf4tr02dPQRBIIB9w/Aho7Uw8oH7Vrr2/ayLV04QP2kUpx4W0RyhwK+LEm34r5IslyYA5qJPiycXUdjTTk1ZUU01pT7LhRo6eqjpaufrr4oLV3+c+IO3a0W2BZCJtrDSZRlSSxA8FsoUFkc8m17HTVnCsF4xBkMuO1UusIDvm2vY+bWc9ERu7FbXRkXHbGb7yrVfRomDcle7tOQOkg+cd40Gmvie9PW+O9Nqw+xIrlNc/iyqKG6TIGe7JBMzgFd3tQ+6j1kM9GHhuoyLjly9mBJFL/HfOytFgZibgg3EM+uperzlMoSqktDo5oTl05Zlpl15YTilVYC8XYqj765kXh3iTluO9VjHza7bsg+tof5BL7Lm9q55aW1xGIOt7y0loN2rU35uMFAgGmTSgbLpwQDqYdpG6rLuPlT+4+qlE3iQ+xozhWR8aeATyQPpVN3LR3Lm9r58t3LiMXgD6++z81n7z8mtd/S7cP/e3gFsRg8t3ozN59dkrIP6WTXYo5DR18UgEhf1LfgcHNHmJv+9h6RaIw1W3p8y7IsnF1HdVkRnX0DVJX6l1r5x/p237bXeYfO4tnVrYMlXPz2sU2nVp2ZNmlwzuNoMnHpfDDVh1iR3KUhXZE8lKnhMzdj5g71DcTwnY+Wbh+WN7Vzw/Pv+i5qSLcPM+vKB+fkjZRd++vKVt+2VzqLQV58dwtbewcYiMHW3gFefHdLynP3qp/k2/ZqqC7jZ6fuw2cOnsnPTt3HN5BKZ2cQTScRmZiU4RPJQ+kOn412h4mG6lLf9o72YXlTOxf+aTmxmMMdS9b51lNLpw815UVDypz4rabd2tvv2/byLgapKvUvMXL739/frp1q54oP7lrLY29vGtJOpbkjzA8e/yc9/QM8vXKz7767iVp1oxmKB2XiRCYiZfhE8lRDdRlHz5k6qmDva/e/wXXPvsPX7n/Dd4HFgTNrKAoGCABFwQAH+qwiBXfRxBsbOn0XS8DQIcdYzOH51amzYCfunbRQYO/UCwXSydqVhUK+ba90FoOkI3kY2W9YOZ19dwGmTSrlAzOqmOZTV09EJi4FfCJ5Kp0dJnojURwHeiNR3+HJrT0RJlcUD/7z2y0hkbX7/Svvc+GflvsO1aY75Hjzp/bneycZbv7U/r4B7daeft+2174zqnzbXonFIA7bFoOk8vlDdvVtez359ibf9vZGt+9uOkG9iExMGtIVyUPprJCtqyhmc3f/qPY4rYsHeVHHIRTwPzeRtUuUL/FbKDC/sYZvHbMnD7+5kVP2nT5mQ45lRSHftldVWZFv28tJyrwlt73O2L+RdW29PGE3caKpTzmcC1Cd9D2T214LZ9dRU15ER+8ANSPsu5upBTQiUjiU4RPJQ+ksKkhnj9N3NvcQcxyCgQAxx+GdzT0pz92nYRJRByJRh6jjX89teVM7P39qFW9s6OTnT60aceHGaKWTtUsnuxZIKlWS3PZa3tTOXUub2NLdz11Lm3yf2+cWzCQRkobi7VRWbOyktTtCJObQOsI+tqqBJyIjUcAnkmHpFCdu7gizaMXGEc9N5w+8mTaJ8uIQgQCUF4dGDAYCAXcOn1+QA9vquU2pKGbapBLfem73/WMDA447OjnguO2xkE5h4HS2CfvoPtOGBGYf3Sf14yYynUWjmJ84v7GG7xw/h/1mVPGd4+f4ZjrT2RlEK29FZCQa0hXZAaNd9ZrO0Gvi3KgDoQC+56azQjadcxfOrqOxupSeSJSK4pDvMKKZNomyoiA9kShlRf5BZ29/1LedbPSrikdfGPigWbW89F7bkLavIG5tmBE+Fh+552TuWLKOgVHMT1ze1M4vnllNLObwdksXc+orUwZ9J82r5+mVmwdXIZ80L/XuGaCVtyLiTwGfSJrSCeLSmVuVWFxRXBSkNxIb03lYow0GGqrLuOGs+aPfLSGR1RshGzgrqT5ecturuSPMeXcuHSw4fNtnDhwx6BvNcztx72nc9VoTHeEI1WXFvqt/H3urhWjMza5F47UA/eYnXnXy3jy1qpXj5kzxzdqlUyD5mLn1XH0qg7t9+G2XJiIykpwK+Iwx5wB3Jt38oLX2dGPMbsAtwIeAtcA3rbWPee57DHAdMAf4O3C+tXaV5/hXgcuAGuBe4BJrbXcmn48UpkRgFgoEBle9pgo40hl6rasoZnNX/6gWTDR3hLn43tfp6R+goqTIt0ZbuhKlVuoqin0fMxHMlhWFBucRpjo/ne3Hbnt5La3d7jzD1u4It728ln//yF4785QA93lt6e4nBmzpdkutpMygVrmlTZyk9nCaO8Jc/9y79A7EWNHU4bsrRyIbOJrVyuAGfQr0RGQs5Nocvn2BB4AZnn/nGWMCwINAK7AAuB24zxizO4AxZlfgIeAPwMFAM/CgMSYYP34G8CPgIuCY+GNcM35PSwpJYtXrho4wm7v7fQOzhuoyrjhhLsftVc8VJ8z1DaDSWTCRbo220c4jXN7Uzr/etYzb//4+/3rXMt8FCOn8HNztx4oJBqC6rNh3qPjVtW2+7R31h1fXEYt/HYu3Uzlx3jQaq+NzA6v95wYuXrOVpo4+2nsjNHX0+V6LRIHkcxfs6lt8WkRkrOVUhg/YB1hurW323miMORYwwJHW2k7gLWPM8cCXgO8CFwDLrLVXx8//Im7QdyywCPg68Btr7UPx4xcCi4wx37LWpl7eKDlptPO7MiWx6jUUCBB1HN9Vr+nslgDuQolgAGIj1F2Lnz3qGm1f/tMyOsMDVJUV+da2u+8fG4jG01rR+OKKVEHJ1p4IdeXFRGMOoWDA9+fgbj/mHt/aG+HFd7ekLF9SWhz0be+ojt4B37ZXQ3UZN589urmBLodtk/78zW+sUaAnIuMu1zJ8+wB2mNsXAkvjwV7CC8BhnuPPJQ5Ya3uA14DDjDEh3Izec577LsYNdg8cu67LeMiFArPprHpNJxOXWDBRU15MY3WpbxYsUaMNGLFG2xMrWmhq76OzL0pTex9PrEhdRHi72NEnlqyrKKa1u5/WngitI2T4/rR0vW/bq6q02LedbLTZy7M/2OjbTjbanUwWzq6jsaacmvIiGmvKfa+FiEi25EyGzxhTAuwJnGKM+U/cPzX3AN/DHdptSrrLRiBRxMrveC1Q5j1urR0wxrR67l9Qlje188or77Ngl+qCyySkM38uXcub2ke1F2m6+9g6DsRizkjrGmioLuN7HzW8sr6DBbtU+z5uokYbMFijLeXq3053W7AAbh4q0R7OJ/efwRNvuwsWQkG3ncqjb24ckg189M2NKX9u0yaVsrq1d0g7lbM/2MiSde1D2qmks4AmU4sgGqrLuOHM/VjXHWFmpf+8RxGRbMmZgA+Yi9ufbuCTuMHfdUAVbsCW/FeqD0j81ajwOV7haae6/7BCoQC1tRV+p+ScpWu38pU/LSfmONwaCPCHLx7CgbMKJ+Mwa1oVrd39g3PdZk2rGpNr5P253blk3Yg/tx4CVHZHqK4up7Y29QKEXaZWDgZFOG47VX+b2nq54pG36eiN8OfyYu6+YCGNKR774aSabA+v2MQnFuw27LmfOmQWD77RTDTmUBQM8KlDZqXswxwC1JQVD65kndNYm/L5LW/u3K6d6nG/cYJh8S0vDy7a+MYJJuW5s6dXEwowWJ5m9vTqlOe+uqGTqAM1FSV0hgdY1x1h71mpF0J8YsFuKX9OO6O2toJ9Q0Gi0ZGHdCW3hELBvHufF5euXXpyJuCz1r5pjJlqrU3sfr4svljjj7irc5NTB6VAYlZ7mO2Dt1LcRR5hTzvV/YcVjTq0tfmeMm5GO2/t0WVNRGMOxUVBIgMxHl3WxO7Vub+Z+mif39qWTqZ45s+tben0fX5p/9zi5TL8fm7pZJX+vrqVUIDB7cf+vrqVBY3Vw55767Pv0Nzhfi7pifRx67OrueToPYY9t768aLt2qt/V3atL+fSBjTy+ooWT5k1j9+rSlOfe+uw7bInPxdvSE/Htw/yGKla2dA9pp3rcpe+24ol7Wfpua8qf76PL3GR8WdHI12JmZTGO49Dc3ktFSREzK4uz9pqtra3ImfcLGT1dt/yla7e9+vrUuw3l1Bw+T7CXsAIoxh2ObUg61gAkyvWv9zmeCPoGjxtjioApnvtnxWjnHqUzby2xSf1oisBmWiaeX6LMSXggOmKZk+aOMBffs5yfLlrJxfcsH9XPbTTlMhLDyo7D4LCy3+MGAu6Hh0AA38ddubnbt+219/Sqwel1gXg7lfuXNfH7V9ezqTvC719dz/3Lkmc/bPNGUtYuue113qGzqCoJEgCqSoKcd+islOc+/OZG37ZXOtcCcMfMvf+LiMh2cibgM8acYYzZGJ/Ll3Ag0Ia7yOIAY0yl59gR8duJ/3+E57Eq4vddbK2NAa94j+Mu9hgAlo718xitdIKcdPZNTZR9OP+I3bNa9iFTzw9gIBqjbyDGwAjDZ9vKZQyMabmMuopimjv6WNceprmjz3exwrRJpdSWF1MUDFBbXuw7d+3oOVN82157TK0YEvDtMTX1sMb//v1937bXB5L2ok1ue63Y2ElnfwwH6OyP+e71esq+033bXvMba/jWMXuyT0MV3zpmT99rYVu6cID6SaU48baIiGwvZwI+4Fncv13/ZYzZyxhzMvDz+L+/Au8Btxlj9jXGXIa7MveW+H1vBQ41xlxhjNkH+B1ucean4sdvBC6NB5UHx9u3ZrMkSzpBTrobo89vrOHSj5iMBHujzdql+/wCwKauPgLxdiqL12ylpaufcCRGS1f/iPXnwImvNB05+zNtUikfmFHlG5QB/P7l94cMT/7+5dQB1BMrWtjcHaE/5rC5O+K7QnZKZQk1pSFKQkFqSkNMqSxJee5zK1uH1JR7bmVycnybSMzxbXudeUAj06tKKC8KMr2qhDMPSL1g4s/Lm33bXmfs38jl8T1kLz9+TsqSLLBt+7G3mjv5xTOrfWsBpvvaEBGZqHJpDl+rMeZE4FrckirtwE3AT6y1jjHmNNxAbgmwGviEtXZN/L5r4sWVfwlcgZvxOy2e3cNae1d8p47f4s7dewC4dDyfX7J0/lCluyo0U9KZu5b2H+JRbtEF4DgOTmLJqY9EuYzEbhR+5TLSeW7Lmzt820MeN40VsjHHob3P3WO2P+q2U3ltXbtv2+vIPSZznycYO3KP1EOkDdVl/PiUeYOrlf1+12YkzatLbic7Y/9G30AvIZ3tx3LltSEikutyJuADsNYuxd0JY7hjq4Cjfe77GPCYz/GfAT/b2T6OlXT/UOXCxujplERJ5/nZli4cx6F+UumI+83uMbWCYHzBRigQ8B3KbKgu45IjZw+W4RipD6N9bh/ecwr3v75xSDuVj+4zjQeWbxhccfrRffz3b01upyodMqk05Nv2Ou/QWTy2ooWeSIyKYv+5ds0dYa56ciWRaIznVrf6Br57T68iSPPgylu/eYTpSHf7sVx4bYiI5LqcCvgmmlz5QzXalazp7PUKo39+6WQDt/ZEqKsY3e4Oy5vaueLht4k6Ds+vbuWms0tSZorqKorZ1NVHLAbBIL7P7fA9pvD42y2EIw5lxQEO3yN1wJeOTV39vm2vg3at5aX32oa0U3lsxUZ6Iu4AcE8kxmMrNvKFQ4cvTeIdih8p+F44u46GmtLBHTzGquBwYj7laGoiiojI6Cjgm+DSGcpM7PUagMG9Xsfij3E62cC6imK29kaIxRyCQf+g87G3WojE3P5GHIfH3mpJ2V9339oAgYCbr/J7bnUVxfQPODhA/4Dj24d0tio7aNeaIatiD9o19c921uRy37bXg683b9dOFfClOxRfFAhQWhSkaBRD8enQ9mMiImMrlxZtSBaku0I2EK8pN8Z/30e9jVViH9sZ1WVMrSzxzfA1VLlzypykdiqO4xAIBHBGKO+x9P12Bhz3cQcct51KbyTq2/Y684BG6sqLKApCXXmR74KJx95s8W17zW+o9m17NVSXccUJczlur3quOGHuyEPxaIWsiEg+UMCXRaNd8ZpJZtokAoGAu0I2EPDN6AzuGVo2uj1Dn1m5icseeotnVm7yPQ9G/7Mw0yZRHAy4dfiC/v09cd40plQUUxwMMKWimBPnpZ4/l5gLOBBfweo3NzB54YXfQox9G6p8214tXe5+t9EYdPZFaelK/bgdfQO+ba+Ljtqd2rIiQgGoLSvioqN2T3luYg7fU//cxFVPrhxVTUStkBURyX0a0s2S5o4wF9/7+uAK0hvO3C978/lGWbi2obqM752016hWcD6zchPfeWgFAE+v3MzVp5JyAUI6w8rAqFf0tnT1saUngoO7a0RLV1/Kx31uVeuQodfnVrWmHFI8ZLda7l22YUg7lRPnTeOPS9fT0TtAdXmRb9D52FstDMSHoAdi/kPQ6ew321Bdxu/P/eCoF9CMdg6fVsiKiOQPZfiyZPGarTS199IeHqCpvXcU9eQyw7Z0EYk5lBWFiMQc32G5dLI/j8f3eg0ktVP2YZTDyrali3B8l4vwCLtc3PDsu0Pq5d3w7Lspz125qdu37RUMBKgtK6KsKEhtWRFBn8Czpcst/DwQc2jvHfDN2qUzBH3M3Pohde1SBdODjz3KIfN0s3ajfVwREckuZfiyKhD/6z7GE+LS4K5O7R9c9eq3ACGd7M9J8+p5euXmweDlpHmpA5J0goyY49DiWb3qV6vu/fZe37bX0XOm8KIn6Pbb5SLmOLSF3SHU8EDMtw/pZO1OnDeN+1/fQFdflEmlId9sYHNHmLuXNhGJxrh7aROH7+6fcR0tZe1ERID+fgJtbQTb2whs3UqwfSuBtjYC7W0E29oItG0d+n97G4G2Nt+HbL/vL0T3MuPT/2Eo4MuShbPraKwupScSpaI4NGYlLcANBl7d0MnMyuIR/2AvXdc+OG9tIOawdF17yoAkncDsmLn1XH0qgzXw/DJQDdVlXPih3UZVL++BZRu2a6d67Jk1ZWzqjgxppzKlsoS68iLCAzHKioK+u1wMt2AiVR/Sydo1VJdx86f2Z113ZMRrl07wna5cKRckIjJENEqgo31bIDbQS+m65nhA1jZ8QNbeBpHUi/vGVTC7g6oK+LKkobqMG86aP+pMymhr5SXmwyUK/Y40H84tR5K6ndzndLI/86ZXERxhIQjE6+U98jaxmMPz77Ry06dS18trag/7tr3KS4p82151FcV09UWJOg4DUf9SK5u7+33bXomsXaJWnV/WDtyf8d6zJtPWlvo6gBZMiEiOcBwC3V1usNXWRrBt67aALBGAbdkSD8S2DgZk9KYecRmtYDBApc9WkTulqAinppZYXZ37f20tTk0tTm0tsZpanLo6YrV129q1tTjVNVCUu2FV7vZMBqWzwCOR+ampKKG9p3/EzE/yalS/1anp9vnLf1o2GOjc/Kn9U/bj+dVbGIg6BAIwEHV8t9I6eFYt77U1D2mn0lBV4tv2SqfG4Adn1vC6p17eB2emrhfXUF3G14/eY1TZy3Ro6FVEfIXD24KuwQzY1sGAbDAT1t5GcOtWAm1bCXR2jvy4WebU1AwGYsX1U+mrrBoaiNXWEqup2xaQ1dRAqX9JrolCAV+WpLMydfGarazdGv801B1h8ZqtnD5/xrDnJjI/neHRZX5O3Hsa9y/3ZKD29p83dt4dS+kID1BdVsRtnz0wZZ+feLuFpnZ3gUJnX5Qn3m7h84cMv6VXRUkQh22LhCtKUqe9zzt0Fk/aTYPz3Py2CVuZlK1MbicLBBhVHb4zD2zk4RUbB1fennlg6hWy6WQv06WhV5E8MzBAoL1923ywwXlgnszYMAEZ0dT1O3OBU1HhZrhq6wYzYW72q24wQzY0IKuFyspR7Z3up7a2gu4RRkNkGwV8WZLOHKy/rW7drp0q4EsUzn1lfQcLdqke1R69n1+wKw+/uZFT9p3ue/5ti9fSGi903NoT4bbFa/n3E/Ya9tx0horf3tjt2/ZasbGTzj73za+zL8qKjZ0p+3zALtW8vqFzSDuVRI3BRBZ1pDmVlcUhAkBFceo9bMHNXsZiDsWhIJFozDd7KSJZEIttmxeWHGwlzw2LZ8KC7W3Ql3rFfU4oKRkcehwaiKUemnSqqrM+z0wyRwFflqQzB2tla7dv26u5I8yVj75NV1+Uh0pDvkOp4NbL+8miVQC8vqGTuorilAsQ/tHU4dv22mNKhW/bK7Gi19tO5e7XmrZrp+pvKBgcsv455PNG1lBdxin7TuORNzdy8r7TRr3DxEjB+pF7TuaOJeuIRGMEgwGO3HNyyscVkTjHgd5ezwrJtqEZsfbhV0gGutLf7SUYDFCXqXlgyQIBN8BKzPlKBGB1k7fdNpgJ23Yexf77louMhgK+LElk4kZTxPi0/Rq48YX3hrRTeWLFtqHUjvAAT6xo4fM+w55/Xt68XTtVAHXALtWsbu0Z0k4lhuPb9kreHs1vu7TqsiLftteRe07mD6+uGyw54xds3b+safBnfOML71FTVswZ+w8/VJtOsD6/sYabPjV/8Doruyd5LRIZOh8sOfvl/T8ekI1UqiIXOFVV24KvpIn4g0OTiSxYYkiyPPX+1SK5SAFfljR3hPnK3cvoj8Gdr77PfV86JGXQ99F50/nDK+sG5619dN70lI/7TmuPbzvZ3KmVQ+rPzZ1amfLc8w6dxcNvNtMXhdIQvvPnnl+9Zbv2Fw7dbdhzH1i+Ybt2qmDrcwtm8tzq1sFVyJ9bMDNlH4BR7yLy8Jsbt2un6kO6CybmN9Yo0JPMiUYJdHaMOA8sEYgljudMqYpUysrik+6TArHklZGe25zKSWkPSdbWVoy4Kl6kECjgy5Kv3P0P+mPu1/0xt/3ABQuHPXfxmq109kVxcOet+S3aKC8O+raTnXlgI/ctb6K7P0ZlSdB3AcL/LH6P+PQ5+qJu+/IThi8iecq+04fMnztl39RB6r7Tq3i7pXtIO5X5jTX85OPzBle9+gVSz6/eggOUFo08fy6d/oIWTMgIkktVtA/9P9C2NR6AbR0SkI1FqYqMKsBSFSIThV6FWbKuo9+37fWUbRmyRdhTtiVlwBdIWvWU3E724rtb6IpHnl39MV58d0vKzNbjb7ds104V8CUeI7EYJNVjApy3cBaPrmimdwDKi9x2Ks0dYW7623tEojHWbOlh3vSqMZk/l05/JY/19W0LvLZsGX5ockhA1kagI/VcVa9gMMDk8ZoLlsRbqsL7/9ChycnbsmEqVSEy4Sjgy5J9plXyliertc+01EOp/9zc7dv2SjfD918vvrddO1WwM7OmnH96VtvOrBmbOSyPrdhIr7tTGb0DbjvV8G86q5vTnT93xv6NCvSyYbtSFZ7tjIYbmowHZDlfqqKycujE/JFKVdTWQUXFTpeqEBEZjgK+LLn93IM4/NrniDhQHHDbqezXUMWz72wd0k7lqX9u3q79b0fvmfL8voGob9vrso/M5fw/LsPB3f33so/MTXnu/cuahqz+BVIGU48kzZ975M3UAV+6O0xo/twOchwCXZ3bJugPmYg/3NBkvHp+X+qdT3JCBktVaC6YiOQyBXxZ8pnbXiESH/2JOG77zvMWDHvuio1dvm2vgaQhpeR2sk/Mn8HvX10/pJ1Ka3f/kKHlVp8txdJZBHHyvtOHrEI+2Wf+3ITfYaK3d/uti5LngyVlxHK+er5KVYiIZJwCvixZ2drr2/Zq6Y74tr2O3H0y973ePKTt59+O3pN/tnSx5P12Dtq1xjcb+PiKTYCb3XPi7VQlXNJZBJHI5rk18KanzO4l5NyCiUjEE4ANMwzZtnXYlZKpVg5ncy6Yl0pViIgUDgV8Bea8hbN4atVmuvoGmFRa5LsAAtyh15fXtgPw8tp27l/WlDITlyiQ7HjaqaS7COILh+42YqCXlljMLVXhGZLcvnirJwsWP05/6qxlThiuVIUnOzZWpSpERKSwKODLkkNn1QwGWon2WJwLUF1aRHEoSHnRyH/k0xl6PWZuPVefymBJlFTZvYTtFkE4DnR3Dy1RsV0gtnX76vk9OT4vyq9URaqAzKdUheaCiYjIWFPAlyXXn7U/x/7meTr7HapKAlx/1v4pzy1LCtyS216Jbb+mV5fR3tPvu4oV3KHWt9dtoSbcRU1vF19qqKHkyeYhAZk3E/aJrVs5o72NQHt7ysfMFSpVISIi4lLAlyWX3LOMzn53cLSz3+GSe5YNDfpiMQiHCfSFeef1Vczq76dsoI+ygX4i6yMU17YQ6OsjEO6F3l4C4TCBcJgj2rvoXbaWokg/5QN9HLWkkopYhEA4DH3h+Hm9BMJ9EO7l/K4uPheJEh6IUVYUpOzhUEaft0pViIiIjD8FfFmy5P12pnZv5fuL/ou63nbKB/qpvanUDcb6+qCvb/Dch8IR+qPbJvGXhAJU/d/wKxTLi4s5q6SU/uJSQhXlFG+sxCkthbJyN6gqL8cpK4PSMvf/oiJKHnuEklgMp66OgTEuVSEiIiLZp4AvSw7atYaVb7fTXlZJT3EpNXVVRPbZBae8zA3O4gGZU15OqKyMu/6xkWVbIsyZOYWvfGQe7WXlUFaKU+YGcE5pGZSVQcjN0KUzD6zn0ssy+VRFREQkyxTwZcn1Z+3PJffA9yov4aBda7j+rP1JvX8GfOYT8Jn41wPj0UEREREpGAr4sshvoYaIiIjIWJkwAZ8xphT4DXAW0Adca629Oru9EhEREcm8iTTr/ufAYcDxwJeB7xpjPp3dLomIiIhk3oQI+IwxlcAFwDestUustQ8CVwOXZLdnIiIiIpk3IQI+YH+gFHjBc9sLwAJjTGYLz4mIiIhk2UQJ+GYAW6y1Yc9tG4ESYFp2uiQiIiIyPibKoo0K3IUaXol2yr20QqEAtbUVGetUJoVCwbzt+0Sna5efdN3yk65b/tK1S89ECfjCbB/YJdopqxNHo07ebmKfTuFlyS26dvlJ1y0/6brlL1277dXXV6U8NlGGdNcDdcaYEs9tDbhZvi3Z6ZKIiIjI+JgoAd8/gH7gcM9tRwBLrLXauEJEREQK2oQY0rXW9hhjbgduNMach5vd+xZuqRYRERGRgjYhAr64bwK/BZ4GOoAfWmv/lN0uiYiIiGTehAn4rLU9wOfj/0REREQmjIDjONnuQy7bBLyX7U6IiIiIjMJuQP1wBxTwiYiIiBS4ibJKV0RERGTCUsAnIiIiUuAU8ImIiIgUOAV8IiIiIgVOAZ+IiIhIgZswdfgKlTFmT+BXuFvFdQN3A1dYa8PGmN2AW4APAWuBb1prH8tWX2UoY8zewPXAQqAVuN5a+/P4MV27HGeMuQWYa639cLy9P3ATsD+wArjQWvtK9nooXsaYc4A7k25+0Fp7ul5vucsYUwz8DPgXIAD8Cfi6tbZP1y09yvDlMWNMCfAXoA93n+DPAqcDVxljAsCDuIHEAuB24D5jzO7Z6a14xd/EHsN9kzoAuBi40hjzWV273GeMOQ4439OuxL2ei4GDgOeBR4wxVdnpoQxjX+ABYIbn33l6veW8nwNnAKcBHwc+ivteqeuWJmX48tshwBzgEGttF7DCGHMlcC3wCGCAI621ncBbxpjjgS8B381Wh2XQLsDfgYuttb3AKmPMIuBoYAO6djkrHtz9F/A3z81nAxHgUmttzBjzDeDk+O3/Pf69lGHsAyy31jZ7bzTGHItebznJGFMLfAU4xVr7t/ht38d9XR2DrltalOHLbxb4WDzYS3CAWtxhwqXxF0LCC8Bh49c9ScVau8Zae7a1ttcYEzDGfAg4CngKXbtcdxXw1/i/hIXA36y1MQBrrYMbEOqa5Y59cN8zk+n1lruOAHqARYkbrLW3WWs/iq5b2pThy2PW2k14XgjGmCBwSfy2GUBT0l02AjPHrYMyWuuARuBh4F7cOZm6djnIGHMYcBbwAeBSz6EZbB9MbMQdrpcsi09/2RM4xRjzn7hzwe4BvofeK3PZnrjbm55jjLkCmIR73f4fum5pU8BXWK4FDsSdz/BN3Ll9Xn1A6Xh3SkZ0Gm7A91vgl0AFunY5xxhTCvwOd8L4VmOM97CuWW6bi/v3rhv4JG4gcR1QBZSha5erqoDdga8CX463f4t7LfWaS5MCvgIQn7z6K+Ai4Exr7ZvGmDBQk3RqKW56XHKItfZVAGNMBe7E41vRtctF/wGstNbeM8yxMNv/odE1yxHx98Sp1trW+E3L4u+bf8Rd5anXW24aAKqBz1lrVwMYY74F/B64DV23tCjgy3PxYdzf4a7QPdta+2D80Hrc8hBeDbgLAiTLjDG7AAdZax/y3PwWUIJ7jfZLuouuXfZ9BphhjEnMmS0BQvH2nbjXyEvXLId4gr2EFUAx7rCg3itzUxMwkAj24ixuVrYZvU+mRYs28t81uH+IzrDW3u+5fTFwQHxFYcIR8dsl++YB9xtjpnluOwjYhDvxWNcu93wYd+7eAfF/twCvxr9eDBwezxolsu4fQtcsJxhjzjDGbIzP5Us4EGhD75W57CWgyBjjDez2ATrjx3Td0hBwHCfbfZAdZIxZiPtLfzluettrE7AcN2v0feAU3CGpfa21a8atkzKseB2+JbgLNi7FnVP0O+DHuMWYde1ynDHmR8AR1toPG2OqgVW4RWFvBC7A/SA2J2kVoWSBMWYKbkbvUdzX2FzcgP163KK+er3lKGPMn3EXYnwZd97e/wL3A99B1y0tyvDltzPj//8EN43t/RfAXQwwDTew+BfgE3oh5AZrbQS3TtsA8DJwM+48zF9ba6Po2uUVa20H7vU8HHgNN7v3MQV7uSE+nHsisBvu9fkv3F1RfqLXW847Fzewexr4M27x7Mt13dKnDJ+IiIhIgVOGT0RERKTAKeATERERKXAK+EREREQKnAI+ERERkQKngE9ERESkwCngExERESlwCvhERMaYMeYcY4xjjLk0230REQEFfCIimXAO7s4bn892R0REQAGfiMiYMsZMxt3V4fvAfsaYA7PbIxERKMp2B0RECswngT7gbty9Pc8DlgIYY4K4e7mej7v94S/jx8+31v7VGFOKu7frZ3E/kD8FfNVau3F8n4KIFBpl+ERExtZngMestQPAg8BnjDHF8WOX4w7zfhY4HnfD9z089/0xcFj89qNx36MfNsYExqnvIlKgFPCJiIwRY0wjcBTuJu8A9wNTgY/F2xcB37PWPmGtXYob/AXi960ALgEutNa+bK19A3fj+H2BI8btSYhIQVLAJyIydj4NRIFH4+2XgSbg88aYqUAj8EriZGutBbbGm3sAJcDzxpguY0wXsAkoA/Yan+6LSKHSHD4RkbFzDlAMtBpjErcFgZMBJ95OHp5NtBPvx0cD7UnnbBrbborIRKMMn4jIGDDGzAUOBr4BHOD5dwpu5u4zuNm+gzz32QOojTdX42YHp1prV1lrV+EGetcCu43DUxCRAqYMn4jI2DgHaANustaGPbe/YYx5EXe+3m+A7xlj1gAtwK/j5zjW2k5jzC3A9caYL+MGhz8F5gMrx+cpiEihUoZPRGRsnAPcmRTsJfwWN7P3MHAfcA/wNPAIMAD0x8+7FHgSt6TLK0A5cIK1tjezXReRQhdwHGfks0REZKcZY04CllhrN8Xb9biZvt2ttWuy2TcRKWwK+ERExokx5gHcRR3fwV3E8UNgN2vtIVntmIgUPA3pioiMn0twh3BfBBYDIeATWe2RiEwIyvCJiIiIFDhl+EREREQKnAI+ERERkQKngE9ERESkwCngExERESlwCvhERERECpwCPhEREZEC9/8BQNwU7asBOWAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"target = non_smoker_df.charges\n",
"\n",
"plt.plot(ages, estimated_charges, 'r', alpha=0.9);\n",
"plt.scatter(ages, target, s=8,alpha=0.8);\n",
"plt.xlabel('Age');\n",
"plt.ylabel('Charges')\n",
"plt.legend(['Estimate', 'Actual']);"
]
},
{
"cell_type": "markdown",
"id": "6d44f8f9",
"metadata": {
"id": "6d44f8f9"
},
"source": [
"Clearly, the our estimates are quite poor and the line does not \"fit\" the data. However, we can try different values of $w$ and $b$ to move the line around. Let's define a helper function `try_parameters` which takes `w` and `b` as inputs and creates the above plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "49e0cdcf",
"metadata": {
"id": "49e0cdcf"
},
"outputs": [],
"source": [
"def try_parameters(w, b):\n",
" ages = non_smoker_df.age\n",
" target = non_smoker_df.charges\n",
" \n",
" estimated_charges = estimate_charges(ages, w, b)\n",
" \n",
" plt.plot(ages, estimated_charges, 'r', alpha=0.9);\n",
" plt.scatter(ages, target, s=8,alpha=0.8);\n",
" plt.xlabel('Age');\n",
" plt.ylabel('Charges')\n",
" plt.legend(['Estimate', 'Actual']);"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65976fd3",
"metadata": {
"id": "65976fd3",
"outputId": "d688f257-25e0-4034-ced9-2b1ff100d20a"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF7CAYAAABIAFZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB1r0lEQVR4nO3deXxU1d348c/MZJ3skIQQEVDAI6AoKopWSl2qVm3dcGvrU2310VZbW7W1/tRuT62tVltb18fqo49L3VtXtA/VolZpBZG44BFQRAghJJA9k0xm7u+PeyfcTHJv5kIms+T7fr14kTP3znBmLjP5zvec8z0+wzAQQgghhBDZy5/qDgghhBBCiOSSgE8IIYQQIstJwCeEEEIIkeUk4BNCCCGEyHIS8AkhhBBCZDkJ+IQQQgghslxOqjuQzqLRqBGJZGbZmkDAR6b2fayTa5eZ5LplJrlumUuu3WC5uYEmoGqoYxLwuYhEDFpaulLdjZ1SXh7M2L6PdXLtMpNct8wk1y1zybUbrKqq5FOnYzKkK4QQQgiR5STgE0IIIYTIchLwCSGEEEJkOQn4hBBCCCGynAR8QgghhBBZTlbp7iTDMOjoaKW7u4NoNJLq7gyyZYsPwxiby9X9/gCFhcUUF5fh8/lS3R0hhBAi5STg20nbt2/F5/MxbtwEAoGctAssAgE/kUg01d0YdYZhEIn00d7ewvbtWxk3rjrVXRJCCCFSToZ0d1Jvb4jy8vHk5OSmXbA3lvl8PnJycikvH09vbyjV3RFCCCHSggR8O83A55OXL12Z12ZsDmkLIYQQ8SRiEUIIIYTIchLwCSGEECLlGtpCLF3bREObTMdJBlm0McYsWvRlGho2D3nsV7/6LZ///Bcc77t9+zbefns5Rx11DACHH34Qv/vdbcybd8iI9jEcDvP8889w8smnjejjCiGESE8NbSEufeo9wpEouQE/t5y6DzWlBanuVlaRgG8MuuSS7/PFLx436PaSklLX+91xxx/p6+vrD/iefvpFSkvLRrx/S5a8xP333yMBnxBCjBG6sYNwJEpxfg4dPX3oxg4J+EaYBHxjUFFRMePHV3q+X3xdv515jJ35d4QQQmQ3VV1MbsBPR08fuQE/qrp4xB67oS2EbuxAVReP6SBSAj4xwNtvL+fWW3/P+vWfUF5ezimnLOKcc87jnnvuYvHi5wCoq3uHJ554dsCQ7qJFX+acc87j2Wf/yscfr2P//efyox9dzR/+cDP/+tcbTJ48hZ/+9DqmTt0DgOeff4aHH/5fNm3aSFFREUcccTTf//4Pqat7h1/96ueAOWT8+OPPUFMzkfvvv4e//vVJuru7mD17Dj/4wQ/ZfffJKXudhBBCjJya0gJuOXWfEQ/MZKh4Bwn4RlDeM3+h4C9Pjuq/GTrlNHq/csqIPFYkEuGaa67ktNPO4LrrbmDdurX85CdXsddee3P22efw6afriUYjXH75VUPe/5577uLaa39OSUkpl132Xc4772tcdNElnH/+hVx33c+5++7bue66G1m16h1uuuk3/PSn/4VSM1m9+n3+679+wty5B/H5z3+B733vch566H7uvfdByssrePLJR3nxxRe49tpfUFlZxZNPPsqll36bhx9+koKCsfnGFUKIbFNTWjDiwZgMFe8gAd8Y9Lvf3cAf/nDTgNuKi0u4//4/09bWyrhx45k4sZaJE2u55Zbbqa3djWAwSH5+PpFIhIqKiiEf97jjjmfevPkAzJ17AK2trZx00qkAHHPMcTz77NMA5Ofn8+MfX8vChUcCUFMzkUceeYj16z/mqKO+SHFxMX6/v3/I+OGHH+DSS6/gwAPnAfCDH/yIN998g3/84+8cd9wJI/8CCSGEyArJHCrONBLwjaDer5wyYtm2ZDrvvAs44oijB9zm9/spLS3jtNPO4Kabfs3999/DYYcdzrHHnpDwXL3a2t36f87PL2DChEJbO59wuBeAvfeeSX5+PvfccxeffLKOdevWsnHjZ/0BnV1XVxeNjVv4xS+uwe/fUUWot7eXzz7b4Ol5CyGEGFuSNVSciSTgG4PKyyuYNGn3IY/94Ac/4rTTzuC115byz3++xne/+59ceeU1nHDCV4Z93EBg4H8ne4Bm969/vclVV13OsceewCGHHMZ55/0nN9306yHPjUQiAPz8579i6tQ9BxwrLi4Ztk9CCCHGtmQMFWciKbws+jU3N/Hb3/6aCRMm8rWvfYPbb/8Txx//ZV5+eQnAiO0Z/Oyzf+G4407gyiuv5stfPpkpU6ayadPG/tW59n+npKSEiopxNDU1MWnS7kyatDsTJ9Zy1123sXbtRyPSHyGEECLbSYZvDOrs7KC5uWnQ7fn5Bbz22itEoxG++tX/oK2tlVWrVvYP/xYWFrJmzUds3dpIVVX1Tv/7paVlvP/+u6xduwa/38+DD95Hc3MT4XC4/9/p6Ohgw4ZPqa3djTPP/Cp/+tOdjBs3nj33nMbDD/8vb731Ly699PKd7oMQQggxlkjANwbdeuvvufXW3w+6/ayzvs5vfvM7brnlJs4776vk5+dz5JFf5NxzzwfguONO4B//eJlzzz2b555bstP//je/eSG/+tXPuOii8ygqKuKQQw7j1FNPZ80aDcABB8xjypSpnHvu2dx++584++xzCIVC3Hzzb2hvb2OvvRQ33/xHKiurdroPQgghxFjikyK3zsLhiNHS0jXksYaGT6mpmTLKPUpcIOAnEommuhsple7XyEl5eRCn/3cifcl1y0xy3TKXXLvBqqpKVgAHDXVsVDN8Sqm9gVuB+UAzcKvW+kbr2F3Af8bd5Qda699bx48AbgGmA/8Gztdar7U99neBK4Ey4AngEq11p3UsH/gjcDrQA9ystb4hSU9TCCGEECKtjNqiDaVULrAY2ADsD1wMXKuU+pp1ymzgh8BE25//tu67O/AM8CBm5NoAPK2U8lvHTwV+CXwHOAKYB9gLzd0IHAocDVwIXKOUOitJT1UIIYQQIq2MZoZvN8zM3MVa625grVJqCbAQeAiYCVyjtW4Y4r4XAKtiWTml1Dcxg74jgSXA94E/aq2fsY5fBCxRSl0BGNb9v6y1XgGsUErdAFwCPJKsJyuEEEKkiuwfK+KNWsCntV4PnAmglPIBhwGfBy5WStUA4wDtcPf5wKu2x+pSSr0NHKqUegUzo/dL2/nLMJ/bXCAC5AOv246/jpldDGitI7v+7IQQQoj0IPvHiqGkqg7fRsyg603M+XazgD7gv5RSm5RSq5RS59rOnwjUxz3GFmASUA4U2I9rrfsw5whOsu67TWsdirtvHrDztUWEEEKINGTfPzYciaIbO1LdJZEGUlWW5SSgFrgD+B07MnurgD8AXwDuUkp1aq0fB4KYiy3sejAzd0Fbe6jjOQ7HsI47CgR8lJcHhzy2ZYuPQCC961ane/+Szedzvn7pLBDwZ2S/xzq5bpkpG6/bvOlVFLy5ga5wlIK8HOZNr6K8vHD4O2aYbLx2yZSSgE9rvRxAKRUE7gdKgT9rrbdZp9QppWYA3wYeB0IMDs7yMbN4IVs7/ngX5hy+oY5hHXcUiRiOS74Nw0jrsidSlsW8Rpm4ZF9KDWQmuW6ZKRuvWxC4+aRZ/XP4gmTmZ+FwsvHa7aqqKuctR0dzle5uSqn4DVk/wBxaLbEFezGrMRd6AGwCauKO1wCb2RH09R9XSuUA463jm4AKpVRe3H17gPh/UwghhMh4NaUFLJxeKXP3RL/RHPObCTyllLLPmzsQ2ApcpZR6Lu78ucCH1s/LgMNjB6zM4FxgmdY6CrxlP45ZgqUPWAm8A/RiLhKJORxYYc31E0IIIYTIaqMZ8C3FzOjdp5SaqZQ6Efg1cB3wLPAlpdT3lFLTlFKXAP+BWT8P4F7gEKXU1UqpWcA9mPX8/m4dvx24XCl1qlLqIKt9r9a6Q2vdhTlsfLtS6mAry3gFZhHnMe3//u9FDj/8IP785wcTvk9XVxcvvPDsiPz7L7zwLKeccvyIPJYQQgghnI1awKe1DgMnYGbe/gXcBfwe+IPW+h/A2Zg7bbyPWUD5bK3169Z91wOnAucAy4EJwElWdg+t9SOYZVnuwKzLtxy43PbPX4aZBXwZuBP4hdb6saQ92QyxZMlLTJq0Oy++GJ9cdfbIIw/y7LN/TV6nhBBCCDHiRnXRhtb6MyB+Hl/s2GOAYxCmtV6MuVOH0/HfAL9xONYFfMP6I4C2tlb+/e9lXHXVT/jFL67lo48+ZK+99h72frL3shBCCJF5xnbdjjHsH/94mdzcPI488ovsvvtkXnhhR5YvEonwpz/dycknf4ljjlnIj398GU1NTbzwwrP8z//czbvvruLww829mRct+vKAjN/bby/n8MMPoq/PnB753nt1fOc753PUUZ/j6KMP57LLvsvWrY2j+lyFEEKIsU4CvjHq//7vRebPP4ycnBwWLFjIkiUv9gdp99773zz77F+58sqrufvu++np6eGXv/wJRx31Rc466+vMnDmbp59+cdh/o6urkx/+8PscdNDBPPDAY9x8863U12/i/vvvTfbTE0IIIYSNBHxpoKEtxNK1TTS0hYY/eQQ0NW1l1aqVLFiwEIDPf/5IWlpaePPN1zEMg6efforzz7+IQw89nClTpnLFFVcxc+ZscnPzKCwsJCcnh/HjK4f9d7q7uznnnPM477wLqK3djTlz9ucLXziS9es/TvZTFEIIIYRNqnbaEJZU7Hm4ZMlL+P1+Dj3UrGQze/Y+VFZWsXjx8+yzz360tGxHqR3z+XbbbRIXXnix539n/PhKjj/+yzz66EOsWfMR69d/wtq1HzFr1j4j9lyEEEIIMTwJ+FLMvudhR08furFjFAK+v9HX18cJJxzVf1s0GuXNN1+np8dbltHn8w1oRyKR/p+3bm3k/PPPYcYMxcEHH8pXvnIKb7zxOnV17+xS/4UQIp01tIX6d7mQwsciXUjAl2KqupjcgJ+Onj5yA35UdXFS/73PPtvAhx9+wPe+dxkHHXRw/+1btjTwwx9+n9dfX0p5eQUffaT7V+1+9tkGvvOd83nooccHBXg5OTl0dXX2t+vrN/X//OqrrxAMFvHb3/6h/7YnnngUc7c7IYTIPqkYtREiERLwpVhNaQG3nLrPqH0bXLLkJYqLSzjppNPIz9+xxfCee05n333nsHjx85x++lnce+9/M2HCBKqqJnDLLb9lr732prS0jMLCIM3NTdTXb6K2djdmzpzNCy88x7x5h9Da2sqjjz7U/5ilpWU0NW3lrbeWUVs7iVdeWcLSpS8zY4ZK6nMUQohUScWojRCJkEUbaWA09zxcsuQlvvjF4wYEezEnn7wIrVezYMFCjjrqGH7+82u48MJzKS4u4ZprfgbAF75wJH6/n3POOYPt27dxwQXfpqSkhG996xx+//sbueCCb/c/3pFHfpFjjz2ea6+9im996xxWrHiL7373MjZsWO956FgIITLBaI/aCJEonxTSdRYOR4yWlq4hjzU0fEpNzZRR7lHiAgE/kUg01d1IqXS/Rk7Ky4M4/b8T6UuuW2ZKxnWTOXyjQ95zg1VVlawADhrqmAzpCiGEECOoprRAAj2RdmRIVwghhBAiy0nAJ4QQQgiR5STgE0IIIYTIchLw7QJZ8JK+5NoIIYQQO0jAt5MCgRzC4d5Ud0M4CId7CQRkTZIQQggBEvDttOLiclpattLb2yPZpDRiGAa9vT20tGyluLg81d0RIi01tIVYuraJhjaphynEWCEpkJ1UWFgEQGtrE5FIX4p7M5jP5xuzgWggkENJSUX/NRJC7CBbfwkxNknAtwsKC4vSNqiQgpRCiKHI1l9CjE0ypCuEEGOIbP0lxNgkGT4hhBhDakoLuOXUfWTrLyGGkM3b4knAJ4QQY4xs/SXEYNk+v1WGdIUQQggx5tnnt4YjUXRjR6q7NKIk4BNCCCHEmJft81tlSFcIIYQQY162z2+VgE8IIYQQguye3ypDukIIIYQQWU4CPiGEEEKILCcBnxBCCCFElpOATwghhBAiy0nAJ4QQQgiR5UZ1la5Sam/gVmA+0AzcqrW+0To2Bbgb+BywAbhMa73Ydt8jgFuA6cC/gfO11mttx78LXAmUAU8Al2itO61j+cAfgdOBHuBmrfUNyX22Qggh0llDW4jlm9uZVJSbtSszhYgZtQyfUioXWIwZzO0PXAxcq5T6mlLKBzyNGQTOA+4HnlRK7WHdd3fgGeBB4CCgAXhaKeW3jp8K/BL4DnCE9Rg32f75G4FDgaOBC4FrlFJnJfP5CiGESF+xbbR+/aLm0qfeo6EtlOouCQ8a2kIsWb0lY65bQ1uIpWubUtrf0czw7YaZmbtYa90NrFVKLQEWApsBBSzQWrcDHyiljga+BVwDXACsimXllFLfxAz6jgSWAN8H/qi1fsY6fhGwRCl1BWBY9/+y1noFsEIpdQNwCfDIqDxzIYQQaSW2jVZZMI/Wrl50Y0dWZfka2kJZW0A4FqxHDAj4SPs9b9Nlj95Ry/Bprddrrc/UWncrpXxKqc8Bnwf+jjnEu9IK9mJex8zKYR1/1fZYXcDbwKFKqQBmRu9V232XYQazc4H9gHzr8eyPPc+6rxBCiDEmto1Weyj7ttGKBRi3LP04K7OXsWC9pCAz9rxNlz16U7XTxkagFngOc77d74H6uHO2AJOsnye6HC8HCuzHtdZ9Sqlm63gvsE1rHYq7bx5QjZldFEIIMYbEttHa2BnOujl89gCjo6cv67KXmRasp8sevakK+E7CDPjuAH4HBDEXU9j1YGbmGOZ40NYe6niOwzFsjz+kQMBHeXnQ7ZS0FQj4M7bvY51cu8wk1y3zlJcHmR3wE4lEU92VETVvehUFb26gKxylIC+HedOrKC8vTHW3Rkx5eZD/OXceH27pYO8JxdSm+XOL9feDzW3Mmliasv6mJODTWi8HUEoFMRdo3Iu5utYuH+iyfg4xODjLx1zkEbK1h7q/4XAM2+MPKRIxaGlxPSVtlZcHM7bvY51cu8wk1y0zZeN1CwI3nzSrfw5fkMz9XeYkCBypqmhp6cqI5xYEDppYAkm+FlVVJY7HRnOV7m5Kqa/E3fwB5tDqZqAm7lgNO4ZbN7kcjwV9/ceVUjnAeOv4JqBCKZUXd98eYNvOPh8hhBAiXdWUFrBwemVWDeWKXTOahZdnAk8ppapttx0IbMVcRLG/UqrIduxwzMUXWH8fHjtgZQbnAsu01lHgLftxzMUefcBK4B3MeXyHxT32Cq11364/LSGEEEKI9DaaQ7pLMTN69ymlLgemAb8GrrOOfWod+xlwIubK3G9Z970X+KFS6mrgL8C1mPX8/m4dvx24WylVZ91+O3Cv1roDQCl1P3C7UupczOzeFZilWoQQQoiUyebyKSK9jGZZljBwAmbm7V/AXZirc/+gtY5gLuSoBlYA/wGcorVeb913PXAqcA6wHJgAnGRl99BaP4JZePkOzLp8y4HLbf/8ZZhZwJeBO4FfaK0fS9qTFUIIIYaR7eVTRHrxGYaR6j6krXA4YmTCZNChZONE5LFCrl1mkuuWmVJ53ZaubeKWpR/3l0+5dOGeLJxemZK+ZCJ5zw1WVVWyAnNHskFGcw6fEEIIISzpUp8tE2Xa1mrpIFV1+IQQQogxLVb8WebweZNpW6ulCwn4hBBCiBSpKS2QYMWjbN8HOVlkSFcIIXaRDC8lV0NbiKVrm+T1FUDmba2WLiTDJ4QQuyDbh5dSXTYk9vqGI1FyA/6se32Fd9m8D3IyScAnhBC7IJuHl9Ih2Iq9vrGVrNn0+oqBvHy5qCktYO/J42SVrgcS8AkhxC7I5uGldAi2ZCXr2JAOXy6ynQR8QgixC7J5eCkdgi1ZyTo2pMOXi2wnAZ8QQuyibB1eSpdgS1ayZr9kfrlI9TzUdCEBnxBCCEcSbInRkKwvFzJUvIMEfFmooS3E8s3tWTe8JIQQInsl48uFDBXvIAFflsn2EhFCCCFEotJhHmq6kIAvy2RziQiRfmRujBAinaXLPNR0IAFflsnmEhEivcjcGCF2nZcvTfIFa+fIPFSTBHxZJptLRIj0InNjhNg1Xr40yRcssatkL90sVFNawNEzJ8iHgUgqmRsjxNAS3fvX/qUpHImiGztG5FwhhiIZPiHETpG5MUIM5iUT5+VLk3zBGh3ZPGwuAZ8QYqfJ3BghBvIy1cHLlyb5gpV82T5sLgGfEEIIMUK8ZuK8fGmSL1jJle3zkiXgE0IIIUaIZOIyV7YPm0vAJ4QQQogxL9uDdQn4hBBCpLVMmkif7fPAsl02D5tLwCeEEGLUJRrEZVoAle3zwETmkoBPCCHEqPISxHkNoFKdDcz2eWAic0nAJ1L+ASmEGFu8BHFeAqh0yAbWlBZw9TEzeG3dNhZMGyefqSJtSMA3xqXDB6QQYmzxEsR5mUifDsOpDW0hrvvbGsKRKK+ua5bPVJE2JOAb49LhA1IIMbZ4XQ2Z6ET6dBhOlc9Uka4k4Bvj0uEDUggx9iRjNaTXQLKhLcTyze1MKsodsb7IZ6pIVz7DMFLdh7QVDkeMlpauVHdjp5SXB0m07zKHL714uXYifch1yyyx6SwRAwI+RnToNVmfqfJZPZC85warqipZARw01LFRzfAppaYBvwcOBzqBR4GrtdYhpdRdwH/G3eUHWuvfW/c9ArgFmA78Gzhfa73W9tjfBa4EyoAngEu01p3WsXzgj8DpQA9ws9b6hiQ9zYyTzXWHhBBiKLqxg+5whNyAn+6+6IgOvSbjM1XmW4td5R+tf0gplQc8ixlwHQZ8DTgZuM46ZTbwQ2Ci7c9/W/fdHXgGeBAzcm0AnlZK+a3jpwK/BL4DHAHMA26y/fM3AocCRwMXAtcopc5KzjMVQgiR7iqCuTR19lLf2k1TZy8VwdxUd8mVfW5gOGIGqEJ4MZoZvoMxs3MHa607gNVKqWuBm4HLgZnANVrrhiHuewGwKpaVU0p9EzPoOxJYAnwf+KPW+hnr+EXAEqXUFYBh3f/LWusVwAql1A3AJcAjyXqywhsZqhBCjKbtXWEqi/LIzfET7ouyvSuc6i65krmBYleNZsCngeOtYC/GAMqVUjXAOOucocwHXu1/IK27lFJvA4cqpV7BzOj90nb+MsznNheIAPnA67bjrwPXKqUCWuvIrj0tsatkqEIIMdpUdTGFuQEiBhTmBtI+gMr2fV5F8o1awKe13oqZjQPAGo69xLptFtAH/JdS6ktAE/A7rfV91ukTgfq4h9wCTALKgQL7ca11n1Kq2TreC2zTWofi7psHVAObR+YZip0lZQzGBsniinQSC6A2doZHdJVuMsl8a7ErUlmW5WbMDNw84AvWbauAP1jtu5RSnVrrx4Eg5tw/ux7MzF3Q1h7qeI7DMazjjgIBH+XlQbdT0lYg4M+Yvs+bXkXBmxvoCkcpyMth3vQqyssLU92tlMmka5eo+pZuLnv6A3r7ouTl+PnTOQdSm2XXOBuvW7YrLw8yO+AnEommuitiJ8h7zptRD/iUUj7MlbrfARZprd9XSn0A/Flrvc06rU4pNQP4NvA4EGJwcJYPNFvHcDjehTlsPNQxrOOOIhEjY5d8Z9Jy9SBw80mz+rM/QUbudc/ErFImXbtEvbW2iVBvX38W9621W1k4vTLV3RpR2XjdvJL3mxhNcu0Gq6oqcTw22mVZ/MA9mCt0z9RaPw2gtTaAbXGnrwaOsX7eBNTEHa8B3mNH0Bdro5TKAcZjDtdGgAqlVJ7Wutd2354h/k2RIlLGILvJhPPsJ++35MvEgDodyOtmGu0M303AV4FTtdbPxW5USt0EKK31ibZz5wIfWj8vAz5vOz9oHf+l1jqqlHoLs7ZfbI7goZhzAlcCUcx5fIcB/7COHw6s0Fr3jeizE2lF5gamD5lwnv3k/ZZcElDvHHnddhi1gE8pNR+zfMpVwHJrZW7Ms8D3lVLfA54HvgT8B3CUdfxe4IdKqauBvwDXAhuAv1vHbwfuVkrVWbffDtwbWxGslLofuF0pdS5mdu8KzFItIotJVim9yITz7Cbvt+SSgHrnyOu2w2hm+BZZf19v/bHLBc4GfgLcAHwMnK21fh1Aa73eKq78O+BqzIzfSVrrqHX8EaXUFOAOzPl5f8Gs7RdzmXXsZaAN+IXW+rERf4YirUhWSYjRI++35MrUgDrVw6mZ+rolg+yl6yKd9tL1+qaRyayZS65dZpLrlpky6bqlOnjyKtnDqYleu0x73XZF2uylK3aOzEEQQgiRadMi0mU4NdNet2QZtb10xc6TPRSFEEJkGhlOTS+S4csA8qYRQgiRaWReZ3qRgC8DyJtGiNE3lub9CJEsMpyaPiTgyxDyphFi9Mi8WSFEtpE5fELshIa2EEvXNtHQFhr+ZJFxZN6sECLbSIZPZJxUD7VJ9if7ybxZIUS2kYAvQ6Q6yEkX6RBspUupAZE8Mm9W7Ar5vBbpSAK+DJAOQU66SIdgS7I/Y4PMmxU7Qz6vRbqSgC8DpEOQky7SIdiS7I8Qwol8Xot0JQFfBkiHICddpEuwJdkfIcRQ5PNapCsJ+DJAugQ56UKCLSFEupLPa5GuJOATQgghRpB8KRXpSAK+DJCpk4BlpZoQQgiRHiTgywCZOAk4U4NUIYQQ7uTLfGaSgC8DZOIk4EwMUoUQQriTL/OZSwK+DJCJk4AzMUgVJvn2LoRwIl/mM5cEfBki0yYBZ2KQKuTbuxDCnXyZz1wS8ImkybQgVci3dyGEu2R+mZfRheTyHPAppfxa66hSqgZYALyjtV4z8l0TmU7evJlHvr0LIYaTjC/zMrqQfAkHfEqp+cDjwDlKqdXAcqAUyFdKnaW1/kuS+igykLx5M5MMxQshUkFGF5LP7+Hcm4GnMQO9bwF9QBXwHeC/Rr5r2a+hLcTStU00tIVS3ZURZ3/zhiNRdGNHqrskElRTWsDC6ZXyYSuEGDUyupB8XoZ05wJna607lFJfAf6qte5RSi0Bbk1O97JXtmfA5M0rhBgpMj0k+8noQvJ5CfiagclKKR8wD7jWuv0gYPNIdyzbZXv6Wt68QoiRkO1fjsUOstAvubwEfPcCfwV6gTXA35VS3wFuBK4e+a5lt7GQAZM3rxBiV2X7l2MhRkvCAZ/W+idKqZXAFODP1krd9cCZWuvnktXBbCUZMCHEWJboMO1Y+HIsxGjwGYbh6Q5Kqd2AvYBlQKnWeksyOpYOwuGI0dLSlepu7JTy8iCZ2vexTq5dZpLrljivw7TJnMOXrddtLMx7zNZrtyuqqkpWYE61G8RLWZZi4H+A04AoZtD3O6VUFXCy1rpxBPoqhBAiy3kdppXpId40tIW4+Il36ertI5iXw22L9pUCycJTWZabgEpgD6Dbuu1ywAD+MML9EkIIkaVkmDa5lq3fTn1rN62hPupbu1m2fvuIPXYsO3vL0o+59Kn3srKsWLbyEvB9BbhMa/1p7Aat9VrMOnzHjHTHhBAiEdlczzJbxeYwX7pwzzG/6jZ5/399ZjoG34g+qtRYzVxeVukWYq7QjZdPgv+jlFLTgN8DhwOdwKPA1VrrkFJqCnA38DlgA2Zwudh23yOAW4DpwL+B862AM3b8u8CVQBnwBHCJ1rrTOpYP/BE4HegBbtZa35DwMxdiF8jwR/JIyY7MJcO0yfv/O39qBbWl+XSFIwRzA8yfWjECvTVJdjZzecnwPQ1cr5Qqt9qGUmoGZiA17CpdpVQe8CxmwHUY8DXgZOA6q7bf05i1/uYB9wNPKqX2sO67O/AM8CDmZMQG4GmllN86firwS8xs4xHWY9xk++dvBA4FjgYuBK5RSp3l4bkLMUCi38pl+CO5JNsgMlmy/v/WlBZw2+lz+PHRM7jt9DkjGlhLdjZzecnwfRdz0UYzZkbvHaAYeAm4NIH7H4yZnTtYa90BrFZKXYu5ZdvzgAIWaK3bgQ+UUkdjbuF2DXABsCqWlVNKfRMz6DsSWAJ8H/ij1voZ6/hFwBKl1BWYSe0LgC9rrVcAK5RSNwCXAI94eP5CAN6+lUsNseSSbIPIZMn8/5vMDKpkZzOTlzp8bcBpSqk9gZnWfbXW+sNEHwI43gr2YgygHJgPrLSCvZjXgQXWz/OBV2196VJKvQ0cqpR6BTOj90vbfZdZ/ZsLRDCHnV+Pe+xrlVIBrXUkwf4LAXgL4iQgSS6pZykymfz/FaPJS1mWydaPfcC7ttt3x5zb1+QWPGmtt2Jm42L382Nm2ZYAE4H6uLtsASZZP7sdLwcK7Me11n1KqWbreC+wTWsdirtvHlCNbAsnPPISxMkHevJJtkFkMvn/K0aLlyHddeyY8+fDWv9jE1ZK/RW4IC5T5+RmzAzcPOAyzLl9dj2YmTmAoMvxoK091PEch2PYHn9IgYCP8vKg2ylpKxDwZ2zf0115eZBfn7ovL+tGjlTV7D3ZfUJ0eXmQvSePS/jx5dplJrlumae+pZu39Vb2nlBMbXlhqrsjPJL3nDdeAr4LgR8B3wPexAz6DsJcOfsg8DJwA2Ygd4HTg1gLNH6PucBikdb6faVUCHN1rV0+ECuhHWJwcJaPOZ8wZGsPdX/D4Ri2xx9SJGJkbBVvqUCePA1tIX5szeH72/tbRnzisly7zCTXLbPE5uJGDAj4kAUIGUjec4NVVZU4HvOySvfnwDe11n/TWrdrrdu01i9jBneXaK3fwszUnez0ANYw7r3AtzH34H3aOrQJqIk7vYYdw61ux2NBX/9xpVQOMN46vgmosFYJ2+/bA2xL4HkLMYDXlXVSJ84kr4NIJ7H3cUmBrPAWY4OXgK8Ec/5ePIMd2bk2zLlxTm4CvgqcqrV+ynb7MmB/pVSR7bbDrdtjxw+PHVBKBTGHg5dpraPAW/bjmCVY+oCVmKuJezFLwdgfe4XWeqjnI4QrL3P4pCyLSV4HkW5i7+P2kCyoEmODlyHdJ4D7rALHyzGHdA/EHJ79qxWEXYVZFHkQpdR8zPIpVwHLlVL2jN1S4FPr8X8GnIi5Mvdb1vF7gR8qpa4G/gJci1mc+e/W8duBu5VSddbttwP3xlYEK6XuB25XSp2Lmd27ApdhZyHceFmIIWVZTMl8HaSwtdgZsffxxs4wk4py5f+OyHpeAr5LMIssPw/kWrf1AvdhBlBfBA7AzOANZZH19/XWH7tc4CTgHmAF5gKRU7TW6wG01uut4sq/A67GzPidZGX30Fo/Yu3UcQfm/Ly/YO7zG3OZdexlzCzkL7TWj3l47kIMkOjKOinLYkrW6yA7bewgga93NaUF7D15nMwDE2OCzzDiF9sOTSl1DPAG5hDu3phDpmtj25dlo3A4YmTqB0GmTWbN5l9WXp5bQ1soazMOybjGS9c2ccvSj/szh5cu3JOF0ytH5LG9SuV7TgLfnZdpn5ViB7l2g1VVlazAXFA7iJcM35+BhVrr9zCzcGIUZXtAlA6/rOrqW3lt3TYWTBvHnNr4ReM7L9FsYLavGkxGvTHJoJp0Ywfd4QgBn4/ucGTMTh0QQjjzEvCtwtz54r0k9UU4SJeAKFnSYZ5bXX0rFz1WRzRq8NCKjdx5xpwRDfoSEXsdyoJ5tHb1yi/tBEhha1NFMJemzl6iUQO/30dFMHf4OwkhxhQvAV87cKtS6ufAenbUvwNAa/35EeyXsEmHgCiZ0iFL89q6bUSjBrkBP+FIlNfWbRv1gE9WDe4c2akAtneFqSzKI+DzETEMtneFU90lIUSa8RLwvW39EaMsHQKiZEqHLM2CaeN4aMVGwpEofr+PBdMS3xljpMiqQbGzVHUxhbkBwpEohTmBrPuMEELsuoQXbYxF6bRow+scPpnM6l2y5vB5JdcuM6X6umXzPN9kSvV1EztPrt1gI7JoQylVDFwEzAYC1s0+zDIoc7XWM3axn8KFDFvtkKxfbHNqy1Ia6AmxK+QzQgjhxsuQ7p+AI4ElwOnAo8AMYB7wsxHvmRBDyMQFLJJ5EUIIkWpetlY7Dviq1vqrwAfA77TWh2AWQ943GZ0TIp7XfWxTTbYUE0IIkQ68BHz5wEfWz+9jZvYA7gRkha4YFaq6GJ/Px9aOHnw+X9pPTs+0AFWIeA1tIZaubZIvK0JkOC8B3weY26eBWYtvgfVzBWYwKMToiC00yoAFR9m+wlpkN8lQC5E9vMzh+ynwhFIqADwAfKCUWgzsA7yYjM4JEU83dmAAVcX5GVGTMB1KzoDMIxQ7J9trgAoxliQc8Gmtn1NK7Q3kaK0/U0odDnwdWAr8IVkdFMIuEzNmqV49mYkLXUR6yMT3mxBiaF4yfGit19t+XoW53ZoQoyZdMmaZRLI0YmfJ+02I7OGlDt8U4EZgP6AAswZfP6315JHtmhBDS3XGLNNIlkbsCnm/CZEdvGT4HgDKgNuA1uR0R4xVMscseSRLI4QQwkvANw84SGv9frI6I8YmmWOWfJKlEUKIsc1LWRYNVCarI2Lsklp1QgghRHK5ZviUUkfamk8CDyilrgM+BiL2c7XWL49898RYkC5zzGRYWQghRLYabkh3yRC33THEbQYQ2PXuiLEoHeaYybCyEEKIbOYa8Gmt/QBKqYOBd7XW3bFjSqmTgEat9ZvJ7aJItnTIbKV6jpmULhFCCJHNhhvSDQD/A3wNOBKzyHLM2cDpSql7gYu01pEhHkKkOclsmdJlWFkIIUT2SYfEynBDuldgBnpHaK1ftR/QWp+llLoLeBR4H/h9UnookkoyW6Z0GFYWQgiRfdIlsTLcKt1zge/GB3sxWutXgB8C549wv8QokczWDjWlBSycXinBnhBCiBGTLpUohsvwTQbeHuac14DbR6Y7YrRJZksIIYRIHlVdTCRqsLGlm5L8nJQlVoYL+BqAPYBPXc6ZDDSNWI/EqEv1ggkhhBAiWzV29LC1o5eIYRAKR2ns6EnLId2ngJ8rpXKHOmjd/jPghRHulxBCZIyGthBLVm+hoS2U6q4IIdLMa+u2ETUM8gJ+oobBa+u2paQfw2X4fgn8G1ihlPojsBxzH90K4GDgEqAAOCuZnRRCiHQVm5AdMSDgY8yudBdCDG3BtHE8tGIj4UgUv9/HgmnjUtKP4erwtSql5gM3ADcBRdYhH7AN+DPwc621DOkKIcak2ITssmAerV29Y3aluxDZwEv5lETPnVNbxp1nzOG1ddtYMG0cc2rLRrrbCRkuw4fWejtwgVLqYmAaUI45Z2+d1jqa3O4JIUR6i610bw/JSnchMpmX8ileS63MqS1LWaAXM2zAF6O17gVWj8Q/qpTKB1YA39daL7Fuuwr4Vdypt2itv28d3w+4E9jP6sdFWuu3bI95hnX/WuD/gAu01o3WMR/m8PQFQC5wD3ClFIsWQuyq2Er3jZ1hJhXlSnZPiAzlpS5tJtawHW7RxohTShVgDgXPjjs0G/gDMNH251rrPkXAYmAZcCBmKZjnlVIl1vF5wP2YQd18oBT4X9tj/wD4BrAIOAVzl5AfjvyzE0KMRTWlBRw9c0Laf+ALIZyp6mJ8wNaOHnxW2+3cTKthO6oBn1JqFmbQNm2Iw7OAlVrrBtufduvYmUAYuFxrvRozgGu1bgf4LvCk1vo+rXUd8B/AsUqp6dbx7wM/01q/qrX+B3AlcPHIP0MhhBBCZCyfb+DfDmpKC7joc1OYUVXMRZ+bkhFf9kY7w7cQeAU41H6jUsoPKEA73G8+8M/YnEGttQH80/Y484H+3UC01p9h1g48VClVC+xuPw68DkxSSu2+q09ICCGEEJkvNkxbkBMYdkeMuvpWrn7+Q5aubeLq5z+krr7V9bEb2kIsXduU0tJNCc/hGwla6ztiPyul7IemAkHMxSGPAF3AvcBNVpA3kcHB4BZgf+vniUD9EMcnWceIO77F+nsS8Jn3ZyKEEEKIbFIRzKWps5do1MDv91ERHLIEMWDV1osa5Ab8hCNRXlu3zXFRRkNbiIufeJeu3j6CeTnctmjflGQERzXgczHT+nsTcCJwAHCLdduNmMFgT9x9eoB862e340Fbm7if83ERCPgoLw+6nZK2AgF/xvZ9rJNrl5nkumUmuW6Za6SvXe/mdqpL8gn4fUSiBr0+58c/fr9aHl6xkb5olIDfx/H71Tqe+7e1zdS3hvD7fLR091HX2Mnek0e/Fl9aBHxa6+eVUpVa62brpneVUpWY8+xuBEIMDs7yMTOBDHM8ZGuHbT9ju/+QIhGDlhbXU9JWeXkwY/s+1sm1y0xy3TKTXLf04aUGHoz8tZtUlEu+lbHLD/iZVJTr+Ph7lOZzh6223h6l+Y7ndnX1YhgGEcPobyfr/1xVVYnjsbQI+ABswV7MaswSK2Bm/mrijtcAmxM4vsnWXmv7Gdv9hRAio3n9ZSlEOvFa1y4ZYiWWEn0fVRfns8/EEqqLXQcL2bMyiN/nI2IYBHw+9qxMTUZ51MuyDEUpdalSqi7u5rnsmLe3DDjMqqcXq6v3Oev22PHDbY+3OzAZWKa1rgc22I9bP9dbiztEkqTDJFWRXHKN00Psl+UtSz/m0qfek+shkioZ73vd2EF3OIJhQHc44rpgIplqSgtYOL0yoV02vvXIO1zz/Id865F3XF+L7V1hivIC5AX8FOUF2N4Vdjw3mdIlw/ci8Gul1PWYRZEPxiydcpF1/Ang18AflVK3YxZQLgEesY7fASxVSv0TM/i7BVistV5jO369UmoDEAGuZ8ccQZEE6fBtTSSXXOP0kYlFYEVmStb73suCCa+Skf1+YmU9je29AITae3liZT2XLNxzyHObO3tpCfWZ5/ZFae7sHZE+eJUWGT6ttcZcrHE0UIdZQPlKrfXD1vE24ATgMOBtzOze8bE6fVrrNzGDwGuANzFr9H3D9k/cCDwMPGn9+TPw26Q/sWFkc3bE/gtouOXtIjPJNU4fmVgEVmSmZL3vt3eFqSzKY2JpAZVFeSOWBWtoC3Hx43X8eskaLn68bsR+367Y2Oratvvbh1td26MlZRk+rbUvrv13YJ7L+W9hrt51On4/5m4bQx2LAJdbf9JCtmdH5BdQ9pNrnD68zj0SYmcl632vqouJGgYtXWFKC3NG7HGXrd9OfZu5c0ZLdx/L1m/n5DkTHc9PNBtYVZzn2rbLC/hc26MlXYZ0x5xsH4KRX0DZT65xeqkpLZBrIJIuWe/71Vva2WINkXa397J6S7vrYze0hVi+uT3B/asNc+cMa5Ws22MmWi9v/tQKXlnbPKDt5MDdy3nz05YB7VSQgC9FxkJ2RH4BZT+5xkKMPcl437+42hzm9AGG1T5iRtWQ58ZGyCIGBHy4jpDNn1pBbVlhfxDnFpgtW7+dTS3d4DOHmN2ygcs+2T6ofep+tUOee+zMav68chNt3X2UFuZw7Mxqxz4kkwR8KSLZESHGJimfIsRgx82s4uU1TRi2tpPYCFlZMI/Wrl7XEbKa0gIuWTCVF1dv5biZVa7vudbuMBEDYp1o7XaeR9gUt/Aivm3X2NFDa3eYaNR8zMaOnjG908aYJNkRIcaWbJ+7K0S8RL/gHDGjihu+Qn9g5pTdgx0jZO2h4UfIYnveRqMGr33czJ1n5DlugVZWmEvAZ8Z7Pqvt5IBJZbzb0D6g7eS1ddswDMjLGX4btmSSgE8IIUZJts/dFZkpWVlnr19wjpjhHujFxEbINnaGh53D99q6bUSiBj6fuV2aW7C1Z2UQA4ga4PfhWiB50dxa/vLuZjp6IhTnB1g0d+jhXIAF08bx0IqNhCNR/H4fC6aN/rZqIAGfEEKMmrEwd1dklmRmnZP5BaemtIC9J48bdouyiaX5RA36F2xMLHXeFeOJlfXmuZhB3xMr6x2Dw9Vb2mnriQDQ1hNxXWQyp7aMO23bsKUiuwcS8AkhxKiRubsi3exMUJZoRjCZX3CeWlXPi3orx6kqx8USAJvbelzbdis3tbq27bwsMgEz6EtVoBcjAZ9IGpmcLsRgMndXjIZkBWVeMoI1pQVcfcyM/szWSP2/f2pVPdcvWQvAys/MoMwp6Avm+V3bdnNry1istw5oO/GyyCRdSMCXQtkcEMnkdCGESI1kBmVeMoINbSGu+9sawpEor65rHvb3wCtrtia0aOOxlfWD2k4B37/Wtwxqn3fIlCHP/c7n9+CVdVsJ9UFBjtl24mWRSbqQgC9Fsj0gksnpQqSvbP6yKZIblHnJCHrpxytrtvKjZ1YD8PKaJm74Co5BVHVRHuuauwa0neTl+Fzbdm98sg1ry1tCfWbbbbg40UUm6SIt9tIdi7J9H1KZnC5Eeop92bxl6cdc+tR7WbmX91i3s0FZIr+LYhnBo/aq4upjZoxYcPjXugbXtt35n5vi2raL39XCbZeL597f4trOdJLhS5FsD4i8Tk6XjIMQo0Oy78mX6s8zL5+/qroYn8/H1o4egnnD72Hb0Bbi54s1XeEIL3+0ldtOn+M6XJxoP2ZUFvHG+u0D2k6a44ocx7ftjt27mkferqctFKa0IJdj93be5eLE2RN4d3P7gHY2kYAvRcbCar1EJ6dn+/B2pkn1LyuRXNn+ZTPVkvl5lugcN89ie8wOs9csmNuP1bf14ANauvtctx/z4vMzxvPgio3926V9fsZ4x3Mf+PfGQW2n16Oxo4eW7l6iUWjp7nXd5SI2fPvc+1s4cfYE1+HcTCQBXwrJaj2TZBzShwTf2W8sfNlMpWR9nnmZ4+blfawbOwhHDQpyAoSjRoL9NcDnGzZA9NKP7V1hSvJzCPVFKcjxs73LeVuz3kjUtW3ndZeLU/erzbpAL0bm8ImUk4xD+sj2uaXCVFNawMLplRLsJUGyPs/sdd/s7aHoxg46evro6o30B51OKoK5NHX0Ut8Woqmjl4qg83ZiAPOnVlBbVkhZQQ61ZYXMn1rh2o9tnb1s7ehlW2evaz+aO3tpCfUR6ovSEupzHaaN/zfd+rBg2jj8fl/Kd7lIB5LhEyknGYf0IcG3ELsmWZ9nXuq+RQ2Dxo7eAW0nHzd19R+PGgYfN3W5ZsBqSgu4bdG+CT2/j5s7abGWvYb6onzc3MnC6ZVDnvu3D7cOajtl2hbtX8sz722hvSdMSX4ui/Z3zsilyy4X6UACPpEWZHg7PUjwLcSuS/Xn2QcNHfh94PP5MAyDDxo6HId/W7vDRIyB7eGs3tLOi6u3EjWMYfexjW871cAz4oLS+LZdY0cP7T1hoga094Rd5+VBeuxykQ5kSDeFGtpCLF3bJGURRFqR4T4h0o+XId1ZNcVEDYhEDaKG2XZSVphLwEf/n7JC9yHd2FzCl9c08aNnVvPKGud+7Ba3b2182y7+82a4QDI2L88wBgeWYmgS8KWI1MIS2UC+tAixa+rqW7nttU+oq3fetxV2DOEmMqT7fn27a9tu/tQKJpTkE8wLMKEk33U+HMD/xq2QjW/brdzU5tq2O23/iQSsiCTgN9tOYvPy+mRenicypJsisjJVZDpZ0SvErqmrb+Wix+qIRg0eWrGRO8+Y4zj06GUrrzVNna7teF3hCF29EQJ+510oYuLPcLtHV2+fa9uuujifCcX5tPf0UZKfQ3WxczYwNi/vrU1tzNutVIZrEyQZvhSxF7v0+XwyOV5kHFnRK9JRsrLOXh430XNfW7eNaNQgN+AnGjWGHZocX5TH5IpCxrtsJQZw8pwa17bdfcs20NLdR8Qw6+rdt2yD62MvmD7OtW03o7LYtW2nGzsI+H1MKi8k4PcN+3kyp7aMy7+oJNjzQDJ8qeSh2KUQoyXRwsuyolekm2RlnRvaQlz8eB1d4QjB3IDr7hINbSEufHRVf6bqrjP3czx3wbRxPLRiY0IlQ7xmA686OtxfQNgtG/hOfZtrO97qhg7Xtt3FC/fgW39eNaDtRD5Pkk8CvhTZuWKXQiSXl1+YsqJXpBuvU2Ua2kIs39zOpKJc1/O87C7x0upG6tt6AGjvifDS6ka+ccjkIc+dU1vGBYdO5vn3t3DC7Amu2arX1m0jEjEI+H1EIoZrAeGGthAPLd9IVzjCQ8s3ctge4xyf3/61paxr7hrQdrOpNeTatlvxWcugtlOf5fMk+WRIN0Uqgrk0dfayuS1EU+fwxS6FGA07s5G6rOgV6cJLliiWtfvJM+9z8eN1CQzVGtaENfcRmY9twdNQbbtX1mzl9tc/5dPtIW5//VPXFa+zaoqJAuGoQRT3lbexAHV7V5j6th6W2faojXfu/MkU5/nxAcV5fs6dP3RwGrNb3Hs9vm33/PtbXNvx5PMkuSTgS5HtXWEqi/KYWFpAZVGe6zYyQowWGVYR6SjRlaw1pQVcfcwMjtqriquPmZFQ1q61e/igyMvuElXFea5tu0ffrndt2/l9PsYX5VKSn8P4olz8PuflEq2hMH1Rg4gBfVGD1pDz75fVW9rp6I1iAB29UVZvcV7RC/D1gyf1L9TwWW0nJ8ye4NoWo0uGdFNEVRdTmBsgHIlSmBOQX6wiLciwikg3XuauNbSFuO5vawhHory6rjmBOXwGZt7DeS9WMN8XPz1ur/7dGtwec1J5IQFrm1mfz2w7yYtbFRvftqsI5tLa3UckahAI+1xHhcoKcsnxm0WXfT4fZQXO5w5VZsVtzl9zZ29/jtOw2k5iRZZjQ9ZORZfF6JCAL0XGwi/WRCf/i/SS6l0ChLCLrWT1+339K1mdAj4vc/hiWbvucITC3IBr1s5LIDl/agXji/No6+6jtDDH9XH3mlDMmxtaBrSdrPyslb6oGWr1RQ1Wftbq+DrMn1pBWUEObaE+Sgvc++ClzAoMLABtWG23APG8Q6ZIoJcmZEg3hbJ5voIUlhZCjIRZNcVEDAhHzCFKt7lrXqYk1JQWcMmCqRwwuZxLFkx1/Rz2Mre1saOH7Z1heiNRtnea2345iWUD/Zi7XLhlA73MDVy9pZ3mrjDhqEFzV9h1mPacuCHZ+HY8LwWgRXqRDJ9ICiksLYQYCX6fj+riPHMo0+9znbvmZeSkrr6Vq5/7kIhh8PKHW7nzzDzHjJmqLsYHbO3oIZjrPgXntXXbiBoGeQE/4UjUNSM5f2oF44vyEsrE7Tk+6Nq2+9ObGwa13bJwXngpAC3SS0oCPqVUPrAC+L7Weol12zjgLuBYYBvwU631/bb77AfcCewHrAYu0lq/ZTt+BvAroBb4P+ACrXWjdcwH/BK4AMgF7gGu1FpHkvxUxyyZ/C+EcOOl3mMss5bIZ0ljRw/vbW6nIuheamXxB42EowY+IGwYLP6g0b2IbyzQdAk4wVttvcaOHpq7eolEIdzVS2NHj2Ofj51Zzf++9RkdPRGK8wMcO7Pa8XF7whHXtt1f6xoGtYcL4o6YIYFeJhr1IV2lVAHwZ2B23KH7gPHA54BfAHcppQ6z7lMELAaWAQcCrwHPK6VKrOPzgPsxg7r5QCnwv7bH/gHwDWARcApwNvDDkX92Iib2TfvShXvKlltCiAG8TPnw8llSV9/KhY/Wcf+/P+PCR+tcV/XWlJhbdxlx7aHoxg4Mw6CqOB/DMFyHdOfUlnHdCXuzcHol152wt2sQ+eQ7m4lY60UiUbPt5I1PttHWEyEKtPVEeOMT5105vnrQJNe23YyqIte2yB6jGvAppWZhBm3T4m6fBnwZ+E+t9bta63uBB4HvWKecCYSBy7XWqzEDuFbrdoDvAk9qre/TWtcB/wEcq5Sabh3/PvAzrfWrWut/AFcCFyfnWYqYbJ6jKITYebqxg+5wBMOA7nBkxLble/KdzfRFDQzMhQ1uAdSxM6upLsmjMNdPdUmea8bMa32/W19bT119K7e+tn7E5i8/VbfZtW136n61nHPQblQV5XLOQbtx6n61jucu2r+W6pI8CnLM12HR/s7nisw22hm+hcArwKFxtx8CbNZar7Xd9rrtvPnAP7XWUQCttQH8M+74q7E7aq0/Az4FDlVK1QK7249bjz1JKbX7SDwpIYQQie8h66XwfENbiIufeJdfL1nDxU+86/rY3XFDl/HtneUly7hs/XY2tXbT0t3HptZu1/p+p+0/cUBNu9P2H3r3DvA2h6+uvpVHVtazrSvMIyvr3TOdpQXcc9b+/PKEvbnnrP3lC3oWG9WAT2t9h9b6B1rr+OVFE4H4ipNbgEkjcDz2DqqPO4bt/kIIIXaBl2FaL4Xnl63fTn1rN62hPuqHCaBm15S4tu1e+rCRxvZeusNRGtt7eenDRpdnB4+t3MRvlqzhsZWbXM9r7Q4TiZoZxkjUbDvxUtPugEnlxMr0+X1m20mslE1uwN9fysaNjMaMDemySjcIxK9d7wHyrAUXTsdjky7cjgdtbeJ+dp60AQQCPsrLnb9FpbNAwJ+xfR/r5Nplpmy9bvUt3XywuY1ZE0updSkbsnxzOxEDyoJ5tIf62NgZZu/JQy9YmDe9iuI3N9DbF6Uwx8+86VWUOzx2MJiHD5+VCfMRDOY5vs6nHzKFx1ZtpqWrl/JgHqcfMsXxcTe29QxqOz3ujS99yAPLzUDvgeWbKCzI5YfH7j3kuRPHF5mFlzGzdhPHFzk+7nOrtw5qnzJv6Jp1x8yp5f63Putf0XvMnFrH53b8frU8vGIjfdEoAb+P4/erzcr/m9n6nkuWdAn4QgwOvvKBbq21oZRyOh7LFLodD9naYdvP2O4/pEjEoKXF9ZS0VV4ezNi+j3Vy7TJTNl632H6zXeEIwdwAt50+xzELNKkol4APWrt6yQ34mVSU6/h6BIEfHzWtf+eKIM6ftXOqi5hYmt/fhznVRY7nrq1vZVtnD9EobOvsYW19C0GHvW8nleYPajs97p/f+mxQ+4JDht5ztiaYgwFEDTMTVxPMcXzcqsKcQW2nc9vaQvh9PvICZmmatrZux+e2R2k+d5wxp//13cPluWWybHzP7aqqKuesdroEfJuAmrjbaoDNI3B8k6291vYztvsLIYSIE9tv1ge0dPexbP12Tp4z9DwzLzXwGtpC/Hyxpisc4eWPtroGkjWlBfz0Syqhbc1eW7eNSNQMtCJRXGvgzZ1Uht+3IzCbO8l5NW1xXoD2nsiAtpNX1zZjbYhB1DDbTn3Ye0IJfhr6s4F7T3D+ZW1fKZxIbdM5tWXuZWbEmJMuO20sA3ZTSk213Xa4dXvs+GHW8G6srt7n4o4fHrujtRhjMrBMa10PbLAft36utxZ3CCGEcGRY+20NnU2ye+OTbdz/789cS4bAjkCytbuP+rYe13l5DW0hrn3+Q55cVc+1z3/oOjdwYmk+BhAxzN5OLHWetTNUYObkGFXt2rZ7b3O7a9tu/tQKKovzyM/xU1mc51p4WWqbil2VFhk+rfXHSqmXgP9VSl2CWWvva8AR1ilPAL8G/qiUuh2zgHIJ8Ih1/A5gqVLqn5jB3y3AYq31Gtvx65VSG4AIcL11jhBCCAex/Wa7evsI5rnvBPHUqnquX2IOorxrBTlu5UDMQNIHhnsg+dLqRuqt+XbtPRFeWt3INxyGUzfHzcuLb9ut2drp2rb7/Izx3L9844C2k31qSlixsXVA20ljRw/bu8JEDIPtXWHXwstjYf91kVzpkuEDs3ZeC/Av4CfA+VrrNwG01m3ACcBhwNuY2b3jtdbt1vE3MYPAa4A3MWv0fcP22DcCDwNPWn/+DPw26c9ICCHiJFq6JB3UlBZw26J9+fHRM7ht0b6uQYaXOnHzp1ZQXZJv1X7Ldw0kG9p7XNt2kWjUtW138pwa17bdC+9vcW3bLZobV9durnPQa9+GLWrIalqRXCnL8GmtfXHtRuArLue/BRzgcvx+zN02hjoWAS63/gghRErESpfEtgnLhF1oEt2qbM/xQXRj54C2mxyfj/wcPznDbFV28JRynli1eUDbyVsbWlzbdkfMqOI7h3ex+MOtfGlv963CvDxuTWkBVxwxrX+vWbfXzMs2bELsqnTK8AkhRNpIRiZON3YQjkT794YdqR0mkqWuvpWLHqvjgbc+46LH3Lcq81InTjd2EI4aFOQECEfdtyrz+3yU5gfI9Zt/+10CRC91+OrqW7n7jQ182tzF3W9scH1uu5UVuLbjH/fq5z9k6domrn7+Q9fHnVNbxp1nzOGcebtz5xlzZJGFSCoJ+IQQIo6XIsJepMvE+0SDWS8FfPesDGKvIrxnpXOGz8tOG82dvbT1RAhHDdp6Iq7FiY+fPYGAFQ8GfGbbyeIPGglHDaIGhKMGiz9wLrx8/mFTBuyIcf5hQ9fKA+9Fj+fUlnHxgj0k2BNJJwGfEELESVYmzssWXcniJZhdMG0cfr8voSHHV9c0E5sxF7XaTrzstLE0bvVsfDv+ccuDuZTk51AezHV9XCNquLbtqovzzX13rXl51cXOq3+9vGZCjKa0WKUrhBDpRFUXE4kabGzppiQ/Z0QzcTWlBUkJ9BraQgmt4LQHs8PVc5tTW8ZZc2t5cXUjx82sds1CvdfQ7tq2U9XFdIcjtIf6KClwf33L8nNc23ZRw6C50wryesy2E5/f59q2W7Z+O82dvfh8Ppo7e13rEcaGaWN1AyVzJ9KFZPiEECJOY0cPWzt66eyNsLWjl8YO55WhXiVjbmBsR4xfL1nDxY/XuT62l2Hlp1bV88DyTWztDPPA8k08tSp+y/Id9plY4tq2W7x6Cy3dfUQMs6Dz4tXOq16LCnJc23b//rTFtW33pVnV/b8A/VbbnbVfGu6LTECGaUV6koBPCCHieC2XkahkzQ1ctn47G1tCbOsMs7El5FrIuKa0gKuPmcFRe1Vx9TEzXLOB9//7M9e23aL9aynND+ADSvMDLNrfuRzJ4yvrXdt2X5pVTa7fh98HuX6fa2BWU5Lv2rZr7uwdMATtNjdw/tQKakvzKSvMobbUvYyMEOlKAj4hhIjjdR5WQ1uIJau3DBvAJWtu4Mbt3USh/8/G7d2ufU1054q+uHlt8W27Nz7ZRltPBANo64m47rZREjcsG9+2m1NbxlkH1DI+mMtZB9S6Zs2OnVlNbWk+JfkBakvzOXamc3D44uqtgFn72d4eSk1pAbedPsesR+iyDZwQ6UwCPiGEiOOlXEZDW4gLH1vFlU+9y4WPrRqx4VQvOsMR17ZdbOeK9p4I9W09vLTaeXXqgj3HubbtHlqx0bVtd9HhU13bdl6GlWtKC/jGwbszdVyQbxy8u2tgdtxMs+5ebJpfrO322FL0WGQyCfiEEGIXvPRhI/WtPbSF+qhv7eGlD50DKC/DqZD4fD8vw54fb+tybdude8hkKgpzyPFBRWEO5zpsaQZQmBNwbe+s5+J2tYhv272yZivXL1nLu5vbuX7JWl5Z45y1O2JGFTd8ZSbHzqrmhq/MdC28LEQ2kIBPCCHieCk43BC3X2t8e+CxENf9bQ1//2gr1/1tjWsg52W+35zaMu48cw7/MW937jzTPSNZFcxzbccrzAv0/3Fz6n4TXdt2/cOpce2hnBhXSy++vbOPC2bQd+vZB0iwJ8YECfiEECKOl+K5X5pVTY7f3F0ix+++2lM3dtAdjmAY0B2OuM7h83IumLXi9plY4lojDmBSReGA1amTKgodz122fjtb2nroCkfY0tbjuhhkfFEe5QU5FOT4KS/IYXyRcyDZP5wa1x7KqfvVcs5Bu1FVlMs5B+3Gqfs5Lwbx8rhCjDVSh08IIeJ42eN0Tm0ZvzpxJn9f28xR08e7ZtdiO0xEowZ+v891h4mKYC6N7T1EDHPXCLdzvezRGzWMAatT3WrVtXaHiRj0R1Ct3c6FjCuCuXSGI0SjBhHDcO2vOZxK/36zbhm2uvpWHllZTzRq8MjKer4wo9LxNfbyuEKMNRLwCSHGjESLE8+pLeO6E/buDxyGW7Rx5z8/JWLAmi0dzJxQ4vjYsR0mAj4fEcNw3Qni1bXNZrAFRAyz7dQPL8WUn1q1eVDbKWtWVphLwAc+nw/DMCgrdA7itneFqSjMJRI1CPh9rs8NzOAskYDMnm0NR6K8tm6b6/VI9HGFGGsk4BNCjAlesmANbSFuffUTusIR1m51D+JiwVZZMI/Wrl7XYEtVF+PzQWsoPOwOE2u2drq24x+3JxJla3MXpYXuj9ve0+fatps/tYLivBzae/soyctxrT9XEcxle3c4oeylF16yrUIIZzKHL4WSUXFfiGxQV9/Kba994rpYIibR95GXGnjL1m+nvq2H1u4+6oeZuxYrtdIeGr7USmNHD5tbzZIom1t7XHfwWDh9vGvbbvWWdhrbewn1RWls72X1FudtzfaqKnJt2y1evYXWnj6iBrT2uO+I4WV/XC+8lMgRQjiTDF+KeMk2CDGWxFbIRqMGD63Y6PpL3sv7yEsWDCAaNczlns5T3ACz1MpFn5vSP4fP7X384Fsb+x/OsNo3nDT0cxtflEdxnp/ucJTCXL/rIoi/1jUMajsNa1bGLeqIb9s9/W7DoPZ5h0wZ8txY4NvV20cwb2T3H55TWyaBnhC7SDJ8KZKsivtCZDovK2S9rGT1kgUrK8yxFjSYCxvKCp2/G9fVt/L/nl3N3z5o5P89u9o1K9kUt31XfNuuubOXjt4oEQM6eqOuW3/NiMvSxbd39tw5E0td24PEFoC4LAQRQqSGBHwpkqyK+0JkOi/bmlUEc2nq6KW+LURTR6/rvDEvNdo+aOgg4IPcgI+Az2w7efKdzfQZZsauzzDbTg6YVObaHvC4dZtd23aL9q+luiSPghw/1SV5rvvYbm7rwY9ZRsZvtZ18Z8EelBfmEPBBeWEO31mwh+O5urEDA6gqzsew2kKI9CFDuilSU1rALafuk9CKQSGGkuiK00zrw5zaMq44YhrPvb+FE2dPcB3K+7ipq7+sSNQw+Lipy/H8Q6aU8/Kapv4h1UOmlDs+bmyhQGwBwkgtFJg9scS1bdcR6nNt29WUFnDFEdP6VxW7XYtZNcVmWRZjR9vtcR/4+gEJXWP5EitEepOAL4VqSgsk0BM7JZlzQOvqW3lt3TYWTBs3bDmSZPShrr6V376yjmjU4MPGDqZXFTn2o79OnK3tZHxRHqX5gYTmxHkpy3La/hP5m97aX47ktP2dd5hY/EHjoLbTXLtDp1bwpG1u3qEuK2Tr6lu5+vkPzSHwj5u584w8xz77fT6qi/P6++v3+YY8LybRzyn5EitEepMhXSEyULLmgNbVt3Lho6v4339/xoWPrnKdj5asPry2bhuRiIHf5yMScZ/D50XUMGjriRCOmn+7FRyO1dZbs7WDO//56bDbmh09YzyFuX6OnuFeeLmpo9e1bXfuIZOpLMolz++jsijXdR9bL/MeVXUxxfk5BPMCFOeP7OKKmtICFk6vlGBPiDQkAZ8QGShZw2eLP2ikL2ouVOiLDs5I7UofEi21EhtyDEfNHSHchhzLCnPxY87L81ttJ/9Y0+zatvMSzP5h6Tpe1E10haO8qJv4w9J1jufuVV3k2rarKS3gN1+ZxVcPmsRvvjLLNYjyMu8xlom7dOGeUh1AiDFEhnSFyEBeh88SnWtXU5rv2t7ZPngpteJlyDG2mhbMKWluq2njs3RuWTtVXUwkarCxpZuSYbJgz7y3ZVD7ewunDXnu3hNKgIa4tnN/f/7iR3T19vHymiZuW7Sv42vsZQgaZDqJEGORBHxCZKhEf2k3tIW4+PE6usIRgrkBbjt9juP95k4qI8fv6w+25rqsIgWzkPB7m9upCOa69sXL9lixIcfY3EC3YGuorJ3TnDhfXOAY37Zr7OihsaOXSNSgOxylsaPH8fntXlpAa6hjQNtJ/DCy27DysvXbqW/txufz0dIdZtn67Zw8Z+j5gbEh6HAkyvptXa47gwghxiYZ0hUiQyW6w4SXXSO2d4UZF8zt/+O2W0Isa/fAW59x0WN1rkO1yRpy3N7V69q2O/OAWte2nTm0bZilVqKG69D2D46a1l/qxWe1nfztw62u7cF81mpa94UVUtdTCDEcyfAJkYG8r5A1wOcbtiBuhRXkRQyDgM99P9RY1s7v9/UvFHDK2nkptQKJZy8LcgKu7Z1lxL1O8W27ObVl/Pjo6byot3Kcch9OLS3IcW3bzZ9aQVlhDm3dfZQVuu9jKyVRhBDDkYBPiAxkz+h09PShGzscA6T5UyuoLSvs3/LKLXCI1bXz+3zD1rWbVVNMxICIVRfFbXFFXX0rN/59LREDVje0u5Za8WL2xBJeWdc8oO3k0bfrB7VHYvg3VkbGMAzeq29zfW5fnzeJV9c2EwECVtvJ6i3tNHeaGdbmzjCrt7Q7XmMpiSKEGI4M6QqRZIkOvcbOXbJ6y7Dnesno1JQWcNuiffnx0TNcJ/7H+Hw+fLgHObBjccX4YC7VxXmuiyu87EbhxbEzq6kty6ckP0BtWT7Hzqx2PDcv4HNt231pVnX/h6PfajuJZTpzEiiJMqe2jB8dPZ19J5bwo6Onuwa9XnYGASmJIoRwJxk+IXZCoqtevQy9xs6NGBDw4Xqu14xOokOk86dWUFua37/AY7hhxIIcP13hCAU57kFnd2/EtR0v8VXFBdx1xn4JnXvg5HLe/LRlQNtJc2dv/+rfqNV2EtuVoy+B+YleikofN7NqwM4gx80cOhsphBCJkIBPCI+8BHFehl51Ywfd4Qi5OX66w1HXc5OlprSA206fk/jQYCyrN0w2cHJFoWvbrqEtxLkPr6Stu4/Swhzu++rcYYO+RF6nY/eu5pG362kLhSktyOXYvZ2zdvbsmmG1nYZ/Y/MTE5nD52W18hEzqrjhK/SXWnH694UQIhFpFfAppc4GHo67+Wmt9clKqSnA3cDngA3AZVrrxbb7HgHcAkwH/g2cr7Veazv+XeBKoAx4ArhEa92ZzOcjslMsMAv4fHSHI66BmZeh14pgLk0dvQktmGhoC3HxE+/2z8tLZKg2UYmWWokFswU5gf6VoU7nT6ooJGAtOPVZbSf3/WvDgLlr9/1rAz/+4l678pQA83ltszJ32zp7XUuteMmueZnDF8sGJrJaGcygTwI9IcRISLc5fLOBvwATbX/OVUr5gKeBZmAecD/wpFJqDwCl1O7AM8CDwEGYlU2fVkr5reOnAr8EvgMcYT3GTaP3tEQ2qQjm0tTZy+a2EE2dva6BWU1pAVcfM4Oj9qri6mNmuAZQQy2YcBKr0dYa6qO+tdu11AokPo+wrr6V/3xkFff/+zP+8xH3rdW8vA7zp1ZQWpCL3welBbmuQ8XLN7S4tnfWg8s3DhimfXD5RsdzzezaTI6cUckNX5npGnR5ncN35xlzOGfe7q7Fp4UQYqSlVYYPmAXUaa0b7DcqpY4EFLBAa90OfKCUOhr4FnANcAGwSmt9g3X+NzGDviOBJcD3gT9qrZ+xjl8ELFFKXaG1loJVGSbR+V3Jsr0rTGVRHgGfj4hhuNaq87JbApgLJfw+iA5Td806O6EabQ1tIS58bBXtoT5KCnK464z9HPvw5DubsRbdErEWVzgFJdu7wlQU5vYXaXZ7Hd74ZBvbu83j27vDvPHJNk7db+g6ePm5ftf2zmrr7nNtx0s0u+ZlDh+YQZ8EekKI0ZZuGb5ZgB7i9vnASivYi3kdONR2/NXYAa11F/A2cKhSKoCZ0XvVdt9lmMHu3JHruhgNsflztyz9mEufei+hla8jTVUXU5gbwOeDwtyA6zDtsvXb2dTSTUt3H5ta3DNxsQUTZYW51Jbmu2bB5k+toCQ/gGEYlOS7L654aXUj9a09tPdEqG/t4aXVzkWEB8WOLrFkRTCX5s5emrvCNA+T4Xts5SbXtl1Jfq5rO16i2UsvhZe9iGXtzj98D8naCSHSVtpk+JRSecA04ESl1H9h/qp5HPgp5tBufdxdtgCxIlZux8uBAvtxrXWfUqrZdv+sUlffyltvfca83Uqz7pePl/lzXtXVt/Laum0smDbO9XXzskK2tTtsZsyswr2t3c5ZsJrSAn76JcVbm9qYt1up6+OaGTMzQ7W9u881Y9bQ3gPsWIAQaw/ltP0m8tKHjUSiEPCbbScvvL9lQDbwhfe3OL5u1cX5rGvuHtB2cuYBtazY2Dqg7cTLAppkLoKYU1vG52dNpKXFeRheCCFSKW0CPmAGZn86gdMwg79bgBLMgC3+t1QPEPutEXQ5HrS1ne4/pEDAR3l50O2UUVPf0s0Hm9uYNbGU2nLnCe8rN2zn24/VETUM7vX5ePCbBzN3snP2J9NMri4xS2ZYc90mV5eMyDWyv24Pr9g47OvWhY+izjClpYWUu1yPwsLcQW2n/ta3dHP18x/S1h3mr4W5PHrBfMdr/aLeOqj9zYXThzz3jIMn89d3G4hEDXL8Ps44eLJjH6bjo6wgt38l6/TacsfnV9fQPqjt9Lg/OEax7O5/9S/a+MExyvHcqRNKCfjoL08zdUKp47nLN7cTMaAsmEd7qI+NnWH2nuw8pHrKvCmcMm+K4/FdEQj40+bzQiROrlvmkmvnTdoEfFrr95VSlVrrWNn8VdZijT9jrs6NTx3kA7Gv0yEGB2/5mIs8Qra20/2HFIkYSf3Gnoxabi+sqicSNcjN8RPui/LCqnr2KHWNa9NCoq/FhsZ2xtvmz21obHd9folm7fpfN6tchtvr5uV65GFmynz4MDDIA8f/U/cu/ZiGNvN7SVe4h3uXruOShXsOee6hU8pZ+VnrgLbT4xZiEMz109ETIZjrpxDn/9f3Lv2YbdZcvG1dYdc+zKkpYU1j54C20+Ou/KS5f8WrYbWdXt8XVpnJ+IKc4a/FpKJcDMOgobWbYF4Ok4pyU5ZlKy8PSoYvA8l1y1xy7QarqnLebSit5vDZgr2Y1UAu5nBsTdyxGiBWrn+Ty/FY0Nd/XCmVA4y33X/UeZmL5mVj9Ngm9YlOIE+mROdWeXktYmVOQn2RYcuc1NW3ctFjdTzw1mdc9Fid64rT2OuWSLkM3dhBR08fXb2R/tp6TuZPrWBCST6FuX4mlLjPy1vT1OnatttzfBHFeX4CPijO87Pn+CLHc+9btoG2nghRoK0nwn3LNjie+15c1i6+bXfuIZMpyfPjA0ry/Jx7yGTHc597f4tr287LtQB27A88zD7BQggxlqVNwKeUOlUptcWayxczF2jBXGSxv1LK/lvtcOt2rL8Ptz1W0LrvMq11FHjLfhxzsUcfsHKkn0eivARxXmq5pcsE8mQFtAB9kSg9fVH6IlHX8+xFbkeyXEbUMGjsMBcrNHaYw8uu/Y0ahCMGfVH38xZOH+/aju9DR2+UiAEdvVHXPiz7dLtr226fuL1o49t2q7e0094bxQDae6Os3uIcHJ44e4Jr2y5WyHhWTQlXHDHN9Vroxg4MoKo4H8NqCyGEGCxthnSBpZjTe/5bKfUrzDl9N1p//gF8CtynlPoZcCLmytxvWfe9F/ihUupqzDp+12IWZ/67dfx24G6lVJ11++3AvaksyeJ1L1Qv22glcwJ5okOvXnaYUNXF+ICtHT0EE1j12tjRiw/oDveybP12Tp4z9MICr0Vuq4vz2WdiieuCAoBHVmwa1HZaAPDS6kYa281tuULtvby0upFvOGTCxhflUZYfoLvPoDDHx/iivCHPA/jHmuZBbac+5Of4Xdt2i/av5cUPG/t3uVi0v/OCiUffrh/UdupDbEHJc+9v4cTZExwXmIC37ce8vI+EEGIsS5uAT2vdrJQ6FrgZs6RKK3AncL3W2lBKnQTcA6wA1gGnaK3XW/ddbxVX/h1wNWbG7yQru4fW+hFrp447MOfu/QW4fDSfX7xk7YWaTF7mrnn+RZzgFl0AhmFgxJacuohl7RKZw+fludXHZSvj2wMe18MK2ahh0Npj7jHbG8E1a7e9q9e1bbdg2ng+3rZxQNtJTWkBvzpxZv9r5vZ/rrQgx7Ud79T9al0DvRgv2495fR8JIcRYlTYBH4DWeiXmThhDHVsLLHS572Jgscvx3wC/2dU+jqR0COK88FISxcsvYt3YgWEYVBXnD5sN3LMyiN9asBHw+dizcmRWaMXm5ZlFhN23CfuiquKB5ZsGtJ18aVY1f6nb3L/i9EuznPdvXfxB46C2U8asICfg2rb7/PTxPLB8I1ED/D6z7aShLcR1f1tDOBLl1XXNroHv1+dN4tV1zf3P7evzRqbKkdfMbKa9j4QQIhXSKuATqZHoMK2XvV4h8V/EXrKB27vCVAQT292hrr6Vix6tI2IYPLR8I3ee6Tw3LzYvz952st9uZfylbjPd4SiFuX72221k5klu7eh1bdvNnljCK+uaB7SdvPD+FmLTB6PD1MvzMhQ/p7aM6788s7+u3UjNF/WSmRVCiBEXieDbvh3/tmb8TVvxNTfhb2rCv63Z/Lm5CX9Tc3870QVjbfc8QN/BhyS5884k4BvjvAxlxvZ69UH/Xq8j8cvYSzawIpjL9u4w0aiB3+8edC7+oJFw1Oxv2DBY/EGjY38/aOgg4AO/30c0avBBQ4djdq0imEsoHCVqQCgcde2Dl63KDty9bMCq2AN3d35tJ48rdG3bvbOpzbVt5yX4bmgLcec/PyUcibJ+WxczJ5SMWKZNth8TQgwrHMa/pQFfkxWExQIyq+3bts28vbkJ33b3/caTrrCQyNQ9UtoFCfjGOC8ZHTCn2Pl8PowEvtF42fM20Wygl/1ba0rMxRdGXHsoC6aN46HlG83H9bkPI678rJU+60H7DLPtFJx0hyOubbtF+9fyzHsNtPf0UZLvvmBi8fuNg9pOAer+taWsa+4a0HZSU1rA1cfMSGgOn9f/O0KIMSoU2hF4NTfH/WxvN+Frd17tH8/v91E+TPWDnWWMG0d0fCXRceMxxo83fx5fOeDnaGUVRkUF5LqPdqULCfhSyEtAlCyquhifz2eukM3Lcc3ozJ9aQW1ZIV29fQTzclxryjW0hbjwsVW0h/ooKcjhrjP2G7a49Ehn+I6dWc2f395EW6iP0oIcjp3pPH+uujif4vwc2nvCFOfnuK7UjV944bYQY3ZNCa+sbR7QdtLYYe53G4lCe0+Exo4ex9eirafPtW137vzJ/GNdc//rcO5853p5XubwyQpZIbKIYUBnpzmMGQvAmprwb9u2Y1izuak/QKO7e/jHTDa/n+j48RjjxhOtHG8FZGaQFh1fiVFVtePn8nIIOM91Hgsk4EuRhrYQFz/xbn/wdNuifVOXHUmwcG1NaQE/PW6vhLI/L61upL7VDITaeyKu5Ui8DCtv7wpTadtpwy3D19jRw7auMAbmrhFuAdQT79Sz3drndnt3mCfeqeeSzw+9w8TBU8p5YtXmAW0nx86s5sEVG/sDX7egc/EHjfRZQ9B9UfchaC/7zdaUFnDf1+aOeDkdWSErRAoYBr72th3DmFYANuQ8s+Zm6HWeCzxqcnOHyI5ZwVksixYL2ErLEqrWALLThlcS8KXIsvXbqW/txufz0dIddq0nl0y6sYNw1KAgJ0A4arj+gveS/fFSjsRzzT4ftIbClBS4ZyRvW/rJgO28blv6CXedvf+Q5763ud21bef3+SgvyCHUF6Ugx4/f5cNp9ZZ2WrrN7FtLdx+rt7Q7B1AehqCPmFHFVUeH++vaOQ3n9j92EhbQeHlcIcacaNSc+B+bW9YfoDXh29a8Y55Zszn5n4jzdI9RU1BAtLLSNnwZ+3nwsKZRVJxwYCbSgwR8KeWzfrun7k1TEcxla0dv/5w4tyFSL4HZl2ZV8/S7DUQMgxyfz7UciZcgo7Gjh4bWHqJA5zDDnp+1dru27faZWDIgY+a2w0TUMGgJmUFcqM99l4sXV28FdgS+L67e6hicHTuzmqfe3UxHT4Ti/IBrNrChLcSjK+sJR6I8urKew/Zwz7gmSrJ2Yszp68PX2NgfjA05z8wK0Hzb4nf/TA2jpMQcxrQyZdHxlTvmnNkzaePGQ3BkSleJzCcBX4rMn1pBbWk+XeEIwdyA63w4rxraQizf3M6kotxhf2Gv3Njav+VXX9Rg5UbnBQiet3g7M7HSGjWlBVz0uSn95T3c+vynNz4ltqFa1Gr/YdGcIc+dVFbA1s7wgLaTRfvX8vwHjbSFwpQW5I7YgonjZlbx8pqm/qzdcTOdM3E1pQXcdcZ+bOwMD3vtkrlgQrJ2Ii319u6YV2ZlzXYMZdp+bm7C1+a8Ej2e3++jIlkT/8vL4+aVjd8xlGmfZ1YxDvKcd9YRYiRIwJciNaUF3Hb6nIQzKYkuaojNh4sVw3UbdgWz1IpbO77PXrI/iW5VVlffytXPf2jud/txM3eekecYINa3hlzbdoV5Oa7teHkBH/k5fvIC7hnXps5e17bdETOquOEr9AeziQy97j153LDzUmTBhEhbXV1DlMgYGJDFsmW+zs5U9xbAGrocbw1dVjrPM6uogBz5tSkyk/zPzQBeFnjEMj9lwTxau3qHzfzE71QxUjtXeFml+9q6bfRFDHw+6IsYrltpHTS5nE9bGga0ndSU5Lm27bzs0XvApDLetdXLO2CSe7248UV5TK4odN0b1ysZehW7xDDwdbSbw5VNW/E3Nw+YV9Y/z8zKntHj/MVq1OTkDCyRYQ/G+if+W/PNysrB77xntJ1M/BdjhQR8KeJlZeqy9dvZsN2af9bpvsAjlvlpDyWW+Tl272qeqtu8YxXp3u7zxs59aGV/eY/7vjbXsc8vfRi3SvfDRr5x8NCrdIN5fgx2LBIO5jl/UJ97yGT+prf2z3M712HlL8CauGxlfHsww5yEPMxq5UVza3lu9RbauvsoLcxh0Vzn4d+6+lYueqyOaNTgoRUbufMM590+vJKh1zEgGsXX2mIGZE1NA0tmDFihaU38DzuvWh81+QU7SmSMi1uVGRvWHF+JUVmJUVwiE/+FGCUS8KWIlzlY/1zXPKjtFPDFCue+tamNebuVJlTw+Bvzdu9f7el2/n3LNtBslUFp7gpz37IN/PiYvYY818tQ8YdbOl3bdqu3tNPeY65ma++JuK563X+3Ut61rbbdfzfngsNeagwCFOUG8AHBXPe6Tq+t20Y0apAb8BOORF2zlyKDRSLQ2Ejgk43OJTJ2YiumZDKKiqz6ZZWD5pkZlTuyZtHxlVBUlOruCiF2kQR8KeJlDtaa5k7Xtl1DW4hrX/iQjp4Iz+QHhi14/MqarVy/ZC0A725upyKY6zjP7J36Nte23Z7jg65tu9jCBnvbyaNv1w9qO/U34PcPWP8ccBniqSkt4MTZ1Tz//hZOmF097IIJA6gqzh82WF8wbRwPrdhIOBLF73ffwUOMgnB4YImMuK2Y/M07AjRfS4unh/b7fZQlYfK/UVoaVyJj3MChTCtbFh03HvLd58sKIcYuCfhSxMsWViftW8Ptr386oO3EXvC4LdTnWvAY4K91DYPajlt07Ra3RZdLxiyK4dq2iy+e7FZMubQgx7Vtt2DaOB6MbZc2TLD11Kr6/tf49tc/pawgl1P3G3qo1vNq5TMSW60sbFy3YrLvldnsaSumpBo3nkjFuLh5ZlUDi82Or8yorZiEENlDAr4UaWgL8e1HV9EbhYeXf8aT3zrYuabdzAk8+NbG/nlrX5o5wfFxP27ucm3Hm1FZxBvrtw9oOzn3kMk8934DPRHID+A6f+61ddsGtc87ZMqQ5/6lbvOgtlOw9fV5k3h1XXP/KuSvz5vk2Acg4V1Ennt/y6C2Ux+8LpiYU1uWnYFe/FZMTVsH7I2ZvlsxVe7YiqmyasA8s1imbGe2YiovD9Iqk/+FEGlKAr4U+faj79BrFZTrjZrtv1wwf8hzl63fTntPBANz3prboo3CXL9rO96iubU8WVdPZ2+Uojy/6wKE/1n2Kdb0OXoiZvuqY9SQ5544e8KA+XMnznYOUmdPKOHDxs4BbSdzasu4/ssz+8ucuAVSr63bhgHk5ww/f85LfyHDFkxYWzH5m7bis+aRpf1WTHl5Oyb3x+aSjcBWTEIIMVZJwJciG9t6Xdt2f9eNA7YI+7tudAz4fHG/+OLb8d74ZBsdVuTZ0RvljU+2OWa2XvywcVDbKeCLPUZsMYjTYwKcO38yL6xuoLsPCnPMtpOGthB3/vNTwpEo67d1MXNCyYjMn/PS36SxtmJi86fkfropM7ZiKizs33rJcSumSnMDc4qKJDATQogUkYAvRWZVF/GBLas1q9p5KPWjpk7Xtp3XDN9/v/HpoLZTsDOprJCPbKttJ5UVuj52ohav3oK13SzdfWbbafjXy+pmr/PnTt2vNrFAr68P37ZtSduKye/3UTLCk/9dt2KyzzMbNx4KR+a6CiGESB8S8KXI/eccyGE3v0rYgFyf2Xayb00JSz/ePqDt5O8fNQ1qf2/hNMfze/oirm27K784g/P/vAoDc2/YK784w/Hcp1bVD1j9CzgGU8/HzZ97/n3ngM/TDhO9vezv62RueTv+jz7Bv2xktmJKJqO8HGNCNX1l4/qzZoO2YoqtyJSJ/0IIIRIkAV+KfPW+twhbSZywYbYfPnfekOeu3tLh2rbri8sMxbfjnTJnIg8s3zSg7aS5s3fA0HKzy5ZiXhZBnDStlCf/voGK7jbGd7Vy+qRcCu/4t1U+Y+uArZjGdXbykmHQFzXI8fvw35SaIcL+ocvKYeaZ7cRWTOXlQdpk8r8QQogRJAFfiqxp7nZt2zV2hl3bdgv2GMeT7zYMaLv53sJpfNTYwYrPWjlw9zLnbKBh8I+317N7SwOVXa1UdLXScfcyCnfPG3Irpkc6Ouno3ZEtLM4LUHD90CseLwX+MxwhFI5SkOuncJhixn6fb9j9bgHIzR1YIiN+n8yd3IpJCCGEyDQS8GWZcw/ZnddXbyLa0cF4X4QLK8vJWbUSX3c3dHXh6+rC19WJr7sbX1cX+qPP+MPTj/bfP3htgAKHgOumvihtPX397dL8HPJyhg6SYo8R6otSkON3fEwA8gvI3208uVa5jJ6htmKy5pnJVkxCCCGEdxLwpcghk8v414ZWSno6KQt1cHBlLjnvvN0fkNHdja/TDMz+66N1NG5tIRjuoaCvhyl5UUo++h/r3G583WYgR3cX5V1dPN8VxsDAh4+yh3PwuwRIU7vD9Nnaob6oY3CWW1ZCIFjKZznFlE2aSMmek+iOrdCMm2dGcMfOGl3WHyGEEEKkhgR8KXLr6ftx3s8e4a4HribXiDC+KA/uHvrcE0Nh2smhK7eAUG4+eaXF+IqrMAqDGOUVGMGg+XMwyLougyUbu/AXFbGdAMccMJXZe9YMOMcoDEKwEKMwyFPvN/YvrgC46ujpw65UjZU6dl4rLIQQQoh0IgFfilzy+Co+DFbzi6MvIBCNsnvtOL59zOyBgVlBIUYwyIK7lhNix9Bpnt/HP3+wYMjH9bWFeO6p9/p3olh0yj6EXQoEp0X9OSGEEEIklQR8KbLis1b6Ajm8tNdhAOT44PzPDR3EHbLn+AFlWQ6dWu74uLFtvzZ2hplUlJvQbhAJ158TQgghREaSZYkpcuDuZa5tu9+esi8L96wgz+9j4Z4V/PaUfV0fu6a0gKNnTsicrb+EEEIIkVSS4UuRW0/fj0seX9VfDuXW0/dzPX+4IE8IIYQQwokEfCk0XJAnhBBCCDESxkzAp5TKB/4InA70ADdrrW9Iba+EEEIIIZJvLM3huxE4FDgauBC4Ril1Vmq7JIQQQgiRfGMi4FNKFQEXAD/QWq/QWj8N3ABcktqeCSGEEEIk35gI+ID9gHzgddttrwPzlFLuG7cKIYQQQmS4sRLwTQS2aa1Dttu2AHlAdWq6JIQQQggxOsbKoo0g5kINu1g73+lOgYCP8vKg0+G0Fgj4M7bvY51cu8wk1y0zyXXLXHLtvBkrAV+IwYFdrN3ldKdIxKClxfFwWisvD2Zs38c6uXaZSa5bZpLrlrnk2g1WVVXieGysDOluAiqUUnm222ows3zbUtMlIYQQQojRMVYCvneAXuAw222HAyu01n0p6ZEQQgghxCgZE0O6WusupdT9wO1KqXMxs3tXYJZqEUIIIYTIamMi4LNcBtwBvAy0Ab/QWj+W2i4JIYQQQiSfzzCMVPchnW0FPk11J4QQQgghEjAFqBrqgAR8QgghhBBZbqws2hBCCCGEGLMk4BNCCCGEyHIS8AkhhBBCZDkJ+IQQQgghspwEfEIIIYQQWW4s1eHLSkqpacDvMXcO6QQeBa7WWoeUUlOAu4HPARuAy7TWi1PVVzGQUmpv4FZgPtAM3Kq1vtE6JtcuzSml7gZmaK2/YLX3A+4E9gNWAxdprd9KXQ+FnVLqbODhuJuf1lqfLO+39KWUygV+A/wH4AMeA76vte6R6+aNZPgymLU38LOYewIfBnwNOBm4TinlA57GDCTmAfcDTyql9khNb4Wd9SG2GPNDan/gYuBapdTX5NqlP6XUUcD5tnYR5vVcBhwIvAY8r5Ry3slcjLbZwF+AibY/58r7Le3dCJwKnAR8GfgS5melXDePJMOX2Q4GpgMHa607gNVKqWuBm4HnAQUs0Fq3Ax8opY4GvgVck6oOi367Af8GLtZadwNrlVJLgIXAZuTapS0ruPtv4J+2m88EwsDlWuuoUuoHwAnW7X8a/V6KIcwC6rTWDfYblVJHIu+3tKSUKge+DZyotf6nddvPMN9XRyDXzRPJ8GU2DRxvBXsxBlCOOUy40nojxLwOHDp63RNOtNbrtdZnaq27lVI+pdTngM8Df0euXbq7DviH9SdmPvBPrXUUQGttYAaEcs3SxyzMz8x48n5LX4cDXcCS2A1a6/u01l9CrptnkuHLYFrrrdjeCEopP3CJddtEoD7uLluASaPWQZGojUAt8BzwBOacTLl2aUgpdShwOrAPcLnt0EQGBxNbMIfrRYpZ01+mAScqpf4Lcy7Y48BPkc/KdDYNc3vTs5VSVwPFmNft/yHXzTMJ+LLLzcBczPkMl2HO7bPrAfJHu1NiWCdhBnx3AL8Dgsi1SztKqXzgHswJ49uVUvbDcs3S2wzM33edwGmYgcQtQAlQgFy7dFUC7AF8F7jQat+BeS3lPeeRBHxZwJq8+nvgO8AirfX7SqkQUBZ3aj5melykEa31cgClVBBz4vG9yLVLRz8B1mitHx/iWIjBv2jkmqUJ6zOxUmvdbN20yvrc/DPmKk95v6WnPqAU+LrWeh2AUuoK4AHgPuS6eSIBX4azhnHvwVyhe6bW+mnr0CbM8hB2NZgLAkSKKaV2Aw7UWj9ju/kDIA/zGu0bdxe5dqn3VWCiUio2ZzYPCFjthzGvkZ1cszRiC/ZiVgO5mMOC8lmZnuqBvliwZ9GYWdkG5HPSE1m0kfluwvxFdKrW+inb7cuA/a0VhTGHW7eL1JsJPKWUqrbddiCwFXPisVy79PMFzLl7+1t/7gaWWz8vAw6zskaxrPvnkGuWFpRSpyqltlhz+WLmAi3IZ2U6exPIUUrZA7tZQLt1TK6bBz7DMFLdB7GTlFLzMf/TX4WZ3rbbCtRhZo1+BpyIOSQ1W2u9ftQ6KYZk1eFbgblg43LMOUX3AL/CLMYs1y7NKaV+CRyutf6CUqoUWItZFPZ24ALML2LT41YRihRQSo3HzOi9gPkem4EZsN+KWdRX3m9pSin1V8yFGBdiztv7X+Ap4EfIdfNEMnyZbZH19/WYaWz7Hx/mYoBqzMDiP4BT5I2QHrTWYcw6bX3Av4C7MOdh/kFrHUGuXUbRWrdhXs/DgLcxs3vHS7CXHqzh3GOBKZjX578xd0W5Xt5vae8czMDuZeCvmMWzr5Lr5p1k+IQQQgghspxk+IQQQgghspwEfEIIIYQQWU4CPiGEEEKILCcBnxBCCCFElpOATwghhBAiy0nAJ4QQQgiR5STgE0KIEaaUOlspZSilLk91X4QQAiTgE0KIZDgbc+eNb6S6I0IIARLwCSHEiFJKjcPc1eFnwL5Kqbmp7ZEQQkBOqjsghBBZ5jSgB3gUc2/Pc4GVAEopP+Zerudjbn/4O+v4+Vrrfyil8jH3dv0a5hfyvwPf1VpvGd2nIITINpLhE0KIkfVVYLHWug94GviqUirXOnYV5jDv14CjMTd839N2318Bh1q3L8T8jH5OKeUbpb4LIbKUBHxCCDFClFK1wOcxN3kHeAqoBI632t8Bfqq1fklrvRIz+PNZ9w0ClwAXaa3/pbV+D3Pj+NnA4aP2JIQQWUkCPiGEGDlnARHgBav9L6Ae+IZSqhKoBd6Knay11sB2q7knkAe8ppTqUEp1AFuBAmCv0em+ECJbyRw+IYQYOWcDuUCzUip2mx84ATCsdvzwbKwd+zxeCLTGnbN1ZLsphBhrJMMnhBAjQCk1AzgI+AGwv+3PiZiZu69iZvsOtN1nT6Dcaq7DzA5Waq3Xaq3XYgZ6NwNTRuEpCCGymGT4hBBiZJwNtAB3aq1DttvfU0q9gTlf74/AT5VS64FG4A/WOYbWul0pdTdwq1LqQszg8NfAHGDN6DwFIUS2kgyfEEKMjLOBh+OCvZg7MDN7zwFPAo8DLwPPA31Ar3Xe5cDfMEu6vAUUAsdorbuT23UhRLbzGYYx/FlCCCF2mVLqOGCF1nqr1a7CzPTtobVen8q+CSGymwR8QggxSpRSf8Fc1PEjzEUcvwCmaK0PTmnHhBBZT4Z0hRBi9FyCOYT7BrAMCACnpLRHQogxQTJ8QgghhBBZTjJ8QgghhBBZTgI+IYQQQogsJwGfEEIIIUSWk4BPCCGEECLLScAnhBBCCJHlJOATQgghhMhy/x+NtHtTIHjNmAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"try_parameters(60, 200)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3fb1453",
"metadata": {
"scrolled": false,
"id": "c3fb1453",
"outputId": "a66305fc-74dd-4e63-ce3a-ece98b7ad7eb"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF7CAYAAABIAFZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACA2UlEQVR4nO3dd3hUVfrA8e+0lEkHEkJEQAGPgIKsolgQ29rXim3VXV11dS1rX3URFeuqa+/r6ura69pRf1iwYkEECx4BRYQQAoH0TDKZub8/7kyYTDI3cyGTKXk/z5OHnDn33pzJZSbvvKc5DMNACCGEEEJkLmeyGyCEEEIIIRJLAj4hhBBCiAwnAZ8QQgghRIaTgE8IIYQQIsNJwCeEEEIIkeEk4BNCCCGEyHDuZDcglQWDQSMQSM9la1wuB+na9v5O7l16kvuWnuS+pS+5d115PK61QGl3dRLwWQgEDGprm5PdjI1SXOxN27b3d3Lv0pPct/Qk9y19yb3rqrS04JdYddKlK4QQQgiR4STgE0IIIYTIcBLwCSGEEEJkOAn4hBBCCCEynAR8QgghhBAZTmbpbiTDMGhsrKOlpZFgMJDs5nSxerUDw+if09WdThe5ufnk5xfhcDiS3RwhhBAi6STg20jr16/B4XAwYMBgXC53ygUWLpeTQCCY7Gb0OcMwCATaaWioZf36NQwYUJbsJgkhhBBJJ126G6mtzUdx8UDcbk/KBXv9mcPhwO32UFw8kLY2X7KbI4QQQqQECfg2moHDIb++VGXem/7ZpS2EEEJEk4hFCCGEECLDScAnhBBCiKSrqvcxZ8laquplOE4iyKSNfmbatN9RVbWq27rrr/8nu+++R8xz169fx1dffcnee+8LwG677cBtt93DpEk79Wob/X4/r7/+CocddmSvXlcIIURqqqr3ce6L3+IPBPG4nNxxxDaUF+Yku1kZRQK+fujss8/jt7/dv8vjBQWFlufdd99dtLe3dwR8L7/8JoWFRb3evtmz3+LRRx+SgE8IIfoJXd2IPxAkP9tNY2s7urpRAr5eJgFfP5SXl8/AgYNsnxe9rt/GXGNjfo4QQojMpsry8bicNLa243E5UWX5vXbtqnofuroRVZbfr4NICfhEJ1999SV33307y5b9THFxMYcfPo0TTzyZhx56gFmzXgNg4cKvef75Vzt16U6b9jtOPPFkXn31JX76aSnbbTeRv/1tOnfeeSufffYJw4YN58orr2PEiC0AeP31V3jyyf+ycuUK8vLy2HPPfTjvvItZuPBrrr9+JmB2GT/33CuUlw/h0Ucf4qWXXqClpZlx48Zz/vkXs/nmw5L2exJCCNF7ygtzuOOIbXo9MJOu4g0k4OtFWa/8j5z/vdCnP9N3+JG0HXJ4r1wrEAhw+eWXcOSRR3PddTexdOkSrrjiMrbaamuOO+5EfvllGcFggAsvvKzb8x966AFmzJhJQUEhF1xwDieffDxnnHE2p556OtddN5MHH7yX6667mQULvuaWW27kyiuvQakxLFr0HddccwUTJ+7A7rvvwV//eiFPPPEoDz/8OMXFJbzwwjO8+eYbzJhxNYMGlfLCC89w7rl/4cknXyAnp3++cIUQItOUF+b0ejAmXcUbSMDXD912203ceectnR7Lzy/g0Uefor6+jgEDBjJkSAVDhlRwxx33UlGxGV6vl+zsbAKBACUlJd1ed//9D2TSpMkATJz4G+rq6jj00CMA2Hff/Xn11ZcByM7O5tJLZzB16l4AlJcP4emnn2DZsp/Ye+/fkp+fj9Pp7OgyfvLJxzj33IvYfvtJAJx//t/49NNPeP/9d9h//4N6/xckhBAiIySyqzjdSMDXi9oOObzXsm2JdPLJp7Hnnvt0eszpdFJYWMSRRx7NLbf8g0cffYhddtmN/fY7KO6xehUVm3V8n52dw+DBuRHlbPz+NgC23noM2dnZPPTQA/z881KWLl3CihW/dgR0kZqbm6muXs3VV1+O07lhFaG2tjZ+/XW5recthBCif0lUV3E6koCvHyouLmHo0M27rTv//L9x5JFH8+GHc/j44w8555w/c8kll3PQQYf0eF2Xq/N/p8gALdJnn33KZZddyH77HcROO+3CySf/mVtu+Ue3xwYCAQBmzryeESO27FSXn1/QY5uEEEL0b4noKk5HsvCy6FBTs5Z//vMfDB48hOOP/yP33vtvDjzwd7z77myAXtsz+NVX/8f++x/EJZdM53e/O4zhw0ewcuWKjtm5kT+noKCAkpIBrF27lqFDN2fo0M0ZMqSCBx64hyVLfuyV9gghhBCZTjJ8/VBTUyM1NWu7PJ6dncOHH75HMBjg97//A/X1dSxYML+j+zc3N5fFi39kzZpqSkvLNvrnFxYW8d1337BkyWKcTiePP/4INTVr8fv9HT+nsbGR5ct/oaJiM4455vf8+9/3M2DAQLbcciRPPvlfvvjiM84998KNboMQQgjRn0jA1w/dffft3H337V0eP/bYE7jxxtu4445bOPnk35Odnc1ee/2Wk046FYD99z+I999/l5NOOo7XXpu90T//T386neuvv4ozzjiZvLw8dtppF4444igWL9YA/OY3kxg+fAQnnXQc9977b4477kR8Ph+33nojDQ31bLWV4tZb72LQoNKNboMQQgjRnzhkkdvY/P6AUVvb3G1dVdUvlJcP7+MWxc/lchIIBJPdjKRK9XsUS3Gxl1j/70TqkvuWnuS+pS+5d12VlhbMA3borq5PM3xKqa2Bu4HJQA1wt9b65lDdA8Cfo045X2t9e6h+T+AOYBTwOXCq1npJxLXPAS4BioDngbO11k2humzgLuAooBW4VWt9U4KephBCCCFESumzSRtKKQ8wC1gObAecBcxQSh0fOmQccDEwJOLrX6FzNwdeAR7HjFyrgJeVUs5Q/RHAtcCZwJ7AJCByobmbgZ2BfYDTgcuVUscm6KkKIYQQQqSUvszwbYaZmTtLa90CLFFKzQamAk8AY4DLtdZV3Zx7GrAgnJVTSv0JM+jbC5gNnAfcpbV+JVR/BjBbKXURYITO/53Weh4wTyl1E3A28HSinqwQQgiRLLJ/rIjWZwGf1noZcAyAUsoB7ALsDpyllCoHBgA6xumTgQ8irtWslPoK2Fkp9R5mRu/aiOPnYj63iUAAyAY+iqj/CDO76NJaBzb92QkhhBCpQfaPFd1J1jp8KzCDrk8xx9uNBdqBa5RSK5VSC5RSJ0UcPwSojLrGamAoUAzkRNZrrdsxxwgODZ27Tmvtizo3C9j4tUWEEEKIFBS5f6w/EERXNya7SSIFJGtZlkOBCuA+4DY2ZPYWAHcCewAPKKWatNbPAV7MyRaRWjEzd96Icnf17hh1hOpjcrkcFBd7u61bvdqBy5Xa61anevsSzeGIff9SmcvlTMt293dy39JTJt63SaNKyfl0Oc3+IDlZbiaNKqW4OLfnE9NMJt67REpKwKe1/hJAKeUFHgUKgae01utChyxUSo0G/gI8B/joGpxlY2bxfBHl6PpmzDF83dURqo8pEDBiTvk2DCOllz2RZVnMe5SOU/ZlqYH0JPctPWXiffMCtx46tmMMn5f0fC/sSSbeu01VWhp7y9G+nKW7mVIqekPW7zG7Vgsigr2wRZgTPQBWAuVR9eXAKjYEfR31Sik3MDBUvxIoUUplRZ3bCkT/TCGEECLtlRfmMHXUIBm7Jzr0ZZ/fGOBFpVTkuLntgTXAZUqp16KOnwj8EPp+LrBbuCKUGZwIzNVaB4EvIusxl2BpB+YDXwNtmJNEwnYD5oXG+gkhhBBCZLS+DPjmYGb0HlFKjVFKHQz8A7gOeBU4QCn1V6XUSKXU2cAfMNfPA3gY2EkpNV0pNRZ4CHM9v3dC9fcCFyqljlBK7RAqP6y1btRaN2N2G9+rlNoxlGW8CHMR537t//7vTXbbbQeeeurxuM9pbm7mjTde7ZWf/8Ybr3L44Qf2yrWEEEIIEVufBXxaaz9wEGbm7TPgAeB24E6t9fvAcZg7bXyHuYDycVrrj0LnLgOOAE4EvgQGA4eGsntorZ/GXJblPsx1+b4ELoz48RdgZgHfBe4HrtZaP5uwJ5smZs9+i6FDN+fNN6OTq7E9/fTjvPrqS4lrlBBCCCF6XZ9O2tBa/wpEj+ML1z0LxAzCtNazMHfqiFV/I3BjjLpm4I+hLwHU19fx+edzueyyK7j66hn8+OMPbLXV1j2eJ3svCyGEEOmnf6/b0Y+9//67eDxZ7LXXb9l882G88caGLF8gEODf/76fww47gH33ncqll17A2rVreeONV/nPfx7km28WsNtu5t7M06b9rlPG76uvvmS33Xagvd0cHvnttws588xT2XvvXdlnn9244IJzWLOmuk+fqxBCCNHfScDXT/3f/73J5Mm74Ha7mTJlKrNnv9kRpD388L949dWXuOSS6Tz44KO0trZy7bVXsPfev+XYY09gzJhxvPzymz3+jObmJi6++Dx22GFHHnvsWW699W4qK1fy6KMPJ/rpCSGEECKCBHwpoKrex5wla6mq9/V8cC9Yu3YNCxbMZ8qUqQDsvvte1NbW8umnH2EYBi+//CKnnnoGO++8G8OHj+Ciiy5jzJhxeDxZ5Obm4na7GThwUI8/p6WlhRNPPJmTTz6NiorNGD9+O/bYYy+WLfsp0U9RCCGEEBGStdOGCEnGnoezZ7+F0+lk553NlWzGjduGQYNKmTXrdbbZZgK1tetRasN4vs02G8rpp59l++cMHDiIAw/8Hc888wSLF//IsmU/s2TJj4wdu02vPRchhBBC9EwCviSL3POwsbUdXd3YBwHf27S3t3PQQXt3PBYMBvn0049obbWXZXQ4HJ3KgUCg4/s1a6o59dQTGT1aseOOO3PIIYfzyScfsXDh15vUfiGESGVV9b6OXS5k4WORKiTgSzJVlo/H5aSxtR2Py4kqy0/oz/v11+X88MP3/PWvF7DDDjt2PL56dRUXX3weH300h+LiEn78UXfM2v311+WceeapPPHEc10CPLfbTXNzU0e5snJlx/cffPAeXm8e//znnR2PPf/8M5i73QkhROZJRq+NEPGQgC/JygtzuOOIbfrs0+Ds2W+Rn1/AoYceSXb2hi2Gt9xyFNtuO55Zs17nqKOO5eGH/8XgwYMpLR3MHXf8k6222prCwiJyc73U1KylsnIlFRWbMWbMON544zUmTdqJuro6nnnmiY5rFhYWsXbtGr74Yi4VFUN5773ZzJnzLqNHq4Q+RyGESJZk9NoIEQ+ZtJEC+nLPw9mz3+K3v92/U7AXdthh09B6EVOmTGXvvfdl5szLOf30k8jPL+Dyy68CYI899sLpdHLiiUezfv06TjvtLxQUFHDKKSdy++03c9ppf+m43l57/Zb99juQGTMu45RTTmTevC8455wLWL58me2uYyGESAd93WsjRLwcspBubH5/wKitbe62rqrqF8rLh/dxi+LncjkJBILJbkZSpfo9iqW42Eus/3cidcl9S0+JuG8yhq9vyGuuq9LSgnnADt3VSZeuEEII0YvKC3Mk0BMpR7p0hRBCCCEynAR8QgghhBAZTgI+IYQQQogMJwHfJpAJL6lL7o0QQgixgQR8G8nlcuP3tyW7GSIGv78Nl0vmJAkhhBAgAd9Gy88vprZ2DW1trZJNSiGGYdDW1kpt7Rry84uT3RwhUlJVvY85S9ZSVS/rYQrRX0gKZCPl5uYBUFe3lkCgPcmt6crhcPTbQNTlclNQUNJxj4QQG8jWX0L0TxLwbYLc3LyUDSpkQUohRHdk6y8h+ifp0hVCiH5Etv4Son+SDJ8QQvQj5YU53HHENrL1lxDdyORt8STgE0KIfka2/hKiq0wf3ypdukIIIYTo9yLHt/oDQXR1Y7Kb1Ksk4BNCCCFEv5fp41ulS1cIIYQQ/V6mj2+VgE8IIYQQgswe3ypdukIIIYQQGU4CPiGEEEKIDCcBnxBCCCFEhpOATwghhBAiw0nAJ4QQQgjRy1xLF1P4pxMZsO1WDNh2K7w3XpfU9vTpLF2l1NbA3cBkoAa4W2t9c6huOPAgsCuwHLhAaz0r4tw9gTuAUcDnwKla6yUR9ecAlwBFwPPA2VrrplBdNnAXcBTQCtyqtb4psc9WCCFEKquq9/HlqgaG5nkydmam6EOGQdZbs8ibeTmOxq6LNvuOPT4JjdqgzzJ8SikPMAszmNsOOAuYoZQ6XinlAF7GDAInAY8CLyiltgiduznwCvA4sANQBbyslHKG6o8ArgXOBPYMXeOWiB9/M7AzsA9wOnC5UurYRD5fIYQQqSu8jdY/3tSc++K3VNX7kt0kYUNVvY/Zi1Yn/741NeG99SYzizdekX/xeRuCPaeTpquuZd2CH/j+44W8589Panv7MsO3GWZm7iytdQuwRCk1G5gKrAIUMEVr3QB8r5TaBzgFuBw4DVgQzsoppf6EGfTtBcwGzgPu0lq/Eqo/A5itlLoIMELn/05rPQ+Yp5S6CTgbeLpPnrkQQoiUEt5Gq8ibRV1zG7q6MaOyfFX1voxdQDgcrAcMcDno8z1vnT8tJe+Ga/DM/aRLXWDcNjROv4rAtuO7tDfZe/T2WcCntV4GHAMQyujtAuyOmembDMwPBXthHwFTQt9PBj6IuFazUuorYGel1HuYGb1rI86di/ncJgIBIDt0vchrz1BKubTWgd56jkIIIdJDeButBl/mbaOVKgFGovR5sG4YZP3fm+RdfQWOurou1a3TjqH53Aswikss25uf7aaxtT1pHy6StdPGCqACeA1zvN3tQGXUMauBoaHvh1jUFwM5kfVa63alVE2ovg1Yp7X2RZ2bBZRhZheFEEL0I+FttFY0+TNuDF+qBBiJ0ifBenMz3n/dS85D/+q2umnGTFqPPBpcrh4vlSp79CYr4DsUM+C7D7gN8GJOpojUipmZo4d6b0S5u3p3jDoirt8tl8tBcbHX6pCU5XI507bt/Z3cu/Qk9y39FBd7GedyEggEk92UXjVpVCk5ny6n2R8kJ8vNpFGlFBfnJrtZvaa42Mt/TprED6sb2XpwPhW99dx++gnXFTNwfPjBhsecDgCMbbYhcO31MHEiALmhLzvt/X5VPWOHFPZee21KSsCntf4SQCnlxZyg8TDm7NpI2UBz6HsfXYOzbMxJHr6IcnfnGzHqiLh+twIBg9pay0NSVnGxN23b3t/JvUtPct/SUybeNy9w66FjO8bweUnfv2WxeIG9VCm1tc0b/9wMg6x3/4+8mTNwrF9vPhT6Amg94iizq3bAwA3nbOTP8gI7DCmABN+L0tKCmHV9FvAppTYDtg9PrAj5HrNrdRWwbdQp5Wzobl0ZKkfXf8uGoC9cRinlBgaGzg8AJUqpLK11W8S5rcC6TX9mQgghRGopL8zJqG7cXtPSQu6D95P74H3dVjdNv5LWo46Nq6s23fTlwstjgBeVUmURj20PrMGcRLGdUiovom43zMkXhP7dLVwRygxOBOZqrYPAF5H1mEuwtAPzga8xx/HtEnXteVrr9k1/WkIIIYRIVc5fllFwxinm0ik7TugU7AW2UtQ//gzrvvmRdd/8SOuxx2dksAd926U7BzOj94hS6kJgJPAP4LpQ3S+huquAgzFn5p4SOvdh4GKl1HTgf8AMzPX83gnV3ws8qJRaGHr8XuBhrXUjgFLqUeBepdRJmNm9izCXahFCCCGSJpOXT0kaw8Dz3jvkz5yBY11Nl+rWw46g+byLMQYO7ObkzNWXy7L4lVIHAfcAnwENmLNz79RaG0qpQ4GHgHnAUuDw0FIuaK2XhRZXvg2YjpnxOzSU3UNr/XRop477MMfn/Q+4MOLHXxCqexeoB67WWj+b2GcshBBCxJbpy6f0KZ+P3If+Re79d3db3fT3K8yuWney5qomn8MwjJ6P6qf8/oCRrgNdM3Egcn8h9y49yX1LT8m8b3OWrOWOOT91LJ9y7tQtmTpqUFLako6K69YQmH45njnvdakLjN6KphkzaZ+4fRJaljylpQXzMHck66L/hrpCCCFEEqXK+mzpxPP+u+RdfQVUr+7YaQOHuXRK6yGHmV21paXJbWSKkoBPCCGESILw4s8yhs9Ca6vZVXvfXR0PBQ2DuhZzzuUj+57EftddSPkACZZ7IgGfEEIIkSSyfEpXzhW/knfjdXjef7dLXWCLLfnoTxdyZU1Rx9ZqI9b5JOCLgwR8QgixiarqfXy5qiHjtuhKFTKTNfN5PpxD3swZOFdXdalrO/gQms7/G0aZuapbab0Pz4vfZuQ+yIkkAZ8QQmyC8EzL8HiiTJtpmexgS2ayZqjWVnL/8yC599zZbXXzxZfhO+4E8Hi61GXyPsiJJAGfEEJsgvBG9eHupUzaqD4Vgq3w7zc8kzWTfr/9jbNyJd4bryPr3dld6oLDR7D8osuZP3RsXB8uygtz2HrYAJkZb4MEfEIIsQnCMy0zsXspFYItmcma3jwff0jezMtxrlrVpa7tgINouvBSjMGDN3y4WPqTZHITRAI+IYTYBJncvZQKwZbMZE0zbW3k/PdhvHfc2m1184WX4Dv+D126alPhw0Wmk4BPCCE2UaZ2L6VKsCUzWVObs2oV3ptvIOvtN7vUBTcfRuMV19A+eWfLayTyw0Wyx6GmCgn4hBBCxCTBluiO59OPza7alSu71LXtdyDNF19KcHB53NdL1IeLVBiHmiok4MtAskSEEEKIXuX3k/Pf/+C9/Z/dVjefdxG+P5zc7azaeCXiw4V0FW8gAV+GyfQlIoQQQvQN5+oqvDf/g6y33uhSFxw6lKYZV+PfZbcktCx+qTAONVVIwJdhMnmJCJF6ZGyMEJnFPfdT8q+egfPX5V3q2vbdn+aLLiU4pCIJLds4qTIONRVIwJdhMnmJCJFaZGyMEJvOzoemhHzA8vvJeewRvLfd3G1187kX4PvDnyArq3d+XhLIOFSTBHwZJpOXiBCpRcbGCLFp7Hxo6s0PWI7Vq8n75z/IevP1LnXBIUNouuIa/LvtvlHXFqlLAr4MlKlLRIjUImNjhOhevJk4Ox+aNvUDlvvzz8yu2l+Wdalr22dfmi++jGDFZnFfT6QfCfiEEBtFxsYI0ZWdTJydD022P2D5/eQ89Tjem2/otrrlnPNo+eMpkJ0d93PrDzJ5XLIEfEKIjSZjY4TozE4mzs6HpniOdVRXk3fbTWS99kqXuuDgcpquuBr/7nts9HPLdJk+LlkCPiGEEKKX2M3E2fnQ1N2x7i8/J+/qK3D9/FOX4/177EXTJdMJDt08/ifQj2X6uGQJ+IQQQohekvChDu3t5Dz9BN4br+u2uuUv59Dyp9MgJ3MClb6S6eOSJeATQgghUphj7Vq8t91E9isvdakLlpaZXbV77NX3DcswmT4uWQI+IYQQKS2dBtL31jgw91dfknfNlbiWLO5S55+6J01/+zvBYcN7o8kiQiaPS5aATwghRJ+LN4hLt4H0Gz0OrL2dnGefwnvDNd1Wt5xxNi2n/Fm6asVGk4BPCCFEn7ITxNkNoJKdDbQzDsxRU4P39pvJfunFLnXGgIE0XnkN/j33BocjkU0W/YQEfCLpb5BCiP7FThBnJ4BKhWxgeWEO0/cdzYdL1zFl5ICus2oXzDdn1f6ou5zrnzKVpksvl65akRAS8PVzqfAGKYToX+wEcXYG0qfCshpV9T6ue3sx/kCQD5bWcMehYxj+1kvkXTez2+Nb/nwmLaeeDrm5fdpO0f9IwNfPpcIbpBCif7E7GzLegfSpsKyGrm4kt349Z334DFO/eoe8m1xkuZwd9UZJCU1XXkPbXr+VrlrRpyTg6+dS4Q1SCNH/JGI2pN1Asqrex5erGhia59nktrgXfk3e1Vdy6A/fs0dL+4bHnQ78u+xK06UzCG6x5Sb9DCE2hQR8/VymrzskhOhf4g0kw8NZAga4HNgfzhIIkP3Cs+Rdc2Xnxx0OinLd6MNPgLPPwRg8wOYzsG6zvFeLjdWnAZ9SaiRwO7Ab0AQ8A0zXWvuUUg8Af4465Xyt9e2hc/cE7gBGAZ8Dp2qtl0Rc+xzgEqAIeB44W2vdFKrLBu4CjgJagVu11jcl6GmmnUxed0gIIbqjqxtp8QfwuJy0tAfjGs7iqF2P945byX7+mS51RlGR2VW7z37gcDC4l9sr463FpuqzgE8plQW8CnwP7AKUAQ+Hqi8ExgEXA49HnFYfOndz4BXgGuA14ArgZaXUtlrroFLqCOBa4ESgEngEuAU4I3Sdm4GdgX2AocBjSqnlWuunE/JkhRBCpLQSr4e1TW0YhoHD4aDE6+n2ONc3C8m/5gpci77vUuefvAtNl80guOXIRDdXxluLTdaXGb4dMbNzO2qtG4FFSqkZwK2YAd8Y4HKtdVU3554GLAhn5ZRSfwKqgL2A2cB5wF1a61dC9WcAs5VSFwFG6Pzfaa3nAfOUUjcBZwMS8KUI6aoQQvSl9c1+BuVl4XE78bcHWd/sNyuCQbJffI68mTO6Pc938qk0n34W5OX1YWtlvLXYdH0Z8GngwFCwF2YAxUqpcmBA6JjuTAY+6LiQ1s1Kqa+AnZVS7wGTMDN8YXMxn9tEIABkAx9F1H8EzFBKubTWgU17WmJTSVeFEKKvqbJ8cj0uAgYMam9h90duY8DLz3U5zsjPp+nKa2nb74CkzqqV8dZiU/VZwKe1XoOZjQNAKeXEzLLNBsYC7cA1SqkDgLXAbVrrR0KHD8Hsqo20GrN7thjIiazXWrcrpWpC9W3AOq21L+rcLMxu5VW98wzFxpKuiv5BsrgilWy2YikvvXE9Wd99g8sBzohgrn3HyTT9fQaBkaOT2MKuZLy12BTJnKV7K2YGbhKwR+ixBcCdofIDSqkmrfVzgBdzskWkVszMnTei3F29O0YdofqYXC4HxcVeq0NSlsvlTJu2TxpVSs6ny2n2B8nJcjNpVCnFxf13EdJ0unfxqqxt4YKXv6etPUiW28m/T9yeigy7x5l43zJKMIjj+edxXXYJtG9YNgW3uUZe8M+nEzz3PMjPxwkUJKWRwg55zdnT5wGfUsqBOVP3TGCa1vo7pdT3wFNa63WhwxYqpUYDfwGeA3x0Dc6ygZpQHTHqmzG7jburI1QfUyBgUFtreUjKKi72pk3bvcCth47tyP546b3fezpmldLp3sXriyVr8bW1d2Rxv1iyhqmjBiW7Wb0qE++bXan2enPU1+G963ayn36i47Fg6F/D66XpymvxHncUtXUt5oPtQD+/h+lEXnNdlZbG/qjS18uyOIGHgOOBY7TWLwNorQ1gXdThi4B9Q9+vBMqj6suBb9kQ9IXLKKXcwEDM7toAUKKUytJat0Wc29rNzxRJkoiuChkbmDpkwHnmS5XXm+uHReRdeyXuBV93qWvffhJN068kMHqrjse8abTbRaoF1OlCfm+mvs7w3QL8HjhCa/1a+EGl1C2A0lofHHHsROCH0Pdzgd0jjveG6q8NLcvyBebafuExgjtjflabj/mBrg1zKZj3Q/W7AfO01hF5fZFpZGxg6pAB55kvaa+3YJDsV18yZ9X6/V2qfSeeRMtfzsYoKEx8WxIoVQLqdCO/tw36ch2+yZjLp1wGfBmamRv2KnCeUuqvwOvAAcAfgL1D9Q8DFyulpgP/A2YAy4F3QvX3Ag8qpRaGHr8XeDg8I1gp9Shwr1LqJMzs3kWYS7WIDCZZpdQiA84zW1++3hwN9eTecwc5TzzWtTInh8Yrr6XtoN9l1F618gF248jvbYO+zPBNC/17Q+grkgc4DnNB5ZuAn4DjtNYfAWitl4UWV74NmI6Z8TtUax0M1T+tlBoO3Ic5Pu9/mGv7hV0QqnsXczHnq7XWz/b6MxQpRbJKQvSdRL/eXPoHs6v26/ld6tonbk/T5VcR2Er16s9MJen6ATbZ3anp+ntLBIdhGMluQ8ry+wNGqgwItfuikcGs6UvuXXqS+9bLDIOs114mf+YMaI1eaAF8x59Iy1nnbnJXbTrdt2QHT3Ylujs13nuXbr+3TVFaWjAP2KG7umQuyyLiJGMQhBD9gaOxgdx77iTn8Ue7Vno8NF15Da2/Owyczj5vWypIt2ERqdKdmm6/t0SRgC8NpMqLRggheptr8Y/kXTcT97wvutS1bzeRpulXEdh6TBJaJjaVdKemFgn40oC8aIQQGcMwyHrjNfKunoGjuWt3nO+4E2g5+1yMwqIkNE70JhlHnVok4EsD8qIRou/1p3E/CdfYiPe+u8j573+61rndZlftIYf3267aTCbdqalDAr40IS8aIfqOjJvddK6li8m77mrcX3zWpa592/FmV+24bZLQMiH6Jwn4hNgIkv3JbDJudiMYBllvzSJv5uU4Ghu7VLceezzNZ5+LUVTc920TQkjAJ9JPsoMtyf5kPhk3G6fGRrz/upec//y7a53TaXbVHnakdNUKkQIk4EsTyQ5yUkUqBFuS/cl8Mm42NtdPS/Befw2ezz7tUhcYtw2Nl88ksM22SWhZ6pD3a5GKJOBLA6kQ5KSKVAi2JPvTP8i42RDDIOvtN82u2oaGLtWt046h+dwLMIpLktC41CPv1yJVScCXBlIhyEkVqRBsSfZHZLzmZrOr9qF/dVvdNGMmrUceDS5XHzcs9cn7tUhVEvClgVQIclJFqgRbkv0Rmca57Gfybrgazycfd6kLjBlL04yZtG87IQktSy/yfi1SlQR8aSBVgpxUIcGWEL3AMMia/RZ5V1+Bo7a2S3XrEUeZXbUDBvZ929KYvF+LVCUBnxBC9BctLeQ+eB+5D97fbXXT9CtpPepY6ardRPKhVKQiCfjSQLoOApaZakIkn/OXZeTdcA2ejz/sUhfYStF0xdW0T5iYhJYJIfqSBHxpIB0HAadrkCpE2jMMPO+9Q/7MGTjW1XSpbj3sSJrPuwhjoHTVio0jH+bTkwR8aSAdBwGnY5AqRNpqaSH33w+Q+697u61u+vsVZletW97yxaaRD/PpS179aSAdBwGnY5AqTPLpPT04l/9C3j+uxfPhnC51gdFbmbNqJ26fhJaJTCYf5tOXBHxpIt0GAadjkCrk03uq87z/rtlVu3ZNl7rWQw6j+byLMUpLk9Ay0V/Ih/n0JQGfSJh0C1KFfHpPOT4fuQ8/SO59d3Vb3XzJdHzHHi9dtaLPJPLDvPQuJJbtdwmllFNrHVRKlQNTgK+11ot7v2ki3cmLN/3Ip/fkc674lbwbr8Pz/rtd6gIjR5ldtdtPSkLLhDAl4sO89C4kXtwBn1JqMvAccKJSahHwJVAIZCuljtVa/y9BbRRpSF686Um64pPDM+c98mbOwLmmuktd28GH0HT+3zDKypLQMiH6hvQuJJ6dDN+twMuYgd5fgXagFDgBuAaQgM+mTM6AyYs3fUlXfB9obSX3Pw+Se8+d3VY3X3wZvuNOAI+njxsmRHJI70Li2Qn4JgLHaa0blVKHAC9prVuVUrOBuxPTvMyV6RkwefEK0Zlz5Qq8N11P1ruzu9QFR2xB44yrad9xpyS0LPVl8odjYZLehcSzE/DVAMOUUg5gEjAj9PgOwKreblimy/QMmLx4hQDPRx+Qd/UMnKu6vkW2HXgwTRdeKl21Pcj0D8diA+ldSCw7Ad/DwEtAG7AYeEcpdSZwMzC995uW2fpDBkxevKLfaWsj99GHyL3ztm6rmy+8BN/xf5CuWhsy/cOxEH0l7oBPa32FUmo+MBx4KjRTdxlwjNb6tUQ1MFNJBkyIzOBcVYn3putxv/t/DAganeqCmw+j8YpraJ+8c5Jal7ri7abtDx+OhegLDsMwej4qglJqM2ArYC5QqLVenYiGpQK/P2DU1jYnuxkbpbjYS7q2vb+Te5f6PJ9+TN7My3GuXNnxmNPpIBg0aNvvQJovvpTg4PIktjC12e2mTeQYvkx9vfWHcY+Zeu82RWlpwTzMoXZd2FmWJR/4D3AkEMQM+m5TSpUCh2mtu64nIIQQmcDvJ+e//8F7+z+7rW4+/2JyzjmT2iZ/HzcsPdntppXhIfZU1fs46/lvaG5rx5vl5p5p28oCycLWGL5bgEHAFsC3occuBB4F7gSO7d2mCSFE8jhXV+G9+R9kvfVGl7rg0M1puuJq/Dvv2vFYjscDSMAXD+mmTay5y9ZTWdeCw+GgtsXP3GXrOWz8kF65tkyiSV92Ar5DgAO11r8opQDQWi8JTdx4LxGNE0KInvRmtsE991PyZ16Oc8WvXera9t2f5osuJTikYpN+hpAxzJESly1zgBH6txfJJJr0ZSfgy8WcoRstmzj/RymlRgK3A7sBTcAzwHSttU8pNRx4ENgVWA5coLWeFXHunsAdwCjgc+BUrfWSiPpzgEuAIuB54GytdVOoLhu4CzgKaAVu1VrfFPczF2ITSPdH4mxytsHvJ+exR/DednO31c3nXoDvD3+CrKxearEIk27axGXLJo8ooaIwm2Z/AK/HxeQRJb3QWpNkZ9OXnYDvZeAGpdQfQmVDKTUaM5DqcZauUioLeBX4HtgFKMNc6gWl1EWh6y/CXOPvEOAFpdQ4rfXPSqnNgVcwd/R4DbgCeFkptW1otvARwLXAiUAl8AhmF/QZoR9/M7AzsA8wFHhMKbVca/20jecvRId4gzjp/kisjck2OFavJu+f/yDrzde71AUrKmi64hr8u05JVJOF6JCobFl5YQ73HDU+IR80JTubvuwEfOdgTtqowczofQ3kA28B58Zx/o6Y2bkdtdaNwCKl1AzMLdteBxQwRWvdAHyvlNoHOAW4HDgNWBDOyiml/gRUAXsBs4HzgLu01q+E6s8AZocCSSN0/u+01vOAeUqpm4CzAQn4hG12gjjp/kiseLMN7s/mkn/1DJzLf+lS17bPvjRffBnBis0S3VwhOklktiyRGVTJzqYnO+vw1QNHKqW2BMaEztVa6x/ivQTmGMDGiMcMoBiYDMwPBXthHwHhj9mTgQ8i2tKslPoK2Fkp9R5mVvDaiHPnhto3EQhgdjt/FHXtGUopl9Y6EGf7hQDsBXHS/ZFYMbMNfj85T/wX7y03dnteyznn0fLHUyA7uw9bK0Rnki0TfcnOsizDQt+2A99EPL455ti+tVbBk9Z6DWY2LnyeEzPLNhsYgtkVG2k1ZvcrPdQXAzmR9VrrdqVUTai+DVintfZFnZuF2a0s28IJW+wEcfKGnnjhbIOjupq86/5O1htdR5gEB5ebs2p336PvGyiEBcmWib5ip0t3KeAMfe8gNP8ngl8p9RJwWlSmLpZbMTNwk4ALMCdTRGrFzMwBeC3qvRHl7urdMeqIuH63XC4HxcVeq0NSlsvlTNu2p7riYi//OGJb3tXV7KXK2HqY9YDo4mIvWw8bEPf15d7Fz/HZXJyXXYpj6dINDzrNOWTGPr8lcOVVMMz8rJqX4LbIfUs/lbUtfKXXsPXgfCqKc5PdHGGTvObssRPwnQ78Dfgr8Clm0LcD5szZx4F3gZswA7nTYl1EKeXAnKl7JjBNa/2dUsqHObs2UjYQXkLbR9fgLBtzPKEvotzd+UaMOiKu361AwEjbVbxlBfLEqar3cWloDN/b363u9YkYcu8stLeT8/QTeG+8ruMhgw2fPlvO+istJ5/Wuau2j36Xct/SS3gsbsAAlwOZUJWG5DXXVWlpQcw6OwHfTMx9cz+JeOxdpdRpwHNa6xuVUhcAbxMj4At14z4EHB+61suhqpXAhKjDy9nQ3boyVI6u/5YNQV+4jFLKDQwMnR8ASpRSWVrrtohzW4F1cT53ITrYnYghy7KYNvb34FizBu9tN5H96std6oKlZWZX7R579WZTRT8Qfh0XebOoa26TCVUi49kJ+Aowx+9FM9iQnavHHBsXyy3A74EjtNaRA23mAn9XSuWF187DXKtvbkT97uGDlVJezO7ga0PLsnwROj48RnDnUFvnY24D14a5FMz7Edeep7Xu7vkIYcnOGD5ZlsVk9/fg/upL8q6+AtfSJV3q/FP3pOlvfyc4bHgimywyXPh13OCTCVWif7AT8D0PPBJa4PhLzC7d7TG7Z18KBWGXYS6K3IVSajLm8imXAV8qpSIzdnOAX0LXvwo4GHNm7imh+oeBi5VS04H/ATMwF2d+J1R/L/CgUmph6PF7gYfDM4KVUo8C9yqlTsLM7l2ERbezEFbsTMSQZVlMPf4e2tvJefYpvDdc0+35LWecTcspf4acrr87yaCKjRF+Ha9o8jM0zyP/d0TGsxPwnY25yPLrgCf0WBvmIscXAb8FfoOZwevOtNC/N4S+InmAQzG7e+dhThA5XGu9DEBrvSy0uPJtwHTMjN+hWutgqP7p0E4d92GOz/sf5j6/YReE6t7FzEJerbV+1sZzF6KTeGfWybIspu5+D46aGry330z2Sy92Od4YOIjGK68xu2odsTfykQzqBhL42ldemMPWwwbIODDRLzgMI3qybfeUUvsCn2B24W6N2WW6JKILNuP4/QEjXd8I0m0wayb/sbLz3KrqfRmbcaiq97H6g0+Z/OA/yf1pcZd6/5SpNF16ua2u2jlL1nLHnJ86MofnTt2SqaMG9Waz45bM15wEvhsv3d4rxQZy77oqLS2Yhzmhtgs7Gb6ngKla628xs3CiD2V6QJQKf6wWVtbx4dJ1TBk5gPEV0ZPGN1682cCMnDUYCJD97FPkXX81A4CxUdUtfz6TllNPh9yNWxJDMqgmXd1Iiz+Ay+GgxR/ot0MHhBCx2Qn4FmDufPFtgtoiYkiVgChRUmGc28LKOs54diHBoMET81Zw/9HjezXoi0emzBp0rKvBe9s/yX7phS51RkkJTVdeQ9tev7Xsqo2XLGxtKvF6WNvURjBo4HQ6KPF6ej5JCNGv2An4GoC7lVIzgWVsWP8OAK317t2dJDZdKgREiZQKWZoPl64jGDTwuJz4A0E+XLquzwO+dJ416F74NXlXX4lLL+pS599lV5ouu4LgiC0S8rNlpwJY3+xnUF4WLoeDgGGwvtmf7CYJIVKMnYDvq9CX6GOpEBAlUipkaaaMHMAT81bgDwRxOh1MGRn/zhi9Ja1mDQYCZL/wLHnXXNltdctpZ9By6hnglVXw+4IqyyfX48IfCJLrdmXce4QQYtPFPWmjP0qlSRt2x/DJYFb7EjWGz65UvXeO9evw3n4L2S8+16XOKCoyu2r32a9XumrTUbLvWyaP802kZN83sfHk3nXVK5M2lFL5wBnAOMAVetiBuQzKRK316E1sp7Ag3VYbJOoP2/iKoqQGeqnI9c1C8q+5Atei77vU+SfvQtNlMwhuOTIJLRPR5D1CCGHFTpfuv4G9MHezOAp4BhgNTAKu6vWWCdGNdJzAklaZl2CQ7BefI2/mjG6rfSefSvPpZ0FeXh83TAghxKawE/DtD0zTWs9WSo0DbtNaz1NK3QJsm5jmCdFZuk1gSYcA1VFXi/fO28h+9qkudUZBAU1XXEPbfgf0265aIYTIBHYCvmzgx9D332Fm9uYB9wMf9XK7hOiWKsvH4XCwprEVb5Y75Qenp2qA6vr+O/KuvRL3Nwu71Pl32pnmyy4nMFJGaYg0y1ALIWKyE/B9j7l92kOYa/FNwQz2SjCDQSH6RniiURpMOEqZGdbBINkvvWB21QaDXap9J51idtXmp3YALfpWOmSohRDxsRPwXQk8r5RyAY8B3yulZgHbAG8monFCRNPVjRhAaX52SmXMYknmkjOO+jq8d91O9tNPEDQM2oMGQacDp8OB4fXSdOW1tB1wkHTViphSNUMthLAv7oBPa/2aUmprwK21/lUptRtwAjAHuDNRDRQiUspkzGzoy9mTrkXfk3fdVbgXfN3xWNAwqGtp59vhY/nP/qdw0RkHyh9tEZd0fL0JIbpnJ8OH1npZxPcLMLdbE6LPpMIizSklGCT7lf+Rd/UV4O+6u4LvDyfzf/sexy1fVkuWRtgmrzchMoeddfiGAzcDE4AczDX4Omith/Vu04ToXn9fb8zRUE/uXbeT89TjXStzcmi88lraDvpdR1ftyHofnvlrJUsjNkp/f70JkSnsZPgeA4qAe4C6xDRH9FcyE9CaS/9gzqr9en6XuvaJ29N0+VUEtlLdnitZGiGEEHYCvknADlrr7xLVGNE/yUzAbhgGWa+9TP7MGdDa2qXad/yJtJx1LkZBYVyXkyyNEEL0b3YCPg0MSlRDRP8lMwFNjoZ6cu+9C/eT/2VAMGrJmexsGq+4mraDDwWnMzkNFEIIkbYsAz6l1F4RxReAx5RS1wE/AYHIY7XW7/Z+80R/kCozAZPRrexa/CN5183EPe+LDQ86zbF37dtNpGn6VQS2HtMnbRFCCJG5esrwze7msfu6ecwAXJveHNEfpcIYsz7rVjYMsl5/lfyZl4PP16Xad9wJZE2/jFrD0/s/WwghRL9lGfBprZ0ASqkdgW+01i3hOqXUoUC11vrTxDZRJFoqTJhI9hizRHYrOxobyL3vbnL++5+ulW43TVdeQ+shh3d01WYVeaG2uVd+thBCCAE9d+m6gP8AxwN7YS6yHHYccJRS6mHgDK11oJtLiBQnEyZMvd2t7FqymLzrr8b9xWdd6tonbEfT368kMHbcJv0MIYQQ6SEVEis9delehBno7am1/iCyQmt9rFLqAeAZ4Dvg9oS0UCSUTJgwbXK3smGQNet18q6egaOpqUt167HH03z2uRhFxb3TYCGEEGkhVRIrPQV8JwHnRAd7YVrr95RSFwMXIwFfWkqVCROpwHa3cmMj3gfuIeeRh7rWOZ1mV+1hR8qsWiGE6MdSJbHSU8A3DPiqh2M+BO7tneaIvpYKEybSieunJXivvwbPZ12HrgbGbUPj5TMJbLNtElomhBAiFamyfAJBgxW1LRRku5OWWOkp4KsCtgB+sThmGLC211ok+lyyJ0ykNMMg6+03yZt5OY6Ghi7VrdOOofncCzCKS5LQOCGEEKmuurGVNY1tBAwDnz9IdWNrSmb4XgRmKqX20Vp32ZldKeUBrgLeSEDbhEiO5ma8/7qXnIf+1W1105XX0Hr4NHDJSkTCVFXv48tVDQzN88iHJyFEJx8uXUfQMMhyOfEHgny4dB3jK4r6vB09BXzXAp8D85RSdwFfYu6jWwLsCJwN5ADHJrKRQiSa8+efyLv+ajxzP+lSFxgzlqYZM2nfdkISWiZSXXhAdsAAl4N+O9NdCNG9KSMH8MS8FfgDQZxOB1NGDkhKO3pah69OKTUZuAm4BcgLVTmAdcBTwEyttXTpivRiGGTNfou8mTNw1NV1qW494iiaz7sQoyQ5L0yRPsIDsou8WdQ1t/Xbme5CZAI7y6fEe+z4iiLuP3o8Hy5dx5SRA5KS3YM49tLVWq8HTlNKnQWMBIoxx+wt1VoHE9s8IXpRczO5/76f3Afv77a6afqVtB51rHTVClvCM90bfDLTXYh0Zmf5FLtLrYyvKEpaoBfWY8AXprVuAxb1xg9VSmUD84DztNazQ49dBlwfdegdWuvzQvUTgPuBCaF2nKG1/iLimkeHzq8A/g84TWtdHapzYHZPnwZ4gIeAS2Sx6Mzn/GUZeTdcg+fjD7vUBdQYmmZcRfuEiUlomcgU4ZnuK5r8MoZPiDRmZ/mUVFlqxY64A77eopTKAZ4EorcZGAfcCdwQ8VhT6Jw8YBbmIs9/Ak4HXldKjdRaNyilJgGPAn/BXEbmDuC/wP6h65wP/BGYBjiBJzCzlP/o7ecnkswwyHr3/8yu2vXru1S3HnYkzeddhDFwYBIaJzJVeWEOWw8bQK1siSdE2lJl+TiANY2teD0uy2x9Oq5h26cBn1JqLGaw5+imeixwp9a6qpu6YwA/cKHWOqiUOh84KPT4v4FzgBe01o+Efs4fgOVKqVFa6yXAecBV4QWklVKXYAaWEvBlgpYWcv/9ALn/6n45yKa/X2F21br7/PONEEKIdOJwdP43hvLCHM7YdThvLlrD/mNKUz67B2a2qy9NBd4Ddo58UCnlBBSgY5w3Gfg4PGZQa20AH0dcZzLQsRuI1vpXzLUDd1ZKVQCbR9YDHwFDlVKbb+oTEsnhXP4LBWeexoBtt2LAjhM6BXuB0VtR/9+nWPfNj6z75kdajztBgj0hhBCWwt20OW4X/kAQXd0Y89iFlXVMf/0H5ixZy/TXf2BhZdfJf5Gq6n3MWbKWqnpfbzc7bn36V1BrfV/4e6VUZNUIwIs5OeRpoBl4GLglFOQNoWswuBrYLvT9EKCym/qhoTqi6leH/h0K/Gr/mYhk8Lz/LvkzZ+BYu6ZLXeuhh9N83sUYgwYloWVCCCHSXYnXw9qmNoJBA6fTQYnXE/PYD5euIxg08MSxtl5VvY+znv+G5rZ2vFlu7pm2bUouvNxXxoT+XQkcDPwGcxwewM2YwWBr1DmtQHboe6t6b0SZqO+zseByOSgu9lodkrJcLmfatr2Dz4fzvntx3n5b58edZqo9MPNqjBNOBLcbD5Dc+U+9JyPuXT8k9y09yX1LX71979pWNVBWkI3L6SAQNGhzxL7+gRMqeHLeCtqDQVxOBwdOqIh57NtLaqis8+F0OKhtaWdhdRNbD+v7Jb9SIuDTWr+ulBqkta4JPfSNUmoQcBZmwOeja3CWjZkJpId6X0TZH/E9Eed3KxAw0nYQdnGxNy3b7vx1OXk3Xodnznsdj4XX/gmMHGUugLz9pA0nNLYBbX3axkRL13vX38l9S09y31KHnTXwoPfv3dA8D9mhjF22y8nQPE/M629RmM19EWvrbVGYHfPY5uY2DMMgYBgd5UT9nystLYhZlxIBH0BEsBe2CHOJFTAzf+VR9eXAqjjqV0aUl0R8T8T5Iok8c94jb+YMnGuqu9S1HXwITef/DaOsLAktEyJ92P1jKUQqsbuuXSKEl1iK93VUlp/NNkMKKMu37Cxky0FenA4HAcPA5XCw5aDkZJRTIuBTSp0LnKK1Hh/x8EQ2jNubC1yulHJorY3Qunq7AjdG1O+GOWOX0GSMYcBcrXWlUmp5qD4c8O0GVIYmd4gEifkHqLWV3P88SO49d3Z7XvPFl+E77gTwxB4/IVKDBBmpIRX+WIr+IxGve13dSIs/gMvhoMUfSNq6duWFOXH93Kp6H6c8/TX1Le0U5rp56NjtYp63vtlPXpYLX3uQHLeT9c3+bo9LtJQI+IA3gX8opW7AXBR5R+AS4IxQ/fOYS6jcpZS6F3MB5QLg6VD9fcAcpdTHmMHfHcAsrfXiiPobQoFfAHNJlvAYQZEA0X+A7p1cwvD7biHr3dldjg2O2ILGGVfTvuNOSWip2FgSZKSOdFwEVqSnRL3u7UyYsCsRAerz8yupbjCHE/ka2nh+fiVnT92y22Nrmtqo9bWbx7YHqWlKzjCklAj4tNZaKXUwZlB3LlCFuRPGk6H6eqXUQcADwKnAQuBArXVDqP5TpdRpwNXAQMydNv4c8SNuBkqBFzADvv8A/+yL52Ylk7MjurqRbX+cx9lvPkhJXQ152S6yXBtWAWo78GCaLrxUumrTmAQZqSMdF4EV6SlRr/v1zX4G5WXhCnV99lYWrKrex1nPLaTZH8DrcXHPUeN7pb3zVtRZliO9/cOaLuUjJlTEODpxkhbwaa0dUeV3gEkxDie0jdpvLOofxdxto7u6AHBh6CslZGR2pK2N3Ef+Te5dt3OoYbBHS3tHldvpoPnCS/Ad/wfpqs0QEmSkDrtjj4TYWIl63auyfIKGQW2zn8Jcd69dd+6y9VTWt+IAalvambtsPYeNHxLz+HgTMaX5WZblSFkuh2W5r6REhq8/ypTsiHNVJd6bridr9tudH3c4yB21BZ//+WIG/XZPjDR8bsKaBBmpJd6xR0JsikS97hetbmB1qIu0paGNRasbLK9dVe/jy1UNce5fbZg7Z4RmyVpdM9718iaPKOG9JTWdyrFsv3kxn/5S26mcDBLwJUk6Z0c8n3xE3tUzcK5c2aWubf+DaLroUozBgwHYpq8bJ/qUBBlC9D+JeN2/ucjs9nQARqi85+jSbo8N95AFDHA5sOwhmzyihIqi3I4gziowm7tsPStrW8BhdjFbZQPn/ry+SzlWN+1+Y8p4av7Kjgke+41JzlAmCfiSJK2yI21t5Dz2H7y339JtdfP5F+M78STpqhUiDpk8dleIjbX/mFLeXbwWI6IcS7iHrMibRV1zm2UPWXlhDmdPGRHXnrd1LX4CBoQbUdcSexzh2qiJF9HlSNWNrdS1+AkGzWtWN7b26502+qVUzo44q1bhvfkGst5+s0tdcOjmNF15Df7JuyShZUKkr4wcuyuEhXg/4Ow5upSbDqEjMIuV3YMNPWQNvp57yMJ73gaDBh/+VMP9R2fF3AKtKNeDy2HGe45QOZbfDC3im6qGTuVYPly6DsOALHfP27AlkgR8ooN77qfkz7wc54quyxO27bs/zRdfRrA89mBXIYS1TBm7KzJLorLOdj/g7DnaOtALC/eQrWjy9ziG78Ol6wgEDRwOc7s0q2Bry0FeDCBomDt4Wi2QPG1iBf/7ZhWNrQHys11Mmxh71u2UkQN4Yt4K/IEgTqeDKSP7fls1kICvfwsEcM+fR+HJJ3Rb3XzehfhOPBmyYs8+EkLEL53H7orMlMiscyI/4JQX5rD1sAE9blE2pDCboEHHhI0hhbF3xXh+fqV5LGbQ9/z8ypjB4aLVDdS3BgCobw1YTjIZX1HE/RHbsCUjuwcS8PU7jsYGPJ98hGfOe2R9OAfH+g0DT4ObbUbTjKvx7zoliS0UInOl1dhd0S9sTFAWb0YwkR9wXlxQyZt6DfurUss17VbVt1qWI81fWWdZjmRnkgmYQV+yAr0wCfj6AeeKX8ma8x6e99/FM+8L8PsxCgvxT5lK2x574991N4yCwl7/uTI4XYiuUnnsrsgciQrK7GQEywtzmL7v6I7MVm/9v39xQSU3zDZ3Sp3/qxmUxQr6vFlOy3KkiRVFzNJrOpVjsTPJJFVIwJdECQuIAgEc877E++obeOa8h2uJucNccMQW+I7/A21T96R9u9+AO3G3XwanCyFEciQyKLOTEayq93Hd24vxB4J8sLSmx78D7y1eE9ekjWfnV3Ypxwr4PltW26V88k7Duz32zN234L2la/C1Q47bLMdiZ5JJqpCAL0l6PSBqbCTr01BX7Qfv46qrJcfhpH37STRfdCRte+xFcPiIXmt/T2RwuhCpS7LvmS2RQZmdjKCddry3eA1/e2URAO8uXstNhxAziCrLy2JpTXOncixZbodlOdInP68jtOUtvnazbNVdHO8kk1QhAV+S9EZA5KxcaQZ477+D54vPN3TV7rY7HHQgtRN3TEhXbTxkcLoQqUmy75kvUUEZ2MsI2mnHSwurupRjBVOn7jqcT5fXdirHsv3mxXwakeWz2uXite9WdyknY8/bRJGAL0k2KiAKBHB/u9AM8ua8h+tHDUBw+Ah8vz/R7KqduD243RQXezF6mL2USHYHp0vGQYi+Idn3xEv2+5md919Vlo/D4WBNYyverJ73sK2q9zFzlqbZH+DdH9dwz1HjLbuL423H6EF5fLJsfadyLDVRixxHlyPtt3UZT39VSb3PT2GOh/22jr3LxcHjBvPNqoZO5UwiAV+SxP1CaGrq1FXrWLcOXC7aJ25P84WXmF21I2KPM0imeAenS8YhtST7j5VILMm+J1Yi38/iHeNmW3iP2R72mgVz+7HK+lYcQG1Lu+X2Y3bsPnogj89b0bFd2u6jB8Y89rHPV3Qpx/p9VDe2UtvSRjAItS1tlrtchLN5r323moPHDc6o7B5IwJdUsQIi56pKPO+/S9acd/F8/pnZVVtQgH/X3WnbYy/8U3bHKEzu9O7eJBmH1CHBd+aTpWESK1HvZ3bGuNl5HevqRvxBgxy3C3/QiLO9BjgcPQaIdtqxvtlPQbYbX3uQHLeT9c2xtzVrCwQty5Hs7nJxxISKjAv0wiTgSwXBoNlV+/57ZM15d0NX7bDh+I47gbbd96T9N9tn7F61knFIHRJ89w+yNEziJOr9zM66b7q6kcbWdgJBA5czaPk6LvF6WNvYRsAwcDkclHit/85MHlFCRVEuzW3teLPcTB5REvNYXd3Iuqa2jiDOqh01TW3UhmZM+NqDlt20k0eUoNc0dSrHkiq7XKQCCfiSqbmZvH/+g6x3Z+OoWQtOp9lVe8HfzK7aLbZMdgv7hGQcUocE30JsmkS9n9lZ9y1oGFQ3tnUqx/LT2uaO+qBh8NPaZssMWHlhDvdM2zau5/dTTVOnIO6nmiamjhrU7bFv/7CmSzlWpm3adhW88u1qGlr9FGR7mLZd7IxcquxykQok4Esi59o1eL74DP8OO27oqi0qTnazkkIyDqlBgm8hNl2y38++r2rE6QCHw4FhGHxf1RgzG1jX4idgdC73ZNHqBt5ctIagYfS4j210OdYaeEZUUBpdjlTd2EpDq5+gAQ2tfstxeZAau1ykAgn4kqiyeDDv3faE/GEVKSXZf6yEEF3Z6dIdW57faf/YseWxM/VFuR5cjs5lK3bGEm5WmN1p1utmFvvYlhfmwMr6zuUYOo3La+95XJ4wxd5jRCRUeDDrHXN+4twXv6Wq3pfsJglhW1W9jzlL1sr/XyE20sLKOu758GcWVsbetxU2dOHG06X7XWWDZTnS5BElDC7IxpvlYnBBtuV4OID/Rs2QjS5Hmh8RwHVXjnTkdkNwhSISl9MsxzJl5ACcTgftMi7PFsnwJYkMjhfpTmb0CrFpFlbWccazCwkGDZ6Yt4L7jx4fM1NlZyuvxWubLMvRmv0BmtsCuJyxd6EIiz7C6ozmtnbLcqSy/GwG52fT0NpOQbabsvzY2cDwuLwvVtYzabNCye7FSTJ8SRK52KXD4ZDB8SLtRH5o8QfMmYBCJFuiss52rhvvsR8uXUcwaOBxOQkGjS5j3qINzMtiWEkuAy22EgM4bHy5ZTnSI3OXU9vSTsAw19V7ZO5yy2tPGTXAshxp9KB8y3IkXd2Iy+lgaHEuLqejx/eT8RVFXPhbJcGeDZLhSyYbi10K0VfiXXhZZvSKVJOorHNVvY+znltIsz+A1+Oy3F2iqt7H6c8s6MhUPXDMhJjH2lkyxG428LJ9/B0LCFtlA7+urLcsR1tU1WhZjnTW1C045akFncqxyPtJ4knAlyQbt9ilEIll5w+mzOgVqcbuUJmqeh9frmpgaJ7H8jg7u0u8taiayvpWABpaA7y1qJo/7jSs22PHVxRx2s7DeP271Rw0brBlturDpesIBAxcTgeBgGE5UaGq3scTX66g2R/giS9XsMsWsfe83a6ikKU1zZ3KVlbW+SzLkeb9WtulHKvN8n6SeNKlmyQlXg9rm9pYVe9jbVNbj4tdCtEX7HbTlhfmMHXUIHlzFinBTpYonLW74pXvOOu5hXF01RqhAWvWPTI/1TRbliO9t3gN9370C7+s93HvR7/w3uI1MY8dW55PEPAHDYJYz7wNB6jrm/1U1rcyN2KP2mgnTR5GfpYTB5Cf5eSkyd0Hp2GbRb3Wo8uRXv9utWU5mryfJJYEfEmyvtnPoLwshhTmMCgvy3IbGSH6inSriFQU70zW8sIcpu87mr23KmX6vqPjytrVtfQcFIV3lyjKcVNRlGs5k7U0P8uyHOmZryoty5GcDgcD8zwUZLsZmOfB6Yg9XaLO56c9aBAwoD1oUOeL/fdl0eoGGtuCGEBjW5BFq2PP6AU4YcehHRM1HKFyLAeNG2xZFn1LunSTRJXlk+tx4Q8EyXW75A+rSAnSrSJSjZ2xa1X1Pq57ezH+QJAPltbEMYbPwMx7xN6LFczXxZX7b9WxW4PVNYcW5+IKbTPrcJjlWLKiZsVGlyOVeD3UtYS2S/Nbb4FWlOPB7TQXXXY4HBTlxD62u2VWrMb81TS1deQ4jVA5lvAiy+Eu61iLLou+IQFfkvSHP6zxDv4XqUUWXhapJDyT1el0dMxkjRXw2RnDF87atfgD5Hpcllk7O4Hk5BElDMzPor6lncJc671mtxqcz6fLazuVY5n/ax3tQTPUag8azP+1LubvYfKIEopy3NT72inMsW6DnWVWwN4C0GAGfRLopQbp0k2iTB6vIAtLCyF6w9jyfAIG+ANmF6XV2DU7QxLKC3M4e8oIfjOsmLOnjLB8H7YztrW6sZX1TX7aAkHWN5nbfsUSzgY6AVcP2UA7YwMXrW6gptmPP2hQ0+y37KY9MapLNroczc4C0CK1SIZPJIQsLC2E6A1Oh4Oy/CyzK9PpsBy7ZqfnZGFlHdNf+4GAYfDuD2u4/5ismBkzVZaPA1jT2IrXYz0E58Ol6wgaBlkuJ/6A9bZfk0eUMDAvK65M3JYDvZblSP/+dHmXslUWzg47C0CL1JKUgE8plQ3MA87TWs8OPTYAeADYD1gHXKm1fjTinAnA/cAEYBFwhtb6i4j6o4HrgQrg/4DTtNbVoToHcC1wGuABHgIu0VoHEvxU+y0Z/C+EsGJnvcdwZi2e95Lqxla+XdVAidd6qZVZ31fjDxo4AL9hMOv7autFfMOBpkXACfbW1qtubKWmuY1AEPzNbVQ3tsZs835jyvjvF7/S2BogP9vFfmPKYl631R+wLEd6aWFVl3JPQdyeoyXQS0d93qWrlMoBngLGRVU9AgwEdgWuBh5QSu0SOicPmAXMBbYHPgReV0oVhOonAY9iBnWTgULgvxHXPh/4IzANOBw4Dri495+dCAt/0j536pay5ZYQohM7Qz7svJcsrKzj9GcW8ujnv3L6MwstZ/WWF5hbdxlR5e7o6kYMw6A0PxvDMCy7dMdXFHHdQVszddQgrjtoa8sg8oWvVxEIzRcJBM1yLJ/8vI761gBBoL41wCc/x96V4/c7DLUsRxpdmmdZFpmjTwM+pdRYzKBtZNTjI4HfAX/WWn+jtX4YeBw4M3TIMYAfuFBrvQgzgKsLPQ5wDvCC1voRrfVC4A/AfkqpUaH684CrtNYfaK3fBy4BzkrMsxRhmTxGUQix8XR1Iy3+AIYBLf5Ar23L98LXq2gPGhiYExusAqj9xpRRVpBFrsdJWUGWZcbM7vp+d3+4jIWVddz94bJeG7/84sJVluVIR0yo4MQdNqM0z8OJO2zGERMqYh47bbsKygqyyHGbv4dp28U+VqS3vs7wTQXeA3aOenwnYJXWeknEYx9FHDcZ+FhrHQTQWhvAx1H1H4RP1Fr/CvwC7KyUqgA2j6wPXXuoUmrz3nhSQggh4t9D1s7C81X1Ps56/hv+MXsxZz3/jeW1W6K6LqPLG8tOlnHusvWsrGuhtqWdlXUtluv7HbndkE5r2h25Xfe7d4C9MXwLK+t4en4l65r9PD2/0jrTWZjDQ8dux7UHbc1Dx24nH9AzWJ8GfFrr+7TW52uto6cXDQGiV5xcDQzthfrwK6gyqo6I84UQQmwCO920dhaen7tsPZV1LdT52qnsIYAaV15gWY701g/VVDe00eIPUt3Qxls/VFs8O3h2/kpunL2YZ+evtDyursVPIGhmGANBsxyLnTXtfjO0mPAyfU6HWY4lvJSNx+XsWMrGivTG9A+pMkvXC0TPXW8FskITLmLVhwddWNV7I8pEfR970AbgcjkoLo79KSqVuVzOtG17fyf3Lj1l6n2rrG3h+1X1jB1SSIXFsiFfrmogYECRN4sGXzsrmvxsPaz7CQuTRpWS/+ly2tqD5LqdTBpVSnGMa3u9WThwhDJhDrzerJi/56N2Gs6zC1ZR29xGsTeLo3YaHvO6K+pbu5RjXffmt37gsS/NQO+xL1eSm+Ph4v227vbYIQPzzIWXMbN2Qwbmxbzua4vWdCkfPqn7Nev2HV/Bo1/82jGjd9/xFTGf24ETKnhy3grag0FcTgcHTqjIyP+bmfqaS5RUCfh8dA2+soEWrbWhlIpVH84UWtX7Isr+iO+JOL9bgYBBba3lISmruNibtm3v7+TepadMvG/h/Wab/QG8Hhf3HDU+ZhZoaJ4HlwPqmtvwuJwMzfPE/H14gUv3Htmxc4WX2O+148vyGFKY3dGG8WV5MY9dUlnHuqZWgkFY19TKkspavDH2vh1amN2lHOu6T33xa5fyaTt1v+dsudeNAQQNMxNX7nXHvG5prrtLOdax9fU+nA4HWS5zaZr6+paYz22LwmzuO3p8x+93C4vnls4y8TW3qUpLY2e1UyXgWwmURz1WDqzqhfqVEeUlEd8Tcb4QQogo4f1mHUBtSztzl63nsPHdjzOzswZeVb2PmbM0zf4A7/64xjKQLC/M4coDVFzbmn24dB2BoBloBYJYroE3cWgRTseGwGzi0NizafOzXDS0BjqVY/lgSQ2hDTEIGmY5Vhu2HlyAk6qObODWg2P/sY6cKRzP2qbjK4qsl5kR/U6q7LQxF9hMKTUi4rHdQo+H63cJde+G19XbNap+t/CJockYw4C5WutKYHlkfej7ytDkDiGEEDEZof22us8mRfrk53U8+vmvlkuGwIZAsq6lncr6VstxeVX1Pma8/gMvLKhkxus/WI4NHFKYjQEEDLO1Qwpjj9rpLjCLZV9VZlmO9O2qBstypMkjShiUn0W228mg/CzLhZdlbVOxqVIiw6e1/kkp9RbwX6XU2Zhr7R0P7Bk65HngH8BdSql7MRdQLgCeDtXfB8xRSn2MGfzdAczSWi+OqL9BKbUcCAA3hI4RQggRQ3i/2ea2drxZ1jtBvLigkhtmm50o34SCHKvlQMxA0gGGdSD51qJqKkPj7RpaA7y1qJo/xuhOXRU1Li+6HGnxmibLcqTdRw/k0S9XdCrHsk15AfNW1HUqx1Ld2Mr6Zj8Bw2B9s99y4eX+sP+6SKxUyfCBuXZeLfAZcAVwqtb6UwCtdT1wELAL8BVmdu9ArXVDqP5TzCDwcuBTzDX6/hhx7ZuBJ4EXQl9PAf9M+DMSQogo8S5dkgrKC3O4Z9q2XLrPaO6Ztq1lkGFnnbjJI0ooK8gOrf2WbRlIVjW0WpYjBYJBy3Kkw8aXW5YjvfHdastypGkTo9a1mxg76I3chi1oyGxakVhJy/BprR1R5WrgEIvjvwB+Y1H/KOZuG93VBYALQ19CCJEU4aVLwtuEpcMuNPFuVbblQC+6uqlT2Yrb4SDb7cTdw1ZlOw4v5vkFqzqVY/liea1lOdKeo0s5c7dmZv2whgO2tt4qzM51ywtzuGjPkR17zVr9zuxswybEpkqlDJ8QQqSMRGTidHUj/kCwY2/Y3tphIlEWVtZxxrMLeeyLXznjWeutyuysE6erG/EHDXLcLvxB663KnA4HhdkuPE7zX6dFgGhnHb6FlXU8+Mlyfqlp5sFPlls+t82KcizL0ded/voPzFmylumv/2B53fEVRdx/9HhOnLQ59x89XiZZiISSgE8IIaLYWUTYjlQZeB9vMGtnAd8tB3mJXEV4y0GxM3x2dtqoaWqjvjWAP2hQ3xqwXJz4wHGDcYXiQZfDLMcy6/tq/EGDoAH+oMGs72MvvHzqLsM77Yhx6i7dr5UH9hc9Hl9RxFlTtpBgTyScBHxCCBElUZk4O1t0JYqdYHbKyAE4nY64uhw/WFxDeMRcMFSOxc5OG3OiZs9Gl6OvW+z1UJDtptjrsbyuETQsy5HK8rPNfXdD4/LK8mPP/rXzOxOiL6XELF0hhEglqiyfQNBgRW0LBdnuXs3ElRfmJCTQq6r3xTWDMzKY7Wk9t/EVRRw7sYI3F1Wz/5gyyyzUt1UNluVIqiyfFn+ABl87BTnWv9+ibLdlOVLQMKhpCgV5rWY5FofTYVmONHfZemqa2nA4HNQ0tVmuRxjupg2vGyiZO5EqJMMnhBBRqhtbWdPYRlNbgDWNbVQ3xp4ZalcixgaGd8T4x+zFnPXcQstr2+lWfnFBJY99uZI1TX4e+3IlLy6I3rJ8g22GFFiWI81atJralnYChrmg86xFsWe95uW4LcuRPv+l1rIc6YCxZR1/AJ2hsrXQfmlYTzIB6aYVqUkCPiGEiGJ3uYx4JWps4Nxl61lR62Ndk58VtT7LhYzLC3OYvu9o9t6qlOn7jrbMBj76+a+W5UjTtqugMNuFAyjMdjFtu9jLkTw3v9KyHOmAsWV4nA6cDvA4HZaBWXlBtmU5Uk1TW6cuaKuxgZNHlFBRmE1RrpuKQutlZIRIVRLwCSFEFLvjsKrqfcxetLrHAC5RYwNXrG8hCB1fK9a3WLY13p0r2qPGtUWXI33y8zrqWwMYQH1rwHK3jYKobtnocqTxFUUc+5sKBno9HPubCsus2X5jyqgozKYg20VFYTb7jYkdHL65aA1grv0cWe5OeWEO9xw13lyP0GIbOCFSmQR8QggRxc5yGVX1Pk5/dgGXvPgNpz+7oNe6U+1o8gcsy5HCO1c0tAaorG/lrUWxZ6dO2XKAZTnSE/NWWJYjnbHbCMtyJDvdyuWFOfxxx80ZMcDLH3fc3DIw23+Mue5eeJhfuGx1bVn0WKQzCfiEEGITvPVDNZV1rdT72qmsa+WtH2IHUHa6UyH+8X52uj1/WtdsWY500k7DKMl143ZASa6bk2JsaQaQ63ZZljfWa1G7WkSXI723eA03zF7CN6sauGH2Et5bHDtrt+foUm46ZAz7jS3jpkPGWC68LEQmkIBPCCGi2FlwuCpqv9bocuc6H9e9vZh3flzDdW8vtgzk7Iz3G19RxP3HjOcPkzbn/mOsM5Kl3izLcrTcLFfHl5UjJgyxLEfq6E6NKnfn4Ki19KLLG3tdMIO+u4/7jQR7ol+QgE8IIaLYWTz3gLFluJ3m7hJup/VsT13dSIs/gGFAiz9gOYbPzrFgrhW3zZACyzXiAIaW5HaanTq0JDfmsXOXrWd1fSvN/gCr61stJ4MMzMuiOMdNjttJcY6bgXmxA8mO7tSocneOmFDBiTtsRmmehxN32IwjJsSeDGLnukL0N7IOnxBCRLGzx+n4iiKuP3gM7yypYe9RAy2za+EdJoJBA6fTYbnDRInXQ3VDKwHD3DXC6lg7e/QGDaPT7FSrterqWvwEDDoiqLqW2AsZl3g9NPkDBIMGAcOwbK/ZnUrHfrNWGbaFlXU8Pb+SYNDg6fmV7DF6UMzfsZ3rCtHfSMAnhOg34l2ceHxFEdcdtHVH4NDTpI37P/6FgAGLVzcyZnBBzGuHd5hwORwEDMNyJ4gPltSYwRYQMMxyrHbYWUz5xQWrupRjZc2Kcj24HOBwODAMg6Lc2EHc+mY/JbkeAkEDl9Nh+dzADM7iCcgis63+QJAPl66zvB/xXleI/kYCPiFEv2AnC1ZV7+PuD36m2R9gyRrrIC4cbBV5s6hrbrMMtlRZPg4H1Pn8Pe4wsXhNk2U5+rqtgSBrapopzLW+bkNru2U50uQRJeRnuWloa6cgy225/lyJ18P6Fn9c2Us77GRbhRCxyRi+JErEivtCZIKFlXXc8+HPlpMlwuJ9HdlZA2/usvVU1rdS19JOZQ9j18JLrTT4el5qpbqxlVV15pIoq+paLXfwmDpqoGU50qLVDVQ3tOFrD1Ld0Mai1bG3NduqNM+yHGnWotXUtbYTNKCu1XpHDDv749phZ4kcIURskuFLEjvZBiH6k/AM2WDQ4Il5Kyz/yNt5HdnJggEEg4Y53TP2EDfAXGrljF2Hd4zhs3odP/7Fio7LGaHyTYd2/9wG5mWRn+WkxR8k1+O0nATx0sKqLuVY3ZqDoiZ1RJcjvfxNVZfyyTsN7/bYcODb3NaON6t39x8eX1EkgZ4Qm0gyfEmSqBX3hUh3dmbI2pnJaicLVpTrDk1oMCc2FOXG/my8sLKOv7+6iLe/r+bvry6yzEqujdq+K7ocqaapjca2IAEDGtuCllt/jY7K0kWXN/bY8UMKLctdhCeAWEwEEUIkhwR8SZKoFfeFSHd2tjUr8XpY29hGZb2PtY1tluPG7KzR9n1VIy4HeFwOXA6zHMsLX6+i3TAzdu2GWY7lN0OLLMudrrtwlWU50rTtKigryCLH7aSsIMtyH9tV9a04MZeRcYbKsZw5ZQuKc924HFCc6+bMKVvEPFZXN2IApfnZGKGyECJ1SJdukpQX5nDHEdvENWNQiO7EO+M03dowvqKIi/YcyWvfrebgcYMtu/J+WtvcsaxI0DD4aW1zzON3Gl7Mu4vXdnSp7jS8OOZ1wxMFwhMQemuiwLghBZblSI2+dstypPLCHC7ac2THrGKrezG2PN9clsXYULa67mMn/CaueywfYoVIbRLwJVF5YY4EemKjJHIM6MLKOj5cuo4pIwf0uBxJItqwsLKOf763lGDQ4IfqRkaV5sVsR8c6cRHlWAbmZVGY7YprTJydZVmO3G4Ib+s1HcuRHLld7B0mZn1f3aUca6zdziNKeCFibN7OFjNkF1bWMf31H8wu8J9quP/orJhtdjoclOVndbTX6XB0e1xYvO9T8iFWiNQmXbpCpKFEjQFdWFnH6c8s4L+f/8rpzyywHI+WqDZ8uHQdgYCB0+EgELAew2dH0DCobw3gD5r/Wi04HF5bb/GaRu7/+JcetzXbZ/RAcj1O9hltvfDy2sY2y3Kkk3YaxqA8D1lOB4PyPJb72NoZ96jK8snPduPNcpGf3buTK8oLc5g6apAEe0KkIAn4hEhDieo+m/V9Ne1Bc6JCe7BrRmpT2hDvUivhLkd/0NwRwqrLsSjXgxNzXJ4zVI7l/cU1luVIdoLZO+cs5U29lmZ/kDf1Wu6cszTmsVuV5VmWI5UX5nDjIWP5/Q5DufGQsZZBlJ1xj+FM3LlTt5TVAYToR6RLV4g0ZLf7LN6xduWF2ZbljW2DnaVW7HQ5hmfTgjkkzWo2bXSWziprp8ryCQQNVtS2UNBDFuyVb1d3Kf916shuj916cAFQFVWO3d6Zb/5Ic1s77y5eyz3Tto35O7bTBQ0ynESI/kgCPiHSVLx/tKvqfZz13EKa/QG8Hhf3HDU+5nkThxbhdjo6gq2JFrNIwVxI+NtVDZR4PZZtsbM9VrjLMTw20CrY6i5rF2tMnCMqcIwuR6pubKW6sY1A0KDFH6S6sTXm89u8MIc6X2OncizR3chW3cpzl62nsq4Fh8NBbYufucvWc9j47scHhrug/YEgy9Y1W+4MIoTon6RLV4g0Fe8OE3Z2jVjf7GeA19PxZbVbQjhr99gXv3LGswstu2oT1eW4vrnNshzpmN9UWJYjmV3bhrnUStCw7No+f++RHUu9OELlWN7+YY1luStHaDat9cQKWddTCNETyfAJkYbsz5A1wOHocUHcklCQFzAMXA7r/VDDWTun09ExUSBW1s7OUisQf/Yyx+2yLG8sI+r3FF2ONL6iiEv3GcWbeg37K+vu1MIct2U50uQRJRTluqlvaaco13ofW1kSRQjREwn4hEhDkRmdxtZ2dHVjzABp8ogSKopyO7a8sgocwuvaOR2OHte1G1ueT8CAQGhdFKvJFQsr67j5nSUEDFhU1WC51Iod44YU8N7Smk7lWJ75qrJLuTe6f8PLyBiGwbeV9ZbP7YRJQ/lgSQ0BwBUqx7JodQM1TWaGtabJz6LVDTHvsSyJIoToiXTpCpFg8Xa9ho+dvWh1j8fayeiUF+Zwz7RtuXSf0ZYD/8McDgcOrIMc2DC5YqDXQ1l+luXkCju7Udix35gyKoqyKch2UVGUzX5jymIem+VyWJYjHTC2rOPN0RkqxxLOdLrjWBJlfEURf9tnFNsOKeBv+4yyDHrt7AwCsiSKEMKaZPiE2Ajxznq10/UaPjZggMuB5bF2MzrxdpFOHlFCRWF2xwSPnroRc9xOmv0BctzWQWdLW8CyHC3+WcU5PHD0hLiO3X5YMZ/+UtupHEtNU1vH7N9gqBxLeFeO9jjGJ9pZVHr/MaWddgbZf0z32UghhIiHBHxC2GQniLPT9aqrG2nxB/C4nbT4g5bHJkp5YQ73HDU+/q7BcFavh2zgsJJcy3KkqnofJz05n/qWdgpz3Tzy+4k9Bn3x/J7227qMp7+qpN7npzDHw35bx87aRWbXjFA5VvdveHxiPGP47MxW3nN0KTcdQsdSK7F+vhBCxCOlAj6l1HHAk1EPv6y1PkwpNRx4ENgVWA5coLWeFXHunsAdwCjgc+BUrfWSiPpzgEuAIuB54GytdVMin4/ITOHAzOVw0OIPWAZmdrpeS7we1ja2xTVhoqrex1nPf9MxLi+ertp4xbvUSjiYzXG7OmaGxjp+aEkurtCEU0eoHMsjny3vNHbtkc+Wc+lvt9qUpwSYz2tdKHO3rqnNcqkVO9k1O2P4wtnAeGYrgxn0SaAnhOgNqTaGbxzwP2BIxNdJSikH8DJQA0wCHgVeUEptAaCU2hx4BXgc2AFzZdOXlVLOUP0RwLXAmcCeoWvc0ndPS2SSEq+HtU1trKr3sbapzTIwKy/MYfq+o9l7q1Km7zvaMoDqbsJELOE12up87VTWtVgutQLxjyNcWFnHn59ewKOf/8qfn7beWs3O72HyiBIKczw4HVCY47HsKv5yea1leWM9/uWKTt20j3+5IuaxZnZtDHuNHsRNh4yxDLrsjuG7/+jxnDhpc8vFp4UQorelVIYPGAss1FpXRT6olNoLUMAUrXUD8L1Sah/gFOBy4DRggdb6ptDxf8IM+vYCZgPnAXdprV8J1Z8BzFZKXaS1lgWr0ky847sSZX2zn0F5WbgcDgKGYblWnZ3dEsCcKOF0QLCHdddCR8e1RltVvY/Tn11Ag6+dghw3Dxw9IWYbXvh6FaFJtwRCkytiBSXrm/2U5Ho6Fmm2+j188vM61reY9etb/Hzy8zqOmND9OnjZHqdleWPVt7RblqPFm12zM4YPzKBPAj0hRF9LtQzfWEB38/hkYH4o2Av7CNg5ov6DcIXWuhn4CthZKeXCzOh9EHHuXMxgd2LvNV30hfD4uTvm/MS5L34b18zX3qbK8sn1uHA4INfjsuymnbtsPStrW6htaWdlrXUmLjxhoijXQ0VhtmUWbPKIEgqyXRiGQUG29eSKtxZVU1nXSkNrgMq6Vt5aFHsR4S6xo0UsWeL1UNPURk2zn5oeMnzPzl9pWY5UkO2xLEeLN3tpZ+FlO8JZu1N320KydkKIlJUyGT6lVBYwEjhYKXUN5p+a54ArMbt2K6NOWQ2EF7Gyqi8GciLrtdbtSqmaiPMzysLKOr744lcmbVaYcX987Iyfs2thZR0fLl3HlJEDLH9vdmbI1rX4zYxZaOHeupbYWbDywhyuPEDxxcp6Jm1WaHldM2NmZqjWt7RbZsyqGlqBDRMQwuXuHDlhCG/9UE0gCC6nWY7lje9Wd8oGvvHd6pi/t7L8bJbWtHQqx3LMbyqYt6KuUzkWOxNoEjkJYnxFEbuPHUJtbexueCGESKaUCfiA0ZjtaQKOxAz+7gAKMAO26L9SrUD4r4bXot4bUY51frdcLgfFxV6rQ/pMZW0L36+qZ+yQQiqKYw94n798PX95diFBw+Bhh4PH/7QjE4fFzv6km2FlBeaSGaGxbsPKCnrlHkX+3p6ct6LH31szDvKa/BQW5lJscT9ycz1dyrHaW1nbwvTXf6C+xc9LuR6eOW1yzHv9pl7TpfynqaO6PfboHYfx0jdVBIIGbqeDo3ccFrMNo3BQlOPpmMk6qqI45vNbWNXQpRzruufvq5j74GcdkzbO31fFPHbE4EJcDjqWpxkxuDDmsV+uaiBgQJE3iwZfOyua/Gw9LHaX6uGThnP4pOEx6zeFy+VMmfcLET+5b+lL7p09KRPwaa2/U0oN0lqHl81fEJqs8RTm7Nzo1EE2EP447aNr8JaNOcnDF1GOdX63AgEjoZ/YE7GW2xsLKgkEDTxuJ/72IG8sqGSLQsu4NiXE+7tYXt3AwIjxc8urGyyfX7xZu47fW2i5DKvfm537kYWZKXPgwMAgC2L+n3p4zk9U1ZufS5r9rTw8ZylnT92y22N3Hl7M/F/rOpVjXTcXA6/HSWNrAK/HSS6x/18/POcn1oXG4q1r9lu2YXx5AYurmzqVY113/s81HTNejVA51u/3jQVmMj7H3fO9GJrnwTAMqupa8Ga5GZrnSVqWrbjYKxm+NCT3LX3JveuqtDT2bkMpNYYvItgLWwR4MLtjy6PqyoHwcv0rLerDQV9HvVLKDQyMOL/P2RmLZmdj9PAm9fEOIE+keMdW2fldhJc58bUHelzmZGFlHWc8u5DHvviVM55daDnjNPx7i2e5DF3dSGNrO81tgY619WKZPKKEwQXZ5HqcDC6wHpe3eG2TZTnSlgPzyM9y4nJAfpaTLQfmxTz2kbnLqW8NEATqWwM8Mnd5zGO/jcraRZcjnbTTMAqynDiAgiwnJ+00LOaxr3232rIcyc69ADbsD9zDPsFCCNGfpUzAp5Q6Qim1OjSWL2wiUIs5yWI7pVTkX7XdQo8T+ne3iGt5Q+fO1VoHgS8i6zEne7QD83v7ecTLThBnZy23VBlAnqiAFqA9EKS1PUh7IGh5XOQit725XEbQMKhuNCcrVDea3cuW7Q0a+AMG7UHr46aOGmhZjm5DY1uQgAGNbUHLNsz9Zb1lOdI2UXvRRpcjLVrdQENbEANoaAuyaHXs4PDgcYMty5HCCxmPLS/goj1HWt4LXd2IAZTmZ2OEykIIIbpKmS5dYA7m8J5/KaWuxxzTd3Po633gF+ARpdRVwMGYM3NPCZ37MHCxUmo65jp+MzAXZ34nVH8v8KBSamHo8XuBh5O5JIvdvVDtbKOVyAHk8Xa92tlhQpXl4wDWNLbijWPWa3VjGw6gxd/G3GXrOWx89xML7C5yW5afzTZDCiwnFAA8PW9ll3KsCQBvLaqmusHclsvX0MZbi6r5Y4xM2MC8LIqyXbS0G+S6HQzMy+r2OID3F9d0KcdqQ7bbaVmONG27Ct78obpjl4tp28WeMPHMV5VdyrHaEJ5Q8tp3qzl43OCYE0zA3vZjdl5HQgjRn6VMwKe1rlFK7QfcirmkSh1wP3CD1tpQSh0KPATMA5YCh2utl4XOXRZaXPk2YDpmxu/QUHYPrfXToZ067sMcu/c/4MK+fH7RErUXaiLZGbtm+w9xnFt0ARiGgRGecmohnLWLZwyfnedWGZWtjC53uq6NGbJBw6Cu1dxjti2AZdZufXObZTnSlJED+Wndik7lWMoLc7j+4DEdvzOr/3OFOW7LcrQjJlRYBnphdrYfs/s6EkKI/iplAj4ArfV8zJ0wuqtbAky1OHcWMMui/kbgxk1tY29KhSDODjtLotj5Q6yrGzEMg9L87B6zgVsO8uIMTdhwORxsOah3ZmiFx+WZiwhbbxP2W1XKY1+u7FSO5YCxZfxv4aqOGacHjI29f+us76u7lGNlzHLcLstypN1HDeSxL1cQNMDpMMuxVNX7uO7txfgDQT5YWmMZ+J4waSgfLK3peG4nTOqdVY7sZmbT7XUkhBDJkFIBn0iOeLtp7ez1CvH/IbaTDVzf7KfEG9/uDgsr6zjjmYUEDIMnvlzB/cfEHpsXHpcXWY5lwmZF/G/hKlr8QXI9TiZs1jvjJNc0tlmWI40bUsB7S2s6lWN547vVhIcPBntYL89OV/z4iiJu+N2YjnXtemu8qJ3MrBBCiPhIwNfP2enKDO/16oCOvV5744+xnWxgidfD+hY/waCB02kddM76vhp/0Gyv3zCY9X11zPZ+X9WIywFOp4Ng0OD7qsaY2bUSrwefP0jQAJ8/aNkGO1uVbb95UadZsdtvHvt3O2xArmU50tcr6y3LkewE31X1Pu7/+Bf8gSDL1jUzZnBBr2XaZPsxIYToXSkzS1ckh90Zso5QUBTHULu4l2UBM+ibOmpQjwFDeP/W4lwPJbkeywxfeYE5+cKIKndnysgBZldx0FzQ2aobcf6vdbQb5nXbDTqthxetxR+wLEeatl0FJblu3E4o6WHCxKzvqi3LkbarKLQsRyovzGH6vqPZe6tSpu87Ou6JOfH83xFCCJE8EvAlkZ2AKFFUWT4Oh4M1ja04HA7LjM7kESVUFOVSlOOmoijXck25qnofpz+7gJlvak5/dkFca/HF87sIZ/hqW/ysb/FbZtf2G1PGQK8Hj9PBQK+H/cbEHj9Xlp9NfrYbpwPys92WM3WjJ15YTcQYV15gWY5U3WjudxsIQkNrgOrG2Netb223LEc6afKwTr+HkybHXi8vPIbvnR/XcN3bi+NaE1FmyAohROqTLt0kqar3cdbz39Dc1o43y80907ZN3sDzOBeuLS/M4cr9t4prBudbi6qprDMDlobWgOVyJHa6ldc3+xkUsdOGVYavurGVdc1+DMxdI6obW2Ne9/mvK1kf2ud2fYuf57+u5Ozdu99hYsfhxTy/YFWnciz7jSnj8XkraPC1U5Djtgw6Z31fTXuoC7o9aN0FbWe/2fLCHB45fmKvL6cjM2SFECJ9SIYvSeYuW09lXQt1vnYq61qYuyz2YriJpKsb8QcNctwu/EHDslvOTvYncjmSyHLMNthYhNrhgDqfH4cDy6zSPXN+7rSd1z1zfo557LerGizLkZwOB8U5bnLcTopz3Dgt+rcXrW6gtqWdgAG1Le2WixPb6YLec3Qpl+0zim2HFHDZPqNijjfsuHacXeZ2s3bxXlcIIURyScCXVI7QX/c4BsQlSInXw5rGNlbW+VjT2GbZRWonMDtgbBme0Fg/j9NhuRyJnSCjurGVqjqz67OqrtWy2/PXuhbLciQ7O0wEDYNaXzu+9iC1vnbLGb1vLloDbLjD4XJ39htTRkVRNoU5biqKsi2zgVX1Pp6ZX0lti59n5lf22rCAcNbu3KlbWmZahRBCpBcJ+JJk8ogSKgqzKcp1U1FovceqXVX1PmYvWh1XEDB/RR3tQcOcgBA0mL8i9gQE21u8HTOeP0za3HI5FDCDjDN2Hc7o0nzO2HW4ZZDx709+IbyhWjBUjmVoUY5lOdK07SoYlJdFlsvBoLysXpswsf8YM/NmRJW7U16YwwNHT+DGI7blgaMnJG3ChGTthBAi88gYviQpL8zhnqPGxz3+Kd618sLj4cKL4faUpflpbbNlObrNdsZsxbtV2cLKOqa//oO53+1PNdx/dFbMALGyzmdZjpSb5bYsR8tyOch2O8lyWWdc1za1WZYj7Tm6lJsOoWOtuni6XrceNqDHbfFkwoQQQgg7JOBLA3YmeIQzP0XeLOqa2ywH3QNddqrorZ0rwrN0w5MVrDJWHy5dR3vAwOGA9oBhuZXWDsOK+aW2qlM5lvKCLMtyJDt79P5maBHfRKyX95uh1uvFDczLYlhJruXeuHbJhAkhhBB2SJdukoQzcXfM+YlzX/zWsvt17rL1LF/fwtomP8vXW0/wCGd+GnzxZX7229ocN1aQ7TLHjW1tPW7spCfmc9mrizjpifmWbX7rB3OWbkNrgMq6Vt76IXa3pzfLiYG5C4QRKsdy0k7DKMh24QAKsl2cFGPmL8DiqGxldLkrIzTYznq28rSJFQzMCy1zkudh2sTY3b8LK+s449mFPPbFr5zx7EIWVsbuMrdLul6FEELESwK+JLEzBuvjiC20uitHCi+ce8A2g3tcODd8/B8nbc6IAV7+OGlzy+MfmbucmmY//qBBTbOfR+Yuj3msna7iH1Y3WZYjLVrdQENrAANzuRerWa/bbVZoWY5kZ41BgDyPi6JcN3me2HvYgpm9DAYNPC6n2WW9dJ3l8UIIIUQiSMCXJHbGYC2uabIsR6qq9zHjjR948vNfmfHGDz1O3Hhv8RpumL2Eb1Y1cMPsJby3OPYs0q8r6y3LkbYc6LUsR4qeyGA1seGZryoty5FcTicO6PhyOWP/dy8vzOHgcWXkZbk4eFxZjxMmDKA0PxsjVI5lysgBOJ0O/IEgTqf1Dh5CCCFEokjAlyR2trA6dNtyy3Kk8ILH9b52syt1UeyuVICXFlZZliPZyZgFo7pFo8uRohdPtlpMuTDHbVmONGXkAFxOcwKGq4dg68UFldz70S/8st7HvR/9wosLYgeStmcrHz2eEydtzv1HW89WFkIIIRJFAr4kqar38ZdnFvDI57/yl2estx47YMxgCrNdOIHCbBcHjBkc89ifapoty9FGD8qzLEc6aadhZId6MLNdWI6fi+66tOrK/N/CVZblSCdMGkp4Eq3LYZYtxbmLyGvfrbYsR7K7Vt34iiLOmrKFBHtCCCGSRgK+JPnLM1/TFlpQri1olmOZu2w9Da0Bgpjj1qwmbeR6nJblaNMmVpCfZXZ95mc5LScg/GfuL7QGzO9bA2Y5loPHDbYsRxo3uMCyHGl8RRE3/G4Me40exA2/G2MZRH24dB0GkO02J4VYBZ122gsyYUIIIUR6kYAvSVbUt1mWI72jqzttEfaOjt1N64ja5iu6HO2Tn9fR2GZ2uDa2Bfnk59hB0ZtRM22jy5GOmFDRaeuvIybEDiRPmjyM3FDPbK7bLMdSVe/j/o9/YfGaRu7/+BfLzKid8XN22iuEEEKkGwn4kmRsWZ5lOdKPa5ssy5HsZvj+FbVTRXQ50tCiXMvyxpq1aDUt7eb3Le1mORY7s5vtjp87YkIFD/9+ogR7QgghMo4EfEny6Inb4wkl3zwOsxzLtuUFluVI7/y41rIcrbU9YFmOdMlvR3fsCesIlWN5cUFlp9m/VpMgXo8aLxddjmR3hwkZPyeEEEJIwJc0v3/kC/yhflq/YZZjWbS60bIcqT1oWJajHR61m0R0OVJNU1unruUaiy3F7EyCOChqvFx0OZLdCRNCCCGEkIAvaRbXtFiWI1U3+S3LkaZsMcCyHO2vU0ey07Ai3A7YaVgRf506Muaxby4y1+hzRJW7Y2cSxMk7DefM3YYzvCSHM3cbzsk7Dbdss0yYEEIIIeyRvXQzzEmTh/HOkrU0traTn+22nAABZtfrZ8vN7b4+W17HiwsqY45h239MKe8uXtuR5bNaIDl8jde+W83B4wb3OC7u5J16DvSEEEIIsXEk4EuSnYYVdQRa4XJvHAtQmO3G43KS6+45gdtd12us4GzP0aXcdIiZ2dt/TCl7jo4d8IEZ9MkECCGEECL5pEs3Se4+agIFWWbnaEGWg7uPmhDz2JyowC26HCm87dfgwpwet/0C++vP7Tm6lBsPGdtjsCeEEEKI1CEZviQ5+7kFNLSZnaMNbQZnP7cgZtD36bJay3Kk8CzWBl98s1jtdr0KIYQQIv1IwJck836tsyxH2nlEMXN+Wt+pHEt4FuuKJj9D8zxxTWyQrlchhBAis0mXbpJsv3mRZTnSPw/flqlblpDldDB1yxL+efi2ltcuL8xhnzGDZRarEEIIIQDJ8CXN3UdN4OznFjDv1zq237zIcgwf0GOQJ4QQQggRiwR8SdRTkCeEEEII0Rv6TcCnlMoG7gKOAlqBW7XWNyW3VUIIIYQQidefxvDdDOwM7AOcDlyulDo2uU0SQgghhEi8fhHwKaXygNOA87XW87TWLwM3AWcnt2VCCCGEEInXLwI+YAKQDXwU8dhHwCSllCs5TRJCCCGE6Bv9JeAbAqzTWvsiHlsNZAFlyWmSEEIIIUTf6C+TNryYEzUihcvZsU5yuRwUF3sT1qhEcrmcadv2/k7uXXqS+5ae5L6lL7l39vSXgM9H18AuXG6OdVIgYFBbG7M6pRUXe9O27f2d3Lv0JPctPcl9S19y77oqLS2IWddfunRXAiVKqayIx8oxs3zrktMkIYQQQoi+0V8Cvq+BNmCXiMd2A+ZprduT0iIhhBBCiD7SL7p0tdbNSqlHgXuVUidhZvcuwlyqRQghhBAio/WLgC/kAuA+4F2gHrhaa/1scpskhBBCCJF4DsMwkt2GVLYG+CXZjRBCCCGEiMNwoLS7Cgn4hBBCCCEyXH+ZtCGEEEII0W9JwCeEEEIIkeEk4BNCCCGEyHAS8AkhhBBCZDgJ+IQQQgghMlx/WocvIymlRgK3Y+4c0gQ8A0zXWvuUUsOBB4FdgeXABVrrWclqq+hMKbU1cDcwGagB7tZa3xyqk3uX4pRSDwKjtdZ7hMoTgPuBCcAi4Ayt9RfJa6GIpJQ6Dngy6uGXtdaHyestdSmlPMCNwB8AB/AscJ7WulXumz2S4Utjob2BX8XcE3gX4HjgMOA6pZQDeBkzkJgEPAq8oJTaIjmtFZFCb2KzMN+ktgPOAmYopY6Xe5f6lFJ7A6dGlPMw7+dcYHvgQ+B1pVTsncxFXxsH/A8YEvF1krzeUt7NwBHAocDvgAMw3yvlvtkkGb70tiMwCthRa90ILFJKzQBuBV4HFDBFa90AfK+U2gc4Bbg8WQ0WHTYDPgfO0lq3AEuUUrOBqcAq5N6lrFBw9y/g44iHjwH8wIVa66BS6nzgoNDj/+77VopujAUWaq2rIh9USu2FvN5SklKqGPgLcLDW+uPQY1dhvq72RO6bLZLhS28aODAU7IUZQDFmN+H80Ash7CNg575rnohFa71Ma32M1rpFKeVQSu0K7A68g9y7VHcd8H7oK2wy8LHWOgigtTYwA0K5Z6ljLOZ7ZjR5vaWu3YBmYHb4Aa31I1rrA5D7Zptk+NKY1noNES8EpZQTODv02BCgMuqU1cDQPmugiNcKoAJ4DXgec0ym3LsUpJTaGTgK2Aa4MKJqCF2DidWY3fUiyULDX0YCByulrsEcC/YccCXyXpnKRmJub3qcUmo6kI953/6O3DfbJODLLLcCEzHHM1yAObYvUiuQ3deNEj06FDPguw+4DfAi9y7lKKWygYcwB4yvV0pFVss9S22jMf/eNQFHYgYSdwAFQA5y71JVAbAFcA5weqh8H+a9lNecTRLwZYDQ4NXbgTOBaVrr75RSPqAo6tBszPS4SCFa6y8BlFJezIHHDyP3LhVdASzWWj/XTZ2Prn9o5J6liNB74iCtdU3ooQWh982nMGd5yustNbUDhcAJWuulAEqpi4DHgEeQ+2aLBHxpLtSN+xDmDN1jtNYvh6pWYi4PEakcc0KASDKl1GbA9lrrVyIe/h7IwrxH20adIvcu+X4PDFFKhcfMZgGuUPlJzHsUSe5ZCokI9sIWAR7MbkF5r0xNlUB7ONgL0ZhZ2SrkfdIWmbSR/m7B/EN0hNb6xYjH5wLbhWYUhu0Welwk3xjgRaVUWcRj2wNrMAcey71LPXtgjt3bLvT1IPBl6Pu5wC6hrFE4674rcs9SglLqCKXU6tBYvrCJQC3yXpnKPgXcSqnIwG4s0BCqk/tmg8MwjGS3QWwkpdRkzP/0l2GmtyOtARZiZo2uAg7G7JIap7Ve1meNFN0KrcM3D3PCxoWYY4oeAq7HXIxZ7l2KU0pdC+ymtd5DKVUILMFcFPZe4DTMD2KjomYRiiRQSg3EzOi9gfkaG40ZsN+NuaivvN5SlFLqJcyJGKdjjtv7L/Ai8DfkvtkiGb70Ni307w2YaezILwfmZIAyzMDiD8Dh8kJIDVprP+Y6be3AZ8ADmOMw79RaB5B7l1a01vWY93MX4CvM7N6BEuylhlB37n7AcMz78y/MXVFukNdbyjsRM7B7F3gJc/Hsy+S+2ScZPiGEEEKIDCcZPiGEEEKIDCcBnxBCCCFEhpOATwghhBAiw0nAJ4QQQgiR4STgE0IIIYTIcBLwCSGEEEJkOAn4hBCilymljlNKGUqpC5PdFiGEAAn4hBAiEY7D3Hnjj8luiBBCgAR8QgjRq5RSAzB3dbgK2FYpNTG5LRJCCHAnuwFCCJFhjgRagWcw9/Y8CZgPoJRyYu7leirm9oe3hepP1Vq/r5TKxtzb9XjMD+TvAOdorVf37VMQQmQayfAJIUTv+j0wS2vdDrwM/F4p5QnVXYbZzXs8sA/mhu9bRpx7PbBz6PGpmO/RrymlHH3UdiFEhpKATwgheolSqgLYHXOTd4AXgUHAgaHymcCVWuu3tNbzMYM/R+hcL3A2cIbW+jOt9beYG8ePA3brsychhMhIEvAJIUTvORYIAG+Eyp8BlcAflVKDgArgi/DBWmsNrA8VtwSygA+VUo1KqUZgDZADbNU3zRdCZCoZwyeEEL3nOMAD1Cilwo85gYMAI1SO7p4Nl8Pvx1OBuqhj1vRuM4UQ/Y1k+IQQohcopUYDOwDnA9tFfB2Mmbn7PWa2b/uIc7YEikPFpZjZwUFa6yVa6yWYgd6twPA+eApCiAwmGT4hhOgdxwG1wP1aa1/E498qpT7BHK93F3ClUmoZUA3cGTrG0Fo3KKUeBO5WSp2OGRz+AxgPLO6bpyCEyFSS4RNCiN5xHPBkVLAXdh9mZu814AXgOeBd4HWgHWgLHXch8Dbmki5fALnAvlrrlsQ2XQiR6RyGYfR8lBBCiE2mlNofmKe1XhMql2Jm+rbQWi9LZtuEEJlNAj4hhOgjSqn/YU7q+BvmJI6rgeFa6x2T2jAhRMaTLl0hhOg7Z2N24X4CzAVcwOFJbZEQol+QDJ8QQgghRIaTDJ8QQgghRIaTgE8IIYQQIsNJwCeEEEIIkeEk4BNCCCGEyHAS8AkhhBBCZDgJ+IQQQgghMtz/Aw1d+GRX1C4WAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"try_parameters(400, 5000)"
]
},
{
"cell_type": "markdown",
"id": "0ed3893a",
"metadata": {
"id": "0ed3893a"
},
"source": [
"> **EXERCISE**: Try various values of $w$ and $b$ to find a line that best fits the data. What is the effect of changing the value of $w$? What is the effect of changing $b$?"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6b46dcb9",
"metadata": {
"id": "6b46dcb9"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a96801d",
"metadata": {
"id": "5a96801d"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43d0490f",
"metadata": {
"id": "43d0490f"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "452c291c",
"metadata": {
"id": "452c291c"
},
"source": [
"As we change the values, of $w$ and $b$ manually, trying to move the line visually closer to the points, we are _learning_ the approximate relationship between \"age\" and \"charges\". \n",
"\n",
"Wouldn't it be nice if a computer could try several different values of `w` and `b` and _learn_ the relationship between \"age\" and \"charges\"? To do this, we need to solve a couple of problems:\n",
"\n",
"1. We need a way to measure numerically how well the line fits the points.\n",
"\n",
"2. Once the \"measure of fit\" has been computed, we need a way to modify `w` and `b` to improve the the fit.\n",
"\n",
"If we can solve the above problems, it should be possible for a computer to determine `w` and `b` for the best fit line, starting from a random guess."
]
},
{
"cell_type": "markdown",
"id": "c0a905ea",
"metadata": {
"id": "c0a905ea"
},
"source": [
"### Loss/Cost Function\n",
"\n",
"We can compare our model's predictions with the actual targets using the following method:\n",
"\n",
"* Calculate the difference between the targets and predictions (the differenced is called the \"residual\")\n",
"* Square all elements of the difference matrix to remove negative values.\n",
"* Calculate the average of the elements in the resulting matrix.\n",
"* Take the square root of the result\n",
"\n",
"The result is a single number, known as the **root mean squared error** (RMSE). The above description can be stated mathematically as follows: \n",
"\n",
"<img src=\"https://i.imgur.com/WCanPkA.png\" width=\"360\">\n",
"\n",
"Geometrically, the residuals can be visualized as follows:\n",
"\n",
"<img src=\"https://i.imgur.com/ll3NL80.png\" width=\"420\">\n",
"\n",
"Let's define a function to compute the RMSE."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b69db3e3",
"metadata": {
"id": "b69db3e3"
},
"outputs": [],
"source": [
"!pip install numpy --quiet"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "498d84d9",
"metadata": {
"id": "498d84d9"
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5cb0cab",
"metadata": {
"id": "e5cb0cab"
},
"outputs": [],
"source": [
"def rmse(targets, predictions):\n",
" return np.sqrt(np.mean(np.square(targets - predictions)))"
]
},
{
"cell_type": "markdown",
"id": "7e6d4cf1",
"metadata": {
"id": "7e6d4cf1"
},
"source": [
"Let's compute the RMSE for our model with a sample set of weights"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e5941fb",
"metadata": {
"id": "5e5941fb"
},
"outputs": [],
"source": [
"w = 50\n",
"b = 100"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "edb05a32",
"metadata": {
"id": "edb05a32",
"outputId": "2b86a8f7-8e86-4c82-fb89-f462a08a1f31"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF7CAYAAABIAFZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB1YklEQVR4nO3deXzcVb3/8dfMZE+ztU2bhlIKtBwKUkAoFGSRRUBBQAQRlSsqXBHwuqBy+SHX5YoLCooCwuXKhasgyCbIfgvIIhSh1JalHNtCKW2apk2bPZNMZr6/P74z6TfTzDeZNpNZ8n4+Hn00Z77fmZzJNzP5zOec8zkBx3EQERERkcIVzHYHRERERCSzFPCJiIiIFDgFfCIiIiIFTgGfiIiISIFTwCciIiJS4BTwiYiIiBS4omx3IJfFYjEnGs3PsjWhUIB87ftEp2uXn3Td8pOuW/7StdtecXFoM1A/3DEFfD6iUYe2tp5sd2OH1NZW5G3fJzpdu/yk65afdN3yl67d9urrq95LdUxDuiIiIiIFTgGfiIiISIFTwCciIiJS4BTwiYiIiBQ4BXwiIiIiBU6rdHeQ4zh0dbXT29tFLBbNdne2s3FjAMeZmMvVg8EQ5eWTmDSphkAgkO3uiIiIZJ0Cvh20desmAoEAkydPJxQqyrnAIhQKEo3Gst2Ncec4DtHoAJ2dbWzduonJk6dlu0siIiJZpyHdHdTfH6a2dgpFRcU5F+xNZIFAgKKiYmprp9DfH852d0RERHKCAr4d5hAI6MeXq9xrMzGHtEVERJIpYhEREREpcAr4REREJOuaO8I8u2ozzR2ajpMJWrQxwZx55sdpbt4w7LEf//gXHHXUh1Ped+vWLbz22qscd9wJABxxxMH88pc3sGDBoWPax0gkwiOPPMTpp39yTB9XRERyU3NHmK/d/waRaIziUJDrzvgADdVl2e5WQVHANwFdcsnX+chHTtru9qqqat/7/fa3v2FgYGAw4Hvwwceprq4Z8/4tWvQEt9/+OwV8IiIThG3pIhKNMam0iK6+AWxLlwK+MaaAbwKqrJzElClT075fcl2/HXmMHfk+IiJS2My0SRSHgnT1DVAcCmKmTRqzx27uCGNbujDTJk3oIFIBnwzx2muvcv31v2LNmnepra3lE584k3PP/QK/+93NPPbYwwAsX/4P7r33L0OGdM888+Oce+4X+Mtf/sw776zmgAMO5DvfuYJf//paXn75RWbN2o3vfe8qZs/eHYBHHnmIO+/8X9avX0dlZSXHHHM8X//6t1m+/B/8+Mc/ANwh43vueYiGhhncfvvv+POf76O3t4d9953PN77xbXbddVbWfk4iIjJ2GqrLuO6MD4x5YKah4m0U8I2hkoceoOyB+8b1e4Y/8Un6T/3EmDxWNBrlu9+9jE9+8lNcddXVrF69iv/4j8vZa6+9Oeecc3nvvTXEYlEuvfTyYe//u9/dzJVX/oCqqmq++c2v8oUvfJYLL7yE88//Mldd9QNuueVGrrrq5yxb9g+uueZnfO97/4kx81ix4k3+8z//gwMPPJijjvow//Zvl3LHHbdz661/oLa2jvvuu5vHH3+UK6/8IVOn1nPffXfzta99hTvvvI+yson5whURKTQN1WVjHoxpqHgbBXwT0C9/eTW//vU1Q26bNKmK22//Ix0d7UyePIUZMxqZMaOR6667kcbGXaioqKC0tJRoNEpdXd2wj3vSSR9jwYKFABx44Adpb2/ntNPOAOCEE07iL395EIDS0lL+/d+v5OijjwWgoWEGd911B2vWvMNxx32ESZMmEQwGB4eM77zz93zta9/ioIMWAPCNb3yHl156kb/+9SlOOunksf8BiYhIQcjkUHG+UcA3hvpP/cSYZdsy6QtfuIBjjjl+yG3BYJDq6ho++clPcc01P+X223/H4YcfwYknnjzquXqNjbsMfl1aWsb06eWedimRSD8Ae+89j9LSUn73u5t5993VrF69inXr3h8M6Lx6enpoadnID3/4XYLBbVWE+vv7ef/9tWk9bxERmVgyNVScjxTwTUC1tXXMnLnrsMe+8Y3v8MlPfornn3+Wv/3teb761X/lssu+y8knnzri44ZCQ3+dvAGa18svv8Tll1/KiSeezKGHHs4XvvCvXHPNT4c9NxqNAvCDH/yY2bP3GHJs0qSqEfskIiITWyaGivORCi/LoNbWzfziFz9l+vQZfPazn+fGG/+bj33s4zz99CKAMdsz+C9/eYCTTjqZyy67go9//HR2220269evG1yd6/0+VVVV1NVNZvPmzcycuSszZ+7KjBmN3HzzDaxa9c8x6Y+IiEihU4ZvAuru7qK1dfN2t5eWlvH8888Qi0X5zGf+hY6OdpYtWzo4/FteXs7Klf9k06YW6uun7fD3r66u4c03X2fVqpUEg0H+8IfbaG3dTCQSGfw+XV1drF37Ho2Nu3D22Z/hv//7JiZPnsIee+zJnXf+L6+88jJf+9qlO9wHERGRiUQB3wR0/fW/4vrrf7Xd7Z/+9Of42c9+yXXXXcMXvvAZSktLOfbYj3DeeecDcNJJJ/PXvz7Neeedw8MPL9rh7//FL36ZH//4+1x44ReorKzk0EMP54wzzmLlSgvABz+4gN12m815553DjTf+N+eccy7hcJhrr/0ZnZ0d7LWX4dprf8PUqfU73AcREZGJJKAit6lFIlGnra1n2GPNze/R0LDbOPdo9EKhINFoLNvdyKpcv0ap1NZWkOr3TnKXrlt+0nXLX7p226uvr1oCHDzcsXHN8Blj9gauBxYCrcD11tqfx4/dDPxr0l2+Ya39Vfz4McB1wBzg78D51tpVnsf+KnAZUAPcC1xire2OHysFfgOcBfQB11prr87Q0xQRERHJKeO2aMMYUww8BqwFDgAuBq40xnw2fsq+wLeBGZ5//xW/767AQ8AfcCPXZuBBY0wwfvwM4EfARcAxwALAW2ju58BhwPHAl4HvGmM+naGnKiIiIpJTxjPDtwtuZu5ia20vsMoYswg4GrgDmAd811rbPMx9LwCWJbJyxpgv4gZ9xwKLgK8Dv7HWPhQ/fiGwyBjzLcCJ3//j1tolwBJjzNXAJcBdmXqyIiIi2aL9YyXZuAV81to1wNkAxpgAcDhwFHCxMaYBmAzYFHdfCDzneaweY8xrwGHGmGdwM3o/8py/GPe5HQhEgVLgBc/xF3CziyFrbXTnn52IiEhu0P6xMpxs1eFbhxt0vYQ7324fYAD4T2PMemPMMmPMeZ7zZwBNSY+xEZgJ1AJl3uPW2gHcOYIz4/fdYq0NJ923BNjx2iIiIiI5yLt/bCQaw7Z0ZbtLkgOyVZblNKAR+C3wS7Zl9pYBvwY+DNxsjOm21t4DVOAutvDqw83cVXjawx0vSnGM+PGUQqEAtbUVwx7buDFAKJTbdatzvX+ZFgikvn65LBQK5mW/Jzpdt/xUiNdtwZx6yl5aS08kRllJEQvm1FNbWz7yHfNMIV67TMpKwGetfRXAGFMB3A5UA3+01m6Jn7LcGDMX+ApwDxBm++CsFDeLF/a0k4/34M7hG+4Y8eMpRaNOyiXfjuPkdNkTlWVxr1E+LtlXqYH8pOuWnwrxulUA1562z+Acvgry871wJIV47XZWfX3qLUfHc5XuLsaY5A1Z38IdWq3yBHsJK3AXegCsBxqSjjcAG9gW9A0eN8YUAVPix9cDdcaYkqT79gHJ31NERCTvNVSXcfScqZq7J4PGc8xvHnC/McY7b+4gYBNwuTHm4aTzDwTejn+9GDgicSCeGTwQWGytjQGveI/jlmAZAJYC/wD6cReJJBwBLInP9RMREREpaOMZ8D2Lm9G7zRgzzxhzCvBT4CrgL8BHjTH/ZozZ0xhzCfAvuPXzAG4FDjXGXGGM2Qf4HW49v6fix28ELjXGnGGMOTjevtVa22Wt7cEdNr7RGHNIPMv4LdwizhPa//3f4xxxxMH88Y9/GPV9enp6ePTRv4zJ93/00b/wiU98bEweS0RERFIbt4DPWhsBTsbNvL0M3Az8Cvi1tfavwDm4O228iVtA+Rxr7Qvx+64BzgDOBV4FpgOnxbN7WGvvwi3L8lvcunyvApd6vv03cbOATwM3AT+01v4pY082Tyxa9AQzZ+7K448nJ1dTu+uuP/CXv/w5c50SERGRMTeuizaste8DyfP4Esf+BKQMwqy1j+Hu1JHq+M+An6U41gN8Pv5PgI6Odv7+98Vcfvl/8MMfXsk///k2e+2194j3097LIiIi+Wdi1+2YwP7616cpLi7h2GM/wq67zuLRR7dl+aLRKP/93zdx+ukf5YQTjubf//2bbN68mUcf/Qv/8z+38PrryzjiCHdv5jPP/PiQjN9rr73KEUcczMCAOz3yjTeWc9FF53PccR/i+OOP4Jvf/CqbNrWM63MVERGZ6BTwTVD/93+Ps3Dh4RQVFXHkkUezaNHjg0Harbf+F3/5y5+57LIruOWW2+nr6+NHP/oPjjvuI3z6059j3rx9efDBx0f8Hj093Xz721/n4IMP4fe//xPXXns9TU3ruf32WzP99ERERMRDAV8OaO4I8+yqzTR3hEc+eQxs3ryJZcuWcuSRRwNw1FHH0tbWxksvvYDjODz44P2cf/6FHHbYEey222y+9a3LmTdvX4qLSygvL6eoqIgpU6aO+H16e3s599wv8IUvXEBj4y7Mn38AH/7wsaxZ806mn6KIiIh4ZGunDYnLxp6HixY9QTAY5LDD3Eo2++77AaZOreexxx7hAx/Yn7a2rRizbT7fLrvM5Mtfvjjt7zNlylQ+9rGPc/fdd7By5T9Zs+ZdVq36J/vs84Exey4iIiIyMgV8Webd87CrbwDb0jUOAd+TDAwMcPLJxw3eFovFeOmlF+jrSy/LGAgEhrSj0ejg15s2tXD++ecyd67hkEMO49RTP8GLL77A8uX/2Kn+i4jksuaO8OAuFyp8LLlCAV+WmWmTKA4F6eoboDgUxEyblNHv9/77a3n77bf4t3/7JgcffMjg7Rs3NvPtb3+dF154ltraOv75Tzu4avf999dy0UXnc8cd92wX4BUVFdHT0z3YbmpaP/j1c889Q0VFJb/4xa8Hb7v33rtxd7sTESk82Ri1ERkNBXxZ1lBdxnVnfGDcPg0uWvQEkyZVcdppn6S0dNsWw3vsMYf99pvPY489wllnfZpbb/0vpk+fTn39dK677hfstdfeVFfXUF5eQWvrZpqa1tPYuAvz5u3Lo48+zIIFh9Le3s7dd98x+JjV1TVs3ryJV15ZTGPjTJ55ZhHPPvs0c+eajD5HEZFsycaojchoaNFGDhjPPQ8XLXqCj3zkpCHBXsLpp5+JtSs48sijOe64E/jBD77Ll798HpMmVfHd734fgA9/+FiCwSDnnvsptm7dwgUXfIWqqiq+9KVz+dWvfs4FF3xl8PGOPfYjnHjix7jyysv50pfOZcmSV/jqV7/J2rVr0h46FhHJB+M9aiMyWgEV0k0tEok6bW09wx5rbn6PhobdxrlHoxcKBYlGY9nuRlbl+jVKpba2glS/d5K7dN3yUyaum+bwjQ+95rZXX1+1BDh4uGMa0hURERlDDdVlCvQk52hIV0RERKTAKeATERERKXAK+EREREQKnAK+naAFL7lL10ZERGQbBXw7KBQqIhLpz3Y3JIVIpJ9QSGuSREREQAHfDps0qZa2tk309/cpm5RDHMehv7+PtrZNTJpUm+3uiOSk5o4wz67aTHOH6mGKTBRKgeyg8vJKANrbNxONDmS5N9sLBAITNhANhYqoqqobvEYiso22/hKZmBTw7YTy8sqcDSpUkFJEhqOtv0QmJg3piohMINr6S2RiUoZPRGQCaagu47ozPqCtv0SGUcjb4ingExGZYLT1l8j2Cn1+q4Z0RUREZMLzzm+NRGPYlq5sd2lMKeATERGRCa/Q57dqSFdEREQmvEKf36qAT0RERITCnt+qIV0RERGRAqeAT0RERKTAKeATERERKXAK+EREREQKnAI+ERERkQI3rqt0jTF7A9cDC4FW4Hpr7c/jx3YDbgE+BKwFvmmtfcxz32OA64A5wN+B8621qzzHvwpcBtQA9wKXWGu748dKgd8AZwF9wLXW2qsz+2xFRCSXNXeEeXVDJzMriwt2ZWah0rVL37hl+IwxxcBjuMHcAcDFwJXGmM8aYwLAg7hB4ALgduA+Y8zu8fvuCjwE/AE4GGgGHjTGBOPHzwB+BFwEHBN/jGs83/7nwGHA8cCXge8aYz6dyecrIiK5K7GN1k8ft3zt/jdo7ghnu0sySvl47Zo7wjy7anNW+zqeGb5dcDNzF1tre4FVxphFwNHABsAAR1prO4G3jDHHA18CvgtcACxLZOWMMV/EDfqOBRYBXwd+Y619KH78QmCRMeZbgBO//8ettUuAJcaYq4FLgLvG5ZmLiEhOSWyjVVNRQntPP7alq6AyRc0d4YItIJxv1y5X9ugdt4DPWrsGOBsgntE7HDgKN9O3EFgaD/YSXgCOjH+9EHjO81g9xpjXgMOMMc/gZvR+5LnvYtzndiAQBUrjj+d97CuNMSFrbXSsnqOIiOSHxDZaneHC20YrVwKMTMm3a+fdo7erbyBrAWq2dtpYBzQCD+POt/sV0JR0zkZgZvzrGT7Ha4Ey73Fr7YAxpjV+vB/YYq0NJ923BJiGm10UEZEJJLGN1rruSMHNA8uVACNT8u3a5coevdkK+E7DDfh+C/wSqMBdTOHVh5uZY4TjFZ72cMeLUhzD8/jDCoUC1NZW+J2Ss0KhYN72faLTtctPum75p7a2gn1DQaLRWLa7MqYWzKmn7KW19ERilJUUsWBOPbW15dnu1pjKp2tXW1vB/5y3gLc2dLDPjGoas3QtshLwWWtfBTDGVOAu0LgVd3WtVynQE/86zPbBWSnuIo+wpz3c/Z0Ux/A8/rCiUYe2Nt9TclZtbUXe9n2i07XLT7pu+akQr1sFcO1p+wzO4asgf/+W+cmna1cBHDyjCjJ8Lerrq1IeG89VursYY05Nuvkt3KHVDUBD0rEGtg23rvc5ngj6Bo8bY4qAKfHj64E6Y0xJ0n37gC07+nxERERyVUN1GUfPmZrzw50yfsaz8PI84H5jzDTPbQcBm3AXURxgjKn0HDsCd/EF8f+PSByIZwYPBBZba2PAK97juCVYBoClwD9w5/EdnvTYS6y1Azv/tERERERy23gO6T6Lm9G7zRhzKbAn8FPgqvix9+LHvg+cgrsy90vx+94KfNsYcwXwAHAlbj2/p+LHbwRuMcYsj99+I3CrtbYLwBhzO3CjMeY83Ozet3BLtYiIiGRNIZdPkdwybhk+a20EOBk38/YycDPu6txfx0ujnIa7anYJ8C/AJ+KlXBIlXc4AzgVeBaYDp8Wze1hr78Ity/Jb3Lp8rwKXer79N3GzgE8DNwE/tNb+KWNPVkREZASJ8inXPftO3hQQlvwVcBwn233IWZFI1MmXCaHJ8mkyqwyla5efdN3yUzav27OrNnPds+8Mlk/52tF7cPScqVnpS75p7gjnTVmW8VRfX7UEd0ey7WSrLIuIiMiEliv12fJNIjMadSAUoOAKS2eKAj4REZEsSBQQ1hy+9OTb1mq5QgGfiIhIljRUlylYSVO+ba2WKxTwiYjspOaOMK9u6NR8ogzRSlbxyret1XKFAj4RkZ1Q6POJsh1sJX6+kWiM4lCw4H6+smMaqsvYe9ZkLZRKgwI+EZGdUMjziXIh2Er8fBMrWQvp5ytDZfvDRaFTwCcishMKeT5RLgRbWsk6MeTCh4tCp4BPRGQnFPJ8olwItrSSdWLIhQ8XhU4Bn4jITirU+US5EmxpJWvhy+SHCw0VuxTwFSCtGBSRsaJgS8ZDpj5caKh4GwV8BabQVwyKiEhhysSHCw0VbxPMdgdkbCV+uavKiohEY9iWrmx3SUREJCtyYR5qrlCGr8AU8opByT2aGyOyc/QayqxcmYeaCxTwFZhCXjEouUVzY0R2TrqvIQWHO0bzUF0K+ApQoa4YlNyiuTEiwxttYJbOa0gfsGRnKeATkR2iuTEi20snMEvnNaQPWOOjkLOoCvhEZIdobozI9tIJzNJ5DekDVuYVehZVAZ+I7DDNjREZKt3AbLSvIX3AyrxCz6Iq4BMRERkjmQzM9AErswo9i6qAT0REZAwpMMtPhZ5FVcAnIiI5Ld8m0udbf2WbQg7WFfCJiEjOyreJ9PnWX5k4tLWaiIiMu+aOMM+u2kxzR9j3PO9E+tFsFznax82UdPsrMl6U4RMNP4jIuMpUrbpcyK4V+sR/yV8K+Ca4XHiDFJGJJVO16nKhrEZDdRlXnDCX51dv4cg9J+v9VHKGAr4JLhfeIEVkYslUrbpcyK41d4S56smVRKIxnlvdqg/RkjMU8E1wufAGKSITS6bKX6T7uM0dYV7d0MnMyuIx64M+REuuUsA3wRV63SERyU2ZKn8x2sdNTGeJOhAKMGaZOH2IllylgE8Kuu6QiMhwEpm4mooS2nv6xywTl8kP0VpgJztjXAM+Y8yewK+AI4Bu4G7gCmtt2BhzM/CvSXf5hrX2V/H7HgNcB8wB/g6cb61d5XnsrwKXATXAvcAl1tru+LFS4DfAWUAfcK219uoMPU0REclxZtokAsDGjjDlRWObicvEh2gtsJOdNW51+IwxJcBfcAOuw4HPAqcDV8VP2Rf4NjDD8++/4vfdFXgI+ANwMNAMPGiMCcaPnwH8CLgIOAZYAFzj+fY/Bw4Djge+DHzXGPPpzDxTERHJC4HA0P9zmOr7yc4azwzfIbjZuUOstV3ACmPMlcC1wKXAPOC71trmYe57AbAskZUzxnwRN+g7FlgEfB34jbX2ofjxC4FFxphvAU78/h+31i4BlhhjrgYuAe7K1JOV9GioQkTGk23pwnEcpleXjemQbqZobqDsrPEM+CzwsXiwl+AAtcaYBmBy/JzhLASeG3wga3uMMa8BhxljnsHN6P3Ic/5i3Od2IBAFSoEXPMdfAK40xoSstdGde1qyszRUISLjLRFAdYbzI4DSAjvZWeMW8FlrN+Fm4wCID8deEr9tH2AA+E9jzEeBzcAvrbW3xU+fATQlPeRGYCZQC5R5j1trB4wxrfHj/cAWa2046b4lwDRgw9g8Q9lRKmMwMSiLK7kkEUCt646MaVmWTNICO9kZ2Vyley1uBm4B8OH4bcuAX8fbNxtjuq219wAVuHP/vPpwM3cVnvZwx4tSHCN+PKVQKEBtbYXfKTkrFArmTd8XzKmn7KW19ERilJUUsWBOPbW15dnuVtbk07Ubraa2Xr754Fv0D8QoKQry3+ceRGOBXeNCvG6Frra2gn1DQaLRWLa7IjtAr7n0jHvAZ4wJ4K7UvQg401r7pjHmLeCP1tot8dOWG2PmAl8B7gHCbB+clQKt8WOkON6DO2w83DHix1OKRh3a2nxPyVm1tRV50/cK4NrT9hnM/lQwdj/3fMwq5dO1G61XVm0m3D8wmMV9ZdUmjp4zNdvdGlOFeN3SpdebjCddu+3V11elPDbeZVmCwO9wV+ieba19EMBa6wBbkk5fAZwQ/3o90JB0vAF4g21BX6KNMaYImII7XBsF6owxJdbafs99+4b5npIlKmNQ2DThvPDp9ZZ5+RhQ5wL93FzjneG7BvgMcIa19uHEjcaYawBjrT3Fc+6BwNvxrxcDR3nOr4gf/5G1NmaMeQW3tl9ijuBhuHMClwIx3Hl8hwN/jR8/AlhirR0Y02cnOUVzA3OHJpwXPr3eMksB9Y7Rz22bcQv4jDELccunXA68Gl+Zm/AX4OvGmH8DHgE+CvwLcFz8+K3At40xVwAPAFcCa4Gn4sdvBG4xxiyP334jcGtiRbAx5nbgRmPMebjZvW/hlmqRAqasUm7RhPPCptdbZuVrQJ3t7Fq+/twyYTwzfGfG//9J/J9XMXAO8B/A1cA7wDnW2hcArLVr4sWVfwlcgZvxO81aG4sfv8sYsxvwW9z5eQ/g1vZL+Gb82NNAB/BDa+2fxvwZSk5RVklk/Oj1lln5GFDnQnYtH39umRJwHCfbfchZkUjUyZUJoel+StJk1vyla5efdN3yUz5dt2xny9L17KrNXPfsO4PZta8dvceYLtYa7bXLt5/bzqivr1qCuyPZdrJZlkVGKRc+JYmISHbl27SIXMmu5dvPLVMU8OUBzUEQEZF8o2H+3KKALw/kyqckERGRdCi7ljsU8OUBfUoSGX8Tad6PiBQ+BXx5Qp+SRMaP5s2KSKEJZrsDIulq7gjz7KrNNHeERz65gPsgmeOdNxuJxrAtXdnukojITlGGT/JKLmRecqEPklmaNysihUYBX57QfCJXLqxYzoU+SGZp3qzsDL1fSy5SwJcHlFHaJhcyL7nQB8k8zZuVHaH3a8lVCvjygDJK2+RC5iUX+iAiuUnv15KrFPDlAWWUhsqFzEsu9EFEco/eryVXKeDLA8ooiYjkB71fS65SwCcZo4nLIjIRaQRAcpECvjyQj5OA87HPIiIihUqFl/NAPhaBzcc+i4jIyFR4Pj8pw5cH8nEScD72WURE/Gn0Jn8p4MsD+TgJOB/7LC7NvRSRVFR2Jn8p4MsT+TgJOB/7PNHp07uI+Mnk6I0+bGaWAj4RGaRP7yLiJ1OjN/qwmXlpB3zGmKC1NmaMaQCOBP5hrV059l2TfKdPa/lHcy9FZCSZGL3Rh83MG3XAZ4xZCNwDnGuMWQG8ClQDpcaYT1trH8hQHyUP6dNaftLcSxHJBn3YzLx0MnzXAg/iBnr/BgwA9cDngP8EFPClqZAzYPq0lr8091JExps+bGZeOgHfgcA51touY8ypwJ+ttX3GmEXA9ZnpXuEq9AyYPq2JyFgp5A/Hso0+bGZWOgFfKzDLGBMAFgBXxm8/GNgw1h0rdIWeAdOnNREZC4X+4VhkvKQT8N0K/BnoB1YCTxljLgJ+Dlwx9l0rbBMhA6ZPayKyswr9w7HIeBl1wGet/Q9jzFJgN+CP8ZW6a4CzrbUPZ6qDhUoZMBGZyEY7TDsRPhyLjIeA4zhp3cEYswuwF7AYqLbWbsxEx3JBJBJ12tp6st2NHVJbW0G+9n2i07XLT7puo5fuMG0m5/AV6nXL5M8sV+ZUFuq12xn19VVLcKfabSedsiyTgP8BPgnEcIO+Xxpj6oHTrbUtY9BXEREpcOkO02p6SHqaO8JcfO/r9PQPUFFSxA1n7qcCyUIwjXOvAaYCuwO98dsuBRzg12PcLxERKVAapt2muSPMs6s209wRHrPHXLxmK03tvbSHB2hq72Xxmq1j9tjeYD0SjWFbusbssSWz0lm0cSrwMWvte8YYAKy1q+ILN54ZzQMYY/YEfgUcAXQDdwNXWGvDxpjdgFuADwFrgW9aax/z3PcY4DpgDvB34Hxr7SrP8a8ClwE1wL3AJdba7vixUuA3wFlAH3CttfbqNJ67iOSoXBlektHTHGZXZrNlATcdQ2CMHs+lYD1/pZPhK8ddoZuslFH8RhljSoC/4AZchwOfBU4HroqXenkQt/TLAuB24D5jzO7x++4KPAT8AXdsuhl40BgTjB8/A/gRcBFwTPwxrvF8+58DhwHHA18GvmuM+fTon7rIjsvEJ3hxJf5gXvfsO3zt/jf0M84jDdVlHD1n6oQN9iBz2bKFs+torC6lpryIxupSFs6uG5PHhW3B+teO3kPDuXkmnQzfg8BPjDH/Em87xpi5uJmz0azSPQQ3O3eItbYLWGGMuRJ3B49HAAMcaa3tBN4yxhwPfAn4LnABsCyRlTPGfBE36DsWWAR8HfiNtfah+PELgUXGmG/hfsa5APi4tXYJsMQYczVwCXBXGs9fZNBos0qa75JZKtkh+SxT2bKG6jJuOGt+xjKomlOZn9IJ+L6Ku2ijFTej9w9gEvAE8LVR3N/iDgl7P8I4QC2wEFgaD/YSXgCOjH+9EHhu8IGs7THGvAYcZox5Bjej9yPPfRfjPrcDgShuFvKFpMe+0hgTstZGR9F3kUHpBHEKSDJLw0uSzzI5tK2gTJKlU4evA/ikMWYPYF78vtZa+/Yo778JNxsHQHw49pL4bTOApqS7bARmxr/2O14LlHmPW2sHjDGt8eP9wBZrbTjpviXANLRLiKQpnSBOAUlmaS6Y5DsFZjJe0inLMiv+5QDwuuf2XXGDqs1pZsuuxc3ALQC+iTu3z6sPNzMHUOFzvMLTHu54UYpjeB5/WKFQgNraCr9TclYoFMzbvue6BXPqKXtpLT2RGGUlRSyYU09tbfmw59bWVvA/5y3grQ0d7DOjmsYU53np2qWntraCvWdNznY3dN3yUFNbL6/ZTew9fdKoXpuSW/SaS086Q7qr2bbII0B8/Y9HxBjzZ+CCpKHZIeILNH6Fu8DiTGvtm8aYMO7qWq9SIFFRMcz2wVkp7vBy2NMe7v5OimN4Hn9Y0aiTt0UdVZAycyqAfz9uT55fvYUj95xMBf6/JxXAwTOqYITzEnTt8pOuW35JTM2IOhAKoPm1eUivue3V11elPJbOKt0v4+6h+1Hc4KwO+AjwFvD/cOfbTcfN3A0rPox7K/AV3C3ZHowfWg80JJ3ewLbhVr/jiaBv8LgxpgiYEj++HqiLrxL23rcP2DLCcxbZTnNHmKueXMlT/9zEVU+u1MrQUdJqZckliakZVWWqJycTQzoB3w+AL1prn7TWdlprO6y1T+OugL3EWvsK7tDs6T6PcQ3wGeAMa+39ntsXAwcYYyo9tx0Rvz1x/IjEAWNMBe5w8GJrbQx4xXsctwTLALAUd3FJP24pGO9jL7HWDozmiYt4pVtKQYGOyqdI7knMr+0Ma36tTAzpDOlW4QZRyRy2Dcd24C6G2I4xZiFu+ZTLgVeNMd6M3bPAe8BtxpjvA6fgrsz9Uvz4rcC3jTFXAA8AV+IWZ34qfvxG4BZjzPL47TcCtyZWBBtjbgduNMach5vd+xZuoCqStnQWYqgsi0urlSXXJBb8rOuOMLOyWL+PUvDSCfjuxQ3Ivgq8ijuP7yDc+Xh/jmfdLsfdBWM4Z8b//0n8n1cxcBrwO2AJ7nzBT1hr1wBYa9fEiyv/ErgCN+N3Wjy7h7X2rvhOHb/FnZ/3AO62bwnfjB97Gjco/aG19k9pPHeRQemsDFWg48rkamXttOHSzyF9DdVl7D1rsuaByYQQcJzktRfDM8aU4RZZPhc3QAN3qPQ23IzZ8cD3gM+MtlRLrotEok6+vhFoMmtu2JEMX6Feu0wEJLmUQc3mdculn0O+KdTX20Sga7e9+vqqJbg7km0nnQzfUcA3cIdl98Yd3l2V2K8WdyeOB4e/q4i/XMhOZKIP6daJa+4I8+qGzoIcYspEvTFlUF36OYjISNIJ+P4IHG2tfQN32FXGUS4ERJmSC9mJ5o4wF9/7Oj39A1SUFHHDmfuNadA3msdSmYj0qbC1y0ybRADY1NVHRXFowv4cRCS1dAK+ZbilV97IUF8khVwIiDIpF7ITi9dspam9l0AgQFtvhMVrtnL6/Bnj2ofEz6GmooT2nn5laUZBO214BAJD/xcR8Ugn4OsErjfG/ABYw7aCxwBYa48aw36JRy4ERJmUO1maQLyceHb+YKpMxI7R1lTue4TjONRPKi3I9wgR2XnpBHyvxf/JOMudgCgzciFLs3B2HY3VpfREolQUh1g4u27c+6AyEbKjCv09QkR23qhX6U5EubRKN905fFq9lL5cmSepa5efsn3dcuX3N99k+7rJjtO1296YrNI1xkwCLgT2BULxmwO4de8OtNbO3cl+ig8NW22TqT9smfoZ6w+xjAe9R4iIn3SGdP8bOBZYBJwF3A3MBRYA3x/znokMI98WsORbf0VEpDCls5fuSbhFlT8DvAX80lp7KO7uF/tlonMiydLdxzbb8q2/Ism0F7RIYUgnw1cK/DP+9Zu4mb0lwE3AC2PcL5FhmWmTCAQCbr2xkqKcn5yuyfSSz5ShFikc6QR8bwEfwd3v9g3cmnw3AXW4waDI+EgsNMqDBUe5sAJZZEcVekkokYkknYDve8C9xpgQ8HvgLWPMY8AHgMcz0TmRZLalCwfyqt5YLkym18IR2RHKUIsUjlEHfNbah40xewNF1tr3jTFHAJ8DngV+nakOinjpD1D6NCwnO0oZapHCkU6GD2vtGs/Xy3C3WxMZN/oDlD4Ny8nOyIUMtYjsvHTq8O0G/BzYHygjaf8pa+2sse2ayPD0Byg9yoqKiEg6Gb7fAzXADUB7ZrojE5XmmGWOsqIiIpJOwLcAONha+2amOiMTk+aYZZ6yoiIiE1s6hZctMDVTHZGJS8WJRUREMss3w2eMOdbTvA/4vTHmKuAdIOo911r79Nh3TyaCXJljpmFlEREpVCMN6S4a5rbfDnObA4R2vjuSDdkOdHJhjpmGlUVEpJD5BnzW2iCAMeYQ4HVrbW/imDHmNKDFWvtSZrsomZQrgU6255ipdImIiGRKthMrMPKQbgj4H+CzwLG4RZYTzgHOMsbcClxorY0O8xCS4xTouHJlWFlERApLriRWRhrS/RZuoHeMtfY57wFr7aeNMTcDdwNvAr/KSA8loxTouHJhWFlERApPriRWRgr4zgO+mhzsJVhrnzHGfBv4Ngr48pICnW2yPawsIiKFx0ybRADY1NVHRXEoa4mVkQK+WcBrI5zzPHDj2HRHskGBjoiISOYMOA59AzFKitKphje2RvrOzcDuI5wzC9g8Nt0RERERKRyL12ylpbOfcCRGS2c/i9dszUo/Rgr47gd+YIwpHu5g/PbvA4+Ocb9ERPJGc0eYRSs20twRznZXRCQnORCI/58lIw3p/gj4O7DEGPMb4FXcfXTrgEOAS4Ay4NOZ7KSISK5KrMCLOhAKoBqOInksE+VTFs6uo7GmnJ7+ASpKilg4u25MHjddI9XhazfGLASuBq4BKuOHAsAW4I/AD6y1GtIVkQkpsQKvpqKE9p7+CVvaSCTfpVs+ZbTBYUN1GTecuV/WF0eOlOHDWrsVuMAYczGwJ1CLO2dvtbU2tiPf1BhTCiwBvm6tXRS/7XLgx0mnXmet/Xr8+P7ATcD+wArc2n+veB7zU/H7NwL/B1xgrW2JHwvgZisvAIqB3wGXqXagiOysRGmjzvDELm0kku/SKZ+SbnCYC4sjRwz4Eqy1/biB1k4xxpQBdwL7Jh3aF/g18BPPbd3x+1QCj+HW/Psi8GXgEWPMntbaTmPMAuB24Cu4q4qvA/4XOCn+ON8APg+ciTtv8Q7coPWnO/t8RGRiS5Q2WtcdYWZlcdbf1EVkx6RTPiVXauulY9QB31gwxuyDG+wFhjm8D/Bra23zMMfOBiLApdbamDHmG8DJ8dv/G/gqcJ+19rb49/kXYK0xZo61dhXwdeD7iXqCxpjLcANLBXwistMaqsvYe9Zk2tp6st0VEdkZgcDQ/1Mw0yYRjTmsa+ulqrQoLzL7410Q5mjgGeAw743GmCBgAJvifguBvyWGkK21DvA3z+MsBAaLQ1tr3wfeAw4zxjQCu3qPAy8AM40xu+7sExIREZH8l8jalRWFiERj2JaulOe2dPWxqauf7v4om7r6aenq833s5o4wz67anNWV/OOa4bPW/jbxtTHGe2g2UIE7V/AuoAe4FbgmHuTNYPtgcCNwQPzrGUDTMMdnxo+RdHxj/P+ZwPvpPxMREREpJHUVxWzu7icWcwgGA9RVDFuRDoDnV28h5jiUhIJEojGeX72F+Y01w57b3BHm4ntfH1yle8OZ++Xk1mrjZV78//XAKcAHcefhAfwcNxhMDp/7gNL4137HKzxtkr4uxUcoFKC2tsLvlJwVCgXztu8Tna5dftJ1y0+6bvlrrK9d/4ZOplWVEgoGiMYc+gOpH/9j+zdy55J1DMRihIIBPrZ/Y8pzn1zVSlN7mGAgQFvvAMtbutl71uQx6/do5UTAZ619xBgz1VrbGr/pdWPMVOBi3IAvzPbBWSluJpARjoc97Yjnazz3H1Y06uTtnJza2oq87ftEp2uXn3Td8pOuW/4a62s3s7KY0njGrjQUZGZlccrH3726lN9+aj7Pr97CkXtOZvfq0pTn9vT04zgOUccZbGfqd66+virlsZwI+AA8wV7CCtwSK+Bm/hqSjjcAG0ZxfL2nvcrzNZ77i4iISBZlouhxOhIr7kfbh/mNNSmHcb32mFpBMBAg6jiEAgH2mJqdjHL2dvH1MMZ8zRizPOnmA9k2b28xcHi8nl6irt6H4rcnjh/hebxdcff4XWytbQLWeo/Hv26KL+6QDMmFSaoiE4VebzJeMvG71twR5uJ7lvPTRSu5+J7lWfs9bqgu4+g5U0cVcD6zchOXPfQWz6zc5Hve1p4IlSUhSkJBKktCbO2J+J6fKbmS4Xsc+Kkx5ie4RZEPAS4DLowfvxe3hMpvjDE34hZQrgLuih//LfCsMeZvuMHfdcBj1tqVnuM/McasBaK4JVkScwQlA9ItSin5KdufyMWl15uMl0z9ri1es5Wmjj4CQFvvAIvXbOX0+TNGvF+2PLNyE995yC1N/PTKzVx9Khwzt37Yc1u7+2kLDwAQHojR2t0/bv30yokMn7XW4i7WOB5YjrsrxmXW2jvjxztw6+4djltY+UPAx6y1nfHjL+EGgd8FXsLd7/fznm/xc9z6f/fF//0R+EXGn9gE5i1KOdLydslPiTf+6559h6/d/4YyS1mk15uMl8z+rjnxKr3OGD5mZjKSf17e7Nv2evLtTb7t8ZK1DJ+1NpDUfgpY4HP+K7ird1Mdvx13t43hjkWBS+P/ckYhZ0cS20119Wm7qUKVj5XmC5VebzJeMvW7tnB2HY015YOlSxbOrhuTx00MFfdEolQUh7jhrPljsj9uTVmRb9urJBTwbY+XXBnSnXAKfQgm3cmvkn8UZOQOvd5kvGTqd62huozPHrQLD7+5kVP2nT7i4zZ3hHl1Q+eI2xmmM1ScTr28ytIi37bXQbvW8tJ7bUPa2aCAL0smQnYkFzaLlsxRkJFb9HqT8ZKJ37VnVm7iJ4vcQhqvb+ikrqI45Zy4RMIk6kAowCgSJo67VZrjP1S8eM1W1rf1QsBdaOEXHM6tr/Rte504bxp/XLqejt4BqsuLOHHeNN9+ZEpOzOGbiJQdkUKQzoo2cWk1rcj2Hl/hzmsLJLWHk0iYVJWNPI8wMVRcU1ZEY02571Bxe2+EqAPRGEQdt53K4ne3+ra9Wrr63MeOObT3Rkbchi1TlOHLEmVHRCaeQp/KIZJstHPiTppXz9MrNw8u1zhp3vDZPdiWMOkMj5wwaagu45IjZ/P4ik2cNK/ef15eeTGhgLtkJBBvp7I5aaVtctvr+dVbcBwoKRp5G7ZMUsCXRRqCEZlYJsJUDsk/mVpAmM4HnGPm1nP1qQwGZqmGc2FbwmRdd2TEOXzLm9r5fw+/TTTm8NzqVm4+uyRlsLXH1AocIOZAMIBvgeQPzqzh9ebOIe1UjtxzMncsWUckGiMYDHDknuO/rRoo4BMRGTeayiG5JpNZ53Q/4Bwz1z/Q82qoLmPvWZNH3KLsvn9sYCDm5g0HYg73/WNDyoDv3qVNxE8l5rjtVOeeeWAjD7y+ga6+KJNKQ5x5YOOw54G7I8dNnm3YspHdAwV8IiLjRlM5JNfsSNZ5tBnBTH7AuX9ZE4/bTZxk6jlj/9TBVjqWrm/3bXut2NhJR18UgI6+KCs2dvr+LEa7DVsmKeCTjCnkOoMiO0pTOSSXpBuUpZMRzNQHnPuXNQ2u6F36vhuUpQr6PnnADB5d0TKkncqBjTU8ZjcNaafiXWTixNujzU5mi1bpSkZoFwYRkewZ7WrwhuoyrjhhLsftVc8VJ8wdMSjL5E4bo+3zA8s3+La9Vm3q9m17XXTU7iTqJ5cVue1UEotKRrPIJFcow5dFhZwB0+R0EZHsSCcL19wR5qonVxKJxnhudeuIc/jSyQim248v3fWPwVp1v/v0ASnP3X1yBW+3dA9pp/KnpU3btVNlA198dwvxLW8JD7jtVOems8gkVyjDlyWFngHT5HSR3KVagIUtnSxcuhm7xDDt147eY8TgMJ3HvndpEy2d/YQHYrR09nNvUqDm9cGknSqS217TJpX4tr0efnOjbzvZMXPr+dmp++RFsAfK8GVNoWfA0p27UcjZTpFcolqAmZft97N0PnCbaZMIBAJs6uqjoqRoVB/OW7r6eCO+G8ZYZQNXbu72bXvVlBf5tr3OP3w3Xn6vjRhuhuv8w3dLee4p+07n9Q2dQ9qFRAFflkyEDNhoJ6frD5DI+Cn0D5vZlsn3s2dWbhp1nborTpg7WAZkxO+f2HJshK3HwK1rd+GflhOLOdyxZB03fWp+ytWn6XzwP3rOFF5cs3VIO5UHlm3Yrp3q5zFtUilTq0oGh4qnTSpN+biJ4dvEfr5jtfo3VyjgyxKVZ9hGf4ByS7azE5JZE+HDZjZl6v3smZWb+M5DKwB4euVmrj4V371mRzsvz7Z0EYk5lBWFiMScEfv7/OotxGIOxaGx3TViSmUJVSVBegdilBcFmVKZeui1qT3s2/ZavGYrW7r7CQQCbOnu990fF9ygr9ACvQQFfFmk8gwu/QHKHcq2Fj592MysTL2fpVMGxLZ00dU3QDTmEArGfIO4uopiNnf1E3UcQoEAdRWptxOD9HaNaO4Ic96dSweza7d95sCU/Wjt7qezPwZAZ3+MVp+tyg6eVct7bc1D2v7i+6UN7tQ7MSngk6zTH6DcoWzrxKAPm5mTqfezdPaajTkOLV39Q9qpvLO5h5jjEAwEiDkO72zu8c3YpbNrxG2L19LaHQGgtTvCbYvX8u8n7DXsuU++vWm7dqpM23mHzmLRPzfT2TdAVWkR5x06K2UfFs6uo7G6lJ5IlIriEAtn16U8t9Ap4JOcoD9AuUHZVpGdl+33s7eauwgGIBAI4DgObzV3+c75S5wXCIxtBuzNjZ2+bS8nKShNbnu1dPXR3e/WT+nuH6Clq8+3+PMNZ81XQgGVZckqlUaQXJNOyQURGT/eIV1vezj7NEwi5kA05hBz3HYqe0ytAJz4eg0n3k5teVM7/3rXMm77+/v8613LWN6UevuxTyTNlUtueyW/14w0j9BxoKQoiOO4bT8N1WUcPWfqhH8/U8CXJYVeh0/yVzpvjvrQIrJzlje1c8Pz7/oGTpDezg5vNnX6tr229kSYXFFCXUUxkytK2NoT8e3HH/6+jmi8E1HHbaey9P0237bXJw+YQSgekYSC/lugHbnnZILBAAOjmEco22hIN0s0V0rynRZ4iOycdEqcpLOzQzo17RKLNhJ16kZatLG5p9+37fXUytbt2v+Z4txpk0qZPql0cF6eX/mUxDzCV9Z3sGCX6jFZJTwRKMOXJd5il4FAQHOlJO9kck9NkR2VqaxzOo872nO9JU5iMWfEockplSXMqiv3LVkCcPr8Bt+216NvbCQW/zoWb/v54C41vm2vuvJi37aXbekiFAwws7acUDAw4vvJ/MYaLv2IUbCXBmX4simNYpciuUYLPCTXZCrr3NwR5uJ7lg+u9LzhrPm+e8J++e5lg5mqm8/eP+W56ZQ4STcbePnxkcECwn7ZwHQWVgBUloV8217fOm7PwdqBiXYqej/JPGX4smS4YpciuWC02Qkt8JBck27WubkjzKIVG0f8XV+8ZitNHX209w7Q1NHHYs+OEMmeWNFCU0cfnX1Rmjr6eGJFS8pz5zfWcMFhs5hZW8YFh83yzVY9v3oL0ahbPiUa9c8GNneEuePVdWyI/+/3/I7da6pvO9nDSRnA5LZX8nxAv/mBej/JPGX4sqSuopjN3f3EYg7B4MjFLkXGQ7oZkmyXnxDxSidLlPhdjzoQCjCKIMOBQGDEEZl3Wnt8217PrNzEjS+8B8CNL7zH7MkVKbNx+zRMIgbEYs5gO5VEgBoA2noHfHeX2GNKJdWlIXojMcqLg+wxpdLn2UF5cci37XX/8g3btf12sdD7SWYpw5clW3siTK0sYUZ1GVMrR14ZJTIeNC9PctFoV7KmkyWyLV30RqI4jkNvJOr7u75wdh2NNeXUlBXRWFPuW7y3flKJb9vr7teafNtewUCAKZXFVJUWMaWymOAINfMcHJz4/37qKorp6osSiTl09UVHTD586bBZvm2vDzRU+bZlfCnDlyVm2iTKi0NEojHKi0KaryA5QfNoJNekM3ctHYlRlkTBYb9Ap6G6jBvO3G9UxXtn1pYTiicCAwG3nUp1WZFvO7m/7b3x7dIi/v3dY2oFQQKD26X51dZ79M2kRRtvbvT9+R4zt55zD+7g8RUtnDRvmu/8wPMOncWzq7fQEY5QXVbsuyOGZJ4CviyZCNuJNXeEC/r5FaKJ8Hsp+cW7kjUSjfH86i0pA5J0piQkRlmKi4JEBmJjNsqycHYdUyaVDO4f65cNXDi7jmdWtQ5pp7L0/XYG4sO5AzGHpe+3p/w5bO2JUFkSIjwQo6wo6Pvc/rG+w7ed7JmVm/j9q+sB+P2r69mvsTpl0NdQXcb/fOYAvZ/kCAV8WVTI8xVUoy1/FfLvpeSfI/eczB2vrqM/GiMU8F/Jmk5900Q2u7c/Snmx/yhLOu9nLV19bO2OEHUctnZHfLf92tDRRxAIBMGJue1U0pkb2NrdT1vY3XosPBCjtTt1rbwDdqlmteexDtilOuW5MHTHDyfe9svy6f0kd2gOn2SE5oKJyFiYNqmU+qoSKktC1FeV+BbkTXdKwkA0Rt9AjIFozPe8bfP9GHG+3/OrtxBzHEpCQWKO/2raI/ecTCAAsZg7/OsXzO4xpcK37fXk25t8217nHTqLyhI3FKgsCY447JrOjh+SWxTwSUZoLpiI+Blt+R/b0kUoEC/IG/AvyJvOoo3Fa7bS0tVPd/8ALV39vqVWEvP9NnSE2dzd7zt/LrHt12hq6wEQiAdP/mswOHHeNKpLQwSB6tIQJ86blvJcJ+b4tr1efHcL3f1uwNvdH+PFd/2LP7s7fszj2LlTufrUeb7ZPcktWRnSNcaUAkuAr1trF8VvmwzcDJwIbAG+Z6293XOf/YGbgP2BFcCF1tpXPMc/BfwYaAT+D7jAWtsSPxYAfgRcABQDvwMus9ZGM/xUJyzNBRORVNIZIk33w+OL724ZLDjsVwKkPRwZnBMHDu3h1PPcEvP9QgF3IYTfnLj5jTVcdfLeg1ug+S2AeOytFhLJxWjMbac6/8V3t9DR5/7J6uiL8uK7W1I+v4aaMmjqGNpO4eE3N27X9vu5gRv0KdDLP+Oe4TPGlAF/BPZNOnQbMAX4EPBD4GZjzOHx+1QCjwGLgYOA54FHjDFV8eMLgNtxg7qFQDXwv57H/gbweeBM4BPAOcC3x/7ZiVdDdRlHz5mqYE9EhkhnykdDdRlXnDCX4/aq54oT5vq+n9y/rImfLFrF6xs6+cmiVdy/LHWZk5qyYoqCAUJBKAoGqClLnbVLVFUIBBjVfL/rn1/D8qZ2rn9+jW8Gs7Ik5Nse8tyGqWmXyicPmDH4xz0Yb6dyyr7TfdtSOMY14DPG7IMbtO2ZdPuewMeBf7XWvm6tvRX4A3BR/JSzgQhwqbV2BW4A1x6/HeCrwH3W2tustcuBfwFONMbMiR//OvB9a+1z1tq/ApcBF2fmWYqITEyjHaZNZy/x5o4wP3j8nzz8ZjM/ePyfvo/9QFIQlNz2Wji7jtryIkKBALUjrKZNd6i4qb2X9vAATe29vkPFySVb/Eq4pDOHDyAYDBCI/+/njP0bufz4Oew3o4rLj58zYnZP8td4Z/iOBp4BDku6/VBgg7V2lee2FzznLQT+Zq2NAVhrHeBvScefS9zRWvs+8B5wmDGmEdjVezz+2DONMbuOxZMSEZnoEsO01z37Dl+7/40Rg77R7iWeTgC1b1Jh3+S214qNnWzujtAfddjcHWHFCHvItnT18caGTlq6Uq+k3SYQ3xHDP9iKJT335LbXB2fWkojdggG3ncrzq7fgOA6lRUGcERaOgBv03fqZAxXsFbhxDfistb+11n7DWpu8nnwGkJx73wjMHIPjiVx2U9IxPPcXEZFhpLO4YrTDtLalCweon1SKE2/7G93KhvMOnUVNaRHBANSUFvmuOP3z8mbfttfypnYuuGsZt/39fS64a5nvjh9ukWMnHsc6vkWPX36vzbfttXB2HQ1VpVSVhmioKvXNSKa9cEQmhFypw1cBJH9s6gNK4gsuUh1PrM/3O17haZP0der1/UAoFKC21j9tnqtCoWDe9n2i07XLT4V43Zraevnq/W/Q3TdAZWkRt5+3gMYUw44L5tRT9tJaeiIxykqKWDCnnlqfc0MvrGFzdz+Vpf7nnjC/kTteWz/YhxPmN6Y8992OPnoibv25nsgAvaR+D99vZg0verKF+82sSXnuNXcsJbG+I+bANc+8w4MXf2jYc/s3dFJdVkxvxK3v1x9I/Xvxwd3qeHrl5iHtVOf2EKCkOERZzKGkOER1dXnKn8NRtRXc8cUynrYtHGumceCs1MFhPivE11wm5UrAF2b74KsU6LXWOsaYVMcTmUK/42FPO+L5Gs/9hxWNOrS1+Z6Ss2prK/K27xOdrl1+KsTr9uTyDazb2ksAd6Xqk8ubOH3+8AsAKoBrT9tncGV+BanfPzs6wvQPRAlHohSHAnR09FKRYs/XCuDKE+by/OotHLnnZN/HfXRZEwMxd8hzIOa2d68e/nP9KfOmceff36erP8qkkhCnzJuW8nHXtHZt10517tqWTrbEV/H2RmKsbemkbcbwQ8ubO8IEcGvwOY7bTvW4r6zaTDQaY2plCV19A7yyahNHz5k67LkAu1eX8qUF7qylQvu9TCjE19zOqq9PPY0hV+rwrQcakm5rADaMwfH1njZJX6ee0SsiIoATH0n1n2sH7ry4R99qGXE+3OI1W2np7CccidHS6V8Dr7kjzJWPvM19y5q48pG3fYeWZ1S7Q8RRx+3tjBTBHrhlTjr7ozhAZ3/Ut/7cUXtM8W17PWk3+ba9jtxz8uC+u6ERCi+rtqnsrFwJ+BYDuxhjZntuOyJ+e+L44fHh3URdvQ8lHT8iccf4YoxZwGJrbROw1ns8/nVTfHGHiIgMY+HsOhpryqkpK6Kxptx33tgzKzfxnYdW8PTKzXznoRU8szJ1oOMaXSD5xIoWmjr66OyL0tTRxxMrWlKeu6Gjj2CAwX9+W5UNV38uleP3nkZxfPpgccBtp1JdWuTb3k4gMPT/FNJZKSwynJwY0rXWvmOMeQL4X2PMJbi19j4LHBM/5V7gp8BvjDE34hZQrgLuih//LfCsMeZvuMHfdcBj1tqVnuM/McasBaLAT+LniIiMq+aOcN4UJG+oLuOGM/cbVX/vfq1pu3aq4rwLZ9cxraqUzvAAVWX+JVGaO/t82177NEzCu6nEPg2ps2Cn7Dud1zd0Dmmn8k5rN5H440Yct51qOPVzC2by7KpWYrgZlc8tSL020LuaNhKN8fzqLb6FmrUvreyMXMnwgVs7rw14GfgP4Hxr7UsA1toO4GTgcOA13Ozex6y1nfHjL+EGgd8FXsKt0fd5z2P/HLgTuC/+74/ALzL+jEREPNIuXZIDRluOpCQU8G0nKwoEKC0KUjRCZuuQ3Wp9214vJw0NJ7e9zti/kYuO2I3dp1Zw0RG7+ZYkefiNjb5tr/mNNVwWr2t32fFzfAM4raaV8ZS1DJ+1NpDUbgFO9Tn/FeCDPsdvx91tY7hjUeDS+D8RkRFlIhPnLV3S1TeAbenK6YzN8qZ2LvzTcmIxhzuWrOOmT81PGcActGstL3nKihy0a23Kx7UtXURiDmVFISIxx/fnEAwEqC4N0RuJUV4cJOgTIL7Z3Onb9mruCPPn15vp6ovy59eb+ei86Sn7UF4c8m17LW9q5xfPrCYWc3i7pYs59ZUpf2bzG2u46VPzBxek+AWHIjsrlzJ8IiI5IVOZuFyZeD/a2nrPr95CLOZQHAoSi/kX8D1w15rBKnmBeDuVuopiNnf3s6EjzObufuoqUm9r1trdT0dflEjMoaMvSmt3f8pzj91rqm/b64kVLTS199ERHqCp3X9u4JcOm+Xb9krnZwZu0Hfxkbsr2JOMU8AnIpIknSLC6ciFiffpBLPpDDk+t7J1cPmFE2+nsrUnwtTKEmZUlzG1soStPZGU5z67qtW37bXHlEqqSkMUBQNUlYbYY0plynPf3NDp2/Y6Zm49Fx2xG7vVlXHREbulnJsIGqaV3JUTizZERHKJmTaJaMxhXVsvVaVFY5qJy9TE+9EOQaczrDy/sYZPH9jI4ytaOGneNN8s1BtJw6fJbS8zbRIBoD0cGfHnO6Oq1LftFXMcOvuiAHT2RX23KisvCfm2vZY3tXPLS2uJxRxueWktB+1aq2FayTvK8ImIJGnp6mNTVz/d/VE2dfWPcv/U0RntcGq6j3nxPcv56aKVXHzPct/HTmdY+f5lTfz+1fVs6o7w+1fXc/+y5B0st/lAUnHh5LZXS1cfG+KlVjZ09Pn+fGfUlPm2vf6etDVZctvrkwfMIBHiheLtVDRMK4VAAZ+ISJLnV28h5jiUhILERrH5/Ghlam7g4jVbWd8eZmtPhPXtYd9CxukMK9/+9/d9215nHtBIdWmIAFBdGuLMA1Kver3huXeHDP/e8Ny7Kc+tKS8mFISiYIBQ0G2n0pCU/Utue02bVEpdZTEloQB1lcVMm5T6XA3TSiFQwCcikiTdP/DNHWEWrdg4YgCXqbmB7b0Rog6D/9p7U8+Jg9HviDEQc3zbXi++u4WOPnfnio4+/50r3m/r9W17LZxdR3VpMeBQXVrsW7PvxHnTaKwupao0RGN1KSfOS10g+YkVLWzujtAfddjcHfFdtJEYpj13wa6+K5VFcpnm8ImIJElnHlZzR5iL732d3kiU8uIQN5y5X8qsWcZW6SZXKvEpbZfYEQPg6ZWbufpUUi5COHKPydy3vHlIO5U7lqzbrp2qtt3BM2t5zLPl2MEza1M+7ovvbmFrPIDd2hvhxXe3pHzchuoyPn/Irjz85kZO2Td1mRXYVsA5gJtl9CvoDO7vhAI9yWfK8ImI7AR3OLU3PpzaO2bDqTD6+X41ZcXukGfAHfqsKUs97PlnTwA3XNvrvENnUVdeRFEA6sqLOO/Q1OVIyotCvm2vMz/Y6Nv2SmcLtGdWbuIni1bx+oZOfrJole/2bh/dZxrFwQCBABQHA3x0n9TZQJFCoIBPRCRJouDw7195nwv/tJzlTe0pz23vjRCNucOd0djIw6mjlc58v4Wz62isLqWuopjG6lLfYc90Vr2Cu3o18c/PGfvP8G17LX2/3bftlbzlmd8WaI+vcAO8QFJ7OPMba7jp7Pn865G7c9PZGqaVwqchXRGRJN5VmSPtcVpTXkwoAIEAOI7/ooLE8G9P/wAVJUW+w7+2pYveSJRQIEBvJOpbPqWhuozvfdQMDkH7ZQ73bqgi8HozDm5gtHdD6tW0i9dsZWNHHwSgpz/K4jVbOX3+8IHclMoSasuKCA/EKCsKMqWyJPXPIY3h1DP2b2RdW+9gaRi/LdBOmlfP0ys3Dy4IOWle6np54AZ9R+0zg7a2Ht/zRAqBMnwiIknSWbSxcHYd06tKqSgpYnqVf3Zt8ZqtNLX30h4eoGmE4d+6imJaOvtY1x6mpbPPdzeK5o4wVz25kqf+uYmrnlzpmw2MOc6QFbJ+teoGF4PERl4MUldRTHckSiQaozsS9e1vOsOpy5vauWtpE1t6Ity1tMk323rM3HquPnUex86dytWnzvMtkCwy0SjDJyITxmiLE89vrOGqk/fm8RWbOGle/YjDfUWhIKVFDkWh0XyGDriRlt/KCuC5Va1E47FY1HHbqfqRTjHl+5dt2K6dKmu2LXsZwHEc3+zl1p4IdeXFRGMOoWDAd/eMxHDqaBbFpJNtBTfoU6Ansj0FfCIyISTmxEWiMYpDQd9FE80dYa5/7l16IlFWbepi3vQq36FXx3GYXl1Ge0+/b7C1cHYdkyuL6egdoLq8yDcbuHJTt2/by0ybRCAQYFNXHxUl/jtXdPYN+LaT+1tXEe9vhX9JlLqKYrb2RojFHILBgG+GD0a/6vXIPSdzx5J1qoEnspM0pJtFmai4L1II0nltjPbcdGrgLV6zlaaOPtp7B2jq6PMdek2UWukMj1xqpaWrj02d/YQHYmzq9N/B4+g5U3zbybr7B2jvHaC7P3UAB7BXfaVv22vFxk63Vl3MrVXnV7cvnf1x06EaeCJjQxm+LEkn2yAykSS2CeuJRKkoDnHDWfN9M3GjfR2ZaZPoi8bY1NpDdfnI++PGYs62VQU+GqrLuPBDu/HUqlaOmzPF93X8h1fWDZk/94dX1nH1acMHMFMqS5hUEqQ3EqO82H8RxL1Lm2jtdgOs1u4I9y5t4pKj9xj23KlJO0okt73ufq1pu3aq4dJE4JtYkDKW+w+rBp7IzlOGL0syVXFfJN+lk11L53W0YmMnLfHsWktnv2+2qqa8iBgQcyAWb6eyvKmdKx5+m/9b0cIVD7/tu6hgc3e/b9urtbufrv4YUQe6+mO0+py7cnO3b9trblJGL7ntVRIK+La3k1gA4rMQRESyQwFflmSs4r5IQYhn10ZIr5lpk4jGHNa19RKNOb6vo3RqtL3V3EUoAMUht5jxW82pA8nH3mohEnOIORCJOTz2Vuotuj44s8a37XXf8g2+ba/T5zf4tr02dPQRBIIB9w/Aho7Uw8oH7Vrr2/ayLV04QP2kUpx4W0RyhwK+LEm34r5IslyYA5qJPiycXUdjTTk1ZUU01pT7LhRo6eqjpaufrr4oLV3+c+IO3a0W2BZCJtrDSZRlSSxA8FsoUFkc8m17HTVnCsF4xBkMuO1UusIDvm2vY+bWc9ERu7FbXRkXHbGb7yrVfRomDcle7tOQOkg+cd40Gmvie9PW+O9Nqw+xIrlNc/iyqKG6TIGe7JBMzgFd3tQ+6j1kM9GHhuoyLjly9mBJFL/HfOytFgZibgg3EM+uperzlMoSqktDo5oTl05Zlpl15YTilVYC8XYqj765kXh3iTluO9VjHza7bsg+tof5BL7Lm9q55aW1xGIOt7y0loN2rU35uMFAgGmTSgbLpwQDqYdpG6rLuPlT+4+qlE3iQ+xozhWR8aeATyQPpVN3LR3Lm9r58t3LiMXgD6++z81n7z8mtd/S7cP/e3gFsRg8t3ozN59dkrIP6WTXYo5DR18UgEhf1LfgcHNHmJv+9h6RaIw1W3p8y7IsnF1HdVkRnX0DVJX6l1r5x/p237bXeYfO4tnVrYMlXPz2sU2nVp2ZNmlwzuNoMnHpfDDVh1iR3KUhXZE8lKnhMzdj5g71DcTwnY+Wbh+WN7Vzw/Pv+i5qSLcPM+vKB+fkjZRd++vKVt+2VzqLQV58dwtbewcYiMHW3gFefHdLynP3qp/k2/ZqqC7jZ6fuw2cOnsnPTt3HN5BKZ2cQTScRmZiU4RPJQ+kOn412h4mG6lLf9o72YXlTOxf+aTmxmMMdS9b51lNLpw815UVDypz4rabd2tvv2/byLgapKvUvMXL739/frp1q54oP7lrLY29vGtJOpbkjzA8e/yc9/QM8vXKz7767iVp1oxmKB2XiRCYiZfhE8lRDdRlHz5k6qmDva/e/wXXPvsPX7n/Dd4HFgTNrKAoGCABFwQAH+qwiBXfRxBsbOn0XS8DQIcdYzOH51amzYCfunbRQYO/UCwXSydqVhUK+ba90FoOkI3kY2W9YOZ19dwGmTSrlAzOqmOZTV09EJi4FfCJ5Kp0dJnojURwHeiNR3+HJrT0RJlcUD/7z2y0hkbX7/Svvc+GflvsO1aY75Hjzp/bneycZbv7U/r4B7daeft+2174zqnzbXonFIA7bFoOk8vlDdvVtez359ibf9vZGt+9uOkG9iExMGtIVyUPprJCtqyhmc3f/qPY4rYsHeVHHIRTwPzeRtUuUL/FbKDC/sYZvHbMnD7+5kVP2nT5mQ45lRSHftldVWZFv28tJyrwlt73O2L+RdW29PGE3caKpTzmcC1Cd9D2T214LZ9dRU15ER+8ANSPsu5upBTQiUjiU4RPJQ+ksKkhnj9N3NvcQcxyCgQAxx+GdzT0pz92nYRJRByJRh6jjX89teVM7P39qFW9s6OTnT60aceHGaKWTtUsnuxZIKlWS3PZa3tTOXUub2NLdz11Lm3yf2+cWzCQRkobi7VRWbOyktTtCJObQOsI+tqqBJyIjUcAnkmHpFCdu7gizaMXGEc9N5w+8mTaJ8uIQgQCUF4dGDAYCAXcOn1+QA9vquU2pKGbapBLfem73/WMDA447OjnguO2xkE5h4HS2CfvoPtOGBGYf3Sf14yYynUWjmJ84v7GG7xw/h/1mVPGd4+f4ZjrT2RlEK29FZCQa0hXZAaNd9ZrO0Gvi3KgDoQC+56azQjadcxfOrqOxupSeSJSK4pDvMKKZNomyoiA9kShlRf5BZ29/1LedbPSrikdfGPigWbW89F7bkLavIG5tmBE+Fh+552TuWLKOgVHMT1ze1M4vnllNLObwdksXc+orUwZ9J82r5+mVmwdXIZ80L/XuGaCVtyLiTwGfSJrSCeLSmVuVWFxRXBSkNxIb03lYow0GGqrLuOGs+aPfLSGR1RshGzgrqT5ecturuSPMeXcuHSw4fNtnDhwx6BvNcztx72nc9VoTHeEI1WXFvqt/H3urhWjMza5F47UA/eYnXnXy3jy1qpXj5kzxzdqlUyD5mLn1XH0qg7t9+G2XJiIykpwK+Iwx5wB3Jt38oLX2dGPMbsAtwIeAtcA3rbWPee57DHAdMAf4O3C+tXaV5/hXgcuAGuBe4BJrbXcmn48UpkRgFgoEBle9pgo40hl6rasoZnNX/6gWTDR3hLn43tfp6R+goqTIt0ZbuhKlVuoqin0fMxHMlhWFBucRpjo/ne3Hbnt5La3d7jzD1u4It728ln//yF4785QA93lt6e4nBmzpdkutpMygVrmlTZyk9nCaO8Jc/9y79A7EWNHU4bsrRyIbOJrVyuAGfQr0RGQs5Nocvn2BB4AZnn/nGWMCwINAK7AAuB24zxizO4AxZlfgIeAPwMFAM/CgMSYYP34G8CPgIuCY+GNcM35PSwpJYtXrho4wm7v7fQOzhuoyrjhhLsftVc8VJ8z1DaDSWTCRbo220c4jXN7Uzr/etYzb//4+/3rXMt8FCOn8HNztx4oJBqC6rNh3qPjVtW2+7R31h1fXEYt/HYu3Uzlx3jQaq+NzA6v95wYuXrOVpo4+2nsjNHX0+V6LRIHkcxfs6lt8WkRkrOVUhg/YB1hurW323miMORYwwJHW2k7gLWPM8cCXgO8CFwDLrLVXx8//Im7QdyywCPg68Btr7UPx4xcCi4wx37LWpl7eKDlptPO7MiWx6jUUCBB1HN9Vr+nslgDuQolgAGIj1F2Lnz3qGm1f/tMyOsMDVJUV+da2u+8fG4jG01rR+OKKVEHJ1p4IdeXFRGMOoWDA9+fgbj/mHt/aG+HFd7ekLF9SWhz0be+ojt4B37ZXQ3UZN589urmBLodtk/78zW+sUaAnIuMu1zJ8+wB2mNsXAkvjwV7CC8BhnuPPJQ5Ya3uA14DDjDEh3Izec577LsYNdg8cu67LeMiFArPprHpNJxOXWDBRU15MY3WpbxYsUaMNGLFG2xMrWmhq76OzL0pTex9PrEhdRHi72NEnlqyrKKa1u5/WngitI2T4/rR0vW/bq6q02LedbLTZy7M/2OjbTjbanUwWzq6jsaacmvIiGmvKfa+FiEi25EyGzxhTAuwJnGKM+U/cPzX3AN/DHdptSrrLRiBRxMrveC1Q5j1urR0wxrR67l9Qlje188or77Ngl+qCyySkM38uXcub2ke1F2m6+9g6DsRizkjrGmioLuN7HzW8sr6DBbtU+z5uokYbMFijLeXq3053W7AAbh4q0R7OJ/efwRNvuwsWQkG3ncqjb24ckg189M2NKX9u0yaVsrq1d0g7lbM/2MiSde1D2qmks4AmU4sgGqrLuOHM/VjXHWFmpf+8RxGRbMmZgA+Yi9ufbuCTuMHfdUAVbsCW/FeqD0j81ajwOV7haae6/7BCoQC1tRV+p+ScpWu38pU/LSfmONwaCPCHLx7CgbMKJ+Mwa1oVrd39g3PdZk2rGpNr5P253blk3Yg/tx4CVHZHqK4up7Y29QKEXaZWDgZFOG47VX+b2nq54pG36eiN8OfyYu6+YCGNKR774aSabA+v2MQnFuw27LmfOmQWD77RTDTmUBQM8KlDZqXswxwC1JQVD65kndNYm/L5LW/u3K6d6nG/cYJh8S0vDy7a+MYJJuW5s6dXEwowWJ5m9vTqlOe+uqGTqAM1FSV0hgdY1x1h71mpF0J8YsFuKX9OO6O2toJ9Q0Gi0ZGHdCW3hELBvHufF5euXXpyJuCz1r5pjJlqrU3sfr4svljjj7irc5NTB6VAYlZ7mO2Dt1LcRR5hTzvV/YcVjTq0tfmeMm5GO2/t0WVNRGMOxUVBIgMxHl3WxO7Vub+Z+mif39qWTqZ45s+tben0fX5p/9zi5TL8fm7pZJX+vrqVUIDB7cf+vrqVBY3Vw55767Pv0Nzhfi7pifRx67OrueToPYY9t768aLt2qt/V3atL+fSBjTy+ooWT5k1j9+rSlOfe+uw7bInPxdvSE/Htw/yGKla2dA9pp3rcpe+24ol7Wfpua8qf76PL3GR8WdHI12JmZTGO49Dc3ktFSREzK4uz9pqtra3ImfcLGT1dt/yla7e9+vrUuw3l1Bw+T7CXsAIoxh2ObUg61gAkyvWv9zmeCPoGjxtjioApnvtnxWjnHqUzby2xSf1oisBmWiaeX6LMSXggOmKZk+aOMBffs5yfLlrJxfcsH9XPbTTlMhLDyo7D4LCy3+MGAu6Hh0AA38ddubnbt+219/Sqwel1gXg7lfuXNfH7V9ezqTvC719dz/3Lkmc/bPNGUtYuue113qGzqCoJEgCqSoKcd+islOc+/OZG37ZXOtcCcMfMvf+LiMh2cibgM8acYYzZGJ/Ll3Ag0Ia7yOIAY0yl59gR8duJ/3+E57Eq4vddbK2NAa94j+Mu9hgAlo718xitdIKcdPZNTZR9OP+I3bNa9iFTzw9gIBqjbyDGwAjDZ9vKZQyMabmMuopimjv6WNceprmjz3exwrRJpdSWF1MUDFBbXuw7d+3oOVN82157TK0YEvDtMTX1sMb//v1937bXB5L2ok1ue63Y2ElnfwwH6OyP+e71esq+033bXvMba/jWMXuyT0MV3zpmT99rYVu6cID6SaU48baIiGwvZwI+4Fncv13/ZYzZyxhzMvDz+L+/Au8Btxlj9jXGXIa7MveW+H1vBQ41xlxhjNkH+B1ucean4sdvBC6NB5UHx9u3ZrMkSzpBTrobo89vrOHSj5iMBHujzdql+/wCwKauPgLxdiqL12ylpaufcCRGS1f/iPXnwImvNB05+zNtUikfmFHlG5QB/P7l94cMT/7+5dQB1BMrWtjcHaE/5rC5O+K7QnZKZQk1pSFKQkFqSkNMqSxJee5zK1uH1JR7bmVycnybSMzxbXudeUAj06tKKC8KMr2qhDMPSL1g4s/Lm33bXmfs38jl8T1kLz9+TsqSLLBt+7G3mjv5xTOrfWsBpvvaEBGZqHJpDl+rMeZE4FrckirtwE3AT6y1jjHmNNxAbgmwGviEtXZN/L5r4sWVfwlcgZvxOy2e3cNae1d8p47f4s7dewC4dDyfX7J0/lCluyo0U9KZu5b2H+JRbtEF4DgOTmLJqY9EuYzEbhR+5TLSeW7Lmzt820MeN40VsjHHob3P3WO2P+q2U3ltXbtv2+vIPSZznycYO3KP1EOkDdVl/PiUeYOrlf1+12YkzatLbic7Y/9G30AvIZ3tx3LltSEikutyJuADsNYuxd0JY7hjq4Cjfe77GPCYz/GfAT/b2T6OlXT/UOXCxujplERJ5/nZli4cx6F+UumI+83uMbWCYHzBRigQ8B3KbKgu45IjZw+W4RipD6N9bh/ecwr3v75xSDuVj+4zjQeWbxhccfrRffz3b01upyodMqk05Nv2Ou/QWTy2ooWeSIyKYv+5ds0dYa56ciWRaIznVrf6Br57T68iSPPgylu/eYTpSHf7sVx4bYiI5LqcCvgmmlz5QzXalazp7PUKo39+6WQDt/ZEqKsY3e4Oy5vaueLht4k6Ds+vbuWms0tSZorqKorZ1NVHLAbBIL7P7fA9pvD42y2EIw5lxQEO3yN1wJeOTV39vm2vg3at5aX32oa0U3lsxUZ6Iu4AcE8kxmMrNvKFQ4cvTeIdih8p+F44u46GmtLBHTzGquBwYj7laGoiiojI6Cjgm+DSGcpM7PUagMG9Xsfij3E62cC6imK29kaIxRyCQf+g87G3WojE3P5GHIfH3mpJ2V9339oAgYCbr/J7bnUVxfQPODhA/4Dj24d0tio7aNeaIatiD9o19c921uRy37bXg683b9dOFfClOxRfFAhQWhSkaBRD8enQ9mMiImMrlxZtSBaku0I2EK8pN8Z/30e9jVViH9sZ1WVMrSzxzfA1VLlzypykdiqO4xAIBHBGKO+x9P12Bhz3cQcct51KbyTq2/Y684BG6sqLKApCXXmR74KJx95s8W17zW+o9m17NVSXccUJczlur3quOGHuyEPxaIWsiEg+UMCXRaNd8ZpJZtokAoGAu0I2EPDN6AzuGVo2uj1Dn1m5icseeotnVm7yPQ9G/7Mw0yZRHAy4dfiC/v09cd40plQUUxwMMKWimBPnpZ4/l5gLOBBfweo3NzB54YXfQox9G6p8214tXe5+t9EYdPZFaelK/bgdfQO+ba+Ljtqd2rIiQgGoLSvioqN2T3luYg7fU//cxFVPrhxVTUStkBURyX0a0s2S5o4wF9/7+uAK0hvO3C978/lGWbi2obqM752016hWcD6zchPfeWgFAE+v3MzVp5JyAUI6w8rAqFf0tnT1saUngoO7a0RLV1/Kx31uVeuQodfnVrWmHFI8ZLda7l22YUg7lRPnTeOPS9fT0TtAdXmRb9D52FstDMSHoAdi/kPQ6ew321Bdxu/P/eCoF9CMdg6fVsiKiOQPZfiyZPGarTS199IeHqCpvXcU9eQyw7Z0EYk5lBWFiMQc32G5dLI/j8f3eg0ktVP2YZTDyrali3B8l4vwCLtc3PDsu0Pq5d3w7Lspz125qdu37RUMBKgtK6KsKEhtWRFBn8Czpcst/DwQc2jvHfDN2qUzBH3M3Pohde1SBdODjz3KIfN0s3ajfVwREckuZfiyKhD/6z7GE+LS4K5O7R9c9eq3ACGd7M9J8+p5euXmweDlpHmpA5J0goyY49DiWb3qV6vu/fZe37bX0XOm8KIn6Pbb5SLmOLSF3SHU8EDMtw/pZO1OnDeN+1/fQFdflEmlId9sYHNHmLuXNhGJxrh7aROH7+6fcR0tZe1ERID+fgJtbQTb2whs3UqwfSuBtjYC7W0E29oItG0d+n97G4G2Nt+HbL/vL0T3MuPT/2Eo4MuShbPraKwupScSpaI4NGYlLcANBl7d0MnMyuIR/2AvXdc+OG9tIOawdF17yoAkncDsmLn1XH0qgzXw/DJQDdVlXPih3UZVL++BZRu2a6d67Jk1ZWzqjgxppzKlsoS68iLCAzHKioK+u1wMt2AiVR/Sydo1VJdx86f2Z113ZMRrl07wna5cKRckIjJENEqgo31bIDbQS+m65nhA1jZ8QNbeBpHUi/vGVTC7g6oK+LKkobqMG86aP+pMymhr5SXmwyUK/Y40H84tR5K6ndzndLI/86ZXERxhIQjE6+U98jaxmMPz77Ry06dS18trag/7tr3KS4p82151FcV09UWJOg4DUf9SK5u7+33bXomsXaJWnV/WDtyf8d6zJtPWlvo6gBZMiEiOcBwC3V1usNXWRrBt67aALBGAbdkSD8S2DgZk9KYecRmtYDBApc9WkTulqAinppZYXZ37f20tTk0tTm0tsZpanLo6YrV129q1tTjVNVCUu2FV7vZMBqWzwCOR+ampKKG9p3/EzE/yalS/1anp9vnLf1o2GOjc/Kn9U/bj+dVbGIg6BAIwEHV8t9I6eFYt77U1D2mn0lBV4tv2SqfG4Adn1vC6p17eB2emrhfXUF3G14/eY1TZy3Ro6FVEfIXD24KuwQzY1sGAbDAT1t5GcOtWAm1bCXR2jvy4WebU1AwGYsX1U+mrrBoaiNXWEqup2xaQ1dRAqX9JrolCAV+WpLMydfGarazdGv801B1h8ZqtnD5/xrDnJjI/neHRZX5O3Hsa9y/3ZKD29p83dt4dS+kID1BdVsRtnz0wZZ+feLuFpnZ3gUJnX5Qn3m7h84cMv6VXRUkQh22LhCtKUqe9zzt0Fk/aTYPz3Py2CVuZlK1MbicLBBhVHb4zD2zk4RUbB1fennlg6hWy6WQv06WhV5E8MzBAoL1923ywwXlgnszYMAEZ0dT1O3OBU1HhZrhq6wYzYW72q24wQzY0IKuFyspR7Z3up7a2gu4RRkNkGwV8WZLOHKy/rW7drp0q4EsUzn1lfQcLdqke1R69n1+wKw+/uZFT9p3ue/5ti9fSGi903NoT4bbFa/n3E/Ya9tx0horf3tjt2/ZasbGTzj73za+zL8qKjZ0p+3zALtW8vqFzSDuVRI3BRBZ1pDmVlcUhAkBFceo9bMHNXsZiDsWhIJFozDd7KSJZEIttmxeWHGwlzw2LZ8KC7W3Ql3rFfU4oKRkcehwaiKUemnSqqrM+z0wyRwFflqQzB2tla7dv26u5I8yVj75NV1+Uh0pDvkOp4NbL+8miVQC8vqGTuorilAsQ/tHU4dv22mNKhW/bK7Gi19tO5e7XmrZrp+pvKBgcsv455PNG1lBdxin7TuORNzdy8r7TRr3DxEjB+pF7TuaOJeuIRGMEgwGO3HNyyscVkTjHgd5ezwrJtqEZsfbhV0gGutLf7SUYDFCXqXlgyQIBN8BKzPlKBGB1k7fdNpgJ23Yexf77louMhgK+LElk4kZTxPi0/Rq48YX3hrRTeWLFtqHUjvAAT6xo4fM+w55/Xt68XTtVAHXALtWsbu0Z0k4lhuPb9kreHs1vu7TqsiLftteRe07mD6+uGyw54xds3b+safBnfOML71FTVswZ+w8/VJtOsD6/sYabPjV/8Doruyd5LRIZOh8sOfvl/T8ekI1UqiIXOFVV24KvpIn4g0OTiSxYYkiyPPX+1SK5SAFfljR3hPnK3cvoj8Gdr77PfV86JGXQ99F50/nDK+sG5619dN70lI/7TmuPbzvZ3KmVQ+rPzZ1amfLc8w6dxcNvNtMXhdIQvvPnnl+9Zbv2Fw7dbdhzH1i+Ybt2qmDrcwtm8tzq1sFVyJ9bMDNlH4BR7yLy8Jsbt2un6kO6CybmN9Yo0JPMiUYJdHaMOA8sEYgljudMqYpUysrik+6TArHklZGe25zKSWkPSdbWVoy4Kl6kECjgy5Kv3P0P+mPu1/0xt/3ABQuHPXfxmq109kVxcOet+S3aKC8O+raTnXlgI/ctb6K7P0ZlSdB3AcL/LH6P+PQ5+qJu+/IThi8iecq+04fMnztl39RB6r7Tq3i7pXtIO5X5jTX85OPzBle9+gVSz6/eggOUFo08fy6d/oIWTMgIkktVtA/9P9C2NR6AbR0SkI1FqYqMKsBSFSIThV6FWbKuo9+37fWUbRmyRdhTtiVlwBdIWvWU3E724rtb6IpHnl39MV58d0vKzNbjb7ds104V8CUeI7EYJNVjApy3cBaPrmimdwDKi9x2Ks0dYW7623tEojHWbOlh3vSqMZk/l05/JY/19W0LvLZsGX5ockhA1kagI/VcVa9gMMDk8ZoLlsRbqsL7/9ChycnbsmEqVSEy4Sjgy5J9plXyliertc+01EOp/9zc7dv2SjfD918vvrddO1WwM7OmnH96VtvOrBmbOSyPrdhIr7tTGb0DbjvV8G86q5vTnT93xv6NCvSyYbtSFZ7tjIYbmowHZDlfqqKycujE/JFKVdTWQUXFTpeqEBEZjgK+LLn93IM4/NrniDhQHHDbqezXUMWz72wd0k7lqX9u3q79b0fvmfL8voGob9vrso/M5fw/LsPB3f33so/MTXnu/cuahqz+BVIGU48kzZ975M3UAV+6O0xo/twOchwCXZ3bJugPmYg/3NBkvHp+X+qdT3JCBktVaC6YiOQyBXxZ8pnbXiESH/2JOG77zvMWDHvuio1dvm2vgaQhpeR2sk/Mn8HvX10/pJ1Ka3f/kKHlVp8txdJZBHHyvtOHrEI+2Wf+3ITfYaK3d/uti5LngyVlxHK+er5KVYiIZJwCvixZ2drr2/Zq6Y74tr2O3H0y973ePKTt59+O3pN/tnSx5P12Dtq1xjcb+PiKTYCb3XPi7VQlXNJZBJHI5rk18KanzO4l5NyCiUjEE4ANMwzZtnXYlZKpVg5ncy6Yl0pViIgUDgV8Bea8hbN4atVmuvoGmFRa5LsAAtyh15fXtgPw8tp27l/WlDITlyiQ7HjaqaS7COILh+42YqCXlljMLVXhGZLcvnirJwsWP05/6qxlThiuVIUnOzZWpSpERKSwKODLkkNn1QwGWon2WJwLUF1aRHEoSHnRyH/k0xl6PWZuPVefymBJlFTZvYTtFkE4DnR3Dy1RsV0gtnX76vk9OT4vyq9URaqAzKdUheaCiYjIWFPAlyXXn7U/x/7meTr7HapKAlx/1v4pzy1LCtyS216Jbb+mV5fR3tPvu4oV3KHWt9dtoSbcRU1vF19qqKHkyeYhAZk3E/aJrVs5o72NQHt7ysfMFSpVISIi4lLAlyWX3LOMzn53cLSz3+GSe5YNDfpiMQiHCfSFeef1Vczq76dsoI+ygX4i6yMU17YQ6OsjEO6F3l4C4TCBcJgj2rvoXbaWokg/5QN9HLWkkopYhEA4DH3h+Hm9BMJ9EO7l/K4uPheJEh6IUVYUpOzhUEaft0pViIiIjD8FfFmy5P12pnZv5fuL/ou63nbKB/qpvanUDcb6+qCvb/Dch8IR+qPbJvGXhAJU/d/wKxTLi4s5q6SU/uJSQhXlFG+sxCkthbJyN6gqL8cpK4PSMvf/oiJKHnuEklgMp66OgTEuVSEiIiLZp4AvSw7atYaVb7fTXlZJT3EpNXVVRPbZBae8zA3O4gGZU15OqKyMu/6xkWVbIsyZOYWvfGQe7WXlUFaKU+YGcE5pGZSVQcjN0KUzD6zn0ssy+VRFREQkyxTwZcn1Z+3PJffA9yov4aBda7j+rP1JvX8GfOYT8Jn41wPj0UEREREpGAr4sshvoYaIiIjIWJkwAZ8xphT4DXAW0Adca629Oru9EhEREcm8iTTr/ufAYcDxwJeB7xpjPp3dLomIiIhk3oQI+IwxlcAFwDestUustQ8CVwOXZLdnIiIiIpk3IQI+YH+gFHjBc9sLwAJjTGYLz4mIiIhk2UQJ+GYAW6y1Yc9tG4ESYFp2uiQiIiIyPibKoo0K3IUaXol2yr20QqEAtbUVGetUJoVCwbzt+0Sna5efdN3yk65b/tK1S89ECfjCbB/YJdopqxNHo07ebmKfTuFlyS26dvlJ1y0/6brlL1277dXXV6U8NlGGdNcDdcaYEs9tDbhZvi3Z6ZKIiIjI+JgoAd8/gH7gcM9tRwBLrLXauEJEREQK2oQY0rXW9hhjbgduNMach5vd+xZuqRYRERGRgjYhAr64bwK/BZ4GOoAfWmv/lN0uiYiIiGTehAn4rLU9wOfj/0REREQmjIDjONnuQy7bBLyX7U6IiIiIjMJuQP1wBxTwiYiIiBS4ibJKV0RERGTCUsAnIiIiUuAU8ImIiIgUOAV8IiIiIgVOAZ+IiIhIgZswdfgKlTFmT+BXuFvFdQN3A1dYa8PGmN2AW4APAWuBb1prH8tWX2UoY8zewPXAQqAVuN5a+/P4MV27HGeMuQWYa639cLy9P3ATsD+wArjQWvtK9nooXsaYc4A7k25+0Fp7ul5vucsYUwz8DPgXIAD8Cfi6tbZP1y09yvDlMWNMCfAXoA93n+DPAqcDVxljAsCDuIHEAuB24D5jzO7Z6a14xd/EHsN9kzoAuBi40hjzWV273GeMOQ4439OuxL2ei4GDgOeBR4wxVdnpoQxjX+ABYIbn33l6veW8nwNnAKcBHwc+ivteqeuWJmX48tshwBzgEGttF7DCGHMlcC3wCGCAI621ncBbxpjjgS8B381Wh2XQLsDfgYuttb3AKmPMIuBoYAO6djkrHtz9F/A3z81nAxHgUmttzBjzDeDk+O3/Pf69lGHsAyy31jZ7bzTGHItebznJGFMLfAU4xVr7t/ht38d9XR2DrltalOHLbxb4WDzYS3CAWtxhwqXxF0LCC8Bh49c9ScVau8Zae7a1ttcYEzDGfAg4CngKXbtcdxXw1/i/hIXA36y1MQBrrYMbEOqa5Y59cN8zk+n1lruOAHqARYkbrLW3WWs/iq5b2pThy2PW2k14XgjGmCBwSfy2GUBT0l02AjPHrYMyWuuARuBh4F7cOZm6djnIGHMYcBbwAeBSz6EZbB9MbMQdrpcsi09/2RM4xRjzn7hzwe4BvofeK3PZnrjbm55jjLkCmIR73f4fum5pU8BXWK4FDsSdz/BN3Ll9Xn1A6Xh3SkZ0Gm7A91vgl0AFunY5xxhTCvwOd8L4VmOM97CuWW6bi/v3rhv4JG4gcR1QBZSha5erqoDdga8CX463f4t7LfWaS5MCvgIQn7z6K+Ai4Exr7ZvGmDBQk3RqKW56XHKItfZVAGNMBe7E41vRtctF/wGstNbeM8yxMNv/odE1yxHx98Sp1trW+E3L4u+bf8Rd5anXW24aAKqBz1lrVwMYY74F/B64DV23tCjgy3PxYdzf4a7QPdta+2D80Hrc8hBeDbgLAiTLjDG7AAdZax/y3PwWUIJ7jfZLuouuXfZ9BphhjEnMmS0BQvH2nbjXyEvXLId4gr2EFUAx7rCg3itzUxMwkAj24ixuVrYZvU+mRYs28t81uH+IzrDW3u+5fTFwQHxFYcIR8dsl++YB9xtjpnluOwjYhDvxWNcu93wYd+7eAfF/twCvxr9eDBwezxolsu4fQtcsJxhjzjDGbIzP5Us4EGhD75W57CWgyBjjDez2ATrjx3Td0hBwHCfbfZAdZIxZiPtLfzluettrE7AcN2v0feAU3CGpfa21a8atkzKseB2+JbgLNi7FnVP0O+DHuMWYde1ynDHmR8AR1toPG2OqgVW4RWFvBC7A/SA2J2kVoWSBMWYKbkbvUdzX2FzcgP163KK+er3lKGPMn3EXYnwZd97e/wL3A99B1y0tyvDltzPj//8EN43t/RfAXQwwDTew+BfgE3oh5AZrbQS3TtsA8DJwM+48zF9ba6Po2uUVa20H7vU8HHgNN7v3MQV7uSE+nHsisBvu9fkv3F1RfqLXW847Fzewexr4M27x7Mt13dKnDJ+IiIhIgVOGT0RERKTAKeATERERKXAK+EREREQKnAI+ERERkQKngE9ERESkwCngExERESlwCvhERMaYMeYcY4xjjLk0230REQEFfCIimXAO7s4bn892R0REQAGfiMiYMsZMxt3V4fvAfsaYA7PbIxERKMp2B0RECswngT7gbty9Pc8DlgIYY4K4e7mej7v94S/jx8+31v7VGFOKu7frZ3E/kD8FfNVau3F8n4KIFBpl+ERExtZngMestQPAg8BnjDHF8WOX4w7zfhY4HnfD9z089/0xcFj89qNx36MfNsYExqnvIlKgFPCJiIwRY0wjcBTuJu8A9wNTgY/F2xcB37PWPmGtXYob/AXi960ALgEutNa+bK19A3fj+H2BI8btSYhIQVLAJyIydj4NRIFH4+2XgSbg88aYqUAj8EriZGutBbbGm3sAJcDzxpguY0wXsAkoA/Yan+6LSKHSHD4RkbFzDlAMtBpjErcFgZMBJ95OHp5NtBPvx0cD7UnnbBrbborIRKMMn4jIGDDGzAUOBr4BHOD5dwpu5u4zuNm+gzz32QOojTdX42YHp1prV1lrV+EGetcCu43DUxCRAqYMn4jI2DgHaANustaGPbe/YYx5EXe+3m+A7xlj1gAtwK/j5zjW2k5jzC3A9caYL+MGhz8F5gMrx+cpiEihUoZPRGRsnAPcmRTsJfwWN7P3MHAfcA/wNPAIMAD0x8+7FHgSt6TLK0A5cIK1tjezXReRQhdwHGfks0REZKcZY04CllhrN8Xb9biZvt2ttWuy2TcRKWwK+ERExokx5gHcRR3fwV3E8UNgN2vtIVntmIgUPA3pioiMn0twh3BfBBYDIeATWe2RiEwIyvCJiIiIFDhl+EREREQKnAI+ERERkQKngE9ERESkwCngExERESlwCvhERERECpwCPhEREZEC9/8BQNwU7asBOWAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"try_parameters(w, b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "642e7247",
"metadata": {
"id": "642e7247"
},
"outputs": [],
"source": [
"targets = non_smoker_df['charges']\n",
"predicted = estimate_charges(non_smoker_df.age, w, b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4401f23c",
"metadata": {
"id": "4401f23c",
"outputId": "5ca5dfdf-c1fc-40e2-d318-c74d4fa9bd91"
},
"outputs": [
{
"data": {
"text/plain": [
"8461.949562575493"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rmse(targets, predicted)"
]
},
{
"cell_type": "markdown",
"id": "996b8371",
"metadata": {
"id": "996b8371"
},
"source": [
"Here's how we can interpret the above number: *On average, each element in the prediction differs from the actual target by \\\\$8461*. \n",
"\n",
"The result is called the *loss* because it indicates how bad the model is at predicting the target variables. It represents information loss in the model: the lower the loss, the better the model.\n",
"\n",
"Let's modify the `try_parameters` functions to also display the loss."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15dbbaf1",
"metadata": {
"id": "15dbbaf1"
},
"outputs": [],
"source": [
"def try_parameters(w, b):\n",
" ages = non_smoker_df.age\n",
" target = non_smoker_df.charges\n",
" predictions = estimate_charges(ages, w, b)\n",
" \n",
" plt.plot(ages, predictions, 'r', alpha=0.9);\n",
" plt.scatter(ages, target, s=8,alpha=0.8);\n",
" plt.xlabel('Age');\n",
" plt.ylabel('Charges')\n",
" plt.legend(['Prediction', 'Actual']);\n",
" \n",
" loss = rmse(target, predictions)\n",
" print(\"RMSE Loss: \", loss)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfadd017",
"metadata": {
"id": "bfadd017",
"outputId": "27fc444d-6a4e-4537-ab9c-528ad7b03da9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RMSE Loss: 8461.949562575493\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF7CAYAAABIAFZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB1w0lEQVR4nO3deXxcVd348c8sSSZ70jZpGrrRhUMLtCAUCoLIIosim2wuKI+AIqAooOiDuPOgqCiyyyPCD1H2TaCABZ6ylqWUlqUc2kIpbZomTbMnk8xyf3/cO+nNNPdmbpvJLPm+X6++mjP3zuTM3GTyne8553t8hmEghBBCCCHylz/THRBCCCGEEOklAZ8QQgghRJ6TgE8IIYQQIs9JwCeEEEIIkeck4BNCCCGEyHMS8AkhhBBC5LlgpjuQzeLxuBGL5WbZmkDAR672fayTa5eb5LrlJrluuUuu3fYKCgJbgJqhjknA5yIWM2hr68l0N3ZIVVVJzvZ9rJNrl5vkuuUmuW65S67d9mpqyj92OiZDukIIIYQQeU4CPiGEEEKIPCcBnxBCCCFEnpOATwghhBAiz0nAJ4QQQgiR52SV7g4yDIOurnZ6e7uIx2OZ7s52Nm/2YRiyXH0ofn+A4uIyysoq8fl8me6OEEIIkXYS8O2g1tZmfD4f48ZNJBAIZl3gEAj4icXime5G1jEMg1gsSmdnG62tzYwbV5vpLgkhhBBpJ0O6O6i/P0xV1XiCwYKsC/aEM5/PRzBYQFXVePr7w5nujhBCCDEqJODbYQY+n7x8ucq8djLkLYQQYmyQiEUIIYQQIs9JwCeEEEKIjGvsCLNkzRYaO2S6TTrIoo0x5pRTvkhj46aBdiAQoLa2juOPP4kzzzxrRL7Hd75zNvvttz9nn/1trrzyF8RiMX72s1+73scwDB555AGOP/5k/H5/yvcTQgiR+xo7wlz04DtEYnEKAn6uPXlP6ipCme5WXpGAbwy68MLv87nPHQNANBrlzTff4Le//TUTJkzg2GOPG9HvddFFl6Z03ltvvckf/vBbjjvuRPx+f8r3E0IIkft0UxeRWJyyoiBdfVF0U5cEfCNMhnTHoNLSMsaPn8D48ROYOLGOY489jn333Z/nn39uxL9XWVkZZWVlw56XXDMw1fsJIYTIfaq2jIKAn66+KAUBP6p25N7/ZajYJBk+AUAwGCAYLODCC7/FjBkzefXVV+jr6+P22/9Ff38ff/rT1bz++qtUVFTyuc8dwznnnEdBQQEAS5Y8x003XceWLU0cd9yJg4K35KHZxYuf4vbb/8amTRuZMWMmF110KePHT+B73zsPgM9+diF/+cvNLFr02KD7vfTSC/ztbzezbt06Jk2axNlnn8fhhx8JwIUXfov99tuflStX8NZbb1JTU8P3v38pBx548Gi+hEIIIXZQXUWIa0/eE93UhaotG7HsngwVbyMB3wgqfPQhQg89MKrfM3zSl+g//qQdvn80GuWll57ntdeW8t///XMeffQhnnji3/zxj9dTVFRIZWUl5577DWbMmMnf/vYP2tpa+cMfriIajfLd7/6Ajz76kJ/97Mecf/73WLjw09xzz128885KFiw4YLvv9cYbr/HrX/+Miy66lP33X8ijjz7ED3/4fe6771GuvPJqLr/8Rzz00BNUVVWzaNFjA/dbtux1Lr/8hwPf45VXXuSXv7ycuro65s7dE4A77/w7l1zyYy655DJuvvl6fve7K3nggccIBAI7/NoIIYQYPXUVoREPxmSoeBsJ+MagP/3pav7ylz8C0NfXR1FRiNNO+wpHHXUsjz76EAsXHsT8+XsDZpDW0LCRW275O4FAgGnTpnPxxZdx8cUX8p3vfJcnnvg3e+01n9NP/yoAF198GS+99PyQ3/fhhx/giCOO4uSTTwXgvPMuBAy6urooL68AoLp6HMHg4B/LBx64l8985jBOO+0rAEydOo333nuHf/7zTn7zm98BsHDhQXz+818E4BvfOJuzzvoyzc3N1NXVjdwLJ4QQIqekc6g410jAN4L6jz9pp7Jto+W//utcDjvMHA4tLCxk/PgJgzJhdXX1A19//PFHdHV1cswxnx24zTAMIpEImzc3sm7dh8yatdvAsWAwyMyZ29p269Z9xBe/eMJA2+/3c/75FwHQ0LDBsb8ff/wRX/ziiYNu23PP+Tz66IMD7V12mTzwdWlpKQCxWNTxMYUQQuS/dA0V5yIJ+MagqqpqJk+e4ni8sLBw4OtYLMbkyVO4+uo/b3debe1E66vBCy6SM3QJBQU79uNWVFS03W3xeIx4fNtewcFgwXbnJC8EEUIIMfakY6g4F8kqXeFqypRpNDVtpqKiksmTpzB58hRaWlq4+ebricfj7LrrTFatem/g/Fgsxtq1q4d8rMmTp/LBB3qgbRgGX/vaqSxd+rLrfsRTp07nvffeHXTbO++8zdSp03by2QkhhBBjgwR8wtX++y9k0qR6fvWrn7J69Qe8885Kfve7X+P3+ykqKuKLXzyR1as1f//7raxfv47rrvsTzc1NQz7WqaeewbPP/od///thNmz4hJtuuo6Ojg723HMexcUlAHzwwfv09fUNut8ZZ3yVJUue5d57/8knn6zn3nv/yfPPPzcwF1AIIYQQ7iTgE64CgQC/+92f8PsDfOc73+Syy37A/Pn78OMf/xSAKVOm8rvfXcOzz/6Hs876Ku3tbRxwwIFDPta8eXvzox9dzp13/p2vf/0M3n77La6++s+UlZUxc+Ys9t//QC644FyWLn1p0P12330uP//5lTzyyIN8/eun8/jjj/KrX13FggUL0/78hRBCiHzgk3lOziKRmNHW1jPkscbGj6mry94hxUDATywWH/7EMSxbr2FVVQlOP3cie8l1y01y3XKXXLvt1dSULwP2G+rYqC7aUErtDlwPLARagOu11r+3jt0CfCvpLj/QWv/ZOn4YcC0wC3gNOEdrvcb22N8FLgMqgfuBC7XW3daxIuA64FSgD7hGa311mp6mEEIIIURWGbUhXaVUAbAIWA/sDVwAXKGU+qp1yh7AD4FJtn9/te47BXgU+Adm5NoIPKKU8lvHTwZ+A5wPHAYsAP5o+/a/Bw4EjgS+DfxUKXVGmp6qEEIIIURWGc0M3y6YmbkLtNa9wBql1GLgUOAuYA7wU6114xD3PRdYkcjKKaW+iRn0HQ4sBr4PXKe1ftQ6fh6wWCl1KWbNkHOBL2qtlwHLlFJXAxcCd6fryQohhBCZ0tgRltpzYpBRC/i01uuA0wGUUj7gIOAzwAVKqTpgHKAd7r4QGNi+QWvdo5R6EzhQKfUcZkbvN7bzl2I+t32AGFAEvGg7/iJmdjGgtY7t/LMTQgghsoPsHyuGkqlVuhswg65XMOfbzQWiwK+VUhuVUiuUUmfZzp8ENCQ9xmZgMlAFhOzHtdZRzDmCk637btVah5PuWwjUjtxTEkIIITLPvn9sJBZHN3VluksiC2Rqp40TgHrgJuBPbMvsrQD+AnwWuEUp1a21vg8owVxsYdeHmbkrsbWHOh50OIZ13FEg4KOqqmTIY5s3+wgEsruqTbb3L9N8Pufrm0mBgD8r+yXcyXXLTfl43RbMqiH0ynp6InFChUEWzKqhqqo4090acfl47dIpIwGf1voNAKVUCXAHUAH8S2u91TplpVJqNvAd4D4gzPbBWRFmFi9saycf78GcwzfUMazjjmIxw3HJt2EYWV32RMqyDM8wnK9vJkmpgdwk1y035eN1KwGuOWHuwBy+ErLzvW5n5eO121k1NeWOx0Zzle4uSqnjk25+D3NotdwW7CWswlzoAbARqEs6XgdsYlvQN3BcKRUExlvHNwLVSqnCpPv2AcnfUwghhMh5dRUhDp01QebuiQGjOeY3B3hQKWWfN7cv0Az8RCn1WNL5+wDvW18vBQ5OHLAyg/sAS7XWceB1+3HMEixRYDnwFtCPuUgk4WBgmTXXTwghhBAir41mwLcEM6N3u1JqjlLqOOC3wJXAv4FjlVLfU0rNVEpdCHwds34ewG3AAUqpy5VSc4G/Ydbze8Y6fiNwiVLqZKXUflb7Nq11l9a6B3PY+Eal1P5WlvFSzCLOY9p//vMkBx+8H//61z9Svk9PTw9PPPHvEfn+Tzzxb0466fMj8lhCCCGEcDZqAZ/WOgJ8ATPz9ipwC/Bn4C9a6/8Dvoy508a7mAWUv6y1ftG67zrgZOBM4A1gInCCld1Da303ZlmWmzDr8r0BXGL79hdjZgGfBW4GfqW1vjdtTzZHLF78FJMnT+HJJ5OTq87uvvsf/PvfD6evU0IIIYQYcaO6aENr/QmQPI8vcexewDEI01ovwtypw+n474DfORzrAb5h/RNAR0c7r722lJ/85Gf86ldX8MEH77PbbrsPez/Ze1kIIYTIPVK3Y4z6v/97loKCQg4//HNMmTKVJ57YluWLxWL87//ezIknHstRRx3Kj398MVu2bOGJJ/7N3/9+K2+/vYKDDzb3Zj7llC8Oyvi9+eYbHHzwfkSj5vTId95Zyfnnn8MRR3yaI488mIsv/i7NzU2j+lyFEEKIsU4CvjHqP/95koULDyIYDHLIIYeyePGTA0Habbf9lX//+2Euu+xybr31Dvr6+vjNb37GEUd8jjPO+Bpz5uzBI488Oez36Onp5oc//D777bc/d955L9dccz0NDRu5447b0v30hBBCCGEjAV8WaOwIs2TNFho7wsOfPAK2bGlmxYrlHHLIoQB85jOH09bWxiuvvIhhGDzyyIOcc855HHjgwUybNp1LL/0Jc+bsQUFBIcXFxQSDQcaPnzDs9+nt7eXMM/+L//qvc6mv34V58/bms589nHXrPkz3UxRCCCGETaZ22hCWTOx5uHjxU/j9fg480Kxks8ceezJhQg2LFj3OnnvOp62tFaW2zefbZZfJfPvbF3j+PuPHT+Dzn/8i99xzF6tXf8C6dR+xZs0HzJ2754g9FyGEEEIMTwK+DLPvedjVF0U3dY1CwPc00WiUL3zhiIHb4vE4r7zyIn193rKMPp9vUDsWiw183dzcxDnnnMns2Yr99z+Q448/iZdffpGVK9/aqf4LIUQ2a+wID+xyIYWPRbaQgC/DVG0ZBQE/XX1RCgJ+VG1ZWr/fJ5+s5/333+N737uY/fbbf+D2zZsb+eEPv8+LLy6hqqqaDz7QA6t2P/lkPeeffw533XXfdgFeMBikp6d7oN3QsHHg6+eff46SklL+8Ie/DNx2//33YO52J4QQ+ScTozZCpEICvgyrqwhx7cl7jtqnwcWLn6KsrJwTTvgSRUXbthieMWMWe+01j0WLHufUU8/gttv+ysSJE6mpmci11/6B3XbbnYqKSoqLS2hp2UJDw0bq63dhzpw9eOKJx1iw4ADa29u55567Bh6zoqKSLVuaef31pdTXT+a55xazZMmzzJ6t0vochRAiUzIxaiNEKmTRRhYYzT0PFy9+is997phBwV7CiSeegtarOOSQQzniiKP45S9/yre/fRZlZeX89Ke/AOCznz0cv9/PmWeeRmvrVs499zuUl5dz9tln8uc//55zz/3OwOMdfvjnOProz3PFFT/h7LPPZNmy1/nudy9m/fp1noeOhRAiF4z2qI0QqfJJIV1nkUjMaGvrGfJYY+PH1NVNG+UepS4Q8BOLxTPdjayWrdewqqoEp587kb3kuuWmdFw3mcM3OuR3bns1NeXLgP2GOiZDukIIIcQIqqsISaAnso4M6QohhBBC5DkJ+IQQQggh8pwEfEIIIYQQeU4Cvp0gC15yl1w7IYQQY4kEfDsoEAgSifRnuhtiB0Ui/QQCsmZJCCHE2CAB3w4qK6uira2Z/v4+yRblEMMw6O/vo62tmbKyqkx3R4iMaOwIs2TNFho7pB6mEGOFpDh2UHFxKQDt7VuIxaIZ7s32fD6fBKIOAoEg5eXVA9dQiLFEtv4SYmySgG8nFBeXZm3QIAUphRBDka2/hBibZEhXCCHGENn6S4ixSTJ8QggxhtRVhLj25D1l6y8hhpDP2+JJwCeEEGOMbP0lxPbyfX6rDOkKIYQQYsyzz2+NxOLopq5Md2lEScAnhBBCiDEv3+e3ypCuEEIIIca8fJ/fKgGfEEIIIQT5Pb9VhnSFEEIIIfKcBHxCCCGEEHlOAj4hhBBCiDwnAZ8QQgghRJ6TgE8IIYQQIs+N6ipdpdTuwPXAQqAFuF5r/Xvr2DTgVuDTwHrgYq31Itt9DwOuBWYBrwHnaK3X2I5/F7gMqATuBy7UWndbx4qA64BTgT7gGq311el9tkIIIbJZY0eYNzZ1Mrm0IG9XZuYruXbejVqGTylVACzCDOb2Bi4ArlBKfVUp5QMewQwCFwB3AA8opXa17jsFeBT4B7Af0Ag8opTyW8dPBn4DnA8cZj3GH23f/vfAgcCRwLeBnyqlzkjn8xVCCJG9Etto/fZJzUUPvkNjRzjTXRIpysVr19gRZsmaLRnt62hm+HbBzMxdoLXuBdYopRYDhwKbAAUcorXuBN5TSh0JnA38FDgXWJHIyimlvokZ9B0OLAa+D1yntX7UOn4esFgpdSlgWPf/otZ6GbBMKXU1cCFw96g8cyGEEFklsY1WZUkh7T396KauvMoUNXaE87aAcK5du2zZo3fUAj6t9TrgdAAro3cQ8BnMTN9CYLkV7CW8CBxifb0QeN72WD1KqTeBA5VSz2Fm9H5ju+9SzOe2DxADiqzHsz/2FUqpgNY6NlLPUQghRG5IbKPVGc6/bbSyJcBIl1y7dvY9erv6ohkLUDO108YGoB54DHO+3Z+BhqRzNgOTra8nuRyvAkL241rrqFKqxTreD2zVWoeT7lsI1GJmF4UQQowhiW20NnRH8m4eWLYEGOmSa9cuW/bozVTAdwJmwHcT8CegBHMxhV0fZmaOYY6X2NpDHQ86HMP2+EMKBHxUVZW4nZK1AgF/zvZ9rJNrl5vkuuWeqqoS9gj4icXime7KiFowq4bQK+vpicQJFQZZMKuGqqriTHdrROXStauqKuHvZy3gvU0dzJ1UQX2GrkVGAj6t9RsASqkSzAUat2GurrUrAnqsr8NsH5wVYS7yCNvaQ93fcDiG7fGHFIsZtLW5npK1qqpKcrbvY51cu9wk1y035eN1KwGuOWHuwBy+EnL3b5mbXLp2JcB+k8ohzdeipqbc8dhortLdRSl1fNLN72EOrW4C6pKO1bFtuHWjy/FE0DdwXCkVBMZbxzcC1UqpwqT79gFbd/T5CCGEENmqriLEobMmZP1wpxg9o1l4eQ7woFKq1nbbvkAz5iKKvZVSpbZjB2MuvsD6/+DEASszuA+wVGsdB163H8cswRIFlgNvYc7jOyjpsZdpraM7/7SEEEIIIbLbaA7pLsHM6N2ulLoEmAn8FrjSOvaxdewXwHGYK3PPtu57G/BDpdTlwEPAFZj1/J6xjt8I3KqUWmndfiNwm9a6C0ApdQdwo1LqLMzs3qWYpVqEEEKIjMnn8ikiu4xahk9rHQG+gJl5exW4BXN17l+s0ignYK6aXQZ8HTjJKuWSKOlyMnAm8AYwETjByu6htb4bsyzLTZh1+d4ALrF9+4sxs4DPAjcDv9Ja35u2JyuEEEIMI1E+5dolH+ZMAWGRu3yGYWS6D1krEokZuTIhNFkuTWYVg8m1y01y3XJTJq/bkjVbuHbJhwPlUy46dAaHzpqQkb7kmsaOcM6UZRlNNTXlyzB3JNtOpsqyCCGEEGNattRnyzWJzGjMgICPvCssnS4S8AkhhBAZkCggLHP4vMm1rdWyhQR8QgghRIbUVYQkWPEo17ZWyxYS8AkhxE5q7AjzxqZOmU+UJrKSVdjl2tZq2UICPiGE2An5Pp8o08FW4vWNxOIUBPx59/qKHVNXEWL3qeNkoZQHEvAJIcROyOf5RNkQbCVe38RK1nx6fcVgmf5wke8k4BNCiJ2Qz/OJsiHYkpWsY0M2fLjIdxLwCSHETsjn+UTZEGzJStaxIRs+XOQ7CfiEEGIn5et8omwJtmQla/5L54cLGSo2ScCXh2TFoBBipEiwJUZDuj5cyFDxNhLw5Zl8XzEohBAiP6Xjw4UMFW/jz3QHxMhK/HCXh4JEYnF0U1emuySEEEJkRDbMQ80WkuHLM/m8YlBkH5kbI8TOkd+h9MqWeajZQAK+PJPPKwZFdpG5MULsHK+/QxIc7hiZh2qSgC8P5euKQZFdZG6MEENLNTDz8jskH7DEzpKATwixQ2RujBDb8xKYefkdkg9YoyOfs6gS8AkhdojMjRFie14CMy+/Q/IBK/3yPYsqAZ8QYofJ3BghBvMamKX6OyQfsNIv37OoEvAJIYQQIySdgZl8wEqvfM+iSsAnhBBCjCAJzHJTvmdRJeATQgiR1XJtIn2u9Vdsk8/BugR8QgghslauTaTPtf6KsUO2VhNCCDHqGjvCLFmzhcaOsOt59on0qWwXmerjpovX/goxWiTDJ2T4QQgxqtJVqy4bsmv5PvFf5C4J+Ma4bHiDFEKMLemqVZcNZTXqKkJcftRsXli7lUNmjpP3U5E1JOAb47LhDVIIMbakq1ZdNmTXGjvCXPn0aiKxOM+vbZEP0SJrSMA3xmXDG6QQYmxJV/kLr4/b2BHmjU2dTC4tGLE+yIdoka0k4Bvj8r3ukBAiO6Wr/EWqj5uYzhIzIOBjxDJx8iFaZCsJ+ERe1x0SQoihJDJxlSWFtPf0j1gmLp0fomWBndgZoxrwKaVmAn8GDga6gXuAy7XWYaXULcC3ku7yA631n637HgZcC8wCXgPO0VqvsT32d4HLgErgfuBCrXW3dawIuA44FegDrtFaX52mpymEECLLqdoyfMDmjjDFwZHNxKXjQ7QssBM7a9Tq8CmlCoF/YwZcBwFfBU4ErrRO2QP4ITDJ9u+v1n2nAI8C/wD2AxqBR5RSfuv4ycBvgPOBw4AFwB9t3/73wIHAkcC3gZ8qpc5IzzMVQgiRE3y+wf9nManvJ3bWaGb49sfMzu2vte4CVimlrgCuAS4B5gA/1Vo3DnHfc4EViaycUuqbmEHf4cBi4PvAdVrrR63j5wGLlVKXAoZ1/y9qrZcBy5RSVwMXAnen68kKb2SoQggxmnRTF4ZhMLEiNKJDuukicwPFzhrNgE8Dn7eCvQQDqFJK1QHjrHOGshB4fuCBtO5RSr0JHKiUeg4zo/cb2/lLMZ/bPkAMKAJetB1/EbhCKRXQWsd27mmJnSVDFUKI0ZYIoDrDuRFAyQI7sbNGLeDTWjdjZuMAsIZjL7RumwtEgV8rpY4FtgB/0lrfbp0+CWhIesjNwGSgCgjZj2uto0qpFut4P7BVax1Oum8hUAtsGplnKHaUlDEYGySLK7JJIoDa0B0Z0bIs6SQL7MTOyOQq3WswM3ALgM9at60A/mK1b1FKdWut7wNKMOf+2fVhZu5KbO2hjgcdjmEddxQI+KiqKnE7JWsFAv6c6fuCWTWEXllPTyROqDDIglk1VFUVZ7pbGZNL1y5VDW29XPzIe/RH4xQG/fzvmftSn2fXOB+vW76rqiphj4CfWCye6a6IHSC/c96MesCnlPJhrtQ9HzhFa/2uUuo94F9a663WaSuVUrOB7wD3AWG2D86KgBbrGA7HezCHjYc6hnXcUSxm0NbmekrWqqoqyZm+lwDXnDB3IPtTwsi97rmYVcqla5eq19dsIdwfHcjivr6mmUNnTch0t0ZUPl43r+T3TYwmuXbbq6kpdzw22mVZ/MDfMFfonq61fgRAa20AW5NOXwUcZX29EahLOl4HvMO2oC/RRikVBMZjDtfGgGqlVKHWut92374hvqfIECljkN9kwnn+k9+39MvFgDobyOtmGu0M3x+BrwAna60fS9yolPojoLTWx9nO3Qd43/p6KfAZ2/kl1vHfaK3jSqnXMWv7JeYIHog5J3A5EMecx3cQ8H/W8YOBZVrr6Ig+O5FVZG5g9pAJ5/lPft/SSwLqHSOv2zajFvAppRZilk/5CfCGtTI34d/A95VS3wMeB44Fvg4cYR2/DfihUupy4CHgCmA98Ix1/EbgVqXUSuv2G4HbEiuClVJ3ADcqpc7CzO5dilmqReQxySplF5lwnt/k9y29cjWgznR2LVdft3QYzQzfKdb/V1n/7AqALwM/A64GPgS+rLV+EUBrvc4qrvwn4HLMjN8JWuu4dfxupdQ04CbM+XkPYdb2S7jYOvYs0AH8Smt974g/Q5FVJKskxOiR37f0ysWAOhuya7n4uqWLzzCMTPcha0UiMSNbJoR6/ZQkk1lzl1y73CTXLTfl0nXLdLbMqyVrtnDtkg8HsmsXHTpjRBdrpXrtcu112xk1NeXLMHck204my7KIFGXDpyQhhBCZlWvTIrIlu5Zrr1u6SMCXA2QOghBCiFwjw/zZRQK+HJAtn5KEEEIILyS7lj0k4MsB8ilJiNE3lub9CCHynwR8OUI+JQkxemTerBAi3/gz3QEhvGrsCLNkzRYaO8LDn5zHfRDpY583G4nF0U1dme6SEELsFMnwiZySDZmXbOiDSC+ZNyuEyDcS8OUImU9kyoYVy9nQB5FeMm9W7Ax5vxbZSAK+HCAZpW2yIfOSDX0Q6SfzZsWOkPdrka0k4MsBklHaJhsyL9nQByFEdpL3a5GtJODLAZJRGiwbMi/Z0AchRPaR92uRrSTgywGSURJCiNwg79ciW0nAJ9JGJi4LIcYiGQEQ2UgCvhyQi5OAc7HPQgghRL6Swss5IBeLwOZin4UQQgxPCs/nJsnw5YBcnASci30WQgjhTkZvcpcEfDkgFycB52KfhUnmXgohnEjZmdwlAV+OyMVJwLnY57FOPr0LIdykc/RGPmymlwR8QogB8uldCOEmXaM38mEz/TwHfEopv9Y6rpSqAw4B3tJarx75rolcJ5/Wco/MvRRCDCcdozfyYTP9Ug74lFILgfuAM5VSq4A3gAqgSCl1htb6oTT1UeQg+bSWm2TupRAiE+TDZvp5yfBdAzyCGeh9D4gCNcDXgF8DEvB5lM8ZMPm0lrtk7qUQYrTJh8308xLw7QN8WWvdpZQ6HnhYa92nlFoMXJ+e7uWvfM+Ayac1IcRIyecPx2Ib+bCZXl4CvhZgqlLKBywArrBu3w/YNNIdy3f5ngGTT2tCiJGQ7x+OhRgtXgK+24CHgX5gNfCMUup84PfA5SPftfw2FjJg8mlNCLGz8v3DsRCjJeWAT2v9M6XUcmAa8C9rpe464HSt9WPp6mC+kgyYEGIsS3WYdix8OBZiNPgMw/B0B6XULsBuwFKgQmu9OR0dywaRSMxoa+vJdDd2SFVVCbna97FOrl1ukuuWOq/DtOmcw5ev1y2dr1m2zKnM12u3M2pqypdhTrXbjpeyLGXA34EvAXHMoO9PSqka4EStddMI9FUIIUSe8zpMK9NDvGnsCHPB/W/T0x+lpDDIDafsJQWSBX4P5/4RmADsCvRat10CGMBfRrhfQggh8pQM027T2BFmyZotNHaER+wxl65rpaG9l/ZwlIb2Xpauax2xx7YH65FYHN3UNWKPLdLLy6KN44HPa60/VkoBoLVeYy3ceC6VB1BKzQT+DBwMdAP3AJdrrcNKqWnArcCngfXAxVrrRbb7HgZcC8wCXgPO0VqvsR3/LnAZUAncD1yote62jhUB1wGnAn3ANVrrqz08dyFElsqW4SWROpnDbEpvtsxnpmPwjdDjmSRYz11eMnzFmCt0kxWRwk+UUqoQ+DdmwHUQ8FXgROBKq9TLI5ilXxYAdwAPKKV2te47BXgU+Afm2HQj8IhSym8dPxn4DXA+cJj1GH+0ffvfAwcCRwLfBn6qlDoj9acuxI5Lxyd4YUr8wbx2yYdc9OA78hrnkLqKEIfOmjBmgz1IX7Zs4fRq6iuKqCwOUl9RxMLp1SPyuLAtWL/o0BkynJtjvGT4HgGuUkp93WobSqnZmJmzVFbp7o+Zndtfa90FrFJKXYG5g8fjgAIO0Vp3Au8ppY4EzgZ+CpwLrEhk5ZRS38QM+g4HFgPfB67TWj9qHT8PWKyUuhTzM865wBe11suAZUqpq4ELgbs9PH8hBqSaVZL5LuklJTtELktXtqyuIsQNp85LWwZV5lTmJi8B33cxF220YGb03gLKgKeAi1K4v8YcErZ/hDGAKmAhsNwK9hJeBA6xvl4IPD/wQFr3KKXeBA5USj2HmdH7je2+SzGf2z5ADDML+WLSY1+hlAporWMp9F2IAV6COAlI0kuGl0QuS+fQtgRlIpmXOnwdwJeUUjOAOdZ9tdb6/RTv34yZjQPAGo690LptEtCQdJfNwGTra7fjVUDIflxrHVVKtVjH+4GtWutw0n0LgVpklxDhkZcgTgKS9JK5YCLXSWAmRouXsixTrS+jwNu226dgBlVbPGbLrsHMwC0ALsac22fXh5mZAyhxOV5iaw91POhwDNvjDykQ8FFVVeJ2StYKBPw52/dst2BWDaFX1tMTiRMqDLJgVg1VVcVDnltVVcLfz1rAe5s6mDupgnqH8+zk2nlTVVXC7lPHZbobct1yUENbL2/qZnafWJbS76bILvI7542XId21bFvk4cNa/2MTUUo9DJybNDQ7iLVA48+YCyxO0Vq/q5QKY66utSsCEhUVw2wfnBVhDi+Hbe2h7m84HMP2+EOKxYycLeooBSnTpwT48REzeWHtVg6ZOY4S3H9OSoD9JpXDMOclyLXLTXLdcktiakbMgIAPmV+bg+R3bns1NeWOx7ys0v025h66x2IGZ9XA54D3gP/GnG83ETNzNyRrGPc24DuYW7I9Yh3aCNQlnV7HtuFWt+OJoG/guFIqCIy3jm8Eqq1Vwvb79gFbh3nOQmynsSPMlU+v5pkPmrny6dWyMjRFslpZZJPE1IzykNSTE2ODl4Dvl8A3tdZPa607tdYdWutnMVfAXqi1fh1zaPZEl8f4I/AV4GSt9YO225cCeyulSm23HWzdnjh+cOKAUqoEczh4qdY6DrxuP45ZgiUKLMdcXNKPWQrG/tjLtNbRVJ64EHZeSylIoCPlU0T2Scyv7QzL/FoxNngZ0i3HDKKSGWwbju3AXAyxHaXUQszyKT8B3lBK2TN2S4CPgduVUr8AjsNcmXu2dfw24IdKqcuBh4ArMIszP2MdvxG4VSm10rr9RuC2xIpgpdQdwI1KqbMws3uXYgaqQnjmZSGGlGUxyWplkW0SC342dEeYXFogP48i73kJ+O7HDMi+C7yBOY9vX8z5eA9bWbefYO6CMZRTrP+vsv7ZFQAnAH8DlmHOFzxJa70OQGu9ziqu/CfgcsyM3wlWdg+t9d3WTh03Yc7Pewhz27eEi61jz2IGpb/SWt/r4bkLMcDLylAJdEzpXK0sO22Y5HXwrq4ixO5Tx8k8MDEm+Awjee3F0JRSIcwiy2diBmhgDpXejpkxOxL4OfCVVEu1ZLtIJGbk6huBTGbNDjuS4cvXa5eOgCSbMqiZvG7Z9Drkmnz9fRsL5Nptr6amfBnmjmTb8ZLh+wzwA8xh2d0xh3fXJParxdyJ45Gh7yqEu2zITqSjD17rxDV2hHljU2deDjGlo96YZFBN8joIIYbjJeD7F3Co1vodzGFXMYqyISBKl2zITjR2hLng/rfp6Y9SUhjkhlP2GtGgL5XHkjIR3klha5OqLcMHNHf1UVIQGLOvgxDCmZeAbwVm6ZV30tQX4SAbAqJ0yobsxNJ1rTS09+Lz+WjrjbB0XSsnzps0qn1IvA6VJYW09/RLliYFstOGjc83+H8hhLDxEvB1AtcrpX4JrGNbwWMAtNafGcF+CZtsCIjSKXuyND6rnHhm/mBKmYgdI1tTme8RhmFQU1aUl+8RQoid5yXge9P6J0ZZ9gRE6ZENWZqF06upryiiJxKjpCDAwunVo94HKRMhdlS+v0cIIXZeyqt0x6JsWqXrdQ6frF7yLlvmScq1y02Zvm7Z8vObazJ93cSOk2u3vRFZpauUKgPOA/YAAtbNPsy6d/torWfvZD+FCxm22iZdf9jS9RrLH2IxGuQ9QgjhxsuQ7v8ChwOLgVOBe4DZwALgFyPeMyGGkGsLWHKtv0IIIfKTl710j8EsqvwV4D3gT1rrAzB3v9grHZ0TIpnXfWwzLdf6K0Qy2QtaiPzgJcNXBHxgff0uZmZvGXAz8OII90uIIanaMnw+n1lvrDCY9ZPTZTK9yGWSoRYif3gJ+N4DPoe53+07mDX5bgaqMYNBIUZHYqFRDiw4yoYVyELsqHwvCSXEWOIl4Ps5cL9SKgDcCbynlFoE7Ak8mY7OCZFMN3VhQE7VG8uGyfSycETsCMlQC5E/Ug74tNaPKaV2B4Ja60+UUgcDXwOWAH9JVweFsJM/QN7JsJzYUZKhFiJ/eMnwobVeZ/t6BeZ2a0KMGvkD5J0My4mdkQ0ZaiHEzvNSh28a8HtgPhAiaf8prfXUke2aEEOTP0DeSFZUCCGElwzfnUAlcAPQnp7uiLFK5pilj2RFhRBCeAn4FgD7aa3fTVdnxNgkc8zST7KiQggxtnkpvKyBCenqiBi7pDixEEIIkV6uGT6l1OG25gPAnUqpK4EPgZj9XK31syPfPTEWZMscMxlWFkIIka+GG9JdPMRtNw1xmwEEdr47IhMyHehkwxwzGVYWQgiRz1wDPq21H0AptT/wtta6N3FMKXUC0KS1fiW9XRTplC2BTqbnmEnpEiGEEOmS6cQKDD+kGwD+DnwVOByzyHLCl4FTlVK3AedprWNDPITIchLomLJlWFkIIUR+yZbEynBDupdiBnqHaa2ftx/QWp+hlLoFuAd4F/hzWnoo0koCHVM2DCsLIYTIP9mSWBku4DsL+G5ysJegtX5OKfVD4IdIwJeTJNDZJtPDykIIIfKPqi3DBzR39VFSEMhYYmW4gG8q8OYw57wA3Dgy3RGZIIGOEEIIkT5Rw6AvGqcw6KUa3sga7js3ArsOc85UYMvIdEcIIYQQIn8sXddKU2c/4Uicps5+lq5rzUg/hgv4HgR+qZQqGOqgdfsvgCdGuF9CCJEzGjvCLF61mcaOcKa7IoTISgb4rP8zZLgh3d8ArwHLlFLXAW9g7qNbDewPXAiEgDPS2UkhhMhWiRV4MQMCPqSGoxA5LB3lUxZOr6a+spie/iglhUEWTq8ekcf1arg6fO1KqYXA1cAfgVLrkA/YCvwL+KXWWoZ0hRBjUmIFXmVJIe09/WO2tJEQuc5r+ZRUg8O6ihA3nLJXxhdHDpfhQ2vdCpyrlLoAmAlUYc7ZW6u1ju/IN1VKFQHLgO9rrRdbt/0E+J+kU6/VWn/fOj4fuBmYD6zCrP33uu0xT7PuXw/8BzhXa91kHfNhZivPBQqAvwGXSe1AIcTOSpQ26gyP7dJGQuQ6L+VTvAaH2bA4ctiAL0Fr3Y8ZaO0UpVQI+CewR9KhPYC/AFfZbuu27lMKLMKs+fdN4NvA40qpmVrrTqXUAuAO4DuYq4qvBf4fcIz1OD8AvgGcgjlv8S7MoPW3O/t8hBBjW6K00YbuCJNLCzL+pi6E2DFeyqdkS209L1IO+EaCUmouZrDnG+LwXOAvWuvGIY6dDkSAS7TWcaXUD4AvWLf/L/Bd4AGt9e3W9/k6sF4pNUtrvQb4PvCLRD1BpdRlmIGlBHxCiJ1WVxFi96njaGvryXRXhBA7w+cb/L8DVVtGLG6woa2X8qJgTmT2R7sgzKHAc8CB9huVUn5AAdrhfguBlxJDyFprA3jJ9jgLgYHi0FrrT4CPgQOVUvXAFPtx4EVgslJqys4+ISGEEELkvkTWLhQMEInF0U1djuc2dfXR3NVPd3+M5q5+mrr6XB+7sSPMkjVbMrqSf1QzfFrrmxJfK6Xsh6YDJZhzBe8GeoDbgD9aQd4ktg8GNwN7W19PAhqGOD7ZOkbS8c3W/5OBT7w/EyGEEELkk+qSArZ09xOPG/j9PqpLhqxIB8ALa7cSNwwKA34isTgvrN3KvPrKIc9t7Ahzwf1vD6zSveGUvbJya7XRMsf6fyNwHPApzHl4AL/HDAaTw+c+oMj62u14ia1N0tdFuAgEfFRVlbidkrUCAX/O9n2sk2uXm+S65Sa5brlrpK9d/6ZOasuLCPh9xOIG/T7nx//8/Hr+uWwD0XicgN/H5+fXO5779JoWGtrD+H0+2nqjrGzqZvep40as36nKioBPa/24UmqC1rrFuultpdQE4ALMgC/M9sFZEWYmkGGOh23tiO1rbPcfUixm5OycnKqqkpzt+1gn1y43yXXLTXLdctdIX7vJpQUUWRm7ooCfyaUFjo+/a0URN502jxfWbuWQmePYtaLI8dyenn4MwyBmGAPtdP3M1dSUOx7LioAPwBbsJazCLLECZuavLul4HbApheMbbe01tq+x3V8IIYQQGZSOosdeJFbcp9qHefWVjsO4djMmlOD3+YgZBgGfjxkTMpNRztwuvjZKqYuUUiuTbt6HbfP2lgIHWfX0EnX1Pm3dnjh+sO3xpmDu8btUa90ArLcft75usBZ3iDTJhkmqQowV8vsmRks6ftYaO8JccN9Kfrt4NRfctzJjP8d1FSEOnTUhpYDzudXNXPboezy3utn1vNaeCKWFAQoDfkoLA7T2RFzPT5dsyfA9CfxWKXUVZlHk/YHLgPOs4/djllC5Til1I2YB5XLgbuv4TcASpdRLmMHftcAirfVq2/GrlFLrgRhmSZbEHEGRBl6LUorclOlP5MIkv29itKTrZ23pulYaOvrwAW29UZaua+XEeZOGvV+mPLe6mR89apYmfnb1Fq4+Hg6bXTPkuS3d/bSFowCEo3FauvtHrZ92WZHh01przMUaRwIrMXfFuExr/U/reAdm3b2DMAsrfxr4vNa60zr+CmYQ+FPgFcz9fr9h+xa/x6z/94D171/AH9L+xMYwe1HK4Za3i9yUeOO/dsmHXPTgO5JZyiD5fROjJb0/a4ZVpdcYwcdMT0by4ZWNrm27p99vdm2Ploxl+LTWvqT2M8ACl/Nfx1y963T8DszdNoY6FgMusf5ljXzOjiS2m+rqk+2m8lUuVprPV/L7JkZLun7WFk6vpr6yeKB0ycLp1SPyuImh4p5IjJKCADecOm9E9setDAVd23aFAZ9re7Rky5DumJPvQzBeJ7+K3CNBRvaQ3zcxWtL1s1ZXEeKr++7CY+9u5rg9Jg77uI0dYd7Y1DnsdoZehoq91MsrLQq6tu32nVLFKx+3DWpnggR8GTIWsiPZsFm0SB8JMrKL/L6J0ZKOn7XnVjdz1WKzkMbbmzqpLilwnBOXSJjEDAj4SCFhYphbpRnuQ8VL17Wysa0XfOZCC7fgcHZNqWvb7ug5tfxr+UY6eqNUFAc5ek6taz/SJSvm8I1Fkh0R+cDLijZhktW0QmzvyVXmvDZfUnsoiYRJeWj4eYSJoeLKUJD6ymLXoeL23ggxA2JxiBlm28nSj1pd23ZNXX3mY8cN2nsjw27Dli6S4csQyY4IMfbk+1QOIZKlOifumDk1PLt6y8ByjWPmDJ3dg20Jk87w8AmTuooQFx4ynSdXNXPMnBr3eXnFBQR85pIRn9V2siVppW1y2+6FtVsxDCgMDr8NWzpJwJdBMgQjxNgyFqZyiNyTrgWEXj7gHDa7hquPZyAwcxrOhW0Jkw3dkWHn8K1saOe/H3ufWNzg+bUt3HJ6oWOwNWNCCQYQN8Dvw7VA8qcmV/J2Y+egtpNDZo7jrmUbiMTi+P0+Dpk5+tuqgQR8QggxamQqh8g26cw6e/2Ac9hs90DPrq4ixO5Txw27RdkDb20iGjfzhtG4wQNvbXIM+O5f3oB1KnHDbDude8o+9Tz09ia6+mKUFQU4ZZ/6Ic8Dc0eOm23bsGUiuwcS8AkhxKiRqRwi2+xI1jnVjGA6P+A8uKKBJ3Uzx6gaTp7vHGx5sXxju2vbbtXmTjr6YgB09MVYtbnT9bVIdRu2dJKAT6RNPtcZFGJHyVQOkU28BmVeMoLp+oDz4IqGgRW9yz8xgzKnoO9Le0/iiVVNg9pO9qmvZJFuHtR2Yl9kYljtVLOTmSKrdEVayC4MQgiROamuBq+rCHH5UbM5YrcaLj9q9rBBWTp32ki1zw+t3OTatlvT3O3atjv/M7uSqJ8cCpptJ4lFJaksMskWkuHLoHzOgMnkdCGEyAwvWbjGjjBXPr2aSCzO82tbhp3D5yUj6LUfZ9/91kCtur+dsbfjubuOK+H9pu5BbSf3Lm/Yru2UDXz5o61YW94Sjpptp3O9LDLJFpLhy5B8z4DJ5HQhspfUAsxvXrJwXjN2iWHaiw6dMWxw6OWx71/eQFNnP+FonKbOfu5PCtTsPpW0U0Vy2662rNC1bffYu5td28kOm13D746fmxPBHkiGL2PyPQPmde5GPmc7hcgmUgsw/TL9fublA7eqLcPn89Hc1UdJYTClD+dNXX28Y+2GMVLZwNVbul3bdpXFQde23TkHTePVj9uIY2a4zjlomuO5x+0xkbc3dQ5q5xMJ+DJkLGTAUp2cLn+AhBg9+f5hM9PS+X723OrmlOvUXX7U7IEyIMN+/8SWY8NsPQZmXbvz7l1JPG5w17IN3HzaPMfVp14++B86azwvr2sd1Hby0IpN27WdXo/asiImlBcODBXXlhU5Pm5i+Daxn+9Irf7NFhLwZYiUZ9hG/gBll0xnJ0R6jYUPm5mUrvez51Y386NHVwHw7OotXH08rnvNpjovTzd1EYkbhIIBInFj2P6+sHYr8bhBQWBkd40YX1pIeaGf3mic4qCf8aXOQ68N7WHXtt3Sda1s7e7H5/OxtbvfdX9cMIO+fAv0EiTgyyApz2CSP0DZQ7Kt+U8+bKZXut7PvJQB0U1ddPVFicUNAv64axBXXVLAlq5+YoZBwOejusR5OzHwtmtEY0eYs/65fCC7dvtX9nHsR0t3P539cQA6++O0uGxVtt/UKj5uaxzUdmftlzawU+/YJAGfyDj5A5Q9JNs6NsiHzfRJ1/uZl71m44ZBU1f/oLaTD7f0EDcM/D4fccPgwy09rhk7L7tG3L50PS3dEQBauiPcvnQ9Pz5qtyHPffr95u3aTpm2sw6YyuIPttDZF6W8KMhZB0x17MPC6dXUVxTRE4lRUhBg4fRqx3PznQR8IivIH6DsINlWIXZept/P3mvswu8Dn8+HYRi819jlOucvcZ7PN7IZsHc3d7q27YykoDS5bdfU1Ud3v1k/pbs/SlNXn2vx5xtOnScJBaQsS0ZJaQSRbbyUXBBCjB77kK69PZS5dWXEDYjFDeKG2XYyY0IJYFjrNQyr7WxlQzvfunsFt7/2Cd+6ewUrG5y3Hzspaa5cctsu+b1muHmEhgGFQT+GYbbd1FWEOHTWhDH/fiYBX4bkex0+kbu8vDnKhxYhds7KhnZueOEj18AJvO3s8G5Dp2vbrrUnwriSQqpLChhXUkhrT8S1H/94bQMxqxMxw2w7Wf5Jm2vb7kt7TyJgRSQBv/sWaIfMHIff7yOawjxCsY0M6WaIzJUSuU4WeAixc7yUOPGys4OXmnaJRRuJOnXDLdrY0tPv2rZ7ZnXLdu1fO5xbW1bExLKigXl5buVTEvMIX9/YwYJdKkZklfBYIBm+DLEXu/T5fDJXSuScdO6pKcSOSlfW2cvjpnquvcRJPG4MOzQ5vrSQqdXFriVLAE6cV+fatnvinc3Era/jVtvNp3apdG3bVRcXuLbtdFMXAb+PyVXFBPy+Yd9P5tVXcsnnlAR7HkiGL5M8FLsUItvIAg+RbdKVdW7sCHPBfSsHVnrecOo81z1hv33PioFM1S2nz3c810uJE6/ZwJ8cGRkoIOyWDfSysAKgNBRwbdtdesTMgdqBibYTeT9JP8nwZchQxS6FyAapZidkgYfINl6zzo0dYRav2jzsz/rSda00dPTR3huloaOPpbYdIZI9taqJho4+OvtiNHT08dSqJsdz59VXcu6BU5lcFeLcA6e6ZqteWLuVWMwsnxKLuWcDGzvC3PXGBjZZ/7s9v8N3m+DaTvZYUgYwuW2XPB/QbX6gvJ+kn2T4MqS6pIAt3f3E4wZ+//DFLoUYDV4zJJkuPyGEnZcsUeJnPWZAwEcKQYYBPt+wIzIftvS4tu2eW93MjS9+DMCNL37M9HEljtm4uXVlxIF43BhoO0kEqD6grTfqurvEjPGlVBQF6I3EKS7wM2N8qcuzg+KCgGvb7sGVm7Zru+1iIe8n6SUZvgxp7YkwobSQSRUhJpQOvzJKiNEg8/JENkp1JauXLJFu6qI3EsMwDHojMdef9YXTq6mvLKYyFKS+sti1eG9NWaFr2+6eNxtc23Z+n4/xpQWUFwUZX1qAf5iaeQYGhvW/m+qSArr6YkTiBl19sWGTD2cfONW1bbdnXblrW4wuyfBliKoto7ggQCQWpzgYkPkKIivIPBqRbbzMXfMiMcqSKDjsFujUVYS44ZS9UireO7mqmICVCPT5zLaTilDQtZ3c3/Zea7u0iHt/Z0wowY9vYLs0t9p6T7ybtGjj3c2ur+9hs2s4c78OnlzVxDFzal3nB551wFSWrN1KRzhCRajAdUcMkX4S8GXIWNhOrLEjnNfPLx+NhZ9LkVvsK1kjsTgvrN3qGJB4mZKQGGUpCPqJROMjNsqycHo148sKB/aPdcsGLpxezXNrWga1nSz/pJ2oNZwbjRss/6Td8XVo7YlQWhggHI0TCvpdn9tbGztc28meW93MnW9sBODONzayV32FY9BXVxHi71/ZW95PsoQEfBmUz/MVpEZb7srnn0uRew6ZOY673thAfyxOwOe+ktVLfdNENru3P0Zxgfsoi5f3s6auPlq7I8QMg9buiOu2X5s6+vADPj8YcbPtxMvcwJbuftrC5tZj4Wiclm7nWnl771LBWttj7b1LheO5MHjHD8Nqu2X55P0ke8gcPpEWMhdMCDESasuKqCkvpLQwQE15oWtBXq9TEqKxOH3RONFY3PW8bfP9GHa+3wtrtxI3DAoDfuKG+2raQ2aOw+eDeNwc/nULZmeML3Ft2z39frNr2+6sA6ZSWmiGAqWF/mGHXb3s+CGyiwR8Ii1kLpgQwk2q5X90UxcBn1WQ1+dekNfLoo2l61pp6uqnuz9KU1e/a6mVxHy/TR1htnT3u86fS2z7lUptPQB8VvDkvgaDo+fUUlEUwA9UFAU4ek6t47lG3HBt27380Va6+82At7s/zssfuRd/Nnf8mMPhsydw9fFzXLN7IrtkZEhXKVUELAO+r7VebN02DrgFOBrYCvxca32H7T7zgZuB+cAq4Dyt9eu246cB/wPUA/8BztVaN1nHfMBvgHOBAuBvwGVa61ian+qYJXPBhBBOvAyRev3w+PJHWwcKDruVAGkPRwbmxIFBe9h5nltivl/AZy6EcJsTN6++kiu/sPvAFmhuCyAWvddEIrkYi5ttp/Nf/mgrHX3mn6yOvhgvf7TV8fnVVYagoWNw28Fj727eru32uoEZ9Emgl3tGPcOnlAoB/wL2SDp0OzAe+DTwK+AWpdRB1n1KgUXAUmBf4AXgcaVUuXV8AXAHZlC3EKgA/p/tsX8AfAM4BTgJ+DLww5F/dsKuriLEobMmSLAnhBjEy5SPuooQlx81myN2q+Hyo2a7vp88uKKBqxav4e1NnVy1eA0PrnAuc1IZKiDo9xHwQ9DvozLknLVLVFXw+Uhpvt/1L6xjZUM717+wzjWDWVoYcG0Pem5D1LRz8qW9Jw38cfdbbSfH7THRtS3yx6gGfEqpuZhB28yk22cCXwS+pbV+W2t9G/AP4HzrlNOBCHCJ1noVZgDXbt0O8F3gAa317VrrlcDXgaOVUrOs498HfqG1fl5r/X/AZcAF6XmWQggxNqU6TOtlL/HGjjC/fPIDHnu3kV8++YHrYz+UFAQlt+0WTq+mqjhIwOejapjVtF6Hihvae2kPR2lo73UdKk4u2eJWwsXLHD4Av9+Hz/rfzcnz6/nJkbPYa1I5Pzly1rDZPZG7RjvDdyjwHHBg0u0HAJu01mtst71oO28h8JLWOg6gtTaAl5KOP5+4o9b6E+Bj4EClVD0wxX7ceuzJSqkpI/GkhBBirEsM01675EMuevCdYYO+VPcS9xJA7ZFU2De5bbdqcydbuiP0xwy2dEdYNcwesk1dfbyzqZOmLueVtNv4rB0x3IOteNJzT27bfWpyFYnYze8z205eWLsVwzAoCvoxhlk4AmbQd9tX9pFgL8+NasCntb5Ja/0DrXXyevJJQHLufTMweQSOJ3LZDUnHsN1fCCHEELwsrkh1mFY3dWEANWVFGFbbXWorG846YCqVRUH8PqgsCrquOH14ZaNr225lQzvn3r2C21/7hHPvXuG644dZ5Niw4ljDtejxqx+3ubbtFk6vpq68iPKiAHXlRa4ZSc8LR8SYkC11+EqA5I9NfUChteDC6Xhifb7b8RJbm6Svndf3A4GAj6oq97R5tgoE/Dnb97FOrl1uysfr1tDWy3cffIfuviilRUHuOGsB9Q7Djgtm1RB6ZT09kTihwiALZtVQ5XJu4MV1bOnup7TI/dyj5tVz15sbB/pw1Lx6x3M/6uijJ2LWn+uJROnF+T18r8mVvGzLFu41udLx3D/etZzE+o64AX987kMeueDTQ57bv6mTilABvRGzvl+/z/nn4lPTqnl29ZZBbadze/BRWBAgFDcoLAhQUVHs+Dp8pqqEu74Z4lndxOGqln2mOgeHuSwff+fSKVsCvjDbB19FQK/W2lBKOR1PZArdjodt7Yjta2z3H1IsZtDW5npK1qqqKsnZvo91cu1yUz5et6dXbmJDay8+zJWqT69s4MR5Qy8AKAGuOWHuwMr8EpzfPzs6wvRHY4QjMQoCPjo6eilx2PO1BLjiqNm8sHYrh8wc5/q4T6xoIBo3hzyjcbO9a8XQn+uPm1PLP1/7hK7+GGWFAY6bU+v4uOtaurZrO527vqmTrdYq3t5InPVNnbRNGnpoeUtHGB9mDT7DMNtOj/v6mi3EYnEmlBbS1Rfl9TXNHDprwpDnAuxaUcTZC8xZS/n2c5mQj79zO6umxnkaQ7bU4dsI1CXdVgdsGoHjG21tkr52ntErhBACMKyRVPe5dmDOi3vivaZh58MtXddKU2c/4Uicpk73GniNHWGuePx9HljRwBWPv+86tDypwhwijhlmbyc5BHtgljnp7I9hAJ39Mdf6c5+ZMd61bfe0bnZt2x0yc9zAvruBYQovS21TsbOyJeBbCuyilJpuu+1g6/bE8YOs4d1EXb1PJx0/OHFHazHGVGCp1roBWG8/bn3dYC3uEEIIMYSF06upryymMhSkvrLYdd7Yc6ub+dGjq3h29RZ+9OgqnlvtHOiYUgskn1rVRENHH519MRo6+nhqVZPjuZs6+vD7GPjntlXZUPXnnBy5ey0F1vTBAp/ZdlJRFHRtb8fnG/y/Ay8rhYUYSlYM6WqtP1RKPQX8P6XUhZi19r4KHGadcj/wW+A6pdSNmAWUy4G7reM3AUuUUi9hBn/XAou01qttx69SSq0HYsBV1jlCCDGqGjvCOVOQvK4ixA2n7JVSf+95s2G7tlNx3oXTq6ktL6IzHKU85F4SpbGzz7VtN7euDPumEnPrnLNgx+0xkbc3dQ5qO/mwpZuI9bgRw2w7Dad+bcFklqxpIY6ZUfnaAue1gfbVtJFYnBfWbnUt1Cz70oqdkS0ZPjBr57UBrwI/A87RWr8CoLXuAL4AHAS8iZnd+7zWutM6/gpmEPhT4BXMGn3fsD3274F/Ag9Y//4F/CHtz0gIIWw8ly7JAqmWIykM+FzbyYI+H0VBP8FhMlv7T6tybdu9mjQ0nNy2O3l+PecfPI1dJ5Rw/sHTXEuSPPbOZte23bz6Si6z6tpdduQs1wBOVtOK0ZSxDJ/W2pfUbgKOdzn/deBTLsfvwNxtY6hjMeAS658QQgwrHZk4e+mSrr4ouqkrqzM2KxvaOe/elcTjBnct28DNp81zDGD2nVLFK7ayIvtOqXJ8XN3URSRuEAoGiMQN19fB7/NRURSgNxKnuMCP3yVAfLex07Vt19gR5uG3G+nqi/Hw240cO2eiYx+KCwKubbuVDe384bm1xOMG7zd1Maum1PE1m1dfyc2nzRtYkOIWHAqxs7IpwyeEEFkhXZm4bJl4n2ptvRfWbiUeNygI+InH3Qv47jOlcqBKns9qO6kuKWBLdz+bOsJs6e6nusR5W7OW7n46+mJE4gYdfTFauvsdzz18twmubbunVjXR0N5HRzhKQ7v73MCzD5zq2rbz8pqBGfRdcMiuEuyJtJOATwghkngpIuxFNky89xLMehlyfH51y8DyC8NqO2ntiTChtJBJFSEmlBbS2hNxPHfJmhbXtt2M8aWUFwUI+n2UFwWYMb7U8dx3N3W6tu0Om13D+QdPY1p1iPMPnuY4NxFkmFZkr6xYtCGEENlE1ZYRixtsaOulvCg4opm4dE28T3UI2suw8rz6Ss7Yp54nVzVxzJxa1yzUO0nDp8ltO1Vbhg9oD0eGfX0nlRe5tu3ihkFnXwyAzr6Y61ZlxYUB17bdyoZ2bn1lPfG4wa2vrGffKVUyTCtyjmT4hBAiSVNXH81d/XT3x2ju6k9x/9TUpDqc6vUxL7hvJb9dvJoL7lvp+thehpUfXNHAnW9spLk7wp1vbOTBFck7WG6zZ1Jx4eS2XVNXH5usUiubOvpcX99JlSHXtt1rSVuTJbftvrT3JBIhXsBqO5FhWpEPJOATQogkL6zdStwwKAz4iaew+Xyq0jU3cOm6Vja2h2ntibCxPexayNjLsPIdr33i2rY7Ze96KooC+ICKogCn7O286vWG5z8aNPx7w/MfOZ5bWVxAwA9Bv4+A32w7qUvK/iW37WrLiqguLaAw4KO6tIDaMudzZZhW5AMJ+IQQIonXP/CNHWEWr9o8bACXrrmB7b0RYgYD/9p7nefEQeo7YkTjhmvb7uWPttLRZ+5c0dHnvnPFJ229rm27hdOrqSgqAAwqigpca/YdPaeW+ooiyosC1FcUcfQc5wLJT61qYkt3hP6YwZbuiOuijcQw7ZkLpriuVBYim8kcPiGESOJlHlZjR5gL7n+b3kiM4oIAN5yyl2PWLG2rdJMrlbiUtkvsiAHw7OotXH08josQDpkxjgdWNg5qO7lr2Ybt2k617fabXMUi25Zj+02ucnzclz/aSqsVwLb2Rnj5o62Oj1tXEeIb+0/hsXc3c9wezmVWYFsBZx9mltGtoDOYPxMS6IlcJhk+IYTYCeZwaq81nNo7YsOpkPp8v8pQgTnk6TOHPitDzsOeD9sCuKHadmcdMJXq4iBBH1QXBznrAOdyJMXBgGvb7pRP1bu27bxsgfbc6mauWryGtzd1ctXiNa7bux07t5YCvw+fDwr8Po6d65wNFCIfSMAnhBBJEgWH73z9E867dyUrG9odz23vjRCLm8Odsfjww6mp8jLfb+H0auoriqguKaC+osh12NPLqlcwV68m/rk5ef4k17bd8k/aXdt2yVueuW2B9uQqM8DzJbWHMq++kptPn8e3DtmVm0+XYVqR/2RIVwghkthXZQ63x2llcQEBH/h8YBjuiwoSw789/VFKCoOuw7+6qYveSIyAz0dvJOZaPqWuIsTPj1UDQ9BumcPd68rxvd2IgRkY7V7nvJp26bpWNnf0gQ96+mMsXdfKifOGDuTGlxZSFQoSjsYJBf2MLy10fh08DKeePL+eDW29A6Vh3LZAO2ZODc+u3jKwIOSYOc718sAM+j4zdxJtbT2u5wmRDyTDJ4QQSbws2lg4vZqJ5UWUFAaZWO6eXVu6rpWG9l7aw1Eahhn+rS4poKmzjw3tYZo6+1x3o2jsCHPl06t55oNmrnx6tWs2MG4Yg1bIutWqG1gMEh9+MUh1SQHdkRiRWJzuSMy1v16GU1c2tHP38ga29kS4e3mDa7b1sNk1XH38HA6fPYGrj5/jWiBZiLFGMnxCiDEj1eLE8+orufILu/PkqmaOmVMz7HBfMOCnKGgQDKTyGdpnRlpuKyuA59e0ELNisZhhtp364aWY8oMrNm3Xdsqabcte+jAMwzV72doTobq4gFjcIOD3ue6ekRhOTWVRjJdsK5hBnwR6QmxPAj4hxJiQmBMXicUpCPhdF000doS5/vmP6InEWNPcxZyJ5a5Dr4ZhMLEiRHtPv2uwtXB6NeNKC+jojVJRHHTNBq5u7nZt26naMnw+H81dfZQUuu9c0dkXdW0n97e6xOpviXtJlOqSAlp7I8TjBn6/zzXDB6mvej1k5jjuWrZBauAJsZNkSDeD0lFxX4h84OV3I9VzvdTAW7qulYaOPtp7ozR09LkOvSZKrXSGhy+10tTVR3NnP+FonOZO9x08Dp013rWdrLs/SntvlO5+5wAOYLeaUte23arNnWaturhZq86tbp+X/XG9kBp4QowMyfBliJdsgxBjSWKbsJ5IjJKCADecOs81E5fq75GqLaMvFqe5pYeK4uH3x43HjW2rClzUVYQ479PTeGZNC0fMGu/6e/yP1zcMmj/3j9c3cPUJQwcw40sLKSv00xuJU1zgvgji/uUNtHSbAVZLd4T7lzdw4aEzhjx3QtKOEsltu3vebNiu7TRcmgh8EwtSRnL/YamBJ8TOkwxfhqSr4r4Quc5Lds3L79GqzZ00Wdm1ps5+12xVZXGQOBA3IG61naxsaOfyx97nP6uauPyx910XFWzp7ndt27V099PVHydmQFd/nBaXc1dv6XZt281Oyuglt+0KAz7X9nYSC0BcFoIIITJDAr4MSVvFfSHygpVdGya9pmrLiMUNNrT1Eosbrr9HXmq0vdfYRcAHBQGzmPF7jc6B5KL3mojEDeIGROIGi95z3qLrU5MrXdt2D6zc5Nq2O3FenWvbblNHH37A7zP/AGzqcB5W3ndKlWvbTjd1YQA1ZUUYVlsIkT0k4MsQrxX3hUiWDXNA09GHhdOrqa8spjIUpL6y2HWhQFNXH01d/XT1xWjqcp8Td8C0KmBbCJloDyVRliWxAMFtoUBpQcC1bfeZWePxWxGn32e2nXSFo65tu8Nm13D+wdOYVh3i/IOnua5SnVtXNih7ObfOOUg+ek4t9ZXW3rSV7nvTyodYIbKbzOHLoLqKkAR6Yoekcw7oyob2lPeQTUcf6ipCXHjI9IGSKG6Puei9JqJxM4SLWtk1pz6PLy2koiiQ0pw4L2VZJlcXE7AqrfistpMn3t2M1V3ihtl2euwDp1cP2sf2QJfAd2VDO7e+sp543ODWV9az75Qqx8f1+3zUlhUOlE/x+5yHaesqQtxy2vyUStkkPsSmcq4QYvRJwCdEDvJSd82LlQ3tfPueFcTj8I83PuGW0+ePSO03r33478dWEY/D82u3cMvphY598JJdixsGHX0xACJ9MdeCw40dYW5+6WMisTjrtva4lmVZOL2ailCQzr4o5UXupVbe2tju2rY764CpLFnbMlDCxW0fWy+16lRt2cCcx1QycV4+mMqHWCGylwzpCpGD0jV8ZmbMzKG+aBzX+Whe+7CyoZ0bXvjIdVGD1z5Mri4emJM3XHbt/1a3uLbtvCwGefmjrbT2RonGobU3yssfbXU8d7eaMte2XV1FiN8dP5ev7DeZ3x0/1zWQ8rIziEwnEWJskgyfEDnI6/BZqjtM1FUUubZ3tA8rG9o5796VxOMGdy3b4FpPzUsfKouDg8qcuK2mbe3td23b2ReDlBe5lxi547VPtms77VzxqSlVLHq/eVDbSWNHmF8++QE9/VGeXb3Fdd/dRK26VIbiQTJxQoxFkuETIkfVVYQ4dNaElIK9ix58h2uXfMhFD77jusBin8mVBP0+fEDQ72Mfl1WkYC6aeGdTp+tiCRg85BiPG7yw1jkLdvTuSQsFdndeKOAlaxcKBFzbdl4Wg3iRPIzsNqzsZd9dgNqyIvacVE6tS109IcTYJQGfEDnKyw4TvZEYhgG9kZjr8GRrT4RxJQUD/9x2S0hk7e58/RPOu3el61Ct1yHHW06bz8+PUdxy2nzXgLa1p9+1bbfHpHLXtl1iMYjBtsUgTr6x/xTXtt3T7ze7treX2r67XoJ6IcTYJEO6QuQgLytkq0sK2NLdn9Iep9VWkBczDAI+93MTWbtE+RK3hQLz6iu59LCZPPbuZo7bY+KIDTmGggHXtl15KOjatjOSMm/JbbuT59ezoa2Xp3QzR6sax+FcgIqk75nctls4vZrK4iAdvVEqh9l3N10LaIQQ+UMyfELkIC+LCrzscfrhlh7ihoHf5yNuGHy4pcfx3Ll1ZcQMiMQMYoZ7PbeVDe38/pk1vLOpk98/s2bYhRup8pK185Jd8yWVKklu261saOfu5Q1s7e7n7uUNrs/tawsmkwhJA1bbyarNnbR0R4jEDVqG2cdWauAJIYYjAZ8QaealOHFjR5jFqzYPe66XP/CqtoziggA+HxQXBIYNBnw+cw6fW5AD2+q5jS8poLas0LWe2wNvbSJqmKOTUcNsjwQvhYG9bBN27NzaQYHZsXOdHzeR6QymMD9xXn0lPzpyFntNKudHR85yzXR62RlEVt4KIYYjQ7pC7IBUV716GXpNnBszIODD9VwvK2S9nLtwejX1FUX0RGKUFARchxFVbRmhoJ+eSIxQ0D3o7O2PubaTpb6qOPXCwPtOreKVj9sGtV35MWvDDPOx+JCZ47hr2QaiKcxPXNnQzh+eW0s8bvB+Uxezakodg75j5tTw7OotA6uQj5njvHsGyMpbIYQ7CfiE8MhLEOdlblVicUVB0E9vJD6i87BSDQbqKkLccOq81HdLSGT1hskGTk2qj5fctmvsCHPWP5cPFBy+/Sv7DBv0pfLcjt69lrvfbKAjHKEiVOC6+nfRe03E4mZ2LWbVAnSbn3jlF3bnmTUtHDFrvGvWzkuB5MNm13D18Qzs9uG2XZoQQgwnqwI+pdSXgX8m3fyI1vpEpdQ04Fbg08B64GKt9SLbfQ8DrgVmAa8B52it19iOfxe4DKgE7gcu1Fp3p/P5iPyUCMwCPt/AqlengMPL0Gt1SQFbuvpTWjDR2BHmgvvfpqc/Sklh0LVGm1eJUivVJQWuj5kIZkPBwMA8QqfzvWw/dvur62npNucZtnRHuP3V9fz4c7vtzFMCzOe1tbufOLC12yy14phBLTdLmxhJ7aE0doS5/vmP6I3GWdXQ4borRyIbmMpqZTCDPgn0hBAjIdvm8O0BPARMsv07SynlAx4BWoAFwB3AA0qpXQGUUlOAR4F/APsBjcAjSim/dfxk4DfA+cBh1mP8cfSelsgniVWvmzrCbOnudw3M6ipCXH7UbI7YrYbLj5rtGkB5WTDhtUZbqvMIVza08627V3DHa5/wrbtXuC5A8PI6mNuPFeD3QUWowHWo+I31ba7tHfWPNzYQt76OW20nR8+ppb7CmhtY4T43cOm6Vho6+mjvjdDQ0ed6LRIFks9cMMW1+LQQQoy0rMrwAXOBlVrrRvuNSqnDAQUcorXuBN5TSh0JnA38FDgXWKG1vto6/5uYQd/hwGLg+8B1WutHrePnAYuVUpdqrZ2XN4qslOr8rnRJrHoN+HzEDMN11auX3RLAXCjh90F8mLpr1tkp12j79r0r6AxHKQ8FXWvbPfDWJmJWWitmLa5wCkpaeyJUFxcQixsE/D7X18Hcfsw83tob4eWPtjqWLykq8Lu2d1RHb9S1bVdXEeKW01ObG2gy2Dbpz928+koJ9IQQoy7bMnxzAT3E7QuB5Vawl/AicKDt+POJA1rrHuBN4EClVAAzo/e87b5LMYPdfUau62I0ZEOBWS+rXr1k4hILJiqLC6ivKHLNgiVqtAHD1mh7alUTDe19dPbFaGjv46lVzkWEt4sdXWLJ6pICWrr7aemJ0DJMhu/e5Rtd23blRQWu7WSpZi9P/1S9aztZqjuZLJxeTX1lMZXFQeori12vhRBCZErWZPiUUoXATOA4pdSvMf/U3Af8HHNotyHpLpuBRBErt+NVQMh+XGsdVUq12O6fV1Y2tPP665+wYJeKvMskeJk/59XKhvaU9iL1uo+tYUA8bgy3roG6ihA/P1bx+sYOFuxS4fq4iRptwECNNsfVv53mtmA+zDxUoj2UL82fxFPvmwsWAn6z7eSJdzcPygY+8e5mx9ettqyItS29g9pOTv9UPcs2tA9qO/GygCZdiyDqKkLccMpebOiOMLnUfd6jEEJkStYEfMBszP50A1/CDP6uBcoxA7bkv1J9QOKvRonL8RJb2+n+QwoEfFRVlbidknWWr2/lO/euJG4Y3Obz8Y9v7s8+U/Mn4zC1tpyW7v6BuW5Ta8tH5BrZX7d/Ltsw7OvWg4/S7ggVFcVUVTkvQNhlQulAUIRhtp3629DWy+WPv09Hb4SHiwu459yF1Ds89mNJNdkeW9XMSQumDXnuaftP5ZF3GonFDYJ+H6ftP9WxD7PwURkqGFjJOqu+yvH5rWzs3K7t9Lg/OEqx9NZXBxZt/OAo5Xju9IkVBHwMlKeZPrHC8dw3NnUSM6CypJDOcJQN3RF2n+q8EOKkBdMcX6edUVVVwh4BP7HY8EO6IrsEAv6ce58XJrl23mRNwKe1flcpNUFrndj9fIW1WONfmKtzk1MHRUBiVnuY7YO3IsxFHmFb2+n+Q4rFDNraXE8ZNanOW3tiRQOxuEFB0E8kGueJFQ3sWpH9m6mn+vzWN3Uy3jZ/bn1Tp+vz8/y6WeUy3F43L1ml19a2EPAxsP3Ya2tbWFBfMeS5ty35kMYO83NJT6SP25as5cJDZwx5bk1xcLu208/qrhVFnLFPPU+uauKYObXsWlHkeO5tSz5kqzUXb2tPxLUP8+rKWd3UPajt9LjLP2rBFvey/KMWx9f3iRVmMj4UHP5aTC4twDAMGtt7KSkMMrm0IGO/s1VVJVnzfiFSJ9ctd8m1215NjfNuQ1k1h88W7CWsAgowh2Prko7VAYly/RtdjieCvoHjSqkgMN52/4xIde6Rl3lriU3qUykCm27peH6JMifhaGzYMieNHWEuuG8lv128mgvuW5nS65ZKuYzEsLJhMDCs7Pa4Pp/54cHnw/VxV2/pdm3b7T6xfGB6nc9qO3lwRQN3vrGR5u4Id76xkQdXJM9+2OadpKxdctvurAOmUl7oxweUF/o564Cpjuc+9u5m17adl2sBmGPm9v+FEEJsJ2sCPqXUyUqpzdZcvoR9gDbMRRZ7K6VKbccOtm7H+v9g22OVWPddqrWOA6/bj2Mu9ogCy0f6eaTKS5DjZd/URNmHcw7eNaNlH9L1/ACisTh90TjRYYbPtpXLiI5ouYzqkgIaO/rY0B6msaPPdbFCbVkRVcUFBP0+qooLXOeuHTprvGvbbsaEkkEB34wJzsMa/++1T1zbdnsm7UWb3LZbtbmTzv44BtDZH3fd6/W4PSa6tu3m1Vdy6WEzmVtXzqWHzXS9FrqpCwOoKSvCsNpCCCG2lzUBH7AE82/XX5VSuymlvgD83vr3f8DHwO1KqT2UUpdhrsy91brvbcABSqnLlVJzgb9hFmd+xjp+I3CJFVTuZ7Vvy2RJFi9BjteN0efVV3LJ51Ragr1Us3Zen58PaO7qw2e1nSxd10pTVz/hSJymrv5h68+BYa00HT77U1tWxJ6Tyl2DMoA7X/1k0PDkna86B1BPrWpiS3eE/rjBlu6I6wrZ8aWFVBYFKAz4qSwKML600PHc51e3DKop9/zq5OT4NpG44dq2O2XveiaWF1Ic9DOxvJBT9nZeMPHwykbXtt3J8+v5ibWH7E+OnOVYkgW2bT/2XmMnf3hurWstQK+/G0IIMVZl0xy+FqXU0cA1mCVV2oGbgau01oZS6gTMQG4ZsBY4SWu9zrrvOqu48p+AyzEzfidY2T201ndbO3XchDl37yHgktF8fsm8/KHyuio0XbzMXfP8hzjFLboADMPASCw5dZEol5HYjcKtXIaX57ayscO1PehxPayQjRsG7X3mHrP9MbPt5M0N7a5tu0NmjOMBWzB2yAznIdK6ihD/c9ycgdXKbj9rk5Lm1SW3k508v9410Evwsv1YtvxuCCFEtsuagA9Aa70ccyeMoY6tAQ51ue8iYJHL8d8Bv9vZPo4Ur3+osmFjdC8lUbw8P93UhWEY1JQVDbvf7IwJJfitBRsBn891KLOuIsSFh0wfKMMxXB9SfW6fnTmeB9/ePKjt5Ni5tTy0ctPAitNj57rv35rcdiodUlYUcG3bnXXAVBataqInEqekwH2uXWNHmCufXk0kFuf5tS2uge/uE8vx0ziw8tZtHqEXXrcfy4bfDSGEyHZZFfCNNdnyhyrVlaxe9nqF1J+fl2xga0+E6pLUdndY2dDO5Y+9T8wweGFtCzefXuiYKaouKaC5q494HPx+XJ/bQTPG8+T7TYQjBqECHwfNcA74vGju6ndt2+07pYpXPm4b1HayaNVmeiLmAHBPJM6iVZv5rwOGLk1iH4ofLvheOL2ausqigR08RqrgcGI+ZSo1EYUQQqRGAr4xzstQZmKvVx8M7PU6En+MvWQDq0sKaO2NEI8b+P3uQeei95qIxM3+RgyDRe81OfbX3LfWh89n5qvcnlt1SQH9UQMD6I8arn3wslXZvlMqB62K3XeK82s7dVyxa9vukbcbt2s7BXxeh+KDPh9FQT/BFIbivZDtx4QQYmRl06INkQFeV8j6rJpyI/z3PeVtrBL72E6qCDGhtNA1w1dXbs4pM5LaTgzDwOfzYQxT3mP5J+1EDfNxo4bZdtIbibm27U7Zu57q4iBBP1QXB10XTCx6t8m1bTevrsK1bVdXEeLyo2ZzxG41XH7U7OGH4pEVskIIkQsk4MugVFe8ppOqLcPn85krZH0+14zOwJ6hodT2DH1udTOXPfoez61udj0PUn8tVG0ZBX6fWYfP797fo+fUMr6kgAK/j/ElBRw9x3n+XGIuYNRaweo2NzB54YXbQow96spd23ZNXeZ+t7E4dPbFaOpyftyOvqhr2+78z+xKVShIwAdVoSDnf2ZXx3MTc/ie+aCZK59enVJNRFkhK4QQ2U+GdDOksSPMBfe/PbCC9IZT9srcfL4UC9fWVYT4+TG7pbSC87nVzfzo0VUAPLt6C1cfj+MCBC/DykDKK3qbuvrY2hPBwNw1oqmrz/Fxn1/TMmjo9fk1LY5DivtPq+L+FZsGtZ0cPaeWfy3fSEdvlIrioGvQuei9JqLWEHQ07j4E7WW/2bqKEHee+amUF9CkOodPVsgKIUTukAxfhixd10pDey/t4SgN7b0p1JNLD93URSRuEAoGiMQN12E5L9mfJ629Xn1Jbcc+pDisrJu6CFu7XISH2eXihiUfDaqXd8OSjxzPXd3c7dq28/t8VIWChIJ+qkJB/C6BZ1OXWfg5Gjdo7426Zu28DEEfNrtmUF07p2B64LFTHDL3mrVL9XGFEEJklmT4Mspn/XUf4QlxHpirU/sHVr26LUDwkv05Zk4Nz67eMhC8HDPHOSDxEmTEDYMm2+pVt1p1n7T3urbtDp01npdtQbfbLhdxw6AtbA6hhqNx1z54ydodPaeWB9/eRFdfjLKigGs2sLEjzD3LG4jE4tyzvIGDdnXPuKZKsnZCCAH09+Nra8Pf3oavtRV/eyu+tjZ87W3429rwtbUO/r+9DV9bm+tDtj/wb2K7qdHp/xAk4MuQhdOrqa8ooicSo6QgMGIlLcAMBt7Y1Mnk0oJh/2Av39A+MG8tGjdYvqHdMSDxEpgdNruGq49noAaeWwaqriLEeZ+ellK9vIdWbNqu7fTYkytDNHdHBrWdjC8tpLo4SDgaJxT0u+5yMdSCCac+eMna1VWEuOW0+Wzojgx77bwE315lS7kgIYQYJBbD19G+LRCL9lK0odEKyNqGDsja2yDivLhvVPkzO6gqAV+G1FWEuOHUeSlnUlKtlZeYD5co9DvcfDizHIlzO7nPXrI/cyaW4x9mIQhY9fIef5943OCFD1u4+TTnenkN7WHXtl1xYdC1bVddUkBXX4yYYRCNuZda2dLd79q2S2TtErXq3LJ2YL7Gu08dR1ub83UAWTAhhMgShoGvu8sMttra8Le1bgvIEgHY1q1WINY6EJDR6zzikiq/30epy1aROyUYxKisIl5dbf5fVYVRWYVRVUW8sgqjupp4VfW2dlUVRkUlBLM3rMrenokBXhZ4JDI/lSWFtPf0D5v5SV6N6rY61Wufv33vioFA55bT5jv244W1W4nGDHw+iMYM16209ptaxcdtjYPaTurKC13bdl5qDH5qciVv2+rlfWqyc724uooQ3z90RkrZSy9k6FUI4Soc3hZ0DWTAWgcCsoFMWHsb/tZWfG2t+Do7h3/cDDMqKwcCsYKaCfSVlg8OxKqqiFdWbwvIKiuhyL0k11ghAV+GeFmZunRdK+tbrU9D3RGWrmvlxHmThjw3kfnpDKeW+Tl691oeXGnLQO3uPm/srLuW0xGOUhEKcvtX93Hs81PvN9HQbi5Q6OyL8dT7TXxj/6G39Cop9GOwbZFwSaFz2vusA6bytG4emOfmtk3Y6qRsZXI7mc9HSnX4TtmnnsdWbR5YeXvKPs4rZL1kL72SoVchckw0iq+9fdt8sIF5YLbM2BABGTHn+p3ZwCgpMTNcVdUDmTAz+1U9kCEbHJBVQWlpSnunu6mqKqF7mNEQsY0EfBniZQ7WS2tbtms7BXyJwrmvb+xgwS4VKe3R+40FU3js3c0ct8dE1/NvX7qeFqvQcUtPhNuXrufHR+025Llehorf39zt2rZbtbmTzj7zza+zL8aqzZ2Ofd57lwre3tQ5qO0kUWMwkUUdbk5laUEAH1BS4LyHLZjZy3jcoCDgJxKLu2YvhRAZEI9vmxeWHGwlzw2zMmH+9jboc15xnxUKCweGHgcHYs5Dk0Z5RcbnmYn0kYAvQ7zMwVrd0u3atmvsCHPFE+/T1Rfj0aKA61AqmPXyrlq8BoC3N3VSXVLguADhrYYO17bdjPElrm27xIpee9vJPW82bNd26m/A7x+0/jng8kZWVxHiuD1qefzdzXxhj9qUd5gYLlg/ZOY47lq2gUgsjt/v45CZ4xwfVwhhMQzo7bWtkGwbnBFrH3qFpK/L+24vfr+P6nTNA0vm85kBVmLOVyIAqx637baBTNi28yhw37dciFRIwJchiUxcKkWMT9irjhtf/HhQ28lTq7YNpXaEozy1qolvuAx7Pryycbu2UwC19y4VrG3pGdR2Esdwbdslb4/mtl1aRSjo2rY7ZOY4/vHGhoGSM27B1oMrGgZe4xtf/JjKUAEnzx96qNZLsD6vvpKbT5s3cJ0luydyWiQyeD5YcvbL/r8VkA1XqiIbGOXl24KvpIn4A0OTiSxYYkiy2Hn/aiGykQR8GdLYEeY796ygPw7/fOMTHjh7f8eg79g5E/nH6xsG5q0dO2ei4+N+2NLj2k42e0LpoPpzsyeUOp571gFTeezdRvpiUBTAdf7cC2u3btf+rwOmDXnuQys3bdd2Cra+tmAyz69tGViF/LUFkx37AKS8i8hj727eru3UB68LJubVV0qgJ9InFsPX2THsPLBEIJY4njWlKpyEQtak+6RALHllpO02o7TM85BkVVXJsKvihcgHEvBlyHfueYv+uPl1f9xsP3TuwiHPXbqulc6+GAbmvDW3RRvFBX7XdrJT9qnngZUNdPfHKS30uy5A+PvSj7Gmz9EXM9s/OWroIpLH7TFx0Py54/ZwDlL3mFjO+03dg9pO5tVXctUX5wysenULpF5YuxUDKAoOP3/OS39BFkyIYSSXqmgf/L+vrdUKwFoHBWQjUaoirfKwVIUQY4X8FmbIho5+17bdM7pp0BZhz+gmx4DPl7TqKbmd7OWPttJlRZ5d/XFe/mirY2bryfebtms7BXyJx0gsBnF6TICzFk7liVWN9EahOGi2nTR2hLn5pY+JxOKs29rDnInlIzJ/zkt/RQ7r69sWeG3dOvTQ5KCArA1fh/NcVTu/38e40ZoLlsReqsL+/+ChyXHbsmFSqkKIMUcCvgyZW1vKe7as1txa56HUD7Z0u7btvGb4/vryx9u1nYKdyZXFfGBbbTu5cmTmsCxatZlec6cyeqNm22n418vqZq/z506eXy+BXiZsV6rCtp3RUEOTVkCW9aUqSksHT8wfrlRFVTWUlOx0qQohhBiKBHwZcseZ+3LQNc8TMaDAZ7ad7FVXzpIPWwe1nTzzwZbt2t87dKbj+X3RmGvb7rLPzeacf63AwNz997LPzXY898EVDYNW/wKOwdTjSfPnHn/XOeDzusOEzJ/bQYaBr6tz2wT9QRPxhxqatKrn9znvfJIV0liqQuaCCSGymQR8GfKV218nYo3+RAyz/c+zFgx57qrNXa5tu2jSkFJyO9lJ8yZx5xsbB7WdtHT3DxpabnHZUszLIogv7DFx0CrkL7jMnxvzO0z09m6/dVHyfLCkjFjWV8+XUhVCCJF2EvBlyOqWXte2XVN3xLVtd8iu43jg7cZBbTffO3QmHzR1seyTdvadUumaDXxyVTNgZvcMq+1UwsXLIohENs+sgTfRMbuXkHULJiIRWwA2xDBkW+uQKyWdVg5nci6YnZSqEEKI/CEBX545a+FUnlmzha6+KGVFQdcFEGAOvb66vh2AV9e38+CKBsdMXKJAsmFrO/G6COK/Dpg2bKDnSTxulqqwDUluX7zVlgWzjtPvnLXMCkOVqrBlx0aqVIUQQoj8IgFfhhwwtXIg0Eq0R+JcgIqiIAUBP8XB4f/Iexl6PWx2DVcfz0BJFKfsXsJ2iyAMA7q7B5eo2C4Qa92+en5Pls+LcitV4RSQuZSqkLlgQgghRpoEfBly/anzOfy6F+jsNygv9HH9qfMdzw0lBW7JbbvEtl8TK0K09/S7rmIFc6j1/Q1bqQx3Udnbxdl1lRQ+3TgoILNnwk5qbeXk9jZ87e2Oj5ktpFSFEEIIYZKAL0MuvG8Fnf3m4Ghnv8GF960YHPTF4xAO4+sL8+Hba5ja308o2kco2k9kY4SCqiZ8fX34wr3Q24svHMYXDnNwexe9K9YTjPRTHO3jM8tKKYlH8IXD0Be2zuvFF+6DcC/ndHXxtUiMcDROKOgn9Fggrc9bSlUIIYQQo08CvgxZ9kk7E7pb+cXiv1Ld205xtJ+qm4vMYKyvD/r6Bs59NByhP7ZtEn9hwEf5f4ZeoVhcUMCphUX0FxQRKCmmYHMpRlERhIrNoKq4GCMUgqKQ+X8wSOGixymMxzGqq4mOcKkKIYQQQmSeBHwZsu+USla/3057qJSegiIqq8uJzN0FozhkBmdWQGYUFxMIhbj7rc2s2Bph1uTxfOdzc2gPFUOoCCNkBnBGUQhCIQiYGTov88B6LrksnU9VCCGEEBkmAV+GXH/qfC68D35eeiH7Tqnk+lPn47x/BnzlJPiK9XV0NDoohBBCiLwhAV8GuS3UEEIIIYQYKWMm4FNKFQHXAacCfcA1WuurM9srIYQQQoj0G0uz7n8PHAgcCXwb+KlS6ozMdkkIIYQQIv3GRMCnlCoFzgV+oLVeprV+BLgauDCzPRNCCCGESL8xEfAB84Ei4EXbbS8CC5RS6S08J4QQQgiRYWMl4JsEbNVah223bQYKgdrMdEkIIYQQYnSMlUUbJZgLNewSbce9tAIBH1VVJWnrVDoFAv6c7ftYJ9cuN8l1y01y3XKXXDtvxkrAF2b7wC7RdqxOHIsZObuJvZfCyyK7yLXLTXLdcpNct9wl1257NTXljsfGypDuRqBaKVVou60OM8u3NTNdEkIIIYQYHWMl4HsL6AcOst12MLBMay0bVwghhBAir42JIV2tdY9S6g7gRqXUWZjZvUsxS7UIIYQQQuS1MRHwWS4GbgKeBTqAX2mt781sl4QQQggh0m/MBHxa6x7gG9Y/IYQQQogxw2cYRqb7kM2agY8z3QkhhBBCiBRMA2qGOiABnxBCCCFEnhsrq3SFEEIIIcYsCfiEEEIIIfKcBHxCCCGEEHlOAj4hhBBCiDwnAZ8QQgghRJ4bM3X48pVSaibwZ8yt4rqBe4DLtdZhpdQ04Fbg08B64GKt9aJM9VUMppTaHbgeWAi0ANdrrX9vHZNrl+WUUrcCs7XWn7Xa84GbgfnAKuA8rfXrmeuhsFNKfRn4Z9LNj2itT5Tft+yllCoAfgd8HfAB9wLf11r3yXXzRjJ8OUwpVQj8G+jD3Cf4q8CJwJVKKR/wCGYgsQC4A3hAKbVrZnor7Kw3sUWYb1J7AxcAVyilvirXLvsppY4AzrG1SzGv51JgX+AF4HGlVHlmeiiGsAfwEDDJ9u8s+X3Ler8HTgZOAL4IHIv5XinXzSPJ8OW2/YFZwP5a6y5glVLqCuAa4HFAAYdorTuB95RSRwJnAz/NVIfFgF2A14ALtNa9wBql1GLgUGATcu2ylhXc/RV4yXbz6UAEuERrHVdK/QD4gnX7/45+L8UQ5gIrtdaN9huVUocjv29ZSSlVBXwHOE5r/ZJ12y8wf68OQ66bJ5Lhy20a+LwV7CUYQBXmMOFy6xch4UXgwNHrnnCitV6ntT5da92rlPIppT4NfAZ4Brl22e5K4P+sfwkLgZe01nEArbWBGRDKNcseczHfM5PJ71v2OhjoARYnbtBa3661Pha5bp5Jhi+Haa2bsf0iKKX8wIXWbZOAhqS7bAYmj1oHRao2APXAY8D9mHMy5dplIaXUgcCpwJ7AJbZDk9g+mNiMOVwvMsya/jITOE4p9WvMuWD3AT9H3iuz2UzM7U2/rJS6HCjDvG7/jVw3zyTgyy/XAPtgzme4GHNun10fUDTanRLDOgEz4LsJ+BNQgly7rKOUKgL+hjlhvFUpZT8s1yy7zcb8e9cNfAkzkLgWKAdCyLXLVuXArsB3gW9b7Zswr6X8znkkAV8esCav/hk4HzhFa/2uUioMVCadWoSZHhdZRGv9BoBSqgRz4vFtyLXLRj8DVmut7xviWJjt/9DINcsS1nviBK11i3XTCut981+Yqzzl9y07RYEK4Gta67UASqlLgTuB25Hr5okEfDnOGsb9G+YK3dO11o9YhzZiloewq8NcECAyTCm1C7Cv1vpR283vAYWY12ivpLvItcu8rwCTlFKJObOFQMBq/xPzGtnJNcsitmAvYRVQgDksKO+V2akBiCaCPYvGzMo2Iu+Tnsiijdz3R8w/RCdrrR+03b4U2NtaUZhwsHW7yLw5wINKqVrbbfsCzZgTj+XaZZ/PYs7d29v6dyvwhvX1UuAgK2uUyLp/GrlmWUEpdbJSarM1ly9hH6ANea/MZq8AQaWUPbCbC3Rax+S6eeAzDCPTfRA7SCm1EPOH/ieY6W27ZmAlZtboF8BxmENSe2it141aJ8WQrDp8yzAXbFyCOafob8D/YBZjlmuX5ZRSvwEO1lp/VilVAazBLAp7I3Au5gexWUmrCEUGKKXGY2b0nsD8HZuNGbBfj1nUV37fspRS6mHMhRjfxpy39/+AB4EfIdfNE8nw5bZTrP+vwkxj2//5MBcD1GIGFl8HTpJfhOygtY5g1mmLAq8Ct2DOw/yL1jqGXLucorXuwLyeBwFvYmb3Pi/BXnawhnOPBqZhXp+/Yu6KcpX8vmW9MzEDu2eBhzGLZ/9Erpt3kuETQgghhMhzkuETQgghhMhzEvAJIYQQQuQ5CfiEEEIIIfKcBHxCCCGEEHlOAj4hhBBCiDwnAZ8QQgghRJ6TgE8IIUaYUurLSilDKXVJpvsihBAgAZ8QQqTDlzF33vhGpjsihBAgAZ8QQowopdQ4zF0dfgHspZTaJ7M9EkIICGa6A0IIkWe+BPQB92Du7XkWsBxAKeXH3Mv1HMztD/9kHT9Ha/1/SqkizL1dv4r5gfwZ4Lta682j+xSEEPlGMnxCCDGyvgIs0lpHgUeAryilCqxjP8Ec5v0qcCTmhu8zbPf9H+BA6/ZDMd+jH1NK+Uap70KIPCUBnxBCjBClVD3wGcxN3gEeBCYAn7fa5wM/11o/pbVejhn8+az7lgAXAudprV/VWr+DuXH8HsDBo/YkhBB5SQI+IYQYOWcAMeAJq/0q0AB8Qyk1AagHXk+crLXWQKvVnAEUAi8opbqUUl1AMxACdhud7gsh8pXM4RNCiJHzZaAAaFFKJW7zA18ADKudPDybaCfejw8F2pPOaR7ZbgohxhrJ8AkhxAhQSs0G9gN+AOxt+3ccZubuK5jZvn1t95kBVFnNtZjZwQla6zVa6zWYgd41wLRReApCiDwmGT4hhBgZXwbagJu11mHb7e8opV7GnK93HfBzpdQ6oAn4i3WOobXuVErdClyvlPo2ZnD4W2AesHp0noIQIl9Jhk8IIUbGl4F/JgV7CTdhZvYeAx4A7gOeBR4HokC/dd4lwNOYJV1eB4qBo7TWventuhAi3/kMwxj+LCGEEDtNKXUMsExr3Wy1azAzfbtqrddlsm9CiPwmAZ8QQowSpdRDmIs6foS5iONXwDSt9f4Z7ZgQIu/JkK4QQoyeCzGHcF8GlgIB4KSM9kgIMSZIhk8IIYQQIs9Jhk8IIYQQIs9JwCeEEEIIkeck4BNCCCGEyHMS8AkhhBBC5DkJ+IQQQggh8pwEfEIIIYQQee7/A1Y+SmusnRfyAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"try_parameters(50, 100)"
]
},
{
"cell_type": "markdown",
"id": "3d1cf458",
"metadata": {
"id": "3d1cf458"
},
"source": [
"> **EXERCISE**: Try different values of $w$ and $b$ to minimize the RMSE loss. What's the lowest value of loss you are able to achieve? Can you come with a general strategy for finding better values of $w$ and $b$ by trial and error?"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaa548a2",
"metadata": {
"id": "aaa548a2"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a72060a8",
"metadata": {
"id": "a72060a8"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3639a5ac",
"metadata": {
"id": "3639a5ac"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "1c562b45",
"metadata": {
"id": "1c562b45"
},
"source": [
"### Optimizer\n",
"\n",
"Next, we need a strategy to modify weights `w` and `b` to reduce the loss and improve the \"fit\" of the line to the data.\n",
"\n",
"* Ordinary Least Squares: https://www.youtube.com/watch?v=szXbuO3bVRk (better for smaller datasets)\n",
"* Stochastic gradient descent: https://www.youtube.com/watch?v=sDv4f4s2SB8 (better for larger datasets)\n",
"\n",
"Both of these have the same objective: to minimize the loss, however, while ordinary least squares directly computes the best values for `w` and `b` using matrix operations, while gradient descent uses a iterative approach, starting with a random values of `w` and `b` and slowly improving them using derivatives. \n",
"\n",
"Here's a visualization of how gradient descent works:\n",
"\n",
"![](https://miro.medium.com/max/1728/1*NO-YvpHHadk5lLxtg4Gfrw.gif)\n",
"\n",
"Doesn't it look similar to our own strategy of gradually moving the line closer to the points?\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "b5060d75",
"metadata": {
"id": "b5060d75"
},
"source": [
"### Linear Regression using Scikit-learn\n",
"\n",
"In practice, you'll never need to implement either of the above methods yourself. You can use a library like `scikit-learn` to do this for you. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5861457f",
"metadata": {
"id": "5861457f"
},
"outputs": [],
"source": [
"!pip install scikit-learn --quiet"
]
},
{
"cell_type": "markdown",
"id": "6c79c881",
"metadata": {
"id": "6c79c881"
},
"source": [
"Let's use the `LinearRegression` class from `scikit-learn` to find the best fit line for \"age\" vs. \"charges\" using the ordinary least squares optimization technique."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1bd6a91c",
"metadata": {
"id": "1bd6a91c"
},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression"
]
},
{
"cell_type": "markdown",
"id": "68cf1399",
"metadata": {
"id": "68cf1399"
},
"source": [
"First, we create a new model object."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b690c0c",
"metadata": {
"id": "8b690c0c"
},
"outputs": [],
"source": [
"model = LinearRegression()"
]
},
{
"cell_type": "markdown",
"id": "1e56b468",
"metadata": {
"id": "1e56b468"
},
"source": [
"Next, we can use the `fit` method of the model to find the best fit line for the inputs and targets."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3a1a957f",
"metadata": {
"id": "3a1a957f",
"outputId": "aefb46a6-4b69-4f34-9715-d33c26c181ba"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on method fit in module sklearn.linear_model._base:\n",
"\n",
"fit(X, y, sample_weight=None) method of sklearn.linear_model._base.LinearRegression instance\n",
" Fit linear model.\n",
" \n",
" Parameters\n",
" ----------\n",
" X : {array-like, sparse matrix} of shape (n_samples, n_features)\n",
" Training data\n",
" \n",
" y : array-like of shape (n_samples,) or (n_samples, n_targets)\n",
" Target values. Will be cast to X's dtype if necessary\n",
" \n",
" sample_weight : array-like of shape (n_samples,), default=None\n",
" Individual weights for each sample\n",
" \n",
" .. versionadded:: 0.17\n",
" parameter *sample_weight* support to LinearRegression.\n",
" \n",
" Returns\n",
" -------\n",
" self : returns an instance of self.\n",
"\n"
]
}
],
"source": [
"help(model.fit)"
]
},
{
"cell_type": "markdown",
"id": "f5645a5c",
"metadata": {
"id": "f5645a5c"
},
"source": [
"Not that the input `X` must be a 2-d array, so we'll need to pass a dataframe, instead of a single column."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "21693b2f",
"metadata": {
"id": "21693b2f",
"outputId": "a82908c9-6735-47c9-b125-11adcdbed3b1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"inputs.shape : (1064, 1)\n",
"targes.shape : (1064,)\n"
]
}
],
"source": [
"inputs = non_smoker_df[['age']]\n",
"targets = non_smoker_df.charges\n",
"print('inputs.shape :', inputs.shape)\n",
"print('targes.shape :', targets.shape)"
]
},
{
"cell_type": "markdown",
"id": "8280d6bb",
"metadata": {
"id": "8280d6bb"
},
"source": [
"Let's fit the model to the data."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c27cf40f",
"metadata": {
"id": "c27cf40f",
"outputId": "c2769846-6185-41bb-d05a-86986bbef96e"
},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression()"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(inputs, targets)"
]
},
{
"cell_type": "markdown",
"id": "61367053",
"metadata": {
"id": "61367053"
},
"source": [
"We can now make predictions using the model. Let's try predicting the charges for the ages 23, 37 and 61"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e342060",
"metadata": {
"id": "5e342060",
"outputId": "b528fd8c-5d31-4658-b3f1-3c8e4db88cef"
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 4055.30443855, 7796.78921819, 14210.76312614])"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.predict(np.array([[23], \n",
" [37], \n",
" [61]]))"
]
},
{
"cell_type": "markdown",
"id": "4f00e31a",
"metadata": {
"id": "4f00e31a"
},
"source": [
"Do these values seem reasonable? Compare them with the scatter plot above.\n",
"\n",
"Let compute the predictions for the entire set of inputs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "705628f0",
"metadata": {
"id": "705628f0"
},
"outputs": [],
"source": [
"predictions = model.predict(inputs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8eea9cf3",
"metadata": {
"id": "8eea9cf3",
"outputId": "19e3a56b-5f11-4a86-be54-c2c868256ffe"
},
"outputs": [
{
"data": {
"text/plain": [
"array([2719.0598744 , 5391.54900271, 6727.79356686, ..., 2719.0598744 ,\n",
" 2719.0598744 , 3520.80661289])"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions"
]
},
{
"cell_type": "markdown",
"id": "0590d375",
"metadata": {
"id": "0590d375"
},
"source": [
"Let's compute the RMSE loss to evaluate the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf1677a9",
"metadata": {
"id": "cf1677a9",
"outputId": "9d9d29f3-3bb3-4abd-95ef-9cd4adacacf6"
},
"outputs": [
{
"data": {
"text/plain": [
"4662.505766636395"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rmse(targets, predictions)"
]
},
{
"cell_type": "markdown",
"id": "7d7459a7",
"metadata": {
"id": "7d7459a7"
},
"source": [
"Seems like our prediction is off by $4000 on average, which is not too bad considering the fact that there are several outliers."
]
},
{
"cell_type": "markdown",
"id": "04ef4656",
"metadata": {
"id": "04ef4656"
},
"source": [
"The parameters of the model are stored in the `coef_` and `intercept_` properties."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c47d0e9a",
"metadata": {
"id": "c47d0e9a",
"outputId": "abc93e01-8ce3-49b7-ce31-934c1122153e"
},
"outputs": [
{
"data": {
"text/plain": [
"array([267.24891283])"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# w\n",
"model.coef_"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34149458",
"metadata": {
"id": "34149458",
"outputId": "7e4fc0fd-3446-446d-d9f6-8499a83d09f9"
},
"outputs": [
{
"data": {
"text/plain": [
"-2091.4205565650864"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# b\n",
"model.intercept_"
]
},
{
"cell_type": "markdown",
"id": "0df2ab81",
"metadata": {
"id": "0df2ab81"
},
"source": [
"Are these parameters close to your best guesses?\n",
"\n",
"Let's visualize the line created by the above parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0fa0b08e",
"metadata": {
"id": "0fa0b08e",
"outputId": "7c8d5f49-037d-4675-ba0f-0572892dfc8a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RMSE Loss: 4662.505766636395\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAF7CAYAAABIAFZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8+klEQVR4nO3deXxU1fn48c8sySQhG0tCiGyyeASURQVBUdz3FUFpra2t+tWqra3a2v6s3f1atZutdamt1a9aQRB3UYtaxAVFRBaBI4uIEEIgkD0zmeX+/rgzw2S5NxnIZJY879eLFzlz7kzu5GYmzzznnOc4DMNACCGEEEJkLmeyT0AIIYQQQiSWBHxCCCGEEBlOAj4hhBBCiAwnAZ8QQgghRIaTgE8IIYQQIsNJwCeEEEIIkeHcyT6BVBYKhYxgMD3L1rhcDtL13Hs7uXbpSa5bepLrlr7k2rWXleXaA5R01CcBn41g0KCmpinZp3FAiovz0vbcezu5dulJrlt6kuuWvuTatVdSUvClVZ8M6QohhBBCZDgJ+IQQQgghMpwEfEIIIYQQGU4CPiGEEEKIDCcBnxBCCCFEhpNVugfIMAwaGmppbm4gFAom+3Ta2bXLgWHIcvWOOJ0ucnPzyc8vwuFwJPt0hBBCiISTgO8A7du3G4fDQb9+A3G53CkXOLhcToLBULJPI+UYhkEwGKC+voZ9+3bTr19psk9JCCGESDgZ0j1ALS1eiov743ZnpVywJ6w5HA7c7iyKi/vT0uJN9ukIIYQQPUICvgNm4HDIjy9dmddOhryFEEL0DhKxCCGEEEJkOAn4hBBCCJF0lXVelmzaQ2WdTLdJBFm00cvMmnU+lZU7o22Xy0VpaRkXXHAxV1xxZbd8j+9+9yqOOWYKV111LXfe+UuCwSA///lvbO9jGAYvvPAsF1wwE6fT2eX7CSGESH+VdV5uWrgWfzBElsvJfTOPoKwwJ9mnlVEk4OuFbrzxB5x++lkABAIBPvnkY373u98wYMAAzj77vG79XjfddGuXjvv000/4/e9/x3nnXYTT6ezy/YQQQqQ/XdWAPxgi3+OmwRdAVzVIwNfNZEi3F+rTJ5/+/QfQv/8ABg4s4+yzz+Poo6fwzjtvd/v3ys/PJz8/v9Pj2tYM7Or9hBBCpD9Vmk+Wy0mDL0CWy4kq7b73fxkqNkmGTwDgdrtwu7O48cb/YcSIkXz44Qf4fD4ee+xpWlp8/OlP97B8+YcUFhZx+ulncfXV15GVlQXAkiVv8+CDf2XPnirOO++iVsFb26HZxYtf57HH/snOnTsYMWIkN910K/37D+D7378OgJNOmspf/vIQixa93Op+7723lH/+8yG2bt3KoEGDuOqq6zjllNMAuPHG/+GYY6awevUqPv30E0pKSvjBD25l2rTpPfkjFEIIcYDKCnO4b+YR6KoGVGl+t2X3ZKh4Pwn4ulH2i8+R89yzPfo9vRdfQssFFx/w/QOBAO+99w4ffbSM//f/fsGLLz7Hq6++xB/+cD8eTzZFRUVcc823GDFiJP/855PU1Ozj97+/i0AgwPe+90O++GILP//5T7j++u8zderxzJv3FGvXrmby5GPbfa+PP/6I3/zm59x0061MmTKVF198jh/96AfMn/8id955D7ff/mOee+5Viov7smjRy9H7rVixnNtv/1H0e3zwwbv86le3U1ZWxtixRwDwxBP/4pZbfsItt9zGQw/dz91338mzz76My+U64J+NEEKInlNWmNPtwZgMFe8nAV8v9Kc/3cNf/vIHAHw+Hx5PDpde+nXOOONsXnzxOaZOPY4JEyYCZpBWUbGDhx/+Fy6Xi2HDhnPzzbdx88038t3vfo9XX32JI4+cwGWXXQ7AzTffxnvvvdPh933++Wc59dQzmDlzNgDXXXcjYNDQ0EBBQSEAffv2w+1u/Wv57LPPcOKJJ3PppV8HYOjQYaxbt5Z///sJfvvbuwGYOvU4zjnnfAC+9a2ruPLKr7F7927Kysq67wcnhBAirSRyqDjdSMDXjVouuPigsm095dvfvoaTTzaHQ7Ozs+nff0CrTFhZWXn06y+//IKGhnrOOuuk6G2GYeD3+9m1q5KtW7cwatRh0T63283IkfvbsbZu/YLzz78w2nY6nVx//U0AVFRstzzfL7/8gvPPv6jVbUccMYEXX1wYbR9yyODo13369AEgGAxYPqYQQojMl6ih4nQkAV8vVFzcl8GDh1j2Z2dnR78OBoMMHjyEe+75c7vjSksHhr9qveCibYYuIivrwH7dPB5Pu9tCoSCh0P69gt3urHbHtF0IIoQQovdJxFBxOpJVusLWkCHDqKraRWFhEYMHD2Hw4CFUV1fz0EP3EwqFOPTQkaxfvy56fDAYZPPmjR0+1uDBQ/n8cx1tG4bBN74xm2XL3rfdj3jo0OGsW/dZq9vWrl3D0KHDDvLZCSGEEL2DBHzC1pQpUxk0qJxf//pnbNz4OWvXrubuu3+D0+nE4/Fw/vkXsXGj5l//eoRt27by17/+id27qzp8rNmz5/DWW//hpZeeZ/v2r3jwwb9SV1fHEUeMJzc3D4DPP9+Az+drdb85cy5nyZK3eOaZf/PVV9t45pl/8847b0fnAgohhBDCngR8wpbL5eLuu/+E0+niu9/9Drfd9kMmTJjET37yMwCGDBnK3Xf/kbfe+g9XXnk5tbU1HHvstA4fa/z4ifz4x7fzxBP/4pvfnMOaNZ9yzz1/Jj8/n5EjRzFlyjRuuOEali17r9X9Dj98LL/4xZ288MJCvvnNy3jllRf59a/vYvLkqQl//kIIIUQmcMg8J2t+f9CoqWnqsK+y8kvKylJ3SNHlchIMhjo/sBdL1WtYXJyH1e+dSF1y3dKTXLf0JdeuvZKSghXAMR319eiiDaXU4cD9wFSgGrhfa31vuO9h4H/a3OWHWus/h/tPBu4DRgEfAVdrrTfFPPb3gNuAImABcKPWujHc5wH+CswGfMAftdb3JOhpCiGEEEKklB4b0lVKZQGLgG3AROAG4A6l1OXhQ8YBPwIGxfz7e/i+Q4AXgScxI9dK4AWllDPcPxP4LXA9cDIwGfhDzLe/F5gGnAZcC/xMKTUnQU9VCCGEECKl9GSG7xDMzNwNWutmYJNSajEwA3gKGAP8TGtd2cF9rwFWRbJySqnvYAZ9pwCLgR8Af9Vavxjuvw5YrJS6FbNmyDXA+VrrFcAKpdQ9wI3A3EQ9WSGEECJZKuu8UntOtNJjAZ/WeitwGYBSygEcB5wI3KCUKgP6Adri7lOB6PYNWusmpdQnwDSl1NuYGb3fxhy/DPO5TQKCgAd4N6b/XczsoktrHTz4ZyeEEEKkBtk/VnQkWat0t2MGXR9gzrcbCwSA3yildiilVimlrow5fhBQ0eYxdgGDgWIgJ7Zfax3AnCM4OHzfvVprb5v7ZgOl3feUhBBCiOSL3T/WHwyhqxqSfUoiBSRrp40LgXLgQeBP7M/srQL+ApwEPKyUatRazwfyMBdbxPJhZu7yYtod9bst+gj3W3K5HBQX53XYt2uXA5crtavapPr5JZvDYX19k8nlcqbkeQl7ct3SUyZet8mjSsj5YBtN/hA52W4mjyqhuDg32afV7TLx2iVSUgI+rfXHAEqpPOBxoBB4Wmu9N3zIaqXUaOC7wHzAS/vgzIOZxfPGtNv2N2HO4euoj3C/pWDQsFzybRhGSpc9kbIsnTMM6+ubTFJqID3JdUtPmXjd8oA/Xjg2Oocvj9R8rztYmXjtDlZJSYFlX0+u0j1EKXVBm5vXYQ6tFsQEexHrMRd6AOwAytr0lwE72R/0RfuVUm6gf7h/B9BXKZXd5r4+oO33FEIIIdJeWWEOM0YNkLl7Iqonx/zGAAuVUrHz5o4GdgM/VUq93Ob4ScCG8NfLgOmRjnBmcBKwTGsdApbH9mOWYAkAK4FPgRbMRSIR04EV4bl+QgghhBAZrScDviWYGb3HlFJjlFLnAb8D7gReAs5WSn1fKTVSKXUj8E3M+nkAjwLHKqVuV0qNBf6JWc/vzXD/A8AtSqmZSqljwu1HtdYNWusmzGHjB5RSU8JZxlsxizj3av/5z2tMn34MTz/9ZJfv09TUxKuvvtQt3//VV1/i4ovP6ZbHEkIIIYS1Hgv4tNZ+4FzMzNuHwMPAn4G/aK3/C3wNc6eNzzALKH9Na/1u+L5bgZnAFcDHwEDgwnB2D631XMyyLA9i1uX7GLgl5tvfjJkFfAt4CPi11vqZhD3ZNLF48esMHjyE115rm1y1Nnfuk7z00vOJOykhhBBCdLseXbShtf4KaDuPL9L3DGAZhGmtF2Hu1GHVfzdwt0VfE/Ct8D8B1NXV8tFHy/jpT3/Or399B59/voHDDju80/vJ3stCCCFE+pG6Hb3Uf//7FllZ2ZxyyukMGTKUV1/dn+ULBoP84x8PcdFFZ3PGGTP4yU9uZs+ePbz66kv861+PsGbNKqZPN/dmnjXr/FYZv08++Zjp048hEDCnR65du5rrr7+aU089ntNOm87NN3+P3burevS5CiGEEL2dBHy91H/+8xpTpx6H2+3mhBNmsHjxa9Eg7dFH/85LLz3PbbfdziOPPI7P5+O3v/05p556OnPmfIMxY8bxwguvdfo9mpoa+dGPfsAxx0zhiSee4Y9/vJ+Kih08/vijiX56QgghhIghAV8KqKzzsmTTHirrvJ0f3A327NnNqlUrOeGEGQCceOIp1NTU8MEH72IYBi+8sJCrr76OadOmM2zYcG699aeMGTOOrKxscnNzcbvd9O8/oNPv09zczBVXfJtvf/sayssPYfz4iZx00ils3bol0U9RCCGEEDGStdOGCEvGnoeLF7+O0+lk2jSzks24cUcwYEAJixa9whFHTKCmZh9K7Z/Pd8ghg7n22hvi/j79+w/gnHPOZ968p9i48XO2bv2CTZs+Z+zYI7rtuQghhBCicxLwJVnsnocNvgC6qqEHAr43CAQCnHvuqdHbQqEQH3zwLj5ffFlGh8PRqh0MBqNf795dxdVXX8Ho0YopU6ZxwQUX8/7777J69acHdf5CCJHKKuu80V0upPCxSBUS8CWZKs0ny+WkwRcgy+VEleYn9Pt99dU2NmxYx/e/fzPHHDMlevuuXZX86Ec/4N13l1Bc3JfPP9fRVbtffbWN66+/mqeemt8uwHO73TQ1NUbbFRU7ol+/887b5OX14fe//0v0tgUL5mHudieEEJknGaM2QnSFBHxJVlaYw30zj+ixT4OLF79Ofn4BF154CR7P/i2GR4wYxZFHjmfRoleYPXsOjz76dwYOHEhJyUDuu+/3HHbY4RQWFpGbm0d19R4qKnZQXn4IY8aM49VXX2by5GOpra1l3rynoo9ZWFjEnj27Wb58GeXlg3n77cUsWfIWo0erhD5HIYRIlmSM2gjRFbJoIwX05J6Hixe/zumnn9Uq2Iu46KJZaL2eE06YwamnnsGvfvUzrr32SvLzC/jZz34JwEknnYLT6eSKKy5l3769XHPNdykoKOCqq67gz3++l2uu+W708U455XTOPPMc7rjjp1x11RWsWLGc733vZrZt2xr30LEQQqSDnh61EaKrHFJI15rfHzRqapo67Kus/JKysmE9fEZd53I5CQZDyT6NlJaq17C4OA+r3zuRuuS6padEXDeZw9cz5DXXXklJwQrgmI76ZEhXCCGE6EZlhTkS6ImUI0O6QgghhBAZTgI+IYQQQogMJwGfEEIIIUSGk4DvIMiCl/Ql104IIURvIgHfAXK53Pj9Lck+DXGA/P4WXC5ZsySEEKJ3kIDvAOXnF1NTs5uWFp9ki9KIYRi0tPioqdlNfn5xsk9HiKSorPOyZNMeKuukHqYQvYWkOA5Qbm4fAGpr9xAMBpJ8Nu05HA4JRC24XG4KCvpGr6EQvYls/SVE7yQB30HIze2TskGDFKQUQnREtv4SoneSIV0hhOhFZOsvIXonyfAJIUQvUlaYw30zj5Ctv4ToQCZviycBnxBC9DKy9ZcQ7WX6/FYZ0hVCCCFErxc7v9UfDKGrGpJ9St1KAj4hhBBC9HqZPr9VhnSFEEII0etl+vxWCfiEEEIIIcjs+a0ypCuEEEIIkeEk4BNCCCGEyHAS8AkhhBBCZDgJ+IQQQgghMpwEfEIIIYQQGa5HV+kqpQ4H7gemAtXA/Vrre8N9w4BHgOOBbcDNWutFMfc9GbgPGAV8BFyttd4U0/894DagCFgA3Ki1bgz3eYC/ArMBH/BHrfU9iX22QgghUlllnZePd9YzuE9Wxq7MFCKixzJ8SqksYBFmMDcRuAG4Qyl1uVLKAbyAGQROBh4HnlVKHRq+7xDgReBJ4BigEnhBKeUM988EfgtcD5wcfow/xHz7e4FpwGnAtcDPlFJzEvl8hRBCpK7INlq/e01z08K1VNZ5k31KIg6VdV4Wr9+VNtetss7Lkk17knq+PZnhOwQzM3eD1roZ2KSUWgzMAHYCCjhBa10PrFNKnQZcBfwMuAZYFcnKKaW+gxn0nQIsBn4A/FVr/WK4/zpgsVLqVsAI3/98rfUKYIVS6h7gRmBujzxzIYQQKSWyjVZRXja1TS3oqoaMyvJV1nkztoBwJFgPGuBykPJ73qbKHr09luHTWm/VWl+mtW5WSjmUUscDJwJvYg7xrgwHexHvYmblCPe/E/NYTcAnwDSllAszo/dOzH2XYQazk4AJgCf8eLGPPTl8XyGEEL1MZButem/mbaMVCTDuW7IlI7OXkWC9ICc99rxNlT16k7XTxnagHHgZc77dn4GKNsfsAgaHvx5k018M5MT2a60DSqnqcH8LsFdr7W1z32ygFDO7KIQQoheJbKO1vdGfcXP4YgOMBl8g47KX6Rasp8oevckK+C7EDPgeBP4E5GEupojlw8zM0Ul/Xky7o363RR8xj98hl8tBcXGe3SEpy+Vypu2593Zy7dKTXLf0U1ycxziXk2AwlOxT6VaTR5WQ88E2mvwhcrLdTB5VQnFxbrJPq9sUF+fxrysns2FXA4cPzKc8xZ9b5HzX7axj7KDCpJ1vUgI+rfXHAEqpPMwFGo9irq6N5QGawl97aR+ceTAXeXhj2h3d37DoI+bxOxQMGtTU2B6SsoqL89L23Hs7uXbpSa5besrE65YH/PHCsdE5fHmk798yK3nAKaqEmpqmtHhuecAxgwogwdeipKTAsq8nV+keopS6oM3N6zCHVncCZW36ytg/3LrDpj8S9EX7lVJuoH+4fwfQVymV3ea+PmDvgT4fIYQQIlWVFeYwY9SAjBrKFQenJwsvjwEWKqVKY247GtiNuYhiolKqT0zfdMzFF4T/nx7pCGcGJwHLtNYhYHlsP+ZijwCwEvgUcx7fcW0ee4XWOnDwT0sIIYQQIrX15JDuEsyM3mNKqVuAkcDvgDvDfV+G+34JnIe5Mveq8H0fBX6klLodeA64A7Oe35vh/geAR5RSq8O3PwA8qrVuAFBKPQ48oJS6EjO7dytmqRYhhBAiaTK5fIpILT1ZlsUPnIuZefsQeBhzde5ftNZBzIUcpcAK4JvAxVrrreH7bgVmAlcAHwMDgQvD2T201nMxCy8/iFmX72PglphvfzNmFvAt4CHg11rrZxL2ZIUQQohOZHr5FJFaHIZhJPscUpbfHzTSYTJoRzJxInJvIdcuPcl1S0/JvG5LNu3hviVbouVTbpoxghmjBiTlXNKRvObaKykpWIG5I1k7PTmHTwghhBBhqVKfLR2l29ZqqSBZdfiEEEKIXi1S/Fnm8MUn3bZWSxUS8AkhhBBJUlaYI8FKnDJ9H+REkSFdIYQ4SDK8lFiVdV6WbNojP18BpN/WaqlCMnxCCHEQMn14KdllQyI/X38wRJbLmXE/XxG/TN4HOZEk4BNCiIOQycNLqRBsRX6+kZWsmfTzFa3F8+GirDCHw4f2k1W6cZCATwghDkImDy+lQrAlK1l7h1T4cJHpJOATQoiDkMnDS6kQbMlK1t4hFT5cZDoJ+IQQ4iBl6vBSqgRbspI18yXyw0Wy56GmCgn4hBBCWJJgS/SERH24kKHi/STgy0CVdV4+3lmfccNLQgghMlciPlzIUPF+EvBlmEwvESGEEEJ0VSrMQ00VEvBlmEwuESFSj8yNEUKkslSZh5oKJODLMJlcIkKkFpkbI8TBi+dDk3zAOjAyD9UkAV+GyeQSESK1yNwYIQ5OPB+a5AOWOFiyl24GKivM4bQxA+XNQCSUzI0RomNd3fs39kOTPxhCVzV0y7FCdEQyfEKIAyJzY4RoL55MXDwfmuQDVs/I5GFzCfiEEAdM5sYI0Vo8Ux3i+dAkH7ASL9OHzSXgE0IIIbpJvJm4eD40yQesxMr0eckS8AkhhBDdRDJx6SvTh80l4BNCCCFEr5fpwboEfEIIIVJaOk2kz/R5YJkuk4fNJeATQgjR47oaxKVbAJXp88BE+pKATwghRI+KJ4iLN4BKdjYw0+eBifQlAZ9I+hukEKJ3iSeIiyeASoVsYFlhDrefMZqlm/dywsh+8p4qUoYEfL1cKrxBCiF6l3iCuHgm0qfCcGplnZc739iIPxjinc3V8p4qUoYEfL1cKrxBCiF6l3hXQ3Z1In0qDKfKe6pIVRLw9XKp8AYphOh9ErEaMt5AsrLOy8c76xncJ6vbzkXeU0WqchiGkexzSFl+f9CoqWlK9mkckOLiPLp67jKHL7XEc+1E6pDrll4i01mCBrgcdOvQa6LeU+W9ujV5zbVXUlKwAjimo74ezfAppUYCfwamA43APOB2rbVXKfUw8D9t7vJDrfWfw/c9GbgPGAV8BFyttd4U89jfA24DioAFwI1a68Zwnwf4KzAb8AF/1Frfk6CnmXYyue6QEEJ0RFc10OwPkuVy0hwIdevQayLeU2W+tThYzp76RkqpbOAlzIDrOOBy4CLgzvAh44AfAYNi/v09fN8hwIvAk5iRayXwglLKGe6fCfwWuB44GZgM/CHm298LTANOA64FfqaUmpOYZyqEECLV9c3LYk9jCxW1zexpbKFvXlayT8lW7NxAf9AMUIWIR09m+KZgZuemaK0bgPVKqTuAPwK3AGOAn2mtKzu47zXAqkhWTin1Hcyg7xRgMfAD4K9a6xfD/dcBi5VStwJG+P7na61XACuUUvcANwJzE/VkRXxkqEII0ZP2NfkZ0CebLLcTfyDEviZ/sk/JlswNFAerJwM+DZwTDvYiDKBYKVUG9Asf05GpwDvRB9K6SSn1CTBNKfU2ZkbvtzHHL8N8bpOAIOAB3o3pfxe4Qynl0loHD+5piYMlQxVCiJ6mSvPJzXIRNCA3y5XyAVSm7/MqEq/HAj6t9W7MbBwA4eHYG8O3jQUCwG+UUmcDe4A/aa0fCx8+CKho85C7gMFAMZAT26+1DiilqsP9LcBerbW3zX2zgVJgZ/c8Q3GgpIxB7yBZXJFKIgHU9kZ/t67STSSZby0ORjLLsvwRMwM3GTgpfNsq4C/h9sNKqUat9XwgD3PuXywfZuYuL6bdUb/boo9wvyWXy0FxcZ7dISnL5XKmzblPHlVCzgfbaPKHyMl2M3lUCcXFuck+raRJp2vXVRU1zdz8wjpaAiGy3U7+ccXRlGfYNc7E65bpiovzGOdyEgyGkn0q4gDIay4+PR7wKaUcmCt1rwdmaa0/U0qtA57WWu8NH7ZaKTUa+C4wH/DSPjjzANXhPiz6mzCHjTvqI9xvKRg00nbJdzotV88D/njh2Gj2J4/u+7mnY1Ypna5dVy3ftAdvSyCaxV2+aTczRg1I9ml1q0y8bvGS15voSXLt2ispKbDs6+myLE7gn5grdC/TWr8AoLU2gL1tDl8PnBH+egdQ1qa/DFjL/qAv0kYp5Qb6Yw7XBoG+SqlsrXVLzH19HXxPkSRSxiCzyYTzzCevt8RLx4A6FcjPzdTTGb4/AF8HZmqtX47cqJT6A6C01ufFHDsJ2BD+ehlwYszxeeH+32qtQ0qp5Zi1/SJzBKdhzglcCYQw5/EdB/w33D8dWKG1DnTrsxMpReYGpg6ZcJ755PWWWBJQHxj5ue3XYwGfUmoqZvmUnwIfh1fmRrwE/EAp9X3gFeBs4JvAqeH+R4EfKaVuB54D7gC2AW+G+x8AHlFKrQ7f/gDwaGRFsFLqceABpdSVmNm9WzFLtYgMJlml1CITzjObvN4SSwLqAyM/t/16MsM3K/z/XeF/sbKArwE/B+4BtgBf01q/C6C13hourvwn4HbMjN+FWutQuH+uUmoY8CDm/LznMGv7Rdwc7nsLqAN+rbV+ptufoUgpklUSoufI6y2x0jWgTvZwarr+3BJB9tK1kUp76cb7opHJrOlLrl16kuuWntLpuiU7eIpXoodTu3rt0u3ndjBSZi9dcWBkDoIQQoh0mxaRKsOp6fZzS5Qe20tXHDjZQ1EIIUS6keHU1CIZvjQgLxohhBDpRuZ1phYJ+NKAvGiE6Hm9ad6PEIkiw6mpQwK+NCEvGiF6jsybFUJkGpnDJ8QBqKzzsmTTHirrvJ0fLNKOzJsVQmQayfCJtJPsoTbJ/mQ+mTcrhMg0EvCliWQHOakiFYKtVCk1IBJH5s2KgyHv1yIVScCXBlIhyEkVqRBsSfand5B5s+JAyPu1SFUS8KWBVAhyUkUqBFuS/RFCWJH3a5GqJOBLA6kQ5KSKVAm2JPsjhOiIvF+LVCUBXxpIlSAnVUiwJYRIVfJ+LVKVBHxCCCFEN5IPpSIVScCXBtJ1ErCsVBNCCCFSgwR8aSAdJwGna5AqhBDCnnyYT08S8KWBdJwEnI5BqhBCCHvyYT59ScCXBtJxEnA6BqnCJJ/ehRBW5MN8+pKAL02k2yTgdAxShXx6F0LYkw/z6UsCPpEw6RakCvn0LoSwl8gP8zK6kFhxB3xKKafWOqSUKgNOAD7VWm/s/lMT6U5evOlHPr0LITqTiA/zMrqQeF0O+JRSU4H5wBVKqfXAx0Ah4FFKzdFaP5egcxRpSF686UmG4oUQySCjC4nnjOPYPwIvYAZ6VwEBoAS4HvhN959a5qus87Jk0x4q67zJPpVuF/vi9QdD6KqGZJ+S6KKywhxmjBogb7ZCiB4jowuJF8+Q7iTga1rrBqXUBcDzWmufUmoxcH9iTi9zZXoGTF68QojuItNDMp+MLiRePAFfNTBUKeUAJgN3hG8/BtjZ3SeW6TI9fS0vXiFEd8j0D8diP1nol1jxBHyPAs8DLcBG4E2l1PXAvcDt3X9qma03ZMDkxSuEOFiZ/uFYiJ7S5YBPa/1zpdRKYBjwdHil7lbgMq31y4k6wUwlGTAhRG/W1WHa3vDhWIie4DAMI647KKUOAQ4DlgGFWutdiTixVOD3B42amqZkn8YBKS7OI13PvbeTa5ee5Lp1XbzDtImcw5ep1603zHvM1Gt3MEpKClZgTrVrJ56yLPnAv4BLgBBm0PcnpVQJcJHWuqobzlUIIUSGi3eYVqaHxKeyzssNC9bQ1BIgL9vN32YdKQWSRVxlWf4ADAAOBZrDt90CGMBfuvm8hBBCZCgZpk2sZVv3UVHbTK03QEVtM8u27uu2x45kZ+9bsoWbFq7NyLJimSqegO8C4Gat9ZeRG7TWmzDr8J3R3ScmhBBdkcn1LDNVZA7zTTNG9PpVt4n7/XWY6Rgc3fqoUmM1fcWzSjcXc4VuWx66+BullBoJ/BmYDjQC84DbtdZepdQw4BHgeGAbZnC5KOa+JwP3AaOAj4CrwwFnpP97wG1AEbAAuFFr3Rju8wB/BWYDPuCPWut7uvzMhTgIMvyROFKyI33JMG3ifn+nDu9LeaGHJn+QvCwXU4f37YazNUl2Nn3Fk+F7AbhLKVUcbhtKqdGYgVSnq3SVUtnAS5gB13HA5cBFwJ3h2n4vYNb6mww8DjyrlDo0fN8hwIvAk5iTESuBF5RSznD/TOC3mNnGk8OP8YeYb38vMA04DbgW+JlSak4cz12IVrr6qVyGPxJLsg0inSXq97esMIe/zR7PT04bzd9mj+/WwFqys+krngzf9zAXbVRjZvQ+BfKB14GbunD/KZjZuSla6wZgvVLqDswt214BFHCC1roeWKeUOg1zC7efAdcAqyJZOaXUdzCDvlOAxcAPgL9qrV8M918HLFZK3YqZ1L4GOF9rvQJYoZS6B7gRmBvH8xcCiO9TudQQSyzJNoh0lsjf30RmUCU7m57iqcNXB1yilBoBjAnfV2utN3T1IYBzwsFehAEUA1OBleFgL+Jd4ITw11OBd2LOpUkp9QkwTSn1NmZG77cx910WPr9JQBBz2PndNo99h1LKpbUOdvH8hQDiC+IkIEksqWcp0pn8/oqeFE9ZlqHhLwPAmpjbh2DO7dtjFzxprXdjZuMi93NiZtkWA4OAijZ32QUMDn9t118M5MT2a60DSqnqcH8LsFdr7W1z32ygFNkWTsQpniBO3tATT7INIp3J76/oKfEM6W5m/5w/B+H1PzH8SqnngWvaZOqs/BEzAzcZuBlzbl8sH2ZmDiDPpj8vpt1Rv9uij5jH75DL5aC4OM/ukJTlcjnT9txTXXFxHr+beSRv6SpOUaUcPtR+QnRxcR6HD+3X5ceXa5ee5Lqln4qaZj7Ruzl8YD7lxbnJPh0RJ3nNxSeegO9a4MfA94EPMIO+YzBXzj4JvAXcgxnIXWP1IOEFGn/GXGAxS2v9mVLKi7m6NpYHiJTQ9tI+OPNgzif0xrQ7ur9h0UfM43coGDTStoq3VCBPnMo6Lz8Jz+F747Nd3T5xWa5depLrll4ic3GDBrgcyAKENCSvufZKSgos++JZpfsr4Dta6ze01vVa6zqt9VuYwd2NWuvlmJm6i6weIDyM+yjwXcw9eF8Id+0AytocXsb+4Va7/kjQF+1XSrmB/uH+HUDf8Crh2Pv6gL1deN5CtBLvyjqpE2eSn4NIJZHXcUGOrPAWvUM8AV8B5vy9tgz2Z+fqMOfGWfkD8HVgptZ6Yczty4CJSqk+MbdND98e6Z8e6VBK5WEOBy/TWoeA5bH9mCVYAsBKzNXELZilYGIfe4XWuqPnI4SteObwSVkWk/wcRKqJvI7rvbKgSvQO8QzpLgAeCxc4/hhzSPdozOHZ58NB2E8xiyK3o5Sailk+5afAx0qp2IzdEuDL8OP/EjgPc2XuVeH+R4EfKaVuB54D7sAszvxmuP8B4BGl1Orw7Q8Aj0ZWBCulHgceUEpdiZnduxWbYWch7MSzEEPKspgS+XOQwtbiQERex9sb/QzukyW/OyLjxRPw3YhZZPkVICt8WwvwGGYAdTpwFGYGryOzwv/fFf4XKwu4EPgnsAJzgcjFWuutAFrrreHiyn8CbsfM+F0Yzu6htZ4b3qnjQcz5ec9h7vMbcXO47y3MLOSvtdbPxPHchWilqyvrpCyLKVE/B9lpYz8JfONXVpjD4UP7yTww0Ss4DKPtYtuOKaXOAN7HHMI9HHPIdFNk+7JM5PcHjXR9I0i3yayZ/McqnudWWefN2IxDIq7xkk17uG/Jlmjm8KYZI5gxakC3PHa8kvmak8D3wKXbe6XYT65deyUlBSswF9S2E0+G72lghtZ6LWYWTvSgTA+IUuGP1eqKWpZu3ssJI/sxvrztovED19VsYKavGkxEvTHJoJp0VQPN/iAuh4Nmf7DXTh0QQliLJ+BbhbnzxdoEnYuwkCoBUaKkwjy31RW1XPfMakIhg6dWbOehS8d3a9DXFZGfQ1FeNrVNLfJHuwuksLWpb14WexpbCIUMnE4HffOyOr+TEKJXiSfgqwfuV0r9CtjK/vp3AGitT+zG8xIxUiEgSqRUyNIs3byXUMggy+XEHwyxdPPeHg/4ZNXggZGdCmBfk58BfbJxORwEDYN9Tf5kn5IQIsXEE/B9Ev4nelgqBESJlApZmhNG9uOpFdvxB0M4nQ5OGNn1nTG6i6waFAdKleaTm+XCHwyR63Zl3HuEEOLgdXnRRm+USos24p3DJ5NZ45eoOXzxkmuXnpJ93TJ5nm8iJfu6iQMn1669blm0oZTKB64DxgGu8M0OzDIok7TWow/yPIUNGbbaL1F/2MaXFyU10BPiYMh7hBDCTjxDuv8ATgEWA7OBecBoYDLwy24/MyE6kI4LWCTzIoQQItni2VrtLODrWuuvA+uAP2mtj8UshnxkIk5OiLbi3cc22WRLMSGEEKkgnoDPA3we/vozzMwewEOArNAVPUKV5uNwONjd4MPhcKT85PR0C1CFaKuyzsuSTXvkw4oQaS6egG8d5vZpYNbiOyH8dV/MYFCInhFZaJQGC44yfYW1yGySoRYic8Qzh+8XwAKllAt4AlinlFoEHAG8loiTE6ItXdWAAZTke9KiJmEqlJwBmUcoDkym1wAVojfpcsCntX5ZKXU44NZaf6WUmg58A1gC/CVRJyhErHTMmCV79WQ6LnQRqSEdX29CiI7Fk+FDa7015utVmNutCdFjUiVjlk4kSyMOlLzehMgc8dThGwbcC0wAcjBr8EVprYd276kJ0bFkZ8zSjWRpxMGQ15sQmSGeDN8TQBHwN6A2MacjeiuZY5Y4kqURQggRT8A3GThGa/1Zok5G9E4yxyzxJEsjhBC9WzxlWTQwIFEnInovqVUnhBBCJJZthk8pdUpM81ngCaXUncAWIBh7rNb6re4/PdEbpMocMxlWFkIIkak6G9Jd3MFtD3ZwmwG4Dv50RG+UCnPMZFhZCCFEJrMN+LTWTgCl1BRgjda6OdKnlLoQqNJaf5DYUxSJlgqZrWTPMZPSJUIIITJZZ0O6LuBfwOXAKZhFliO+BsxWSj0KXKe1DnbwECLFSWbLlCrDykIIITJPKiRWOhvSvRUz0DtZa/1ObIfWeo5S6mFgHvAZ8OeEnKFIKMlsmVJhWFkIIUTmSZXESmerdK8Evtc22IvQWr8N/Ai4upvPS/QQyWztV1aYw4xRAyTYE0II0W1SpRJFZxm+ocAnnRyzFHige05H9DTJbAkhhBCJo0rzCYYMttc0U+BxJy2x0lnAVwkcCnxpc8xQYE+3nZHoccleMCGEEEJkqqoGH7sbWggaBl5/iKoGX0oO6S4EfqWUyuqoM3z7L4FXu/m8hBAibVTWeVm8fheVdd5kn4oQIsUs3byXkGGQ7XISMgyWbt6blPPoLMP3W+AjYIVS6q/Ax5j76PYFpgA3AjnAnESepBBCpKrIhOygAS4HvXaluxCiYyeM7MdTK7bjD4ZwOh2cMLJfUs6jszp8tUqpqcA9wB+APuEuB7AXeBr4ldZahnSFEL1SZEJ2UV42tU0tvXaluxCZIJ7yKV09dnx5EQ9dOp6lm/dywsh+jC8v6u7T7pLOMnxorfcB1yilbgBGAsWYc/Y2a61DiT09IYRIbZGV7vVeWekuRDqLp3xKvKVWxpcXJS3Qi+g04IvQWrcA67vjmyqlPMAK4Ada68Xh234K/G+bQ+/TWv8g3D8BeAiYED6P67TWy2Me89Lw/cuB/wDXaK2rwn0OzOHpa4As4J/AbVIsWghxsCIr3bc3+hncJ0uye0KkqXjq0qZjDdvOFm10O6VUDuZQ8Lg2XeOAvwCDYv7dEb5PH2ARsAw4GrMUzCtKqYJw/2TgccygbipQCPxfzGP/EPgWMAu4GHOXkB91/7MTQvRGZYU5nDZmYMq/4QshrKnSfBzA7gYfjnDb7th0q2HbowGfUmosZtA2soPuscBKrXVlzL/6cN9lgB+4RWu9HjOAqw3fDvA94Fmt9WNa69XAN4EzlVKjwv0/AH6ptX5Ha/1f4Dbghu5/hkIIIYRIWw5H6/8tlBXmcN3xwxhdks91xw9Liw97PZ3hmwG8DUyLvVEp5QQUoC3uNxV4LzJnUGttAO/FPM5UILobiNb6K8zagdOUUuXAkNh+4F1gsFJqyME+ISGEEEKkv8gwbY7b1emOGKsrarn9lQ0s2bSH21/ZwOqKWtvHrqzzsmTTnqSWburyHL7uoLV+MPK1Uiq2aziQh7k4ZC7QBDwK/CEc5A2ifTC4C5gY/noQUNFB/+BwH236d4X/Hwx8Ff8zEUIIIUQm6ZuXxZ7GFkIhA6fTQd+8DksQA+HaeiGDLJcTfzDE0s17Wy3KcFRX43lhITnz58JX23A0B7j78l+xbfgY/jbryKRkBHs04LMxJvz/DuA84CjgvvBt92IGg7429/EBnvDXdv15MW3afO3BhsvloLg4z+6QlOVyOdP23Hs7uXbpSa5bepLrlr66+9q17KyntMCDy+kgGDJocVg//jkTyvn3iu0EQiH6+Rq4cu3r9L93IY4v229M1hwyCBoG2119qKj1srqqkcOH9nwtvpQI+LTWryilBmitq8M3rVFKDcCcZ3cv4KV9cObBzATSSb83pu2P+ZqY+3coGDSoqbE9JGUVF+el7bn3dnLt0pNct/Qk1y11xFMDD7r/2g3uk4UnnLHzuJwM7pPV7vEdNfvwvPAck+bPZc0XW2gJGGS7HbidTgzAiDnWN3sO3lmX8WygH79bvNG80TBoampJ2O9cSUmBZV9KBHwAMcFexHrMEitgZv7K2vSXATu70L8jpr0p5mti7i+EEGkt3j+WQqSSeOvaJUKkxFLkdTTI8OJ5Yi6e+XNxfbGl/R0cDtwucDoc+C65FO/sOQTHHdHusBEVtTgdDoKGgcvhYMSA5GSUUyLgU0rdBFyltR4fc/Mk9s/bWwb8TCnl0Fob4bp6xwN3x/RPB/4RfrwhwFBgmda6Qim1LdwfCfimAxXhxR0iQeQPUOaTa5waUuGPpeg9EvG611UNNPuDuBwOmv3BHq9r56irxfPSC6j5cxm7eZPtsb6LZ7HjnIu5fFWAOm+Qwlw3/5wz0fJ89zX56ZPtwhsIkeN2sq/J3+FxiZYSAR/wGvA7pdRdmEWRp2CWTrku3L8A+B3wV6XUA5gFlAuAueH+B4ElSqn3MIO/+4BFWuuNMf13hQO/IHAX++cIigSQP0CZT65x6kjHIrAiPSXqdR/Pgol4tQ1QHfV1ZL/8Ijnz5+La+LntfX0XzcQ3ew6BIye0KtXy5JItVDVsB8Bb38KClRXcOGNEh49R3dhCjTdgHhsIUd3Y0k3PLD4pEfBprbVS6jzMoO4moBJzJ4x/h/vrlFLnAg8DVwOrgXMidfq01h8opa4Bfg30x9xp439ivsW9QAnwLGbA9y/g9z3x3OxkcnZE/gBlPrnGqSMdi8CK9JSo1/2+Jj8D+mTjCg99dlcWrGrHbl668yFOW/EfBu35iqJcN06LGnu+Cy82g7vxEzutw7die61tO9YbG3a3a8+cUG5xdOIkLeDTWjvatN8EJtscvxxz9a5V/+OYu2101BcEbgn/SwmZnh2RP0CZT65x6mg79yiT3ktEaknU616V5hMyDGqa/BTmug/ocR0N9WbmbsEzuLS5E2xeIMhVPnMX1SDQEq6z5zv/QjO4m3hUq+Cuss6L3lzd6euoJD/bth0r2+WwbfeUlMjw9UaZnh2RP0CZT65xaikrzJFrIBIuUa/79bvq2VVvDnU217ewfle97WNX7dxDxd9fYsRrz5G3cYPtY79x2DReOPIUPh10GLeddhgXjR/U4XGVdV5uWLCGppYAedlu23p5U4f35e1N1a3aVo4eUswHX9a0aieDBHxJ0huyI/IHKPPJNRai90nE6/619eawpwOztMlr63dz8ugSs7OxEc+il8lZMA/XZ2sJGQaOZnNOnA/IiRmmbTn7XLyz5xA4Zgo4HFTWeXkkHMSVZ7ttA7NlW/exo6YZHOYQ87Kt+yyDw2Vf7GvXthqmPXNMKU+v3EFdc4DCXDdnjint+g+mG0nAlySSHRGid8rkubtCHKizxpTw1sY9ePxeztj4IT95Zzn9bu84cxcImdXulh95PC8deQqnXHEeMw7rOIgqK8zhxhOG89r63Zw1psT2NVfb7CcYU0yvttl6HuGeNgsv2rZjVTX4qG32EwqZj1nV4OvVO230SpIdEaJ3yfS5u0K0ZfsBp7kZz+uv4lkwj0tWfcr5gRC+QAiP20m229nq0JYzzjYzd1OOpbKhhZsWriVogMsB3y0rtPz+kT1vQyGDpVuqeejS7FZboMUqys3C5TDjPUe4beWowUWsqaxv1baydPNeDAOy3R1vw9ZTJOATQogekulzd0V6SlTWOfYDTl4owCP5XzHw1YW4P13Z4fHZ4UCv5fQzqZ89B/+x08DpbHdcZIRse6OfwX2ybM956ea9BEMGDoe5XZpdsDViQB4GEDLA6cC2QPKsSeU8t2YnDb4g+R4XsyZZr7o9YWQ/nlqxHX8whNPp4ISRPb+tGkjAJ4QQPaY3zN0V6SUhWWefj+w3FtHvsSd45tNPcDjAMKCPx4Xb1SZzd+rp+GbPwT/1OHC5uvwtygpzOHxov063KBtU6CFkYJ5AuG1lwcoKwqPFhAyzbRUcrt9VT1149W+dL2i7yGR8eREPXTqepZv3csLIfknJ7oEEfEII0WNk7q5INQeSdW6VEfQ4yP7P6+QsmId7xfJWx+UZBrVEYy2aZ5yC7+uX4z9uelzBXUcWrqrgNb2bs1SJbU27nXU+23aslTtqbduxbBeZdGB8eVHSAr0ICfhEwsjkdCHak7m7oid09f03rqxzSwtNL73M3gce5aStnwFYFjL2zzgZ76zLWDVyIku31kYzW8GDfmZmsHfXYnP7s5VfmUGZVdCXl+20bceaVF7EIr27VdtKZJGJEdNOdRLwJVEmB0QyOV0IIZIjnvffssIcbj9jdHS4MXqc30/2m//Bs2AeWR9+ED0+Pxiijy8YHaYNhAwcJ52Ed/Yc/CfMAPf+sKKyzsud4fN4Z3N1p38H3t64O7qa1i5b9szKinZtq4Dvw6017drfPnZYh8def+KhvL15N94A5LjNtpWTR5dwzwV06XxThQR8SZLpAZFMThcidWXyh00R3/tvZZ2X3y1az1HrP8T56ZsUV6633HoMwHfcdO4tmcKHh07CmZ1l+7crnvN4e+NufvyiuTvGWxv3cM8FWAZRpX2y2Vzd1KptJdvtsG3Hev+LvYS3vMUbMNt2w8Unj06PQC9CAr4kyfSASCanC5GaMv3Dpujk/dfvJ/u/b5qZu/ffIz8Y4unYjJ3HFd36y3/c8fhmz6FlximQtb9EyRkVteS2zQjGex5tPL+6sl3bKpi6+vhhfLCtplXbytFDivkgJstnt8vFy5/tatdOxp63iSIBX5JkekAU7+R0yTgI0TMy/cNmKkj2+1nk/ffzin0ctfETBv34QbLeW9rhsW6nGdytGDqON48+g2/85NuU9S+wfOzKOi+/WqRp8gd56/Pd/G32eNvh4q7+HRg9oA/vb93Xqm2luk2R47btWGceXsrcTyqo8/opzMnizMOtd7k4b9xA1uysb9XOJBLwJUlvWK3X1cnpknFILcn+YyUSK9M/bCZbIt/PbOe4BQJkvfNfchbMI2vpEooNg1EhA7fT0W6I1n/sNHyzLqPl1NOpbA5yw/zVNPmD5GW5+EaWdbFhMLcfq6jz4QBqmgO224/F48TR/XlyxfZoMeUTR/e3PPaJj7a3a1tlA6safNQ0txAKQU1zi+0uF5Fs3suf7eK8cQMzKrsHEvAllazWM0nGIXVI8J35esOHzWRK1PtZ7By3JXoXj5bXcOwHr5G15O12x4YMg9rwXrOfDR/HsOuvos/550J2+7lu+sta/CGDHLcLf8jo4vkaRMeAbcTzfrKvyU+Bx403ECLH7WRfk/W2Zi3BkG07Vry7XMycUJ5xgV6EBHwi6STjkDok+O4d5MNm4nT7+1kwSNa771D+p4f5cPWy6M0el5OsnNZ/wgNHT8Y7ew5vHnoUv1v6FcGQgcvp4McTRjGjg2APoG9eFnsaWggaBi6Hg7559hm+qcP7Ul6US1NLgLxsN1OH97U8Vlc1sLexJRrE2b2fVDe2UBNeMeENhGyHaacO74ve3diqbSVVdrlIBRLwiaSTjEPqkOBbiINzUO9nwSBZ77+LZ8E8st9a3Krr6ECIuph24/iJOK78Fi2nnwk5rb9HYONuqhr2B0whm0zclj1N0f6QYbBlT5NtBqysMIe/zTqyS89vS3VjqyBuS3UjM0YN6PDYNzbsbte2yrTNmljOi2t3Ue/zU+DJYtZE64xcquxykQok4BMpQTIOqUGCbyEOXpfez0Ihsj54zwzuFr9he2hg4iRWTj+Hb9ccgs9tZuruuWCM5by1dZUNOB3gcDgwDIN1lQ2Wx9Y2+wkardudWb+rntfW7yZkGJ3uY9u2bVUDz2gTlLZtx6pq8FHv8xMyoN7nt52XB6mxy0UqkIAviWRyvEhFEnwL0c1CIbI+/MAM7t54zfbQwISJ+GZdhu/McyA3N3r7P15ch69hT5e28hpblt9q/9ixZdaZ+qLcLFyO1m078dTLO6TQ02rV6yE2+9iWFebAjrrWbQut5uUFOp+XJ0wS8CWJTI4XmUA+tAjRRiiE+6MPyVkwj+zXX7U9NHDkeDaedgEvDD2GqWMPsQ1a4tnK67OK+nZtq6Bs6vC+DCzwUO8LUOCxn5MH8H9tVsj+n80K2ZU76mzbsS6ZOIjXdRXBELicZttKZF5eQOblxUUCviSRyfEi3cmHFtHrGcb+4O61V2wPDY47Au/sOfjOOhf6mDXmVlfUct0zqwmt3sNja6t56NLxlkFfPFt5bdzTaNtuq8kfpKkliMtpvQtFRNsj7O7R1BKwbccqzfcwMH9/4Fmab50NjMzLW76jjsmHFEp2r4sk4EsSVZqPw+Fgd4OPvGy3TI4XaUc+tIhUlKisc2VtM7vfWsqEd16hePEi22ObRh/O+lMuoM8lF1E6qONFCmAOTYZCBlmurpUM6d8nm6F9c+lvs5UYwEXjy1oVMb5ofJnlsY8t20ZNuIRLTXOAx5Zt4ydnHGZ5/Amj+rGmsr5V28roAfl8UlHXqm1FVzXgcjoYXJzbpfeT8eVFnDh2EDU1TZbHiNYk4EumyKTUTmoZCdGTuvoHU1b0ilTTbVlnw8D9ycdm5u7lFwkZBo7mAGUYGDgI5bqjxYyDagze2ZfRcu75GPkFVNZ5uXbeKjNT9fJmHr7M+nUUT8mQaDYwZPDUiu2dZgN/epo/WkDYLhv4aUWdbbut9ZUNtu1YN8w4lKueXtWqbUXeTxJPAr4k0VUNB1DsUojEiucPpqzoFakm3qxzZZ2XjyvqGL3lM8oXPYfnxec7PK4lGCJoGGzuP4TnjziZsf9zBedOG93hsa+vr6KizgdAvS/I6+ur+NaxQzs8dnx5EddMG8orn+3i3HEDbbN7SzfvJRg06+oFg4ZtNrCyzstTH2+nyR/kqY+3c9yh1nveTiwvZHN1U6u2nR21Xtt2rBVf1bRrW52zvJ8kngR8SdI3L4s9jS2EQgZOZ+fFLoXoCfH+wZQVvSKVdJolMgzcqz/Fs2AeWc89G83aOXCQles2d48IC44+DO/sObScdwHPfdHI3W9ujJY5Gd3HOvu0pbrJth3r7Y27eeDdLwF44N0vGd4vz37lLRAKdb7yNrL9mWEY1Djstz+7cupQXtdVNLaE6JPt5MqpHQenEYcU5vB5TNHjQ2xe/698tqtd26osC8j7SaJJwJck+5r8DOiTjcvhIGgYttvICNFTZFhFpKLVFbVdKpxbVpjD7WeMNo8d0ZfBWzfgmT8Pz/PPtjvWG87aAWztV45v9mWM/e63MArbP/7U4dld3l2iJD/bth1r3icV7dpWAZ/T4aB/nyxaAgbZ7vb748aq9foJhPZPGar1Wv99Wb+rnoYWc2uyhpYQ63fV2wZd35gymP9ursbAXLDxjSmDLY89d9zAaEAbaYvkkYAvSVRpPrlZLvzBELlul/xhFSlBhlVEqunq3DXX2jUEn3qSCc88w4Twbfkxc+0igoeOwDd7DgtHTuM3H+7C6XASMkLcdupoxnQQ7IH5uvjFWYdFg06718Xg4lxc4W1mHQ6zbSW7zarYtu1YffOyqG0OmNul+e1HhYpysnA7zWykw+GgKMf62HjKrIC5BVpk1rkRbluJZPMiQ9Z22T2ReBLwJUlv+MMqNdrSkwyriFQSWcnqdDoIhcy5a5P2fUXOgnl4FsxrdWxLMEQjZqBlGFBbNhjPFVfgu+AijL6tF0QcVeelfEMdzf4guVku26xdZZ2XO9/YiD8Y4p3N1bZzW6cO70v//GzqmgMU5tpnAw8bmM8H22pata2s/Ko2mrULhAxWflVrme2cOrwvRTlu6rwBCnPszyGeMitgloWJHNdZAWgwgz4J9FKDBHxJlMl/WKVGmxCiO0xt2sHAtx/j4s/ewgEUetxku53tjgsNGcre8y/hhtBhVOcUdGnR0Y0nDOfNTdWcOqq/7ftTPHNbqxp87Gv0m1N1Gu23/YonGxjP3MD1u+qpDk8Tqm7y2w7TXjFlcHTnjEjbTjwFoEVqkYBPJITUaBNCxMulN5iZu/lzIRgEYEYwxNG+wP7UkwNCg4eYRYwvnInRv3/0/tnAb7o4srC6opbbX95A0DB4a8NuHros2zJjpkrzcYBZNzXLfgrO0s17CRkG2V2orTd1eF/698nuUiZuRP8823asf3ywrV3bLgsXj3gKQIvUkpSATynlAVYAP9BaLw7f1g94GDgT2Av8Qmv9eMx9JgAPAROA9cB1WuvlMf2XAv8LlAP/Aa7RWleF+xzAb4FrgCzgn8BtWutggp9qryWT/4UQdvZ9sprgv//NyMUv4gpa78BgHDKYp4cfz3+OmEFjUb9ORwuqGnys3VlP37ws2+MWravCHzJwAH7DYNG6KvsdGyJzAW0WS0B8tfWqGnxUN7UQDIG/qcU2G3jmmFL+b/lXNPiC5HtcnDmm1PJxff6gbTvW86sr27U7C+JOHi2BXjrq8YBPKZUD/BsY16brMSAfOB6YDDyslNqotX5fKdUHWATMA74DXAu8opQaqbWuV0pNBh4Hvgt8AtwH/B9wVvixfwh8C5gFOIGngD3A7xL1PHu73jBHUQjRNa5NG/EsmEvO/HnQ0hItZAxQBxSFF1eEBg3CN3sO3gsvwSjdH9CcXOelvItZu2vnrSYYMnjy4+08fJl1ceKyAnPrLqNNuyO6qgHDMCjJ93Q6YjG+vIg7zz08mgGzCyKf/XQnQXOBLMGQ2bY6/v0v9lLnMwO3Ol+Q97/Yy8wJ5R0e+/VjBnPX4k2t2lZGl/RptSvH6JI+lseK9NajAZ9SaixmsOdoc/tI4HxgtNZ6E7BGKXUccD3wPnAZ4Adu0VqHlFI/BM4N3/4P4HvAs1rrx8KP901gm1JqVPjxfgD8Umv9Trj/NuAuJOBLqEyeoyiE6JhryyY88+eZwZ2v46K8gZDBnoJ+vD7pNF4ffzLfOf8YZoyy3oKsq579dGerhQ12AdSZY0p5ZlUF9d4ABTlu24xZPCMWlXVe7l+6laaWAJv2NDJmYEG3vA8uXL2zXdsq4Js5oZztNc28tr6Ks8aUWh4HMGtiOYs2VEUXmcyaaH2sSG89neGbAbwN3A7E7uZ8LLAzHJxFvAvcEf56KvCe1joEoLU2lFLvAdMwA76pwO8jd9Raf6WU+hKYppRqAoYA77R57MFKqSFa66+68wkKIURv4fxiCzkL5pEzfy40NxMyDAIhA7fT0WroM1RSim/2HHwzZxEaWNaq1IrTYV9ipLLOyw0L1kRr4P1t1pGWAVRzm6HLtu0DFc+IxbKt+9hR24wDB/ua/bZFjy+ZOIhF66uiNe0umdjxcWDO2dNVja3aVlZX1DJ3ZQWhkMHclRWcNHqA7Q4X/5wzUUZjeoEeDfi01g9GvlZKxXYNAiraHL4LGBzTrzvon9iF+0deQRVt+gj3S8AnhBCdcG79gpxnn8Ezfy6OxsZ2/SHDoLY5wL78YhYfdTon/b/rGTB6eIePFU/h+WVb91FR24zD4aCmkwBqXFkBb2+qbtW28vqGKqrqzRpyzf4WXt9QxbemWO8y8czKHdGM2fdnjLQ8rrbZHx6mNaJtK/HUtDtqcDGvb9hNyACnw2xbiZSyyerCwhGQ0ZjeIlVW6eYBvja3+YDs8IILq/7IpAu7/ryYNm2+tp60AbhcDoqLrT9FpTKXy5m2597bybVLTxl13bZuxfnvp3D++98Ea2ujWTtXpDBw5P/+Awhdfjmhy+awuD6L372mKchxU+8NMDy/P6Msfh6TR5WQ/8E2WgIhct1OJo8qodiiJEleXjYOHOF5QA7y8rItf86zjx3GM6t2UtPUQnFeNrOPHWb5uNvrfO3aVo977+sbeOLjHQA88fEOcnOy+NGZh3d47KD+fcxSK5hZu0H9+1g+7svhmnax7Ysnd1yz7ozx5Ty+/Kvoit4zxpdbPrdzJpTz7xXbCYRCuJwOzplQnjm/mzEy6jXXA1Il4PPSPvjyAM3h4Vur/kghIrt+b0zbH/M1MffvUDBoUFNje0jKKi7OS9tz7+3k2qWndL1uzq+27c/c1dW16guEs3YGBvV5heR+4xtkf/3rhA5pvwhgcMiLywG1TS1kuZwM7pNl+fPIA35y6sjozhV5WL/Xji/tw6BCD03+IHlZLsaX9rE8dlNFLXsbfYRCsLfRx6aKGvKiObQ251voade2etynl3/Vrn3NsR1nA8vy3BgQzcSV5bktH7ck192ubXVsXZ0Xp8NBtsvcVq2urtnyuR1a6OHBS8dHf76H2jy3dJaur7lEKimxzmqnSsC3Ayhrc1sZsLMb+nfEtDfFfE3M/YUQIuM5t3+FZ+F8cubPxVFTY3mcUVSEd/YcXho7gzvWNkd3Vbjt1FFcdEjHw6nxzHOrrPPyq0WaJn+Qtz7fzd9mj7ctkPyLs1WXtjVbunkvwZAZaAVD2A5lThpchNOxPzCbNNh6yDM/20W9L9iqbeWdTdVEtrENGWbb6hwOH1iAk8poNvDwgdZ/rONZKQzmamHbMjOi12lfrjw5lgGHKKWGx9w2PXx7pP+48PBupK7e8W36p0fuqJQaAgwFlmmtK4Btsf3hrytkwYYQIlM5K3aQ+9c/03fGVPodeRj9jjyM4rNPJfeRh1oFe0ZBAd7vXEPNK/9h75rP2bvmc/a9u5zmm26hYeAhgBGuq9BxNinW+1/s5fGPvuL9L/baHrds6z4q6nzUNgeoqPOxLKYsSFuVdV7ueGUDz66q4I5XNlBZ1/HKX4BBhR4MIGiYZzuo0HrWTkeBmZUzVKltO9banfW27VhTh/dlQH42HreTAfnZtoWXpbapOFgpkeHTWm9RSr0O/J9S6kbgaOBy4OTwIQswS6j8VSn1AGYB5QJgbrj/QWBJeOXuMsw6fIu01htj+u9SSm0DgpglWe5L/DMTQojEc+6swLNwgZm5q95jeZyRn2/WubvkUkLDhnf6uFOH96W8KDe6QtYuIFm4qiJa+21NOMixKwdiBpLhfcVsvL6+iorwfLt6X5DX11fxLYvh1J1t5uW1bcfauLvRth3rxNH9efzj7a3aVo4oK2DF9tpWbStVDT72NfmjC1fsCi9LbVNxsFIi4Av7JmaJlQ+BSuBqrfUHAFrrOqXUuZg7cVwNrAbO0VrXh/s/UEpdA/wa6I+508b/xDz2vUAJ8CxmwPcvYsq4CCFET6ns4tZfVpy7KvE8Ox/Pgnk4d1dZHmfk5e0P7g4dcUDnWlaYw99mHdml842nTtzU4X0pLfBEa+DZBZKV9T7bdqxgKGTbjnXR+LJWBYcvGt92VtB+r362q13barh01qRyFumYunaTrIPeeLZhA1lNKw5O0gI+rbWjTbsKuMDm+OXAUTb9j2PuttFRXxC4JfxPCCGSorLOy00L1+IPhshyOTvdJsyxaxc5z83HM38ezqpdlseRk4N39hy8sy4jNMK6ZMiB6OpWZfHUiQNwOxx43E7cnWxVNmVYMQtW7WzVtrJ8W41tO9bJo0u4fnoTizbs5uzD7bcKi+dxywpzuPXkkdGdNux+ZvFswybEwUqlDJ8QQqSMg83EdURXNeAPhsj3uNtNvHdUVZHz/AIzuKu0WU/m8eCddRm+2ZcRHDm6W87LSmyB5KdWbOehS623KounTpyuasAfMshxu/CHDNsFCE6Hg0KPi2Z/iNwsJ06bAHFcWQEbYoJOuzp8qytqeeT9bQQNg0fe38bRQ4otn9shRTlsq/G2ats97u2vbCAUMli6pZqHLs22fNzx5UU8FLOaVhZZiESSgE8IIdqINxPXVZGJ9+7q3Vy6dgnnPP0enl02wV1WFt7Zl+GbNYfg6MMO+vtHdDWYjaeA74gBecRWER4xwDrD1zcviz2NLeZOG077nTaqG1uie8j6fUHb4sTnjBvI82sqCRrgcphtK4vWVeEPr9oIGQaL1lVZPrerjxvGsi9roqtprz6u41p5EH/RY1lNK3qKBHxCCNGGXSYuXo49e/C8sJCcBXPpt307r8dsP9YqW+V24509B9+sywgepqwf8CDFE8zGM+T4zsZqIjPmQuG2VSATz04bS9qsnl2yqdpybuC+Jj/FeVm0BAyy3Q7bxzVChm07Vmm+h9KC7Oi8vNJ869W/MkwrUpUEfEII0YYqzScYMthe00yBx93lEhiOvdV4nl9IzoJ5OL/a1uExToeD7CyXuaBi1mUEDx/TLefc1axdPMHs+PIi5kwqj24pZpeJWltZb9uOpUrzafYHo4s27H6+RR63bTtWyDCobgwHeT6zbcXhdNi2Yy3buo/qxhYcDgfVjS2227vJMK1IVRLwCSFEG1UNPnY3tBA0DLz+UIflMhz79uJ54Tly5s/Fue1Lc2jSIksUDe7GjkvI3MDKOi83zF8d3Y3CrpBxPPXcFq6qaLWl2ODiXMvs2hGD2pQjGWQ9f27R+l3UNAcAqGkOsGj9Lr59bMfDpH1y3LbtWB99WdOubbUY4+yxpSxctZMQZkHas8da19YzhfdLw36RCcgwrUhNEvAJIUQbbctlLF+1lSmLPzGDu61f2N7Xd8mleGfPITjuiHZ9iZobuGzrPraHFxXsxW+bgSorzOH2M0Z3aeeKxz/6ql3bKuCbNbGc51bvpN4XpMDjYtZE63Ik81dWtGtbBXxnjy3lhTWVBA0Dl8NhG5iVFXhs27GqG1taDUHbzQ2cOrwv5THbu9mVkREiVUnAJ4QQMRy1NVy26nXOeer/GLbPDEyKc924ne03JvJdPAvv7DnsGDqa7U0BBvexL13SnXMDY23f10yoTdtKZOeKel+ANzZU8fBlEyzPIdAmY9m2Hev9L/ZGF1fU+YK8/8Vey+CwwONmd6O/VdvK+PIi5hzVtWHlM8eUsnD1Tup9AQo8bs4cYx0cvrZ+N7C/9vNr63dbZgPLCnP42+zxUvRYpDUJ+IQQvZajrhbPyy/imT8X16aN0dv7AoFQiJYsF9luB26nE99FM/HNnkPgyAlmlBBWWefl2mdW0eALku9x8fCl1gFUorbHavQHbdux4tm54oQR/Xh2dWWrtpWnVmxv17YK+K6bPpwfv7i+VdtKPMPKZYU5fGvKEF7+bBfnjRtoG5idNaaEtzbuiW70cdYY6zp8kceWQE+kMwn4hBC9gqO+juyXXyRnwTxcn2vbY30XXszak87j1exDOGFUf9us0usbqqioNQOoOm+A1zdU8a0pHQdQ8QynQtcXYsQz7Lllb5NtO9aVxw7lrY17oosrrrQIDAFy3S7b9oF6uc0uFy9/tssy4Ht74+5W27v1zcuyzNqdPLqEey6ANzdVc+qo/raFl4XIBBLwCSEyjqOh3gzu5s/D9fkG22N9519oZu4mHhXN3O0vOLydpz7ZYVtwuLLNfq1t2637vNz5xkb8wRDvbK62ncMXz3y/8eVFPHRZ11aGluRl27bbys12EQgZ5GbbB3AzJwyKBluRtpXocCrmOgi74dTzxg2M7s0baXfH44IZ9F08eRg1NdZBrxCZQgI+IUR6a2jA8+pL5Myfi2vDettDW849H+/sOQSOOqbVsGxb8RTPPXtsKc+v2RndYcIuu6arGmj2B3E5HDT7g7Zz+OI5FsxacUcMKrCtEQcwuG8uToiuTh3cN9fy2GVb97GrzgcOaGoJ2i4G6d8nm+IcN95AiBy3k/59rAPJ6HBqTNvKzAnlbK9pjs7hs8ruxfu4QvQ2EvAJIdJHYyOeRS+bwd26z2wPbTn7XDO4O2aKbXDXkXiK544vL+J/zxsTHRq0y67Fs8NE37wsqup90V0j7I6NJxsYMoxWq1PtatXVNvsJGkR30Khtti5k3Dcvi0Z/kFDIIGgYtucbGU6N7Ddrl4VbXVHL3JUVhEIGc1dWcNLoAZY/43geV4jeRgI+IURqamrC89oreObPxb12je2hLWeeYwZ3U461De66OidufHkRd557eDRwsAviKuu8PPTelwQN2LirgTEDCywfO54dJt7ZVG0GW0DQMNtW5xHP6t+Fq3a2a1tlzYpys3A5wOFwYBgGRbnWQdy+Jj99c7MIhgxcTvtdLsAMzroSkMW7VVlXH1eI3kYCPiFE8jU14XljkRncrV5le2jLGWfvD+46KJViJZ4sWGWdl/vf+YImf5BNu+2DuEiwVZSXTW1Ti22wpUrzcTig1uvvdIeJjbsbbdttH9cXDLG7uonCXPvHrfcFbNuxpg7vS362m/qWAAXZbtv6c33zstjX7O9S9jIeslWZEN1DAr4kSkTFfSFSXnPz/uBu1acdHhIIhWgJGNSddBp9rvwm/mOnWQZ3idhSbNnWfVTU+XBg7gRhN3ctUmql3tt5qZWqBh87a30YQIMv2OEOHhEzRvXn/a37WrWtrN9VT1W9WTjYW9/C+l31lo97WEmfaFmWSNvKovW7qA0HhLU++x0x4slexkO2KhOie0jAlySJqrgvRErxesn+z2vkzJ+Le+Untoe2nHo6vtlzWDF0HNc9+1k0U/TQsCMYbxPsdfV1FE8WDCAUMvYv97RRVpjDdccPi87hs3sdP7l8e/ThjHD7ngs7DmD698kmP9tJsz9Ebpb9IojnY2rlRdpWw5oD2izqaNuO9cKaynZtq4AvEvg2tQTIy+76/sNdIVuVCXHwJOBLkkRV3BciaXw+sv/zuhncffKx7aH+k0/FO3sO/uOmg6t1uY+lS7/o8pyteFayxpMFK8p1mwsbjP1tK6sravl/L60naMCb66t4eE625fnuabN9V9t2rOrGFhpazOUVDS0h262/Rpf0aZUNHG2TtWvbZ3fs+EGF7Kjd3aptK7IAxGYhiBAiOSTgS5JEVdwXoke0tJC9+A0zuPv4I9tD/TNONoO76Se2C+46Es+crb55WexpaIkWHLabNxZPjbZ1lQ24HOB0OgiFDNZVNlge++ynOwmE45uAYbatAr6jBhe1qil31GDrrNWzq3e2a9vtY7toQxV1zQEKc922+9jurPPhhOgPYqdN3cDrTziUD77cFy28fP0Jh1oeq6saMICSfI98iBUiBUnAlyRlhTncN/MImcMnDliPzQFtaSH7rcVmcPfRslZdIcOgJWTgdjpwOhz4Tzxpf3DnPrC3l/HlRdx68sjo9lh2Q3lb9jRFy4qEDIMte5osjz92WHGrGm3HDiu2fNxI0BkZVu6uhQLjBhXYtmM1eAO27VhlhTncevLI6Kpiu9+HsWX5rbKXY8usP2yWFebwxDeO6tLvmXyIFSK1ScCXRLI3ozhQCZsD6vdTseAF3HPnMmrTp7htVsHWHXs8d5VM4aNDJ+LMzuq2c1hdUcvv395MKGSwoaqBUSV9LIO4aJ24mLaV/n2yKfS4ujQnLp6yLJdMHMQbene0HMklE613mFi0rqpd2ypzOG1431b72E6zWSG7uqKW21/ZQChksHRLNQ9daj2s7HQ4KM3Pjp6vs5MahV19n5IPsUKkNgn4hEhD3TIH1O8n++3FeObPI2vZ+4C5OjbUbGaSaoDiXDdupxP/8dPxzZ5Dy4knQ5Y5bLpk0x4+WLKl2+ehLt28l2DQDEaCQaPTumtdFTIM6nxBAPy+oG3B4UhtPX8wxNa9TbZlWcaXF3Ha6P68s2UvJ46wX0W6p6HFth3rymOHsmRzdXSY1m4f23hq1anSfPI97uiHhe7MxMmHWCFSlwR8QqShuIfP/H6yl7yFZ/5cst5/z/Iwrz/ER4PHsfCIU1g6fBIXHTWE204b3S3nsLqitkulNSJDjqGQEW1bKcrNwok5OukIt638d2N1u7ZVdi2egPovSzbzmt4DwGt6DyUFm/n+jJEdHntYaR/WVNa3alspK8zh7gvGRn9mdoFUPPMeJRMnRO8kAZ8Qacj2j3YgQNY7b5PzzFyy3lsKmNmtQHgIL3YnCv+x08zM3SmnQVYWj3+0jfuXbo35PtYlO+IJHFZX1HLdM6sJhQyeWrGdhy4d3y1DjtHVtJhBn91q2so6r207lirNJxgy2F7TTIHHvsTIi2t3tWtbBXyHDywAKtu0rc/3V699TlNLgLc27uFvs460zTJ2dQgaJBMnRG8kAZ8QaaqsMIeyPDdZS5eQM38uWUuXdHhcyDCobQ7w6dCxvHnU6Vz+0+8wcEDH5TUmDS7C7XREg61JNqtIwSwkvHZnPX3zsmwDiEQNOcaTtXO0CRzbtmNVNfioamghGDJo9odsCyQPKcyh1tvQqm2l7TCy3bDysq37qKhtxuFwUNPsty3+HM8QtBCid5KAT4h0EQyawd2CeWQteTuatXN3kAULHDMF7+w5tJx6Os/rvdz95qZoOZIRFY1cZBHw7Wvy0y+va/uhxpO1S9SQ476mFtt2rMuOKmfF9tpWbSuL1lURCA8pB0IGi9ZVWT63H546kqufXhUdVv7hqR1n9wDe2LC7Xduq1IrJEV5Na7+wQup6CiE6IwGfEKkoGCTrvaVm5u6/b7XrjmTtADYMPZwh119F3gXng8dqCNYwh3I7KYjbNy+LfU3+LtW1i2TtIrXq7LJ28ZRaga4POea4XbbtA2W0+Tm1bccaX17ET04bxWt6N2cp++HUwhy3bTvW1OF9Kcp1U9ccoCjXfh9bKYkihOiMBHxCJFsoRNb77+KZP5fstxbjdDroF+o4wAhMOgrv7Dm8OWIyf1q2I5rRuWnSCGZYBHtTh/elvCg3uuWVXeAQqWvndDg6rWs3tiyfoAHBYOeLK1ZX1HLvm5sIGrC+st621Eo8xg0q4O3N1a3aVuZ9UtGu3R3Dv5EyMoZhsLaizva5fWPyYN7ZVE0QcIXbVtbvqqe60cywVjf6bXcGkYUYQojOSMAnRIK1KpCcn03WsvfN4G7xG+2ODRkG/oCBywGhiZPwzZ6D74yzITe31XGj67xkLd/ZpYxOWWEOf5t1ZJeDAYfDYQ4gdlKfLZ7FFfHsRhGPM8eUsnDNzuhOEGeOKbU8NtvlsG3HOntsKQtX7SQEOMNtK9H5iW4n/oD9/MTx5UX8+LRRXcp0xrMzCMhCDCGEPQn4hDgAXdrlIhSi7u13+PJPD3PSenOHiqJcd4eBUWD8BHaddwnX1g+mKSsHlwPbQsbxZnS6GgxMHd6X8kIPTf4geVmuTocRc9xOmvxBctz2QWdzS9C23VZXdxEpK8zh4UsndOnYo4cW88GXNa3aVqobW6Krf0PhtpXI/MRAF+YnxlNU+qwxJa12BjlrjHWwJ4QQnZGAT4g4dbjLRYEH94fLyFkwj+zXX40emx8MUeQLRqfPBUIGzgnjzczdmedAn/112D7atIeatzeThbkyNBkT78sKc/jb7PFdHxqMBK+dZAOH9s21bceqrPNy5b9XRgsOP/b1SZ0GfV35OZ15eClzP6mgzuunMCeLMw+3ztrFk12LzE/syhy+eFYrnzy6hHsuIFpqxS67J4QQnUmpgE8p9TXg321ufkFrfZFSahjwCHA8sA24WWu9KOa+JwP3AaOAj4CrtdabYvq/B9wGFAELgBu11o2JfD4iM+ld9YzatJqzP13M9PXvk3+Pm2xXx1uQBcaM4+FDprHk8GkE8vrYZu365mWxp6GlSwsmKuu83LBgTXRenl2Ntnh1tdRKZGVojtuFP2gfoA7um4vLsb9A8mCbgO+xD7e1mrv22Ifb+Mnphx3MUwLM57U3nLnb29hiW2olnuxaPHP44lmtDGbQJ4GeEKI7pFTAB4wDngOuj7nNq5RyAC8A64HJwAXAs0qpcVrrL5RSQ4AXgd8ALwM/B15QSh2ptQ4ppWYCvwWuACqAx4A/ANf1zNMSacswcK9YTs78uWS/+jIA54dCnBBeIRsCnOHkVvDwMWYplHPOw8jfv3hgakUt/i7slhDPgol4arRB14dIV1fU8j9zVxEy4InlX/H3ORMsz6FvXhZ7GluiK3XtAtSpw/tSmJNFvc9PgSfLdqj44201tu0D9eTH21sN0z758XbuueDgs2vxzuF76NLxXdpxRAghulOqBXxjgdVa68rYG5VSpwAKOEFrXQ+sU0qdBlwF/Ay4Bliltb4nfPx3MMvZnwIsBn4A/FVr/WK4/zpgsVLqVq11AyKtdDV4iZth4F65wgzuXn7R8rCQAdsGDuP1Safz9pjj+O7Z45kxaoDluXZ1twQwF0w4HRDqpO5a+Ogu1WirrPNy7TOrogsbHr50guU5PPvpTsKLbgl2srhiX5Ofvrldq9n3/hd72dds9u9r9vP+F3st6895spy27QNVFw7SrdptdTW7Fs8cPjCDPgn0hBA9LRUDvvkd3D4VWBkO9iLeBU6I6X8n0qG1blJKfQJMU0q9jZkV/G3MfZdhPvdJwNLuO32RaB3OnzuQoM8wcK9aiWf+XDwvPm97aPAwhXfWZbScdwFGQSGVdV5uizkHu8UKy7buY0eNmYnb12SfiYssmGgOhMh1O22zYFOH96XA44oGcXbHvr6+iopaHwD1viCvr6/iW8cO7fjgtrGjTSzZNy+L6sYWgga4HNhm+J5ZuaNd2yrgK/Bk2bbb6uoHgHgKL8cjkrVbvqOOyYcUSjAnhEhJKRPwKaWygZHAeUqp32D+qZkP/AIYhDkUG2sXECliZddfDOTE9mutA0qp6pj7Z5TVFbUsX/5VRv7x0VUNNPuDuBwOmv3Bri1sMAzcqz/Fs2AenucXWh4WCIWoKB1K8+zLKP3GHIzCjn928ayQrW32mxmzcOHe2mbrLFhZYQ6/OFtFAwe7xzUzZmaGal9zwDZjVllvBnuRBQiRdkcumTCI1zdUEQyBy2m2rbz62a5W2cBXP9tl+ftWmu9hc3Vzq7aVeAKzeD4AJHIRxPjyIk4cO4iamqZue0whhOhOKRPwAaMxz6cRuAQz+LsPKMAM2Nr+lfIBkb8aeTb9eTFtq/t3yOVyUFycZ3dIj6moaWbdzjrGDiqkvNh6wvvKbfv47jOrCRkGjzocPPmdKUwaap39STdDSwvMkhnhuW5DSwtaXyPDgE8/xfnvJ3E+80z7B3DuT1kZo0YRuvwbGDMvYWWdwTce/ch83BYHT5LDJJtr34SDPo1+CgtzKba5Hrm5We3aVr9TFTXN3P7KBuqa/Tyfm8W8a6ZaXuvX9O527e/MGNXhsZdOGcrzayoJhrdhu3TKUMtzGIWDopys6ErWUeXFls9vdWV9u7bV4/7wDMWyRz7cv/3YGcry2OEDC3E5iGYOhw8stDz24531BA0oysum3htge6Ofw4daD6lePHkYF08eZtl/MFwuZ8q8X4iuk+uWvuTaxSdlAj6t9WdKqQFa60jZ/FXhxRpPY67ObZs68ACRj9Ne2gdvHqA63IdFv+3H8WDQSOgn9q4ORcWTxXh1VQXBmAnkr66q4NBC27g2JXT1Z7Gtqp7+fbJxORwEDYPa9z/C/8fX8TzbPrgLYWbtWgIGweHDcV3+DXwXXIRR3D4AfnXVF+bPLVwuw+7nFs/1yMbMlDlwYGCQDZa/U48u2UJlnfm5pMnv49Elm7lxxogOj502rJiVX9W2als9bi4GeVlOGnxB8rKc5GL9e/3oki3sDc/F29vktz2H8WUFbKxqbNW2etyVX1RHV7wa4bbVz/fVVWYyPsfd+bUY3CcLwzCorG0mL9vN4D5ZScuyFRfnSYYvDcl1S19y7dorKbHebShlAj6AmGAvYj2QhTkcO6FNXxmwM/z1jnC7bf9a9gd9kTZKKTfQP+b+PS6eoCGejdHjnUCeSN0d0LrWr2PGU09y0tNPY2DgwNFhIePQ0GF4Z8/hkymncvUbX0VXkT502njGFx98uQxd1UCDLxBerGBfjmTq8L4MLPB0aa7dxj2Ntu1YI/r3IT/bSbM/RG6WkxH9+1ge+9iybdT5zELHdb4gjy3bxk/O6LjMydo2Wbu27VhXHjuUNzZU0dASIj/byZVW8wKBlz/b1a5tNQQdb+mS6P7AnewTLIQQvVnKBHzh0ikPAkO01pGy9pOAGsxFFj9VSvWJqZ03PXw74f9PjHmsvPB9fxsuy7I8fPzi8CHTgACwMnHPyF48QVw8G6OnygTygw1oD9m5lZz5c/HMnwuhUPTYkGFQg2H+bXcYtBwyhNBlX8N34UyM/v1bPe7bS7/ocpHbeMplhAyDqoaWVm07gZCBP2gQsNgfN2LGqP68v3Vfq7bdOTS0mD+XhpaQ7Tks+3KfbTvWEYMKWs2fO8Jmb9r1u+qpD59DfUvIdq/X88YNZM3O+lZtK5FCxl3ZfkxXNWAAJfmeTl9HQgjRm6VMwAcswZze83el1P9izum7N/zvv8CXwGNKqV8C52GuzL0qfN9HgR8ppW7HrON3B2Zx5jfD/Q8AjyilVodvfwB4NJklWeIJ4uLdRiuRE8i7mrWLJ6AdX1fBNa8/yhkr/4M7FKLoTx1vPxYaPJiPjjuHHzoPZ19eEQZw26mjLFe9xpspKs33cMSgAtsFBQBzV+xo17ZaAPD6+iqq6s3g0FvfYrtCtn+fbIo8LpoDBrluB/37ZFuew383VrdrW52Dx+20bceaNbGc1zZURXe5mDXResHEvE8q2rWtziGSzYsEcVbZPYhv+7F4XkdCCNGbpUzAp7WuVkqdCfwR+ASoBR4C7tJaG0qpC4F/AiuAzcDFWuut4ftuDWcI/wTcjpnxu1BrHQr3zw3v1PEg5ty954BbevL5tZWovVATKZ6sndUfYtemjXjmP03O/HngN+eKFRsG/ZoDGNEp/RAqL8c7ew6+C2ZilO7fAmvd6p1UL94IGNDJCF48Wbt4nltFnde23epx41ghGzIMasNDry1B+8zhvqYW23asE0b2Z8ve7a3aVsoKc/jf88ZEf2Z2v3OFOW7bdlszJ5TbBnoR8Ww/Fu/rSAghequUCfgAtNYrgZMt+jYBM2zuuwhYZNN/N3D3wZ5jd0qFIC4e8ZREKSvM4cGj8gg+9RSj/vMCrj9YByT1/Up4atSJLJt8GtuzC7lpxgjLQsYjBuThDC/YcDkcjBjQPSu04pmXd7oq4YmPd7RqWzl7bCnPrd4ZXXF69ljr/VsXratq17bKmOW4XbbtWCeO6s8TH28nZJiLlE+0GSqurPNy5xsb8QdDvLO52jbw/cbkwbyzuTr63L4xuXuqHMWbmU2315EQQiRDSgV8Ijm6Okxrt9erc8tmchbMI2f+XPCaGa+O/kyHSgfim30Z3otnYwwcGP3+L3SxkPG+Jj9987q2u8Pqilqum7eaoGHw1Mfbeeiy8ZaZonjm5U04pIjnVu+MLpiYcEj3zJPc3dBi2441blABb2+ubtW28upnu4hMHwx1Ui8vrqH48iLuOn9MtK5dd80Xle3HhBCi+0nA18vFM5QZ2et1aE0lF659m2P+73ryAzZDlCWl+GZdhm/mLEJl1gV84xmW65uXxb5mf5f2b120rgp/yMAB+A2DReuqLIOHdZUNuBzgdDoIhQzWVTZYZtf65mXh9YcIGeD1h2zPIZ6tyo4eUtRqVezRQ6wDnaH9cm3bsT7dUWfbjhXPnLjKOi8Pvfcl/mCIrXubGDOwoNsybbL9mBBCdC8J+Hq5zjI6zm1fkrNgHp75c/l6TS0XhOeYAbg9LggPJRr9B5hz7mbOIjTInKcVzRzm5bermdNWV4fl4tm/tazAXHxhtGl35ISR/Xjq4+3m4zrshxFXflVLIPygAcNsWwUnzf6gbTvWrInlvLi2knpfgAKP/YKJRZ9VtWtbBagTywvZXN3Uqm2lrDCH288Y3aU5fPFkA4UQQiSXBHxJ1NWh1ERSpfk4HA52N/gY0bCH6QvepO+LC3DUt6+/lu1y4nKEqMkt4D9Hn87JP72e/oeP7PBxK+u8XPvMqmj9uYcvndBpLb7uzvCdOaaUpz/ZQZ03QGGOmzPHWM+fK833kO9xU+/zk+9x267Ubbvwwm4hxriyAt7eVN2qbaWqwUe9L0gwZO55W9Xgs/xZ1PkCtu1YV04dyn83V0d/DldOta6XF88cPlkhK4QQ6UMCviSprPNyw4I1NLUEyMt287dZR/Zo0Oeoq8W1bh0D3n+fhX+7v1UhY0dMSRSjuDicuZtNaPAQVlfURrM//W2G3F5fX0VFrRkI1fuCtuVI4hlW3tfkZ0DMTht2Gb6qBh97m/wYmLtG2AVQCz6tYF94n9t9zX4WfFrBjSd2vMPElGHFLFi1s1XbypljSnlyxfZo4GsXdC5aV0UgPAQdCNkPQcez32xZYQ6PXT6p28vpyApZIYRIHxLwJcmyrfuoqG3G4XBQ0+xn2dZ9lvXkDpajvg7XZ5/hXrcW9zrzf+dX2wDICYZoCAd7DTl5VF50KYP+50pCQ9vvNxpP9ieeciTxFqF2OKDW66cgx22bVfrbki9abef1tyVf8PDXJnZ47Nqd9bbtWE6Hg+IcN95AiBy3s8OagRHrd9VT02xm32qaA7bFieMZgj55dAk/Pc0frWtnNZwbfewuDpnHm7WTFbJCCJEeJOBLKkf4r7t1wBD3I9bX4Vq3DufWz8lf/kmr4A4gdMghBMYdSeCS2QTHHsGqvoO5atG26Jy4hy8bz8BuWMF59thSXlhTSdAwcDsctuVI4gkyqhp8VNb6CAGNnQx7flXbbNuOFc8OEyHDoMZrBnHegP0uF6+t3w3sD3xfW7/bMjg7c0wpC9fspMEXJN/jss0GVtZ5mbeyAn8wxLyVFRx3qP18u66SrJ0QQmQmCfiSZOrwvpQXemjyB8nLctnusWrF0VCPa9063J+t2Z+52/YlIcPAb4AxqJzA+PEEZs4iOPYIAmPHYRS3/j7LP9oW3fIrEDJYud16AULcW7xd1rXSGmWFOVx3/LBoeQ+7IOMf739JZKO1ULj9l1njOzx2cFEOuxv9rdpWZk0s55V1VdR5/RTmZHXbgomzxpTw1sY90azdWWOsM3FlhTk8fOkEtjf6GdwnK2kLJiRrJ4QQmUcCviQpK8zhb7PHdzmTUlWxh10ffoLatYV+WzTudZ/h/HJrtD80aBCBcUey76wLuLcql41lI2jqU2g77ApmqRW7dttzjif709WtylZX1HL7KxsIhQyWbqnmoUuzLQPEilqvbTtWbrbbtt1WtsuBx+0k22Wfcd3T2GLbjnXy6BLuuYBoMNuVodfDh/brdFs8WTAhhBAiHhLwpaKGBtwb1uH+bC3udWsJrVnDQL2J0vBcO2PYYALjxxO84CICkcxdP3P3hPc37eHjJVsoysvG39TSaean7U4V3bVzRTyrdJdu3ksgaOBwQCBo2G6ldczQYr6sqWzVtlJWkG3bjrVs6z6qGlpwAM3+Fts5lUcNLmJNTL28owbb14vr3yeboX1zbffGjZcMvQohhIiHBHxJElmZ6mpuZPTubfy/smb6b9G41n2Ga+sXEJ4XFhpYxpZBI5g3eTzrS4ezoWQ41194jGUwEsn81Hu7lvk58/BSFq7euX8V6eH288aufGpltLzHY5dPsgw0Xt/QZpXuhiq+NaXjVbp52U4Mok+ZvGyn5TlceexQ3tC7o/PcrrRY+QuwsU22sm27PQMcjv0nYmHWpHJeXr+LuuYAhbluZk2yHv5dXVHLdc+sJhQyeGrFdh661Hq3j3jJ0KsQQoiukoAvSXRVAwN2b+e+f95Glr+FPh4X7kGDCI47gpZzzgtn7o7AGDCAu55by3+37I3e973N1ZYBX6Rw7vIddUw+pLDTgKCsMIdvTR4SXe1pd/xjy7ZRHS6DUt3k57Fl2/jJGYd1eGw8Q8UbdjXatmOt31VPfbj4c70vaLvqdeIhhayJWW078RDrgsNTh/elvCg3WianszmVfbJcOIC8LOs9bMHMXoZCBlkuJ/5gyDZ7KYQQQiSKBHxJokrzqSsu4Z+nfpOa4gF85+pzKDl0SIfHbqxutG3HqqzzcserG2jwBXnR4+q04PHbG3dz1+JNAKzZWU/fvCzLeWafVtTZtmON6J9n244VWdgQ27Yy75OKdm2r83U5na3WP7uc1pnDssIczhtXyiuf7eLccaWdLpgwgJJ8T6cLJk4Y2Y+nVmzHHwzhdNrv4CGEEEIkivVfQJFQZYU5/OjcIwjM+Tpn3zDHMtgDuPDIMtt2rEjB4zpvgIpaH6+vr7I8FuD51ZW27VhtM2R2GbMQhm07VtviyXbFlAtz3LbtWCeM7IfLaYZ8rk6CrYWrKnjg3S/5cp+XB979koWrKiyPjXu18qXjuWLykG4dzhVCCCHiIQFfklTWefnuvFU89tFXfHfeKirrrFebnj1mIIUeF06g0OPi7DEDLY/dUt1k225r9IA+tu1YVx47FE94BNPjwnb+3NLNe23bsZ5bvdO2HesbkwcTWUTrcphtW5H5eJ3My3v5s1227ViRBRM3zRjR6SpoMIO+G044VII9IYQQSSMBX5J8d96ntIQLyrWEzLaVZVv3Ue8LEsKct7Zs6z7LY3OznLbttmZNKic/2xz6zM922i5A+NeyLwlPn8MXNNtWzhs30LYda9zAAtt2rPHlRdx1/hhOGT2Au84fYxtELd28FwPwuM1FIXZBZzznC2bQN2PUAFk0IYQQIi1IwJck2+tabNux3tRVrbYIe1NbD9M62mzz1bbd1vtf7KWhxRxwbWgJ8f4X1kHRaxuqbNuxZk4o56enjeLIQQX89LRRzJxgHUheOXUoueGR2Vy32bZSWeflofe+ZOPuBh5670vbzOgJI/vhdDq6NH8unvMVQggh0o0EfEkytrSPbTvW53sabdux4s3w/f39L23bsQYX5dq2D9Si9bsIbzdLc8BsW4ndYcIfDKGrGiyPjXf+3MwJ5Tz69UkS7AkhhMg4EvAlyeNXHE1WOPmW5TDbVo4sK7Btx3rz8z227bZ8gaBtO9Ztp4+Ornp1hNtWFq6q4K7Fm1izs567Fm+yXQTxSpv5cm3bseLdYULmzwkhhBAS8CXN1x9bjj88Tus3zLaV9bsabNuxIvviWrXburhNPb+27VjVjS2thparbbYUi2cRxLlt5su1bceKd8GEEEIIISTgS5qN1c227VhVjX7bdqwTDu1n227r+zNGcuzQItwOOHZoEd+fMdLy2NfW7waIZvki7Y7Eswji28cO4/rpwxjWN4frpw/j28cOsz1nWTAhhBBCxEcKL2eYK6cO5c1Ne2jwBcj3uG0XQIA59PrhtloAPtxWy8JVFZZz2CIFko2YtpXIY0R28OhsXty3j+080BNCCCHEgZGAL0mOHVoUDbQi7e44FqDQ4ybL5STX3XkCt6OhV6vg7OTRJdxzgZnZO2tMieUOFxEzJ5TLAgghhBAiBciQbpLcP3sCBdnm4GhBtoP7Z0+wPDanTeDWth0rsu3XwMIcjHDbTrz1504eXcLdF4ztNNgTQgghROqQDF+S3Dh/FfUt5uBofYvBjfNXWQZ9H2ytsW3Hiqxirfd2bRVrvEOvQgghhEg/EvAlyYqvam3bsaYNL2bJln2t2lYiq1i3N/oZ3CerSwsbZOhVCCGEyGwypJskRw8psm3H+v3FRzJjRF+ynQ5mjOjL7y8+0vaxywpzOG3MQFnFKoQQQghAMnxJc//sCdw4fxUrvqrl6CFFtnP4gE6DPCGEEEIIKxLwJVFnQZ4QQgghRHfoNQGfUsoD/BWYDfiAP2qt70nuWQkhhBBCJF5vmsN3LzANOA24FviZUmpOck9JCCGEECLxekXAp5TqA1wD/FBrvUJr/QJwD3Bjcs9MCCGEECLxekXAB0wAPMC7Mbe9C0xWSrmSc0pCCCGEED2jtwR8g4C9WmtvzG27gGygNDmnJIQQQgjRM3rLoo08zIUasSJtj9WdXC4HxcV5CTupRHK5nGl77r2dXLv0JNctPcl1S19y7eLTWwI+L+0Du0i7yepOwaBBTY1ld0orLs5L23Pv7eTapSe5bulJrlv6kmvXXklJgWVfbxnS3QH0VUplx9xWhpnl25ucUxJCCCGE6Bm9JeD7FGgBjou5bTqwQmsdSMoZCSGEEEL0kF4xpKu1blJKPQ48oJS6EjO7dytmqRYhhBBCiIzWKwK+sJuBB4G3gDrg11rrZ5J7SkIIIYQQiecwDCPZ55DKdgNfJvskhBBCCCG6YBhQ0lGHBHxCCCGEEBmutyzaEEIIIYTotSTgE0IIIYTIcBLwCSGEEEJkOAn4hBBCCCEynAR8QgghhBAZrjfV4ctISqmRwJ8xdw5pBOYBt2utvUqpYcAjwPHANuBmrfWiZJ2raE0pdThwPzAVqAbu11rfG+6Ta5filFKPAKO11ieF2xOAh4AJwHrgOq318uSdoYillPoa8O82N7+gtb5IXm+pSymVBdwNfBNwAM8AP9Ba++S6xUcyfGksvDfwS5h7Ah8HXA5cBNyplHIAL2AGEpOBx4FnlVKHJudsRazwm9gizDepicANwB1Kqcvl2qU+pdSpwNUx7T6Y13MZcDSwFHhFKWW9k7noaeOA54BBMf+ulNdbyrsXmAlcCJwPnI35XinXLU6S4UtvU4BRwBStdQOwXil1B/BH4BVAASdoreuBdUqp04CrgJ8l64RF1CHAR8ANWutmYJNSajEwA9iJXLuUFQ7u/g68F3PzZYAfuEVrHVJK/RA4N3z7P3r+LEUHxgKrtdaVsTcqpU5BXm8pSSlVDHwXOE9r/V74tl9ivq5ORq5bXCTDl940cE442IswgGLMYcKV4RdCxLvAtJ47PWFFa71Va32Z1rpZKeVQSh0PnAi8iVy7VHcn8N/wv4ipwHta6xCA1trADAjlmqWOsZjvmW3J6y11TQeagMWRG7TWj2mtz0auW9wkw5fGtNa7iXkhKKWcwI3h2wYBFW3usgsY3GMnKLpqO1AOvAwswJyTKdcuBSmlpgGzgSOAW2K6BtE+mNiFOVwvkiw8/WUkcJ5S6jeYc8HmA79A3itT2UjM7U2/ppS6HcjHvG7/D7lucZOAL7P8EZiEOZ/hZsy5fbF8gKenT0p06kLMgO9B4E9AHnLtUo5SygP8E3PC+D6lVGy3XLPUNhrz710jcAlmIHEfUADkINcuVRUAhwLfA64Ntx/EvJbymouTBHwZIDx59c/A9cAsrfVnSikvUNTmUA9melykEK31xwBKqTzMicePItcuFf0c2Ki1nt9Bn5f2f2jkmqWI8HviAK11dfimVeH3zacxV3nK6y01BYBC4Bta680ASqlbgSeAx5DrFhcJ+NJceBj3n5grdC/TWr8Q7tqBWR4iVhnmggCRZEqpQ4CjtdYvxty8DsjGvEZHtrmLXLvk+zowSCkVmTObDbjC7X9jXqNYcs1SSEywF7EeyMIcFpT3ytRUAQQiwV6YxszKViLvk3GRRRvp7w+Yf4hmaq0Xxty+DJgYXlEYMT18u0i+McBCpVRpzG1HA7sxJx7LtUs9J2HO3ZsY/vcI8HH462XAceGsUSTrfjxyzVKCUmqmUmpXeC5fxCSgBnmvTGUfAG6lVGxgNxaoD/fJdYuDwzCMZJ+DOEBKqamYv/Q/xUxvx9oNrMbMGv0SOA9zSGqc1nprj52k6FC4Dt8KzAUbt2DOKfon8L+YxZjl2qU4pdRvgela65OUUoXAJsyisA8A12B+EBvVZhWhSAKlVH/MjN6rmK+x0ZgB+/2YRX3l9ZailFLPYy7EuBZz3t7/AQuBHyPXLS6S4Utvs8L/34WZxo7958BcDFCKGVh8E7hYXgipQWvtx6zTFgA+BB7GnIf5F611ELl2aUVrXYd5PY8DPsHM7p0jwV5qCA/nngkMw7w+f8fcFeUueb2lvCswA7u3gOcxi2f/VK5b/CTDJ4QQQgiR4STDJ4QQQgiR4STgE0IIIYTIcBLwCSGEEEJkOAn4hBBCCCEynAR8QgghhBAZTgI+IYQQQogMJwGfEEJ0M6XU15RShlLqlmSfixBCgAR8QgiRCF/D3HnjW8k+ESGEAAn4hBCiWyml+mHu6vBL4Eil1KTknpEQQoA72ScghBAZ5hLAB8zD3NvzSmAlgFLKibmX69WY2x/+Kdx/tdb6v0opD+berpdjfiB/E/ie1npXzz4FIUSmkQyfEEJ0r68Di7TWAeAF4OtKqaxw308xh3kvB07D3PB9RMx9/xeYFr59BuZ79MtKKUcPnbsQIkNJwCeEEN1EKVUOnIi5yTvAQmAAcE64fT3wC63161rrlZjBnyN83zzgRuA6rfWHWuu1mBvHjwOm99iTEEJkJAn4hBCi+8wBgsCr4faHQAXwLaXUAKAcWB45WGutgX3h5gggG1iqlGpQSjUAu4Ec4LCeOX0hRKaSOXxCCNF9vgZkAdVKqchtTuBcwAi32w7PRtqR9+MZQG2bY3Z372kKIXobyfAJIUQ3UEqNBo4BfghMjPl3Hmbm7uuY2b6jY+4zAigONzdjZgcHaK03aa03YQZ6fwSG9cBTEEJkMMnwCSFE9/gaUAM8pLX2xty+Vin1PuZ8vb8Cv1BKbQWqgL+EjzG01vVKqUeA+5VS12IGh78DxgMbe+YpCCEylWT4hBCie3wN+HebYC/iQczM3svAs8B84C3gFSAAtISPuwV4A7Oky3IgFzhDa92c2FMXQmQ6h2EYnR8lhBDioCmlzgJWaK13h9slmJm+Q7XWW5N5bkKIzCYBnxBC9BCl1HOYizp+jLmI49fAMK31lKSemBAi48mQrhBC9JwbMYdw3weWAS7g4qSekRCiV5AMnxBCCCFEhpMMnxBCCCFEhpOATwghhBAiw0nAJ4QQQgiR4STgE0IIIYTIcBLwCSGEEEJkOAn4hBBCCCEy3P8HynAcupFVp9QAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"try_parameters(model.coef_, model.intercept_)"
]
},
{
"cell_type": "markdown",
"id": "568d5ea8",
"metadata": {
"id": "568d5ea8"
},
"source": [
"Indeed the line is quite close to the points. It is slightly above the cluster of points, because it's also trying to account for the outliers. \n",
"\n",
"> **EXERCISE**: Use the [`SGDRegressor`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html) class from `scikit-learn` to train a model using the stochastic gradient descent technique. Make predictions and compute the loss. Do you see any difference in the result?"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee442a00",
"metadata": {
"id": "ee442a00"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ad6e52f5",
"metadata": {
"id": "ad6e52f5"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f968e54",
"metadata": {
"id": "3f968e54"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "eaf4b75b",
"metadata": {
"id": "eaf4b75b"
},
"source": [
"> **EXERCISE**: Repeat the steps is this section to train a linear regression model to estimate medical charges for smokers. Visualize the targets and predictions, and compute the loss."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56e996b8",
"metadata": {
"id": "56e996b8"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "382309ce",
"metadata": {
"id": "382309ce"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a384c438",
"metadata": {
"id": "a384c438"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "47a9b57a",
"metadata": {
"id": "47a9b57a"
},
"source": [
"### Machine Learning\n",
"\n",
"Congratulations, you've just trained your first _machine learning model!_ Machine learning is simply the process of computing the best parameters to model the relationship between some feature and targets. \n",
"\n",
"Every machine learning problem has three components:\n",
"\n",
"1. **Model**\n",
"\n",
"2. **Cost Function**\n",
"\n",
"3. **Optimizer**\n",
"\n",
"We'll look at several examples of each of the above in future tutorials. Here's how the relationship between these three components can be visualized:\n",
"\n",
"<img src=\"https://www.deepnetts.com/blog/wp-content/uploads/2019/02/SupervisedLearning.png\" width=\"480\">"
]
},
{
"cell_type": "markdown",
"id": "415dfbfc",
"metadata": {
"id": "415dfbfc"
},
"source": [
"As we've seen above, it takes just a few lines of code to train a machine learning model using `scikit-learn`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27237ffd",
"metadata": {
"id": "27237ffd",
"outputId": "1ac52273-5f6e-461d-e012-428fbed23808"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loss: 4662.505766636395\n"
]
}
],
"source": [
"# Create inputs and targets\n",
"inputs, targets = non_smoker_df[['age']], non_smoker_df['charges']\n",
"\n",
"# Create and train the model\n",
"model = LinearRegression().fit(inputs, targets)\n",
"\n",
"# Generate predictions\n",
"predictions = model.predict(inputs)\n",
"\n",
"# Compute loss to evalute the model\n",
"loss = rmse(targets, predictions)\n",
"print('Loss:', loss)"
]
},
{
"cell_type": "markdown",
"id": "f05db110",
"metadata": {
"id": "f05db110"
},
"source": [
"Let's save our work before continuing."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0b6aaaa",
"metadata": {
"scrolled": true,
"id": "a0b6aaaa",
"outputId": "efe5b41c-8852-4704-afda-db8e7879ff66"
},
"outputs": [
{
"data": {
"application/javascript": [
"window.require && require([\"base/js/namespace\"],function(Jupyter){Jupyter.notebook.save_checkpoint()})"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[jovian] Updating notebook \"aakashns/python-sklearn-linear-regression\" on https://jovian.ai/\u001b[0m\n",
"[jovian] Committed successfully! https://jovian.ai/aakashns/python-sklearn-linear-regression\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'https://jovian.ai/aakashns/python-sklearn-linear-regression'"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jovian.commit()"
]
},
{
"cell_type": "markdown",
"id": "ac1f56e3",
"metadata": {
"id": "ac1f56e3"
},
"source": [
"## Linear Regression using Multiple Features\n",
"\n",
"So far, we've used on the \"age\" feature to estimate \"charges\". Adding another feature like \"bmi\" is fairly straightforward. We simply assume the following relationship:\n",
"\n",
"$charges = w_1 \\times age + w_2 \\times bmi + b$\n",
"\n",
"We need to change just one line of code to include the BMI."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d102c01a",
"metadata": {
"id": "d102c01a",
"outputId": "27d61a54-1346-4a55-eca1-d7540e20b4c0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loss: 4662.3128354612945\n"
]
}
],
"source": [
"# Create inputs and targets\n",
"inputs, targets = non_smoker_df[['age', 'bmi']], non_smoker_df['charges']\n",
"\n",
"# Create and train the model\n",
"model = LinearRegression().fit(inputs, targets)\n",
"\n",
"# Generate predictions\n",
"predictions = model.predict(inputs)\n",
"\n",
"# Compute loss to evalute the model\n",
"loss = rmse(targets, predictions)\n",
"print('Loss:', loss)"
]
},
{
"cell_type": "markdown",
"id": "43dde0b3",
"metadata": {
"id": "43dde0b3"
},
"source": [
"As you can see, adding the BMI doesn't seem to reduce the loss by much, as the BMI has a very weak correlation with charges, especially for non smokers."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bed633ab",
"metadata": {
"id": "bed633ab",
"outputId": "6131bace-f993-44b9-c08b-eb80ec84dbdc"
},
"outputs": [
{
"data": {
"text/plain": [
"0.08403654312833268"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"non_smoker_df.charges.corr(non_smoker_df.bmi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "314b2440",
"metadata": {
"id": "314b2440",
"outputId": "0be7796b-93fa-4380-95a5-3f0f0f45b1b8"
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "bmi=%{x}<br>charges=%{y}<extra></extra>",
"legendgroup": "",
"marker": {
"color": "#636efa",
"size": 5,
"symbol": "circle"
},
"mode": "markers",
"name": "",
"showlegend": false,
"type": "scattergl",
"x": [
33.77,
33,
22.705,
28.88,
25.74,
33.44,
27.74,
29.83,
25.84,
26.22,
34.4,
39.82,
24.6,
30.78,
23.845,
40.3,
36.005,
32.4,
34.1,
28.025,
27.72,
23.085,
32.775,
17.385,
26.315,
28.6,
28.31,
20.425,
32.965,
20.8,
26.6,
36.63,
21.78,
30.8,
37.05,
37.3,
38.665,
34.77,
24.53,
35.625,
33.63,
28.69,
31.825,
37.335,
27.36,
33.66,
24.7,
25.935,
28.9,
39.1,
26.315,
36.19,
28.5,
28.1,
32.01,
27.4,
34.01,
29.59,
35.53,
39.805,
32.965,
26.885,
38.285,
41.23,
27.2,
27.74,
26.98,
39.49,
24.795,
34.77,
37.62,
30.8,
38.28,
31.6,
25.46,
30.115,
27.5,
28.4,
30.875,
27.94,
33.63,
29.7,
30.8,
35.72,
32.205,
28.595,
49.06,
27.17,
23.37,
37.1,
23.75,
28.975,
33.915,
28.785,
37.4,
34.7,
26.505,
22.04,
35.9,
25.555,
28.785,
28.05,
34.1,
25.175,
31.9,
36,
22.42,
32.49,
29.735,
38.83,
37.73,
37.43,
28.4,
24.13,
29.7,
37.145,
25.46,
39.52,
27.83,
39.6,
29.8,
29.64,
28.215,
37,
33.155,
31.825,
18.905,
41.47,
30.3,
15.96,
34.8,
33.345,
27.835,
29.2,
28.9,
33.155,
28.595,
38.28,
19.95,
26.41,
30.69,
29.92,
30.9,
32.2,
32.11,
31.57,
26.2,
25.74,
26.6,
34.43,
30.59,
32.8,
28.6,
18.05,
39.33,
32.11,
32.23,
24.035,
22.3,
28.88,
26.4,
31.8,
41.23,
33,
30.875,
28.5,
26.73,
30.9,
37.1,
26.6,
23.1,
29.92,
23.21,
33.7,
33.25,
30.8,
33.88,
38.06,
41.91,
31.635,
25.46,
36.195,
27.83,
17.8,
27.5,
24.51,
26.73,
38.39,
38.06,
22.135,
26.8,
35.3,
30.02,
38.06,
35.86,
20.9,
28.975,
30.3,
25.365,
40.15,
24.415,
25.2,
38.06,
32.395,
30.2,
25.84,
29.37,
37.05,
27.455,
27.55,
26.6,
20.615,
24.3,
31.79,
21.56,
27.645,
32.395,
31.2,
26.62,
48.07,
26.22,
26.4,
33.4,
29.64,
28.82,
26.8,
22.99,
28.88,
27.55,
37.51,
33,
38,
33.345,
27.5,
33.33,
34.865,
33.06,
26.6,
24.7,
35.86,
33.25,
32.205,
32.775,
27.645,
37.335,
25.27,
29.64,
40.945,
27.2,
34.105,
23.21,
36.7,
31.16,
28.785,
35.72,
34.5,
25.74,
27.55,
27.72,
27.6,
30.02,
27.55,
36.765,
41.47,
29.26,
35.75,
33.345,
29.92,
27.835,
23.18,
25.6,
27.7,
35.245,
38.28,
27.6,
43.89,
29.83,
41.91,
20.79,
32.3,
30.5,
26.4,
21.89,
30.78,
32.3,
24.985,
32.015,
30.4,
21.09,
22.23,
33.155,
33.33,
30.115,
31.46,
33,
43.34,
22.135,
34.4,
39.05,
25.365,
22.61,
30.21,
35.625,
37.43,
31.445,
31.35,
32.3,
19.855,
34.4,
31.02,
25.6,
38.17,
20.6,
47.52,
32.965,
32.3,
20.4,
38.38,
24.31,
23.6,
21.12,
30.03,
17.48,
23.9,
35.15,
35.64,
34.1,
39.16,
30.59,
30.2,
24.31,
27.265,
29.165,
16.815,
30.4,
33.1,
20.235,
26.9,
30.5,
28.595,
33.11,
31.73,
28.9,
46.75,
29.45,
32.68,
43.01,
36.52,
33.1,
29.64,
25.65,
29.6,
38.6,
29.6,
24.13,
23.4,
29.735,
46.53,
37.4,
30.14,
30.495,
39.6,
33,
36.63,
38.095,
25.935,
25.175,
28.7,
33.82,
24.32,
24.09,
32.67,
30.115,
29.8,
33.345,
35.625,
36.85,
32.56,
41.325,
37.51,
31.35,
39.5,
34.3,
31.065,
21.47,
28.7,
31.16,
32.9,
25.08,
25.08,
43.4,
27.93,
23.6,
28.7,
23.98,
39.2,
26.03,
28.93,
30.875,
31.35,
23.75,
25.27,
28.7,
32.11,
33.66,
22.42,
30.4,
35.7,
35.31,
30.495,
31,
30.875,
27.36,
44.22,
33.915,
37.73,
33.88,
30.59,
25.8,
39.425,
25.46,
31.73,
29.7,
36.19,
40.48,
28.025,
38.9,
30.2,
28.05,
31.35,
38,
31.79,
36.3,
30.21,
35.435,
46.7,
28.595,
30.8,
28.93,
21.4,
31.73,
41.325,
23.8,
33.44,
34.21,
35.53,
19.95,
32.68,
30.5,
44.77,
32.12,
30.495,
40.565,
30.59,
31.9,
29.1,
37.29,
43.12,
36.86,
34.295,
27.17,
26.84,
30.2,
23.465,
25.46,
30.59,
45.43,
23.65,
20.7,
28.27,
20.235,
35.91,
30.69,
29,
19.57,
31.13,
40.26,
33.725,
29.48,
33.25,
32.6,
37.525,
39.16,
31.635,
25.3,
39.05,
34.1,
25.175,
26.98,
29.37,
34.8,
33.155,
19,
33,
28.595,
37.1,
31.4,
21.3,
28.785,
26.03,
28.88,
42.46,
38,
36.1,
29.3,
35.53,
22.705,
39.7,
38.19,
24.51,
38.095,
33.66,
42.4,
33.915,
34.96,
35.31,
30.78,
26.22,
23.37,
28.5,
32.965,
42.68,
39.6,
31.13,
36.3,
35.2,
42.4,
33.155,
35.91,
28.785,
46.53,
23.98,
31.54,
33.66,
28.7,
29.81,
31.57,
31.16,
29.7,
31.02,
21.375,
40.81,
36.1,
23.18,
17.4,
20.3,
24.32,
18.5,
26.41,
26.125,
41.69,
24.1,
27.36,
36.2,
32.395,
23.655,
34.8,
40.185,
32.3,
33.725,
39.27,
34.87,
44.745,
41.47,
26.41,
29.545,
32.9,
28.69,
30.495,
27.74,
35.2,
23.54,
30.685,
40.47,
22.6,
28.9,
22.61,
24.32,
36.67,
33.44,
40.66,
36.6,
37.4,
35.4,
27.075,
28.405,
40.28,
36.08,
21.4,
30.1,
27.265,
32.1,
34.77,
23.7,
24.035,
26.62,
26.41,
30.115,
27,
21.755,
36,
30.875,
28.975,
37.905,
22.77,
33.63,
27.645,
22.8,
37.43,
34.58,
35.2,
26.03,
25.175,
31.825,
32.3,
29,
39.7,
19.475,
36.1,
26.7,
36.48,
34.2,
33.33,
32.3,
39.805,
34.32,
28.88,
41.14,
35.97,
29.26,
27.7,
36.955,
36.86,
22.515,
29.92,
41.8,
27.6,
23.18,
31.92,
44.22,
22.895,
33.1,
26.18,
35.97,
22.3,
26.51,
35.815,
41.42,
36.575,
30.14,
25.84,
30.8,
42.94,
21.01,
22.515,
34.43,
31.46,
24.225,
37.1,
33.7,
17.67,
31.13,
29.81,
24.32,
31.825,
21.85,
33.1,
25.84,
23.845,
34.39,
33.82,
35.97,
31.5,
28.31,
23.465,
31.35,
31.1,
24.7,
30.495,
34.2,
50.38,
24.1,
32.775,
32.3,
23.75,
29.6,
32.23,
28.1,
28,
33.535,
19.855,
25.4,
29.9,
37.29,
43.7,
23.655,
24.3,
36.2,
29.48,
24.86,
30.1,
21.85,
28.12,
27.1,
33.44,
28.8,
29.5,
34.8,
27.36,
22.135,
26.695,
30.02,
39.5,
33.63,
29.04,
24.035,
32.11,
44,
25.555,
40.26,
22.515,
22.515,
27.265,
36.85,
35.1,
29.355,
32.585,
32.34,
39.8,
28.31,
26.695,
27.5,
24.605,
33.99,
28.2,
34.21,
25,
33.2,
31,
35.815,
23.2,
32.11,
23.4,
20.1,
39.16,
34.21,
46.53,
32.5,
25.8,
35.3,
37.18,
27.5,
29.735,
24.225,
26.18,
29.48,
23.21,
46.09,
40.185,
22.61,
39.93,
35.8,
35.8,
31.255,
18.335,
28.405,
39.49,
26.79,
36.67,
39.615,
25.9,
35.2,
24.795,
36.765,
27.1,
25.365,
25.745,
34.32,
28.16,
23.56,
20.235,
40.5,
35.42,
40.15,
29.15,
39.995,
29.92,
25.46,
21.375,
30.59,
30.115,
25.8,
30.115,
27.645,
34.675,
19.8,
27.835,
31.6,
28.27,
23.275,
34.1,
36.85,
36.29,
26.885,
25.8,
29.6,
19.19,
31.73,
29.26,
24.985,
27.74,
22.8,
33.33,
32.3,
27.6,
25.46,
24.605,
34.2,
35.815,
32.68,
37,
23.32,
45.32,
34.6,
18.715,
31.6,
17.29,
27.93,
38.38,
23,
28.88,
27.265,
23.085,
25.8,
35.245,
25.08,
22.515,
36.955,
26.41,
29.83,
21.47,
27.645,
28.9,
31.79,
39.49,
33.82,
32.01,
27.94,
28.595,
25.6,
25.3,
37.29,
42.655,
21.66,
31.9,
31.445,
31.255,
28.88,
18.335,
29.59,
32,
26.03,
33.66,
21.78,
27.835,
19.95,
31.5,
30.495,
28.975,
31.54,
47.74,
22.1,
29.83,
32.7,
33.7,
31.35,
33.77,
30.875,
33.99,
28.6,
38.94,
36.08,
29.8,
31.24,
29.925,
26.22,
30,
20.35,
32.3,
26.315,
24.51,
32.67,
29.64,
19.95,
38.17,
32.395,
25.08,
29.9,
35.86,
32.8,
18.6,
23.87,
45.9,
40.28,
18.335,
33.82,
28.12,
25,
22.23,
30.25,
37.07,
32.6,
24.86,
32.34,
32.3,
32.775,
31.92,
21.5,
34.1,
30.305,
36.48,
35.815,
27.93,
22.135,
23.18,
30.59,
41.1,
34.58,
42.13,
38.83,
28.215,
28.31,
26.125,
40.37,
24.6,
35.2,
34.105,
41.91,
29.26,
32.11,
27.1,
27.4,
34.865,
41.325,
29.925,
30.3,
27.36,
23.56,
32.68,
28,
32.775,
21.755,
32.395,
36.575,
21.755,
27.93,
33.55,
29.355,
25.8,
24.32,
40.375,
32.11,
32.3,
17.86,
34.8,
37.1,
30.875,
34.1,
21.47,
33.3,
31.255,
39.14,
25.08,
37.29,
30.21,
21.945,
24.97,
25.3,
23.94,
39.82,
16.815,
37.18,
34.43,
30.305,
24.605,
23.3,
27.83,
31.065,
21.66,
28.215,
22.705,
42.13,
21.28,
33.11,
33.33,
24.3,
25.7,
29.4,
39.82,
19.8,
29.3,
27.72,
37.9,
36.385,
27.645,
37.715,
23.18,
20.52,
37.1,
28.05,
29.9,
33.345,
30.5,
33.3,
27.5,
33.915,
34.485,
25.52,
27.61,
23.7,
30.4,
29.735,
26.79,
33.33,
30.03,
24.32,
17.29,
25.9,
34.32,
19.95,
23.21,
25.745,
25.175,
22,
26.125,
26.51,
27.455,
25.745,
20.8,
27.72,
32.2,
26.315,
26.695,
42.9,
28.31,
20.6,
53.13,
39.71,
26.315,
31.065,
38.83,
25.935,
33.535,
32.87,
30.03,
24.225,
38.6,
25.74,
33.4,
44.7,
30.97,
31.92,
36.85,
25.8
],
"xaxis": "x",
"y": [
1725.5523,
4449.462,
21984.47061,
3866.8552,
3756.6216,
8240.5896,
7281.5056,
6406.4107,
28923.136919999997,
2721.3208,
1826.8429999999998,
11090.7178,
1837.237,
10797.3362,
2395.17155,
10602.385,
13228.84695,
4149.736,
1137.011,
6203.90175,
14001.1338,
14451.83515,
12268.63225,
2775.19215,
2198.18985,
4687.7970000000005,
13770.0979,
1625.43375,
15612.19335,
2302.3,
3046.062,
4949.7587,
6272.4772,
6313.759,
6079.6715,
20630.28351,
3393.35635,
3556.9223,
12629.8967,
2211.13075,
3579.8287,
8059.6791,
13607.36875,
5989.52365,
8606.2174,
4504.6624,
30166.618169999998,
4133.64165,
1743.214,
14235.072,
6389.37785,
5920.1041,
6799.4580000000005,
11741.726,
11946.6259,
7726.854,
11356.6609,
3947.4131,
1532.4697,
2755.02095,
6571.02435,
4441.21315,
7935.29115,
11033.6617,
11073.176000000001,
8026.6666,
11082.5772,
2026.9741,
10942.13205,
5729.0053,
3766.8838,
12105.32,
10226.2842,
6186.1269999999995,
3645.0894,
21344.8467,
5003.853,
2331.519,
3877.30425,
2867.1196,
10825.2537,
11881.358,
4646.759,
2404.7338,
11488.31695,
30259.995560000003,
11381.3254,
8601.3293,
6686.4313,
7740.3369999999995,
1705.6245,
2257.47525,
10115.00885,
3385.39915,
9634.538,
6082.405,
12815.44495,
13616.3586,
11163.568000000001,
1632.56445,
2457.21115,
2155.6815,
1261.442,
2045.68525,
27322.733860000004,
2166.732,
27375.90478,
3490.5491,
18157.876,
5138.2567,
9877.6077,
10959.6947,
1842.519,
5125.2157,
7789.635,
6334.34355,
7077.1894,
6948.7008,
19749.383380000003,
10450.552,
5152.134,
5028.1466,
10407.08585,
4830.63,
6128.79745,
2719.27975,
4827.90495,
13405.3903,
8116.68,
1694.7964,
5246.047,
2855.43755,
6455.86265,
10436.096,
8823.279,
8538.28845,
11735.87905,
1631.8212,
4005.4225,
7419.4779,
7731.4271,
3981.9768,
5325.651,
6775.960999999999,
4922.9159,
12557.6053,
4883.866,
2137.6536,
12044.341999999999,
1137.4697,
1639.5631,
5649.715,
8516.829,
9644.2525,
14901.5167,
2130.6759,
8871.1517,
13012.20865,
7147.105,
4337.7352,
11743.298999999999,
13880.948999999999,
6610.1097,
1980.07,
8162.71625,
3537.703,
5002.7827,
8520.026,
7371.772,
10355.641,
2483.736,
3392.9768,
25081.76784,
5012.471,
10564.8845,
5253.524,
11987.1682,
2689.4954,
24227.33724,
7358.17565,
9225.2564,
7443.64305,
14001.2867,
1727.785,
12333.828000000001,
6710.1919,
1615.7667,
4463.2051,
7152.6714,
5354.07465,
35160.13457,
7196.866999999999,
24476.47851,
12648.7034,
1986.9334,
1832.094,
4040.55825,
4260.744000000001,
13047.33235,
5400.9805,
11520.09985,
11837.16,
20462.99766,
14590.63205,
7441.053000000001,
9282.4806,
1719.4363,
7265.7025,
9617.66245,
2523.1695,
9715.841,
2803.69785,
2150.469,
12928.7911,
9855.1314,
4237.12655,
11879.10405,
9625.92,
7742.1098,
9432.9253,
14256.1928,
25992.82104,
3172.018,
20277.80751,
2156.7518,
3906.127,
1704.5681,
9249.4952,
6746.7425,
12265.5069,
4349.462,
12646.207,
19442.3535,
20177.671130000002,
4151.0287,
11944.59435,
7749.1564,
8444.474,
1737.376,
8124.4084,
9722.7695,
8835.26495,
10435.06525,
7421.19455,
4667.60765,
4894.7533,
24671.66334,
11566.30055,
2866.091,
6600.20595,
3561.8889,
9144.565,
13429.0354,
11658.37915,
19144.57652,
13822.803,
12142.5786,
13937.6665,
8232.6388,
18955.22017,
13352.0998,
13217.0945,
13981.85035,
10977.2063,
6184.2994,
4889.9995,
8334.45755,
5478.0368,
1635.73365,
11830.6072,
8932.084,
3554.203,
12404.8791,
14133.03775,
24603.04837,
8944.1151,
9620.3307,
1837.2819,
1607.5101,
10043.249,
4751.07,
2597.779,
3180.5101,
9778.3472,
13430.265,
8017.06115,
8116.26885,
3481.868,
13415.0381,
12029.2867,
7639.41745,
1391.5287,
16455.70785,
27000.98473,
20781.48892,
5846.9176,
8302.53565,
1261.859,
11856.4115,
30284.642939999998,
3176.8159,
4618.0799,
10736.87075,
2138.0707,
8964.06055,
9290.1395,
9411.005,
7526.70645,
8522.003,
16586.49771,
14988.431999999999,
1631.6683,
9264.796999999999,
8083.9198,
14692.66935,
10269.46,
3260.199,
11396.9002,
4185.0979,
8539.671,
6652.5288,
4074.4537,
1621.3402,
5080.096,
2134.9015,
7345.7266,
9140.951,
14418.2804,
2727.3951,
8968.33,
9788.8659,
6555.07035,
7323.734818999999,
3167.45585,
18804.7524,
23082.95533,
4906.40965,
5969.723000000001,
12638.195,
4243.59005,
13919.8229,
2254.7967,
5926.846,
12592.5345,
2897.3235,
4738.2682,
1149.3959,
28287.897660000002,
7345.084,
12730.9996,
11454.0215,
5910.944,
4762.329000000001,
7512.267,
4032.2407,
1969.614,
1769.53165,
4686.3887,
21797.0004,
11881.9696,
11840.77505,
10601.412,
7682.67,
10381.4787,
15230.32405,
11165.41765,
1632.03625,
13224.693000000001,
12643.3778,
23288.9284,
2201.0971,
2497.0383,
2203.47185,
1744.465,
20878.78443,
2534.39375,
1534.3045,
1824.2854,
15555.18875,
9304.7019,
1622.1885,
9880.068000000001,
9563.029,
4347.02335,
12475.3513,
1253.9360000000001,
10461.9794,
1748.774,
24513.09126,
2196.4732,
12574.048999999999,
1967.0227,
4931.647,
8027.968000000001,
8211.1002,
13470.86,
6837.3687,
5974.3847,
6796.86325,
2643.2685,
3077.0955,
3044.2133,
11455.28,
11763.0009,
2498.4144,
9361.3268,
1256.299,
11362.755,
27724.28875,
8413.46305,
5240.765,
3857.75925,
25656.575259999998,
3994.1778,
9866.30485,
5397.6167,
11482.63485,
24059.68019,
9861.025,
8342.90875,
1708.0014,
14043.4767,
12925.886,
19214.705530000003,
13831.1152,
6067.12675,
5972.378000000001,
8825.086,
8233.0975,
27346.04207,
6196.448,
3056.3881,
13887.204,
10231.4999,
3268.84665,
11538.421,
3213.62205,
13390.559,
3972.9247,
12957.118,
11187.6567,
17878.900680000002,
3847.6740000000004,
8334.5896,
3935.1799,
1646.4297,
9193.8385,
10923.9332,
2494.022,
9058.7303,
2801.2588,
2128.43105,
6373.55735,
7256.7231,
11552.903999999999,
3761.292,
2219.4451,
4753.6368,
31620.001060000002,
13224.05705,
12222.8983,
1664.9996,
9724.53,
3206.49135,
12913.9924,
1639.5631,
6356.2707,
17626.23951,
1242.816,
4779.6023,
3861.20965,
13635.6379,
5976.8311,
11842.442,
8428.0693,
2566.4707,
5709.1644,
8823.98575,
7640.3092,
5594.8455,
7441.501,
33471.97189,
1633.0444,
9174.13565,
11070.535,
16085.1275,
9283.562,
3558.62025,
4435.0942,
8547.6913,
6571.544,
2207.69745,
6753.0380000000005,
1880.07,
11658.11505,
10713.643999999998,
3659.3459999999995,
9182.17,
12129.61415,
3736.4647,
6748.5912,
11326.71487,
11365.952,
10085.846,
1977.815,
3366.6697,
7173.35995,
9391.346,
14410.9321,
2709.1119,
24915.04626,
12949.1554,
6666.243,
13143.86485,
4466.6214,
18806.14547,
10141.1362,
6123.5688,
8252.2843,
1712.227,
12430.95335,
9800.8882,
10579.711000000001,
8280.6227,
8527.532,
12244.531,
3410.324,
4058.71245,
26392.260290000002,
14394.39815,
6435.6237,
22192.43711,
5148.5526,
1136.3994,
8703.456,
6500.2359,
4837.5823,
3943.5954,
4399.731,
6185.3208,
7222.78625,
12485.8009,
12363.546999999999,
10156.7832,
2585.269,
1242.26,
9863.4718,
4766.022,
11244.3769,
7729.64575,
5438.7491,
26236.57997,
2104.1134,
8068.185,
2362.22905,
2352.96845,
3577.9990000000003,
3201.24515,
29186.48236,
10976.24575,
3500.6123,
2020.5523,
9541.69555,
9504.3103,
5385.3379,
8930.93455,
5375.0380000000005,
10264.4421,
6113.23105,
5469.0066,
1727.54,
10107.2206,
8310.83915,
1984.4533,
2457.502,
12146.971000000001,
9566.9909,
13112.6048,
10848.1343,
12231.6136,
9875.6804,
11264.541000000001,
12979.358,
1263.249,
10106.13425,
6664.68595,
2217.6012,
6781.3542,
10065.413,
4234.927,
9447.25035,
14007.222,
9583.8933,
3484.3309999999997,
8604.48365,
3757.8448,
8827.2099,
9910.35985,
11737.84884,
1627.28245,
8556.907,
3062.50825,
1906.35825,
14210.53595,
11833.7823,
17128.42608,
5031.26955,
7985.815,
5428.7277,
3925.7582,
2416.955,
3070.8087,
9095.06825,
11842.62375,
8062.764,
7050.642,
14319.031,
6933.24225,
27941.28758,
11150.78,
12797.20962,
7261.741,
10560.4917,
6986.696999999999,
7448.40395,
5934.3798,
9869.8102,
1146.7966,
9386.1613,
4350.5144,
6414.178000000001,
12741.16745,
1917.3184,
5209.57885,
13457.9608,
5662.225,
1252.407,
2731.9122,
7209.4918,
4266.1658,
4719.52405,
11848.141000000001,
7046.7222,
14313.8463,
2103.08,
1815.8759,
7731.85785,
28476.734989999997,
2136.88225,
1131.5066,
3309.7926,
9414.92,
6360.9936,
11013.7119,
4428.88785,
5584.3057,
1877.9294,
2842.76075,
3597.5959999999995,
7445.918000000001,
2680.9493,
1621.8827,
8219.2039,
12523.6048,
16069.08475,
6117.4945,
13393.756000000001,
5266.3656,
4719.73655,
11743.9341,
5377.4578,
7160.3303,
4402.233,
11657.7189,
6402.29135,
12622.1795,
1526.3120000000001,
12323.936000000002,
10072.05505,
9872.701,
2438.0552,
2974.1259999999997,
10601.63225,
14119.62,
11729.6795,
1875.344,
18218.16139,
10965.446000000002,
7151.092,
12269.68865,
5458.04645,
8782.469000000001,
6600.361,
1141.4451,
11576.13,
13129.60345,
4391.652,
8457.818000000001,
3392.3652,
5966.8874,
6849.026,
8891.1395,
2690.1138,
26140.3603,
6653.7886,
6282.235,
6311.951999999999,
3443.0640000000003,
2789.0574,
2585.85065,
4877.98105,
5272.1758,
1682.5970000000002,
11945.1327,
7243.8136,
10422.91665,
13555.0049,
13063.883,
2221.56445,
1634.5734,
2117.33885,
8688.85885,
4661.28635,
8125.7845,
12644.589,
4564.19145,
4846.92015,
7633.7206,
15170.069,
2639.0429,
14382.70905,
7626.993,
5257.50795,
2473.3341,
13041.921,
5245.2269,
13451.122,
13462.52,
5488.262,
4320.41085,
6250.435,
25333.33284,
2913.5690000000004,
12032.326000000001,
13470.8044,
6289.7549,
2927.0647,
6238.298000000001,
10096.97,
7348.142,
4673.3922,
12233.828000000001,
32108.662819999998,
8965.79575,
2304.0022,
9487.6442,
1121.8739,
9549.5651,
2217.46915,
1628.4709,
12982.8747,
11674.13,
7160.094,
6358.77645,
11534.87265,
4527.18295,
3875.7341,
12609.88702,
28468.91901,
2730.10785,
3353.284,
14474.675,
9500.57305,
26467.09737,
4746.344,
7518.02535,
3279.86855,
8596.8278,
10702.6424,
4992.3764,
2527.81865,
1759.338,
2322.6218,
7804.1605,
2902.9065,
9704.66805,
4889.0368,
25517.11363,
4500.33925,
16796.41194,
4915.05985,
7624.63,
8410.04685,
28340.18885,
4518.82625,
3378.91,
7144.86265,
10118.424,
5484.4673,
7986.47525,
7418.522,
13887.9685,
6551.7501,
5267.81815,
1972.95,
21232.182259999998,
8627.5411,
4433.3877,
4438.2634,
23241.47453,
9957.7216,
8269.044,
36580.28216,
8765.249,
5383.536,
12124.9924,
2709.24395,
3987.926,
12495.29085,
26018.95052,
8798.593,
1711.0268,
8569.8618,
2020.1770000000001,
21595.38229,
9850.431999999999,
6877.9801,
4137.5227,
12950.0712,
12094.478000000001,
2250.8352,
22493.65964,
1704.70015,
3161.454,
11394.06555,
7325.0482,
3594.17085,
8023.13545,
14394.5579,
9288.0267,
3353.4703,
10594.50155,
8277.523000000001,
17929.303369999998,
2480.9791,
4462.7218,
1981.5819,
11554.2236,
6548.19505,
5708.866999999999,
7045.499,
8978.1851,
5757.41345,
14349.8544,
10928.848999999998,
13974.45555,
1909.52745,
12096.6512,
13204.28565,
4562.8421,
8551.347,
2102.2647,
15161.5344,
11884.04858,
4454.40265,
5855.9025,
4076.4970000000003,
15019.76005,
10796.35025,
11353.2276,
9748.9106,
10577.087,
11286.5387,
3591.48,
11299.343,
4561.1885,
1674.6323,
23045.56616,
3227.1211,
11253.421,
3471.4096,
11363.2832,
20420.60465,
10338.9316,
8988.15875,
10493.9458,
2904.0879999999997,
8605.3615,
11512.405,
5312.16985,
2396.0959,
10807.4863,
9222.4026,
5693.4305,
8347.1643,
18903.49141,
14254.6082,
10214.636,
5836.5204,
14358.36437,
1728.8970000000002,
8582.3023,
3693.428,
20709.02034,
9991.03765,
19673.335730000003,
11085.5868,
7623.518,
3176.2877,
3704.3545,
9048.0273,
7954.517,
27117.99378,
6338.0756,
9630.396999999999,
11289.10925,
2261.5688,
10791.96,
5979.731,
2203.73595,
12235.8392,
5630.45785,
11015.1747,
7228.21565,
14426.07385,
2459.7201,
3989.841,
7727.2532,
5124.1887,
18963.171919999997,
2200.83085,
7153.5539,
5227.98875,
10982.5013,
4529.477,
4670.64,
6112.35295,
11093.6229,
6457.8434,
4433.9159,
2154.361,
6496.8859999999995,
2899.48935,
7650.77375,
2850.68375,
2632.992,
9447.3824,
8603.8234,
13844.7972,
13126.67745,
5327.40025,
13725.47184,
13019.16105,
8671.19125,
4134.08245,
18838.70366,
5699.8375,
6393.60345,
4934.705,
6198.7518,
8733.22925,
2055.3249,
9964.06,
5116.5004,
36910.60803,
12347.171999999999,
5373.36425,
23563.016180000002,
1702.4553,
10806.839,
3956.07145,
12890.05765,
5415.6612,
4058.1161,
7537.1639,
4718.20355,
6593.5083,
8442.667,
6858.4796,
4795.6568,
6640.54485,
7162.0122,
10594.2257,
11938.25595,
12479.70895,
11345.518999999998,
8515.7587,
2699.56835,
14449.8544,
12224.35085,
6985.50695,
3238.4357,
4296.2712,
3171.6149,
1135.9407,
5615.369000000001,
9101.798,
6059.173000000001,
1633.9618,
1241.565,
15828.821730000001,
4415.1588,
6474.013000000001,
11436.73815,
11305.93455,
30063.58055,
10197.7722,
4544.2348,
3277.1609999999996,
6770.1925,
7337.7480000000005,
10370.91255,
10704.47,
1880.487,
8615.3,
3292.52985,
3021.80915,
14478.33015,
4747.0529,
10959.33,
2741.948,
4357.04365,
4189.1131,
8283.6807,
1720.3537,
8534.6718,
3732.6251,
5472.4490000000005,
7147.4728,
7133.9025,
1515.3449,
9301.89355,
11931.12525,
1964.78,
1708.92575,
4340.4409,
5261.46945,
2710.82855,
3208.7870000000003,
2464.6188,
6875.960999999999,
6940.90985,
4571.41305,
4536.259,
11272.331390000001,
1731.6770000000001,
1163.4627,
19496.71917,
7201.70085,
5425.02335,
12981.3457,
4239.89265,
13143.33665,
7050.0213,
9377.9047,
22395.74424,
10325.206,
12629.1656,
10795.937329999999,
11411.685,
10600.5483,
2205.9808,
1629.8335,
2007.945
],
"yaxis": "y"
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "BMI vs. Charges"
},
"xaxis": {
"anchor": "y",
"domain": [
0,
1
],
"title": {
"text": "bmi"
}
},
"yaxis": {
"anchor": "x",
"domain": [
0,
1
],
"title": {
"text": "charges"
}
}
}
},
"text/html": [
"<div> <div id=\"9966993e-cc5f-4c98-a1cc-af4a614d5a0d\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"9966993e-cc5f-4c98-a1cc-af4a614d5a0d\")) { Plotly.newPlot( \"9966993e-cc5f-4c98-a1cc-af4a614d5a0d\", [{\"hovertemplate\": \"bmi=%{x}<br>charges=%{y}<extra></extra>\", \"legendgroup\": \"\", \"marker\": {\"color\": \"#636efa\", \"size\": 5, \"symbol\": \"circle\"}, \"mode\": \"markers\", \"name\": \"\", \"showlegend\": false, \"type\": \"scattergl\", \"x\": [33.77, 33.0, 22.705, 28.88, 25.74, 33.44, 27.74, 29.83, 25.84, 26.22, 34.4, 39.82, 24.6, 30.78, 23.845, 40.3, 36.005, 32.4, 34.1, 28.025, 27.72, 23.085, 32.775, 17.385, 26.315, 28.6, 28.31, 20.425, 32.965, 20.8, 26.6, 36.63, 21.78, 30.8, 37.05, 37.3, 38.665, 34.77, 24.53, 35.625, 33.63, 28.69, 31.825, 37.335, 27.36, 33.66, 24.7, 25.935, 28.9, 39.1, 26.315, 36.19, 28.5, 28.1, 32.01, 27.4, 34.01, 29.59, 35.53, 39.805, 32.965, 26.885, 38.285, 41.23, 27.2, 27.74, 26.98, 39.49, 24.795, 34.77, 37.62, 30.8, 38.28, 31.6, 25.46, 30.115, 27.5, 28.4, 30.875, 27.94, 33.63, 29.7, 30.8, 35.72, 32.205, 28.595, 49.06, 27.17, 23.37, 37.1, 23.75, 28.975, 33.915, 28.785, 37.4, 34.7, 26.505, 22.04, 35.9, 25.555, 28.785, 28.05, 34.1, 25.175, 31.9, 36.0, 22.42, 32.49, 29.735, 38.83, 37.73, 37.43, 28.4, 24.13, 29.7, 37.145, 25.46, 39.52, 27.83, 39.6, 29.8, 29.64, 28.215, 37.0, 33.155, 31.825, 18.905, 41.47, 30.3, 15.96, 34.8, 33.345, 27.835, 29.2, 28.9, 33.155, 28.595, 38.28, 19.95, 26.41, 30.69, 29.92, 30.9, 32.2, 32.11, 31.57, 26.2, 25.74, 26.6, 34.43, 30.59, 32.8, 28.6, 18.05, 39.33, 32.11, 32.23, 24.035, 22.3, 28.88, 26.4, 31.8, 41.23, 33.0, 30.875, 28.5, 26.73, 30.9, 37.1, 26.6, 23.1, 29.92, 23.21, 33.7, 33.25, 30.8, 33.88, 38.06, 41.91, 31.635, 25.46, 36.195, 27.83, 17.8, 27.5, 24.51, 26.73, 38.39, 38.06, 22.135, 26.8, 35.3, 30.02, 38.06, 35.86, 20.9, 28.975, 30.3, 25.365, 40.15, 24.415, 25.2, 38.06, 32.395, 30.2, 25.84, 29.37, 37.05, 27.455, 27.55, 26.6, 20.615, 24.3, 31.79, 21.56, 27.645, 32.395, 31.2, 26.62, 48.07, 26.22, 26.4, 33.4, 29.64, 28.82, 26.8, 22.99, 28.88, 27.55, 37.51, 33.0, 38.0, 33.345, 27.5, 33.33, 34.865, 33.06, 26.6, 24.7, 35.86, 33.25, 32.205, 32.775, 27.645, 37.335, 25.27, 29.64, 40.945, 27.2, 34.105, 23.21, 36.7, 31.16, 28.785, 35.72, 34.5, 25.74, 27.55, 27.72, 27.6, 30.02, 27.55, 36.765, 41.47, 29.26, 35.75, 33.345, 29.92, 27.835, 23.18, 25.6, 27.7, 35.245, 38.28, 27.6, 43.89, 29.83, 41.91, 20.79, 32.3, 30.5, 26.4, 21.89, 30.78, 32.3, 24.985, 32.015, 30.4, 21.09, 22.23, 33.155, 33.33, 30.115, 31.46, 33.0, 43.34, 22.135, 34.4, 39.05, 25.365, 22.61, 30.21, 35.625, 37.43, 31.445, 31.35, 32.3, 19.855, 34.4, 31.02, 25.6, 38.17, 20.6, 47.52, 32.965, 32.3, 20.4, 38.38, 24.31, 23.6, 21.12, 30.03, 17.48, 23.9, 35.15, 35.64, 34.1, 39.16, 30.59, 30.2, 24.31, 27.265, 29.165, 16.815, 30.4, 33.1, 20.235, 26.9, 30.5, 28.595, 33.11, 31.73, 28.9, 46.75, 29.45, 32.68, 43.01, 36.52, 33.1, 29.64, 25.65, 29.6, 38.6, 29.6, 24.13, 23.4, 29.735, 46.53, 37.4, 30.14, 30.495, 39.6, 33.0, 36.63, 38.095, 25.935, 25.175, 28.7, 33.82, 24.32, 24.09, 32.67, 30.115, 29.8, 33.345, 35.625, 36.85, 32.56, 41.325, 37.51, 31.35, 39.5, 34.3, 31.065, 21.47, 28.7, 31.16, 32.9, 25.08, 25.08, 43.4, 27.93, 23.6, 28.7, 23.98, 39.2, 26.03, 28.93, 30.875, 31.35, 23.75, 25.27, 28.7, 32.11, 33.66, 22.42, 30.4, 35.7, 35.31, 30.495, 31.0, 30.875, 27.36, 44.22, 33.915, 37.73, 33.88, 30.59, 25.8, 39.425, 25.46, 31.73, 29.7, 36.19, 40.48, 28.025, 38.9, 30.2, 28.05, 31.35, 38.0, 31.79, 36.3, 30.21, 35.435, 46.7, 28.595, 30.8, 28.93, 21.4, 31.73, 41.325, 23.8, 33.44, 34.21, 35.53, 19.95, 32.68, 30.5, 44.77, 32.12, 30.495, 40.565, 30.59, 31.9, 29.1, 37.29, 43.12, 36.86, 34.295, 27.17, 26.84, 30.2, 23.465, 25.46, 30.59, 45.43, 23.65, 20.7, 28.27, 20.235, 35.91, 30.69, 29.0, 19.57, 31.13, 40.26, 33.725, 29.48, 33.25, 32.6, 37.525, 39.16, 31.635, 25.3, 39.05, 34.1, 25.175, 26.98, 29.37, 34.8, 33.155, 19.0, 33.0, 28.595, 37.1, 31.4, 21.3, 28.785, 26.03, 28.88, 42.46, 38.0, 36.1, 29.3, 35.53, 22.705, 39.7, 38.19, 24.51, 38.095, 33.66, 42.4, 33.915, 34.96, 35.31, 30.78, 26.22, 23.37, 28.5, 32.965, 42.68, 39.6, 31.13, 36.3, 35.2, 42.4, 33.155, 35.91, 28.785, 46.53, 23.98, 31.54, 33.66, 28.7, 29.81, 31.57, 31.16, 29.7, 31.02, 21.375, 40.81, 36.1, 23.18, 17.4, 20.3, 24.32, 18.5, 26.41, 26.125, 41.69, 24.1, 27.36, 36.2, 32.395, 23.655, 34.8, 40.185, 32.3, 33.725, 39.27, 34.87, 44.745, 41.47, 26.41, 29.545, 32.9, 28.69, 30.495, 27.74, 35.2, 23.54, 30.685, 40.47, 22.6, 28.9, 22.61, 24.32, 36.67, 33.44, 40.66, 36.6, 37.4, 35.4, 27.075, 28.405, 40.28, 36.08, 21.4, 30.1, 27.265, 32.1, 34.77, 23.7, 24.035, 26.62, 26.41, 30.115, 27.0, 21.755, 36.0, 30.875, 28.975, 37.905, 22.77, 33.63, 27.645, 22.8, 37.43, 34.58, 35.2, 26.03, 25.175, 31.825, 32.3, 29.0, 39.7, 19.475, 36.1, 26.7, 36.48, 34.2, 33.33, 32.3, 39.805, 34.32, 28.88, 41.14, 35.97, 29.26, 27.7, 36.955, 36.86, 22.515, 29.92, 41.8, 27.6, 23.18, 31.92, 44.22, 22.895, 33.1, 26.18, 35.97, 22.3, 26.51, 35.815, 41.42, 36.575, 30.14, 25.84, 30.8, 42.94, 21.01, 22.515, 34.43, 31.46, 24.225, 37.1, 33.7, 17.67, 31.13, 29.81, 24.32, 31.825, 21.85, 33.1, 25.84, 23.845, 34.39, 33.82, 35.97, 31.5, 28.31, 23.465, 31.35, 31.1, 24.7, 30.495, 34.2, 50.38, 24.1, 32.775, 32.3, 23.75, 29.6, 32.23, 28.1, 28.0, 33.535, 19.855, 25.4, 29.9, 37.29, 43.7, 23.655, 24.3, 36.2, 29.48, 24.86, 30.1, 21.85, 28.12, 27.1, 33.44, 28.8, 29.5, 34.8, 27.36, 22.135, 26.695, 30.02, 39.5, 33.63, 29.04, 24.035, 32.11, 44.0, 25.555, 40.26, 22.515, 22.515, 27.265, 36.85, 35.1, 29.355, 32.585, 32.34, 39.8, 28.31, 26.695, 27.5, 24.605, 33.99, 28.2, 34.21, 25.0, 33.2, 31.0, 35.815, 23.2, 32.11, 23.4, 20.1, 39.16, 34.21, 46.53, 32.5, 25.8, 35.3, 37.18, 27.5, 29.735, 24.225, 26.18, 29.48, 23.21, 46.09, 40.185, 22.61, 39.93, 35.8, 35.8, 31.255, 18.335, 28.405, 39.49, 26.79, 36.67, 39.615, 25.9, 35.2, 24.795, 36.765, 27.1, 25.365, 25.745, 34.32, 28.16, 23.56, 20.235, 40.5, 35.42, 40.15, 29.15, 39.995, 29.92, 25.46, 21.375, 30.59, 30.115, 25.8, 30.115, 27.645, 34.675, 19.8, 27.835, 31.6, 28.27, 23.275, 34.1, 36.85, 36.29, 26.885, 25.8, 29.6, 19.19, 31.73, 29.26, 24.985, 27.74, 22.8, 33.33, 32.3, 27.6, 25.46, 24.605, 34.2, 35.815, 32.68, 37.0, 23.32, 45.32, 34.6, 18.715, 31.6, 17.29, 27.93, 38.38, 23.0, 28.88, 27.265, 23.085, 25.8, 35.245, 25.08, 22.515, 36.955, 26.41, 29.83, 21.47, 27.645, 28.9, 31.79, 39.49, 33.82, 32.01, 27.94, 28.595, 25.6, 25.3, 37.29, 42.655, 21.66, 31.9, 31.445, 31.255, 28.88, 18.335, 29.59, 32.0, 26.03, 33.66, 21.78, 27.835, 19.95, 31.5, 30.495, 28.975, 31.54, 47.74, 22.1, 29.83, 32.7, 33.7, 31.35, 33.77, 30.875, 33.99, 28.6, 38.94, 36.08, 29.8, 31.24, 29.925, 26.22, 30.0, 20.35, 32.3, 26.315, 24.51, 32.67, 29.64, 19.95, 38.17, 32.395, 25.08, 29.9, 35.86, 32.8, 18.6, 23.87, 45.9, 40.28, 18.335, 33.82, 28.12, 25.0, 22.23, 30.25, 37.07, 32.6, 24.86, 32.34, 32.3, 32.775, 31.92, 21.5, 34.1, 30.305, 36.48, 35.815, 27.93, 22.135, 23.18, 30.59, 41.1, 34.58, 42.13, 38.83, 28.215, 28.31, 26.125, 40.37, 24.6, 35.2, 34.105, 41.91, 29.26, 32.11, 27.1, 27.4, 34.865, 41.325, 29.925, 30.3, 27.36, 23.56, 32.68, 28.0, 32.775, 21.755, 32.395, 36.575, 21.755, 27.93, 33.55, 29.355, 25.8, 24.32, 40.375, 32.11, 32.3, 17.86, 34.8, 37.1, 30.875, 34.1, 21.47, 33.3, 31.255, 39.14, 25.08, 37.29, 30.21, 21.945, 24.97, 25.3, 23.94, 39.82, 16.815, 37.18, 34.43, 30.305, 24.605, 23.3, 27.83, 31.065, 21.66, 28.215, 22.705, 42.13, 21.28, 33.11, 33.33, 24.3, 25.7, 29.4, 39.82, 19.8, 29.3, 27.72, 37.9, 36.385, 27.645, 37.715, 23.18, 20.52, 37.1, 28.05, 29.9, 33.345, 30.5, 33.3, 27.5, 33.915, 34.485, 25.52, 27.61, 23.7, 30.4, 29.735, 26.79, 33.33, 30.03, 24.32, 17.29, 25.9, 34.32, 19.95, 23.21, 25.745, 25.175, 22.0, 26.125, 26.51, 27.455, 25.745, 20.8, 27.72, 32.2, 26.315, 26.695, 42.9, 28.31, 20.6, 53.13, 39.71, 26.315, 31.065, 38.83, 25.935, 33.535, 32.87, 30.03, 24.225, 38.6, 25.74, 33.4, 44.7, 30.97, 31.92, 36.85, 25.8], \"xaxis\": \"x\", \"y\": [1725.5523, 4449.462, 21984.47061, 3866.8552, 3756.6216, 8240.5896, 7281.5056, 6406.4107, 28923.136919999997, 2721.3208, 1826.8429999999998, 11090.7178, 1837.237, 10797.3362, 2395.17155, 10602.385, 13228.84695, 4149.736, 1137.011, 6203.90175, 14001.1338, 14451.83515, 12268.63225, 2775.19215, 2198.18985, 4687.7970000000005, 13770.0979, 1625.43375, 15612.19335, 2302.3, 3046.062, 4949.7587, 6272.4772, 6313.759, 6079.6715, 20630.28351, 3393.35635, 3556.9223, 12629.8967, 2211.13075, 3579.8287, 8059.6791, 13607.36875, 5989.52365, 8606.2174, 4504.6624, 30166.618169999998, 4133.64165, 1743.214, 14235.072, 6389.37785, 5920.1041, 6799.4580000000005, 11741.726, 11946.6259, 7726.854, 11356.6609, 3947.4131, 1532.4697, 2755.02095, 6571.02435, 4441.21315, 7935.29115, 11033.6617, 11073.176000000001, 8026.6666, 11082.5772, 2026.9741, 10942.13205, 5729.0053, 3766.8838, 12105.32, 10226.2842, 6186.1269999999995, 3645.0894, 21344.8467, 5003.853, 2331.519, 3877.30425, 2867.1196, 10825.2537, 11881.358, 4646.759, 2404.7338, 11488.31695, 30259.995560000003, 11381.3254, 8601.3293, 6686.4313, 7740.3369999999995, 1705.6245, 2257.47525, 10115.00885, 3385.39915, 9634.538, 6082.405, 12815.44495, 13616.3586, 11163.568000000001, 1632.56445, 2457.21115, 2155.6815, 1261.442, 2045.68525, 27322.733860000004, 2166.732, 27375.90478, 3490.5491, 18157.876, 5138.2567, 9877.6077, 10959.6947, 1842.519, 5125.2157, 7789.635, 6334.34355, 7077.1894, 6948.7008, 19749.383380000003, 10450.552, 5152.134, 5028.1466, 10407.08585, 4830.63, 6128.79745, 2719.27975, 4827.90495, 13405.3903, 8116.68, 1694.7964, 5246.047, 2855.43755, 6455.86265, 10436.096, 8823.279, 8538.28845, 11735.87905, 1631.8212, 4005.4225, 7419.4779, 7731.4271, 3981.9768, 5325.651, 6775.960999999999, 4922.9159, 12557.6053, 4883.866, 2137.6536, 12044.341999999999, 1137.4697, 1639.5631, 5649.715, 8516.829, 9644.2525, 14901.5167, 2130.6759, 8871.1517, 13012.20865, 7147.105, 4337.7352, 11743.298999999999, 13880.948999999999, 6610.1097, 1980.07, 8162.71625, 3537.703, 5002.7827, 8520.026, 7371.772, 10355.641, 2483.736, 3392.9768, 25081.76784, 5012.471, 10564.8845, 5253.524, 11987.1682, 2689.4954, 24227.33724, 7358.17565, 9225.2564, 7443.64305, 14001.2867, 1727.785, 12333.828000000001, 6710.1919, 1615.7667, 4463.2051, 7152.6714, 5354.07465, 35160.13457, 7196.866999999999, 24476.47851, 12648.7034, 1986.9334, 1832.094, 4040.55825, 4260.744000000001, 13047.33235, 5400.9805, 11520.09985, 11837.16, 20462.99766, 14590.63205, 7441.053000000001, 9282.4806, 1719.4363, 7265.7025, 9617.66245, 2523.1695, 9715.841, 2803.69785, 2150.469, 12928.7911, 9855.1314, 4237.12655, 11879.10405, 9625.92, 7742.1098, 9432.9253, 14256.1928, 25992.82104, 3172.018, 20277.80751, 2156.7518, 3906.127, 1704.5681, 9249.4952, 6746.7425, 12265.5069, 4349.462, 12646.207, 19442.3535, 20177.671130000002, 4151.0287, 11944.59435, 7749.1564, 8444.474, 1737.376, 8124.4084, 9722.7695, 8835.26495, 10435.06525, 7421.19455, 4667.60765, 4894.7533, 24671.66334, 11566.30055, 2866.091, 6600.20595, 3561.8889, 9144.565, 13429.0354, 11658.37915, 19144.57652, 13822.803, 12142.5786, 13937.6665, 8232.6388, 18955.22017, 13352.0998, 13217.0945, 13981.85035, 10977.2063, 6184.2994, 4889.9995, 8334.45755, 5478.0368, 1635.73365, 11830.6072, 8932.084, 3554.203, 12404.8791, 14133.03775, 24603.04837, 8944.1151, 9620.3307, 1837.2819, 1607.5101, 10043.249, 4751.07, 2597.779, 3180.5101, 9778.3472, 13430.265, 8017.06115, 8116.26885, 3481.868, 13415.0381, 12029.2867, 7639.41745, 1391.5287, 16455.70785, 27000.98473, 20781.48892, 5846.9176, 8302.53565, 1261.859, 11856.4115, 30284.642939999998, 3176.8159, 4618.0799, 10736.87075, 2138.0707, 8964.06055, 9290.1395, 9411.005, 7526.70645, 8522.003, 16586.49771, 14988.431999999999, 1631.6683, 9264.796999999999, 8083.9198, 14692.66935, 10269.46, 3260.199, 11396.9002, 4185.0979, 8539.671, 6652.5288, 4074.4537, 1621.3402, 5080.096, 2134.9015, 7345.7266, 9140.951, 14418.2804, 2727.3951, 8968.33, 9788.8659, 6555.07035, 7323.734818999999, 3167.45585, 18804.7524, 23082.95533, 4906.40965, 5969.723000000001, 12638.195, 4243.59005, 13919.8229, 2254.7967, 5926.846, 12592.5345, 2897.3235, 4738.2682, 1149.3959, 28287.897660000002, 7345.084, 12730.9996, 11454.0215, 5910.944, 4762.329000000001, 7512.267, 4032.2407, 1969.614, 1769.53165, 4686.3887, 21797.0004, 11881.9696, 11840.77505, 10601.412, 7682.67, 10381.4787, 15230.32405, 11165.41765, 1632.03625, 13224.693000000001, 12643.3778, 23288.9284, 2201.0971, 2497.0383, 2203.47185, 1744.465, 20878.78443, 2534.39375, 1534.3045, 1824.2854, 15555.18875, 9304.7019, 1622.1885, 9880.068000000001, 9563.029, 4347.02335, 12475.3513, 1253.9360000000001, 10461.9794, 1748.774, 24513.09126, 2196.4732, 12574.048999999999, 1967.0227, 4931.647, 8027.968000000001, 8211.1002, 13470.86, 6837.3687, 5974.3847, 6796.86325, 2643.2685, 3077.0955, 3044.2133, 11455.28, 11763.0009, 2498.4144, 9361.3268, 1256.299, 11362.755, 27724.28875, 8413.46305, 5240.765, 3857.75925, 25656.575259999998, 3994.1778, 9866.30485, 5397.6167, 11482.63485, 24059.68019, 9861.025, 8342.90875, 1708.0014, 14043.4767, 12925.886, 19214.705530000003, 13831.1152, 6067.12675, 5972.378000000001, 8825.086, 8233.0975, 27346.04207, 6196.448, 3056.3881, 13887.204, 10231.4999, 3268.84665, 11538.421, 3213.62205, 13390.559, 3972.9247, 12957.118, 11187.6567, 17878.900680000002, 3847.6740000000004, 8334.5896, 3935.1799, 1646.4297, 9193.8385, 10923.9332, 2494.022, 9058.7303, 2801.2588, 2128.43105, 6373.55735, 7256.7231, 11552.903999999999, 3761.292, 2219.4451, 4753.6368, 31620.001060000002, 13224.05705, 12222.8983, 1664.9996, 9724.53, 3206.49135, 12913.9924, 1639.5631, 6356.2707, 17626.23951, 1242.816, 4779.6023, 3861.20965, 13635.6379, 5976.8311, 11842.442, 8428.0693, 2566.4707, 5709.1644, 8823.98575, 7640.3092, 5594.8455, 7441.501, 33471.97189, 1633.0444, 9174.13565, 11070.535, 16085.1275, 9283.562, 3558.62025, 4435.0942, 8547.6913, 6571.544, 2207.69745, 6753.0380000000005, 1880.07, 11658.11505, 10713.643999999998, 3659.3459999999995, 9182.17, 12129.61415, 3736.4647, 6748.5912, 11326.71487, 11365.952, 10085.846, 1977.815, 3366.6697, 7173.35995, 9391.346, 14410.9321, 2709.1119, 24915.04626, 12949.1554, 6666.243, 13143.86485, 4466.6214, 18806.14547, 10141.1362, 6123.5688, 8252.2843, 1712.227, 12430.95335, 9800.8882, 10579.711000000001, 8280.6227, 8527.532, 12244.531, 3410.324, 4058.71245, 26392.260290000002, 14394.39815, 6435.6237, 22192.43711, 5148.5526, 1136.3994, 8703.456, 6500.2359, 4837.5823, 3943.5954, 4399.731, 6185.3208, 7222.78625, 12485.8009, 12363.546999999999, 10156.7832, 2585.269, 1242.26, 9863.4718, 4766.022, 11244.3769, 7729.64575, 5438.7491, 26236.57997, 2104.1134, 8068.185, 2362.22905, 2352.96845, 3577.9990000000003, 3201.24515, 29186.48236, 10976.24575, 3500.6123, 2020.5523, 9541.69555, 9504.3103, 5385.3379, 8930.93455, 5375.0380000000005, 10264.4421, 6113.23105, 5469.0066, 1727.54, 10107.2206, 8310.83915, 1984.4533, 2457.502, 12146.971000000001, 9566.9909, 13112.6048, 10848.1343, 12231.6136, 9875.6804, 11264.541000000001, 12979.358, 1263.249, 10106.13425, 6664.68595, 2217.6012, 6781.3542, 10065.413, 4234.927, 9447.25035, 14007.222, 9583.8933, 3484.3309999999997, 8604.48365, 3757.8448, 8827.2099, 9910.35985, 11737.84884, 1627.28245, 8556.907, 3062.50825, 1906.35825, 14210.53595, 11833.7823, 17128.42608, 5031.26955, 7985.815, 5428.7277, 3925.7582, 2416.955, 3070.8087, 9095.06825, 11842.62375, 8062.764, 7050.642, 14319.031, 6933.24225, 27941.28758, 11150.78, 12797.20962, 7261.741, 10560.4917, 6986.696999999999, 7448.40395, 5934.3798, 9869.8102, 1146.7966, 9386.1613, 4350.5144, 6414.178000000001, 12741.16745, 1917.3184, 5209.57885, 13457.9608, 5662.225, 1252.407, 2731.9122, 7209.4918, 4266.1658, 4719.52405, 11848.141000000001, 7046.7222, 14313.8463, 2103.08, 1815.8759, 7731.85785, 28476.734989999997, 2136.88225, 1131.5066, 3309.7926, 9414.92, 6360.9936, 11013.7119, 4428.88785, 5584.3057, 1877.9294, 2842.76075, 3597.5959999999995, 7445.918000000001, 2680.9493, 1621.8827, 8219.2039, 12523.6048, 16069.08475, 6117.4945, 13393.756000000001, 5266.3656, 4719.73655, 11743.9341, 5377.4578, 7160.3303, 4402.233, 11657.7189, 6402.29135, 12622.1795, 1526.3120000000001, 12323.936000000002, 10072.05505, 9872.701, 2438.0552, 2974.1259999999997, 10601.63225, 14119.62, 11729.6795, 1875.344, 18218.16139, 10965.446000000002, 7151.092, 12269.68865, 5458.04645, 8782.469000000001, 6600.361, 1141.4451, 11576.13, 13129.60345, 4391.652, 8457.818000000001, 3392.3652, 5966.8874, 6849.026, 8891.1395, 2690.1138, 26140.3603, 6653.7886, 6282.235, 6311.951999999999, 3443.0640000000003, 2789.0574, 2585.85065, 4877.98105, 5272.1758, 1682.5970000000002, 11945.1327, 7243.8136, 10422.91665, 13555.0049, 13063.883, 2221.56445, 1634.5734, 2117.33885, 8688.85885, 4661.28635, 8125.7845, 12644.589, 4564.19145, 4846.92015, 7633.7206, 15170.069, 2639.0429, 14382.70905, 7626.993, 5257.50795, 2473.3341, 13041.921, 5245.2269, 13451.122, 13462.52, 5488.262, 4320.41085, 6250.435, 25333.33284, 2913.5690000000004, 12032.326000000001, 13470.8044, 6289.7549, 2927.0647, 6238.298000000001, 10096.97, 7348.142, 4673.3922, 12233.828000000001, 32108.662819999998, 8965.79575, 2304.0022, 9487.6442, 1121.8739, 9549.5651, 2217.46915, 1628.4709, 12982.8747, 11674.13, 7160.094, 6358.77645, 11534.87265, 4527.18295, 3875.7341, 12609.88702, 28468.91901, 2730.10785, 3353.284, 14474.675, 9500.57305, 26467.09737, 4746.344, 7518.02535, 3279.86855, 8596.8278, 10702.6424, 4992.3764, 2527.81865, 1759.338, 2322.6218, 7804.1605, 2902.9065, 9704.66805, 4889.0368, 25517.11363, 4500.33925, 16796.41194, 4915.05985, 7624.63, 8410.04685, 28340.18885, 4518.82625, 3378.91, 7144.86265, 10118.424, 5484.4673, 7986.47525, 7418.522, 13887.9685, 6551.7501, 5267.81815, 1972.95, 21232.182259999998, 8627.5411, 4433.3877, 4438.2634, 23241.47453, 9957.7216, 8269.044, 36580.28216, 8765.249, 5383.536, 12124.9924, 2709.24395, 3987.926, 12495.29085, 26018.95052, 8798.593, 1711.0268, 8569.8618, 2020.1770000000001, 21595.38229, 9850.431999999999, 6877.9801, 4137.5227, 12950.0712, 12094.478000000001, 2250.8352, 22493.65964, 1704.70015, 3161.454, 11394.06555, 7325.0482, 3594.17085, 8023.13545, 14394.5579, 9288.0267, 3353.4703, 10594.50155, 8277.523000000001, 17929.303369999998, 2480.9791, 4462.7218, 1981.5819, 11554.2236, 6548.19505, 5708.866999999999, 7045.499, 8978.1851, 5757.41345, 14349.8544, 10928.848999999998, 13974.45555, 1909.52745, 12096.6512, 13204.28565, 4562.8421, 8551.347, 2102.2647, 15161.5344, 11884.04858, 4454.40265, 5855.9025, 4076.4970000000003, 15019.76005, 10796.35025, 11353.2276, 9748.9106, 10577.087, 11286.5387, 3591.48, 11299.343, 4561.1885, 1674.6323, 23045.56616, 3227.1211, 11253.421, 3471.4096, 11363.2832, 20420.60465, 10338.9316, 8988.15875, 10493.9458, 2904.0879999999997, 8605.3615, 11512.405, 5312.16985, 2396.0959, 10807.4863, 9222.4026, 5693.4305, 8347.1643, 18903.49141, 14254.6082, 10214.636, 5836.5204, 14358.36437, 1728.8970000000002, 8582.3023, 3693.428, 20709.02034, 9991.03765, 19673.335730000003, 11085.5868, 7623.518, 3176.2877, 3704.3545, 9048.0273, 7954.517, 27117.99378, 6338.0756, 9630.396999999999, 11289.10925, 2261.5688, 10791.96, 5979.731, 2203.73595, 12235.8392, 5630.45785, 11015.1747, 7228.21565, 14426.07385, 2459.7201, 3989.841, 7727.2532, 5124.1887, 18963.171919999997, 2200.83085, 7153.5539, 5227.98875, 10982.5013, 4529.477, 4670.64, 6112.35295, 11093.6229, 6457.8434, 4433.9159, 2154.361, 6496.8859999999995, 2899.48935, 7650.77375, 2850.68375, 2632.992, 9447.3824, 8603.8234, 13844.7972, 13126.67745, 5327.40025, 13725.47184, 13019.16105, 8671.19125, 4134.08245, 18838.70366, 5699.8375, 6393.60345, 4934.705, 6198.7518, 8733.22925, 2055.3249, 9964.06, 5116.5004, 36910.60803, 12347.171999999999, 5373.36425, 23563.016180000002, 1702.4553, 10806.839, 3956.07145, 12890.05765, 5415.6612, 4058.1161, 7537.1639, 4718.20355, 6593.5083, 8442.667, 6858.4796, 4795.6568, 6640.54485, 7162.0122, 10594.2257, 11938.25595, 12479.70895, 11345.518999999998, 8515.7587, 2699.56835, 14449.8544, 12224.35085, 6985.50695, 3238.4357, 4296.2712, 3171.6149, 1135.9407, 5615.369000000001, 9101.798, 6059.173000000001, 1633.9618, 1241.565, 15828.821730000001, 4415.1588, 6474.013000000001, 11436.73815, 11305.93455, 30063.58055, 10197.7722, 4544.2348, 3277.1609999999996, 6770.1925, 7337.7480000000005, 10370.91255, 10704.47, 1880.487, 8615.3, 3292.52985, 3021.80915, 14478.33015, 4747.0529, 10959.33, 2741.948, 4357.04365, 4189.1131, 8283.6807, 1720.3537, 8534.6718, 3732.6251, 5472.4490000000005, 7147.4728, 7133.9025, 1515.3449, 9301.89355, 11931.12525, 1964.78, 1708.92575, 4340.4409, 5261.46945, 2710.82855, 3208.7870000000003, 2464.6188, 6875.960999999999, 6940.90985, 4571.41305, 4536.259, 11272.331390000001, 1731.6770000000001, 1163.4627, 19496.71917, 7201.70085, 5425.02335, 12981.3457, 4239.89265, 13143.33665, 7050.0213, 9377.9047, 22395.74424, 10325.206, 12629.1656, 10795.937329999999, 11411.685, 10600.5483, 2205.9808, 1629.8335, 2007.945], \"yaxis\": \"y\"}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"BMI vs. Charges\"}, \"xaxis\": {\"anchor\": \"y\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"bmi\"}}, \"yaxis\": {\"anchor\": \"x\", \"domain\": [0.0, 1.0], \"title\": {\"text\": \"charges\"}}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('9966993e-cc5f-4c98-a1cc-af4a614d5a0d');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.scatter(non_smoker_df, x='bmi', y='charges', title='BMI vs. Charges')\n",
"fig.update_traces(marker_size=5)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "5b083cf5",
"metadata": {
"id": "5b083cf5"
},
"source": [
"We can also visualize the relationship between all 3 variables \"age\", \"bmi\" and \"charges\" using a 3D scatter plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a52f8580",
"metadata": {
"id": "a52f8580",
"outputId": "124b115e-8aa4-4fba-b863-47c9530ff8ab"
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"hovertemplate": "age=%{x}<br>bmi=%{y}<br>charges=%{z}<extra></extra>",
"legendgroup": "",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"size": 3,
"symbol": "circle"
},
"mode": "markers",
"name": "",
"scene": "scene",
"showlegend": false,
"type": "scatter3d",
"x": [
18,
28,
33,
32,
31,
46,
37,
37,
60,
25,
23,
56,
19,
52,
23,
56,
60,
30,
18,
37,
59,
63,
55,
23,
18,
19,
63,
19,
62,
26,
24,
31,
41,
37,
38,
55,
18,
28,
60,
18,
21,
40,
58,
34,
43,
25,
64,
28,
19,
61,
40,
40,
31,
53,
58,
44,
57,
29,
21,
22,
41,
31,
45,
48,
56,
46,
55,
21,
53,
35,
28,
54,
55,
41,
30,
18,
34,
19,
26,
29,
54,
55,
37,
21,
52,
60,
58,
49,
37,
44,
18,
20,
47,
26,
52,
38,
59,
61,
53,
19,
20,
22,
19,
22,
54,
22,
34,
26,
29,
29,
51,
53,
19,
35,
48,
32,
40,
44,
50,
54,
32,
37,
47,
20,
32,
19,
27,
63,
49,
18,
35,
24,
38,
54,
46,
41,
58,
18,
22,
44,
44,
26,
30,
41,
29,
61,
36,
25,
56,
18,
19,
39,
45,
51,
64,
19,
48,
60,
46,
28,
59,
63,
40,
20,
40,
24,
34,
45,
41,
53,
27,
26,
24,
34,
53,
32,
55,
28,
58,
41,
47,
42,
59,
19,
59,
39,
18,
31,
44,
33,
55,
40,
54,
60,
24,
19,
29,
27,
55,
38,
51,
58,
53,
59,
45,
49,
18,
41,
50,
25,
47,
19,
22,
59,
51,
30,
55,
52,
46,
46,
63,
52,
28,
29,
22,
25,
18,
48,
36,
56,
28,
57,
29,
28,
30,
58,
41,
50,
19,
49,
52,
50,
54,
44,
32,
34,
26,
57,
29,
40,
27,
52,
61,
56,
43,
64,
60,
62,
46,
24,
62,
60,
63,
49,
34,
33,
46,
36,
19,
57,
50,
30,
33,
18,
46,
46,
47,
23,
18,
48,
35,
21,
21,
49,
56,
42,
44,
18,
61,
57,
42,
20,
64,
62,
55,
35,
44,
19,
58,
50,
26,
24,
48,
19,
48,
49,
46,
46,
43,
21,
64,
18,
51,
47,
64,
49,
31,
52,
33,
47,
38,
32,
19,
25,
19,
43,
52,
64,
25,
48,
45,
38,
18,
21,
27,
19,
29,
42,
60,
31,
60,
22,
35,
52,
26,
31,
18,
59,
45,
60,
56,
40,
35,
39,
30,
24,
20,
32,
59,
55,
57,
56,
40,
49,
62,
56,
19,
60,
56,
28,
18,
27,
18,
19,
47,
25,
21,
23,
63,
49,
18,
51,
48,
31,
54,
19,
53,
19,
61,
18,
61,
20,
31,
45,
44,
62,
43,
38,
37,
22,
21,
24,
57,
56,
27,
51,
19,
58,
20,
45,
35,
31,
50,
32,
51,
38,
18,
19,
51,
46,
18,
62,
59,
37,
64,
38,
33,
46,
46,
53,
34,
20,
63,
54,
28,
54,
25,
63,
32,
62,
52,
25,
28,
46,
34,
19,
46,
54,
27,
50,
18,
19,
38,
41,
49,
31,
18,
30,
62,
57,
58,
22,
52,
25,
59,
19,
39,
32,
19,
33,
21,
61,
38,
58,
47,
20,
41,
46,
42,
34,
43,
52,
18,
51,
56,
64,
51,
27,
28,
47,
38,
18,
34,
20,
56,
55,
30,
49,
59,
29,
36,
33,
58,
53,
24,
29,
40,
51,
64,
19,
35,
56,
33,
61,
23,
43,
48,
39,
40,
18,
58,
49,
53,
48,
45,
59,
26,
27,
48,
57,
37,
57,
32,
18,
49,
40,
30,
29,
36,
41,
45,
55,
56,
49,
21,
19,
53,
33,
53,
42,
40,
47,
21,
47,
20,
24,
27,
26,
53,
56,
23,
21,
50,
53,
34,
47,
33,
49,
31,
36,
18,
50,
43,
20,
24,
60,
49,
60,
51,
58,
51,
53,
62,
19,
50,
41,
18,
41,
53,
24,
48,
59,
49,
26,
45,
31,
50,
50,
34,
19,
47,
28,
21,
64,
58,
24,
31,
39,
30,
22,
23,
27,
45,
57,
47,
42,
64,
38,
61,
53,
44,
41,
51,
40,
45,
35,
53,
18,
51,
31,
35,
60,
21,
29,
62,
39,
19,
22,
39,
30,
30,
58,
42,
64,
21,
23,
45,
40,
19,
18,
25,
46,
33,
54,
28,
36,
20,
24,
23,
45,
26,
18,
44,
60,
64,
39,
63,
36,
28,
58,
36,
42,
36,
56,
35,
59,
21,
59,
53,
51,
23,
27,
55,
61,
53,
20,
25,
57,
38,
55,
36,
51,
40,
18,
57,
61,
25,
50,
26,
42,
43,
44,
23,
49,
33,
41,
37,
22,
23,
21,
25,
36,
22,
57,
36,
54,
62,
61,
19,
18,
19,
49,
26,
49,
60,
26,
27,
44,
63,
22,
59,
44,
33,
24,
61,
35,
62,
62,
38,
34,
43,
50,
19,
57,
62,
41,
26,
39,
46,
45,
32,
59,
44,
39,
18,
53,
18,
50,
18,
19,
62,
56,
42,
42,
57,
30,
31,
24,
48,
19,
29,
63,
46,
52,
35,
44,
21,
39,
50,
34,
22,
19,
26,
48,
26,
45,
36,
54,
34,
27,
20,
44,
43,
45,
34,
26,
38,
50,
38,
39,
39,
63,
33,
36,
24,
48,
47,
29,
28,
25,
51,
48,
61,
48,
38,
59,
19,
26,
54,
21,
51,
18,
47,
21,
23,
54,
37,
30,
61,
54,
22,
19,
18,
28,
55,
43,
25,
44,
64,
49,
27,
55,
48,
45,
24,
32,
24,
57,
36,
29,
42,
48,
39,
63,
54,
63,
21,
54,
60,
32,
47,
21,
63,
18,
32,
38,
32,
62,
55,
57,
52,
56,
55,
23,
50,
18,
22,
52,
25,
53,
29,
58,
37,
54,
49,
50,
26,
45,
54,
28,
23,
55,
41,
30,
46,
27,
63,
55,
35,
34,
19,
39,
27,
57,
52,
28,
50,
44,
26,
33,
50,
41,
52,
39,
50,
52,
20,
55,
42,
18,
58,
35,
48,
36,
23,
20,
32,
43,
34,
30,
18,
41,
35,
57,
29,
32,
37,
56,
38,
29,
22,
40,
23,
42,
24,
25,
48,
45,
62,
23,
31,
41,
58,
48,
31,
19,
41,
40,
31,
37,
46,
22,
51,
35,
59,
59,
36,
39,
18,
52,
27,
18,
40,
29,
38,
30,
40,
50,
41,
33,
38,
42,
56,
58,
54,
58,
45,
26,
63,
58,
37,
25,
22,
28,
18,
28,
45,
33,
18,
19,
40,
34,
42,
51,
54,
55,
52,
32,
28,
41,
43,
49,
55,
20,
45,
26,
25,
43,
35,
57,
22,
32,
25,
48,
18,
47,
28,
36,
44,
38,
21,
46,
58,
20,
18,
28,
33,
19,
25,
24,
41,
42,
33,
34,
18,
19,
18,
35,
39,
31,
62,
31,
61,
42,
51,
23,
52,
57,
23,
52,
50,
18,
18,
21
],
"y": [
33.77,
33,
22.705,
28.88,
25.74,
33.44,
27.74,
29.83,
25.84,
26.22,
34.4,
39.82,
24.6,
30.78,
23.845,
40.3,
36.005,
32.4,
34.1,
28.025,
27.72,
23.085,
32.775,
17.385,
26.315,
28.6,
28.31,
20.425,
32.965,
20.8,
26.6,
36.63,
21.78,
30.8,
37.05,
37.3,
38.665,
34.77,
24.53,
35.625,
33.63,
28.69,
31.825,
37.335,
27.36,
33.66,
24.7,
25.935,
28.9,
39.1,
26.315,
36.19,
28.5,
28.1,
32.01,
27.4,
34.01,
29.59,
35.53,
39.805,
32.965,
26.885,
38.285,
41.23,
27.2,
27.74,
26.98,
39.49,
24.795,
34.77,
37.62,
30.8,
38.28,
31.6,
25.46,
30.115,
27.5,
28.4,
30.875,
27.94,
33.63,
29.7,
30.8,
35.72,
32.205,
28.595,
49.06,
27.17,
23.37,
37.1,
23.75,
28.975,
33.915,
28.785,
37.4,
34.7,
26.505,
22.04,
35.9,
25.555,
28.785,
28.05,
34.1,
25.175,
31.9,
36,
22.42,
32.49,
29.735,
38.83,
37.73,
37.43,
28.4,
24.13,
29.7,
37.145,
25.46,
39.52,
27.83,
39.6,
29.8,
29.64,
28.215,
37,
33.155,
31.825,
18.905,
41.47,
30.3,
15.96,
34.8,
33.345,
27.835,
29.2,
28.9,
33.155,
28.595,
38.28,
19.95,
26.41,
30.69,
29.92,
30.9,
32.2,
32.11,
31.57,
26.2,
25.74,
26.6,
34.43,
30.59,
32.8,
28.6,
18.05,
39.33,
32.11,
32.23,
24.035,
22.3,
28.88,
26.4,
31.8,
41.23,
33,
30.875,
28.5,
26.73,
30.9,
37.1,
26.6,
23.1,
29.92,
23.21,
33.7,
33.25,
30.8,
33.88,
38.06,
41.91,
31.635,
25.46,
36.195,
27.83,
17.8,
27.5,
24.51,
26.73,
38.39,
38.06,
22.135,
26.8,
35.3,
30.02,
38.06,
35.86,
20.9,
28.975,
30.3,
25.365,
40.15,
24.415,
25.2,
38.06,
32.395,
30.2,
25.84,
29.37,
37.05,
27.455,
27.55,
26.6,
20.615,
24.3,
31.79,
21.56,
27.645,
32.395,
31.2,
26.62,
48.07,
26.22,
26.4,
33.4,
29.64,
28.82,
26.8,
22.99,
28.88,
27.55,
37.51,
33,
38,
33.345,
27.5,
33.33,
34.865,
33.06,
26.6,
24.7,
35.86,
33.25,
32.205,
32.775,
27.645,
37.335,
25.27,
29.64,
40.945,
27.2,
34.105,
23.21,
36.7,
31.16,
28.785,
35.72,
34.5,
25.74,
27.55,
27.72,
27.6,
30.02,
27.55,
36.765,
41.47,
29.26,
35.75,
33.345,
29.92,
27.835,
23.18,
25.6,
27.7,
35.245,
38.28,
27.6,
43.89,
29.83,
41.91,
20.79,
32.3,
30.5,
26.4,
21.89,
30.78,
32.3,
24.985,
32.015,
30.4,
21.09,
22.23,
33.155,
33.33,
30.115,
31.46,
33,
43.34,
22.135,
34.4,
39.05,
25.365,
22.61,
30.21,
35.625,
37.43,
31.445,
31.35,
32.3,
19.855,
34.4,
31.02,
25.6,
38.17,
20.6,
47.52,
32.965,
32.3,
20.4,
38.38,
24.31,
23.6,
21.12,
30.03,
17.48,
23.9,
35.15,
35.64,
34.1,
39.16,
30.59,
30.2,
24.31,
27.265,
29.165,
16.815,
30.4,
33.1,
20.235,
26.9,
30.5,
28.595,
33.11,
31.73,
28.9,
46.75,
29.45,
32.68,
43.01,
36.52,
33.1,
29.64,
25.65,
29.6,
38.6,
29.6,
24.13,
23.4,
29.735,
46.53,
37.4,
30.14,
30.495,
39.6,
33,
36.63,
38.095,
25.935,
25.175,
28.7,
33.82,
24.32,
24.09,
32.67,
30.115,
29.8,
33.345,
35.625,
36.85,
32.56,
41.325,
37.51,
31.35,
39.5,
34.3,
31.065,
21.47,
28.7,
31.16,
32.9,
25.08,
25.08,
43.4,
27.93,
23.6,
28.7,
23.98,
39.2,
26.03,
28.93,
30.875,
31.35,
23.75,
25.27,
28.7,
32.11,
33.66,
22.42,
30.4,
35.7,
35.31,
30.495,
31,
30.875,
27.36,
44.22,
33.915,
37.73,
33.88,
30.59,
25.8,
39.425,
25.46,
31.73,
29.7,
36.19,
40.48,
28.025,
38.9,
30.2,
28.05,
31.35,
38,
31.79,
36.3,
30.21,
35.435,
46.7,
28.595,
30.8,
28.93,
21.4,
31.73,
41.325,
23.8,
33.44,
34.21,
35.53,
19.95,
32.68,
30.5,
44.77,
32.12,
30.495,
40.565,
30.59,
31.9,
29.1,
37.29,
43.12,
36.86,
34.295,
27.17,
26.84,
30.2,
23.465,
25.46,
30.59,
45.43,
23.65,
20.7,
28.27,
20.235,
35.91,
30.69,
29,
19.57,
31.13,
40.26,
33.725,
29.48,
33.25,
32.6,
37.525,
39.16,
31.635,
25.3,
39.05,
34.1,
25.175,
26.98,
29.37,
34.8,
33.155,
19,
33,
28.595,
37.1,
31.4,
21.3,
28.785,
26.03,
28.88,
42.46,
38,
36.1,
29.3,
35.53,
22.705,
39.7,
38.19,
24.51,
38.095,
33.66,
42.4,
33.915,
34.96,
35.31,
30.78,
26.22,
23.37,
28.5,
32.965,
42.68,
39.6,
31.13,
36.3,
35.2,
42.4,
33.155,
35.91,
28.785,
46.53,
23.98,
31.54,
33.66,
28.7,
29.81,
31.57,
31.16,
29.7,
31.02,
21.375,
40.81,
36.1,
23.18,
17.4,
20.3,
24.32,
18.5,
26.41,
26.125,
41.69,
24.1,
27.36,
36.2,
32.395,
23.655,
34.8,
40.185,
32.3,
33.725,
39.27,
34.87,
44.745,
41.47,
26.41,
29.545,
32.9,
28.69,
30.495,
27.74,
35.2,
23.54,
30.685,
40.47,
22.6,
28.9,
22.61,
24.32,
36.67,
33.44,
40.66,
36.6,
37.4,
35.4,
27.075,
28.405,
40.28,
36.08,
21.4,
30.1,
27.265,
32.1,
34.77,
23.7,
24.035,
26.62,
26.41,
30.115,
27,
21.755,
36,
30.875,
28.975,
37.905,
22.77,
33.63,
27.645,
22.8,
37.43,
34.58,
35.2,
26.03,
25.175,
31.825,
32.3,
29,
39.7,
19.475,
36.1,
26.7,
36.48,
34.2,
33.33,
32.3,
39.805,
34.32,
28.88,
41.14,
35.97,
29.26,
27.7,
36.955,
36.86,
22.515,
29.92,
41.8,
27.6,
23.18,
31.92,
44.22,
22.895,
33.1,
26.18,
35.97,
22.3,
26.51,
35.815,
41.42,
36.575,
30.14,
25.84,
30.8,
42.94,
21.01,
22.515,
34.43,
31.46,
24.225,
37.1,
33.7,
17.67,
31.13,
29.81,
24.32,
31.825,
21.85,
33.1,
25.84,
23.845,
34.39,
33.82,
35.97,
31.5,
28.31,
23.465,
31.35,
31.1,
24.7,
30.495,
34.2,
50.38,
24.1,
32.775,
32.3,
23.75,
29.6,
32.23,
28.1,
28,
33.535,
19.855,
25.4,
29.9,
37.29,
43.7,
23.655,
24.3,
36.2,
29.48,
24.86,
30.1,
21.85,
28.12,
27.1,
33.44,
28.8,
29.5,
34.8,
27.36,
22.135,
26.695,
30.02,
39.5,
33.63,
29.04,
24.035,
32.11,
44,
25.555,
40.26,
22.515,
22.515,
27.265,
36.85,
35.1,
29.355,
32.585,
32.34,
39.8,
28.31,
26.695,
27.5,
24.605,
33.99,
28.2,
34.21,
25,
33.2,
31,
35.815,
23.2,
32.11,
23.4,
20.1,
39.16,
34.21,
46.53,
32.5,
25.8,
35.3,
37.18,
27.5,
29.735,
24.225,
26.18,
29.48,
23.21,
46.09,
40.185,
22.61,
39.93,
35.8,
35.8,
31.255,
18.335,
28.405,
39.49,
26.79,
36.67,
39.615,
25.9,
35.2,
24.795,
36.765,
27.1,
25.365,
25.745,
34.32,
28.16,
23.56,
20.235,
40.5,
35.42,
40.15,
29.15,
39.995,
29.92,
25.46,
21.375,
30.59,
30.115,
25.8,
30.115,
27.645,
34.675,
19.8,
27.835,
31.6,
28.27,
23.275,
34.1,
36.85,
36.29,
26.885,
25.8,
29.6,
19.19,
31.73,
29.26,
24.985,
27.74,
22.8,
33.33,
32.3,
27.6,
25.46,
24.605,
34.2,
35.815,
32.68,
37,
23.32,
45.32,
34.6,
18.715,
31.6,
17.29,
27.93,
38.38,
23,
28.88,
27.265,
23.085,
25.8,
35.245,
25.08,
22.515,
36.955,
26.41,
29.83,
21.47,
27.645,
28.9,
31.79,
39.49,
33.82,
32.01,
27.94,
28.595,
25.6,
25.3,
37.29,
42.655,
21.66,
31.9,
31.445,
31.255,
28.88,
18.335,
29.59,
32,
26.03,
33.66,
21.78,
27.835,
19.95,
31.5,
30.495,
28.975,
31.54,
47.74,
22.1,
29.83,
32.7,
33.7,
31.35,
33.77,
30.875,
33.99,
28.6,
38.94,
36.08,
29.8,
31.24,
29.925,
26.22,
30,
20.35,
32.3,
26.315,
24.51,
32.67,
29.64,
19.95,
38.17,
32.395,
25.08,
29.9,
35.86,
32.8,
18.6,
23.87,
45.9,
40.28,
18.335,
33.82,
28.12,
25,
22.23,
30.25,
37.07,
32.6,
24.86,
32.34,
32.3,
32.775,
31.92,
21.5,
34.1,
30.305,
36.48,
35.815,
27.93,
22.135,
23.18,
30.59,
41.1,
34.58,
42.13,
38.83,
28.215,
28.31,
26.125,
40.37,
24.6,
35.2,
34.105,
41.91,
29.26,
32.11,
27.1,
27.4,
34.865,
41.325,
29.925,
30.3,
27.36,
23.56,
32.68,
28,
32.775,
21.755,
32.395,
36.575,
21.755,
27.93,
33.55,
29.355,
25.8,
24.32,
40.375,
32.11,
32.3,
17.86,
34.8,
37.1,
30.875,
34.1,
21.47,
33.3,
31.255,
39.14,
25.08,
37.29,
30.21,
21.945,
24.97,
25.3,
23.94,
39.82,
16.815,
37.18,
34.43,
30.305,
24.605,
23.3,
27.83,
31.065,
21.66,
28.215,
22.705,
42.13,
21.28,
33.11,
33.33,
24.3,
25.7,
29.4,
39.82,
19.8,
29.3,
27.72,
37.9,
36.385,
27.645,
37.715,
23.18,
20.52,
37.1,
28.05,
29.9,
33.345,
30.5,
33.3,
27.5,
33.915,
34.485,
25.52,
27.61,
23.7,
30.4,
29.735,
26.79,
33.33,
30.03,
24.32,
17.29,
25.9,
34.32,
19.95,
23.21,
25.745,
25.175,
22,
26.125,
26.51,
27.455,
25.745,
20.8,
27.72,
32.2,
26.315,
26.695,
42.9,
28.31,
20.6,
53.13,
39.71,
26.315,
31.065,
38.83,
25.935,
33.535,
32.87,
30.03,
24.225,
38.6,
25.74,
33.4,
44.7,
30.97,
31.92,
36.85,
25.8
],
"z": [
1725.5523,
4449.462,
21984.47061,
3866.8552,
3756.6216,
8240.5896,
7281.5056,
6406.4107,
28923.136919999997,
2721.3208,
1826.8429999999998,
11090.7178,
1837.237,
10797.3362,
2395.17155,
10602.385,
13228.84695,
4149.736,
1137.011,
6203.90175,
14001.1338,
14451.83515,
12268.63225,
2775.19215,
2198.18985,
4687.7970000000005,
13770.0979,
1625.43375,
15612.19335,
2302.3,
3046.062,
4949.7587,
6272.4772,
6313.759,
6079.6715,
20630.28351,
3393.35635,
3556.9223,
12629.8967,
2211.13075,
3579.8287,
8059.6791,
13607.36875,
5989.52365,
8606.2174,
4504.6624,
30166.618169999998,
4133.64165,
1743.214,
14235.072,
6389.37785,
5920.1041,
6799.4580000000005,
11741.726,
11946.6259,
7726.854,
11356.6609,
3947.4131,
1532.4697,
2755.02095,
6571.02435,
4441.21315,
7935.29115,
11033.6617,
11073.176000000001,
8026.6666,
11082.5772,
2026.9741,
10942.13205,
5729.0053,
3766.8838,
12105.32,
10226.2842,
6186.1269999999995,
3645.0894,
21344.8467,
5003.853,
2331.519,
3877.30425,
2867.1196,
10825.2537,
11881.358,
4646.759,
2404.7338,
11488.31695,
30259.995560000003,
11381.3254,
8601.3293,
6686.4313,
7740.3369999999995,
1705.6245,
2257.47525,
10115.00885,
3385.39915,
9634.538,
6082.405,
12815.44495,
13616.3586,
11163.568000000001,
1632.56445,
2457.21115,
2155.6815,
1261.442,
2045.68525,
27322.733860000004,
2166.732,
27375.90478,
3490.5491,
18157.876,
5138.2567,
9877.6077,
10959.6947,
1842.519,
5125.2157,
7789.635,
6334.34355,
7077.1894,
6948.7008,
19749.383380000003,
10450.552,
5152.134,
5028.1466,
10407.08585,
4830.63,
6128.79745,
2719.27975,
4827.90495,
13405.3903,
8116.68,
1694.7964,
5246.047,
2855.43755,
6455.86265,
10436.096,
8823.279,
8538.28845,
11735.87905,
1631.8212,
4005.4225,
7419.4779,
7731.4271,
3981.9768,
5325.651,
6775.960999999999,
4922.9159,
12557.6053,
4883.866,
2137.6536,
12044.341999999999,
1137.4697,
1639.5631,
5649.715,
8516.829,
9644.2525,
14901.5167,
2130.6759,
8871.1517,
13012.20865,
7147.105,
4337.7352,
11743.298999999999,
13880.948999999999,
6610.1097,
1980.07,
8162.71625,
3537.703,
5002.7827,
8520.026,
7371.772,
10355.641,
2483.736,
3392.9768,
25081.76784,
5012.471,
10564.8845,
5253.524,
11987.1682,
2689.4954,
24227.33724,
7358.17565,
9225.2564,
7443.64305,
14001.2867,
1727.785,
12333.828000000001,
6710.1919,
1615.7667,
4463.2051,
7152.6714,
5354.07465,
35160.13457,
7196.866999999999,
24476.47851,
12648.7034,
1986.9334,
1832.094,
4040.55825,
4260.744000000001,
13047.33235,
5400.9805,
11520.09985,
11837.16,
20462.99766,
14590.63205,
7441.053000000001,
9282.4806,
1719.4363,
7265.7025,
9617.66245,
2523.1695,
9715.841,
2803.69785,
2150.469,
12928.7911,
9855.1314,
4237.12655,
11879.10405,
9625.92,
7742.1098,
9432.9253,
14256.1928,
25992.82104,
3172.018,
20277.80751,
2156.7518,
3906.127,
1704.5681,
9249.4952,
6746.7425,
12265.5069,
4349.462,
12646.207,
19442.3535,
20177.671130000002,
4151.0287,
11944.59435,
7749.1564,
8444.474,
1737.376,
8124.4084,
9722.7695,
8835.26495,
10435.06525,
7421.19455,
4667.60765,
4894.7533,
24671.66334,
11566.30055,
2866.091,
6600.20595,
3561.8889,
9144.565,
13429.0354,
11658.37915,
19144.57652,
13822.803,
12142.5786,
13937.6665,
8232.6388,
18955.22017,
13352.0998,
13217.0945,
13981.85035,
10977.2063,
6184.2994,
4889.9995,
8334.45755,
5478.0368,
1635.73365,
11830.6072,
8932.084,
3554.203,
12404.8791,
14133.03775,
24603.04837,
8944.1151,
9620.3307,
1837.2819,
1607.5101,
10043.249,
4751.07,
2597.779,
3180.5101,
9778.3472,
13430.265,
8017.06115,
8116.26885,
3481.868,
13415.0381,
12029.2867,
7639.41745,
1391.5287,
16455.70785,
27000.98473,
20781.48892,
5846.9176,
8302.53565,
1261.859,
11856.4115,
30284.642939999998,
3176.8159,
4618.0799,
10736.87075,
2138.0707,
8964.06055,
9290.1395,
9411.005,
7526.70645,
8522.003,
16586.49771,
14988.431999999999,
1631.6683,
9264.796999999999,
8083.9198,
14692.66935,
10269.46,
3260.199,
11396.9002,
4185.0979,
8539.671,
6652.5288,
4074.4537,
1621.3402,
5080.096,
2134.9015,
7345.7266,
9140.951,
14418.2804,
2727.3951,
8968.33,
9788.8659,
6555.07035,
7323.734818999999,
3167.45585,
18804.7524,
23082.95533,
4906.40965,
5969.723000000001,
12638.195,
4243.59005,
13919.8229,
2254.7967,
5926.846,
12592.5345,
2897.3235,
4738.2682,
1149.3959,
28287.897660000002,
7345.084,
12730.9996,
11454.0215,
5910.944,
4762.329000000001,
7512.267,
4032.2407,
1969.614,
1769.53165,
4686.3887,
21797.0004,
11881.9696,
11840.77505,
10601.412,
7682.67,
10381.4787,
15230.32405,
11165.41765,
1632.03625,
13224.693000000001,
12643.3778,
23288.9284,
2201.0971,
2497.0383,
2203.47185,
1744.465,
20878.78443,
2534.39375,
1534.3045,
1824.2854,
15555.18875,
9304.7019,
1622.1885,
9880.068000000001,
9563.029,
4347.02335,
12475.3513,
1253.9360000000001,
10461.9794,
1748.774,
24513.09126,
2196.4732,
12574.048999999999,
1967.0227,
4931.647,
8027.968000000001,
8211.1002,
13470.86,
6837.3687,
5974.3847,
6796.86325,
2643.2685,
3077.0955,
3044.2133,
11455.28,
11763.0009,
2498.4144,
9361.3268,
1256.299,
11362.755,
27724.28875,
8413.46305,
5240.765,
3857.75925,
25656.575259999998,
3994.1778,
9866.30485,
5397.6167,
11482.63485,
24059.68019,
9861.025,
8342.90875,
1708.0014,
14043.4767,
12925.886,
19214.705530000003,
13831.1152,
6067.12675,
5972.378000000001,
8825.086,
8233.0975,
27346.04207,
6196.448,
3056.3881,
13887.204,
10231.4999,
3268.84665,
11538.421,
3213.62205,
13390.559,
3972.9247,
12957.118,
11187.6567,
17878.900680000002,
3847.6740000000004,
8334.5896,
3935.1799,
1646.4297,
9193.8385,
10923.9332,
2494.022,
9058.7303,
2801.2588,
2128.43105,
6373.55735,
7256.7231,
11552.903999999999,
3761.292,
2219.4451,
4753.6368,
31620.001060000002,
13224.05705,
12222.8983,
1664.9996,
9724.53,
3206.49135,
12913.9924,
1639.5631,
6356.2707,
17626.23951,
1242.816,
4779.6023,
3861.20965,
13635.6379,
5976.8311,
11842.442,
8428.0693,
2566.4707,
5709.1644,
8823.98575,
7640.3092,
5594.8455,
7441.501,
33471.97189,
1633.0444,
9174.13565,
11070.535,
16085.1275,
9283.562,
3558.62025,
4435.0942,
8547.6913,
6571.544,
2207.69745,
6753.0380000000005,
1880.07,
11658.11505,
10713.643999999998,
3659.3459999999995,
9182.17,
12129.61415,
3736.4647,
6748.5912,
11326.71487,
11365.952,
10085.846,
1977.815,
3366.6697,
7173.35995,
9391.346,
14410.9321,
2709.1119,
24915.04626,
12949.1554,
6666.243,
13143.86485,
4466.6214,
18806.14547,
10141.1362,
6123.5688,
8252.2843,
1712.227,
12430.95335,
9800.8882,
10579.711000000001,
8280.6227,
8527.532,
12244.531,
3410.324,
4058.71245,
26392.260290000002,
14394.39815,
6435.6237,
22192.43711,
5148.5526,
1136.3994,
8703.456,
6500.2359,
4837.5823,
3943.5954,
4399.731,
6185.3208,
7222.78625,
12485.8009,
12363.546999999999,
10156.7832,
2585.269,
1242.26,
9863.4718,
4766.022,
11244.3769,
7729.64575,
5438.7491,
26236.57997,
2104.1134,
8068.185,
2362.22905,
2352.96845,
3577.9990000000003,
3201.24515,
29186.48236,
10976.24575,
3500.6123,
2020.5523,
9541.69555,
9504.3103,
5385.3379,
8930.93455,
5375.0380000000005,
10264.4421,
6113.23105,
5469.0066,
1727.54,
10107.2206,
8310.83915,
1984.4533,
2457.502,
12146.971000000001,
9566.9909,
13112.6048,
10848.1343,
12231.6136,
9875.6804,
11264.541000000001,
12979.358,
1263.249,
10106.13425,
6664.68595,
2217.6012,
6781.3542,
10065.413,
4234.927,
9447.25035,
14007.222,
9583.8933,
3484.3309999999997,
8604.48365,
3757.8448,
8827.2099,
9910.35985,
11737.84884,
1627.28245,
8556.907,
3062.50825,
1906.35825,
14210.53595,
11833.7823,
17128.42608,
5031.26955,
7985.815,
5428.7277,
3925.7582,
2416.955,
3070.8087,
9095.06825,
11842.62375,
8062.764,
7050.642,
14319.031,
6933.24225,
27941.28758,
11150.78,
12797.20962,
7261.741,
10560.4917,
6986.696999999999,
7448.40395,
5934.3798,
9869.8102,
1146.7966,
9386.1613,
4350.5144,
6414.178000000001,
12741.16745,
1917.3184,
5209.57885,
13457.9608,
5662.225,
1252.407,
2731.9122,
7209.4918,
4266.1658,
4719.52405,
11848.141000000001,
7046.7222,
14313.8463,
2103.08,
1815.8759,
7731.85785,
28476.734989999997,
2136.88225,
1131.5066,
3309.7926,
9414.92,
6360.9936,
11013.7119,
4428.88785,
5584.3057,
1877.9294,
2842.76075,
3597.5959999999995,
7445.918000000001,
2680.9493,
1621.8827,
8219.2039,
12523.6048,
16069.08475,
6117.4945,
13393.756000000001,
5266.3656,
4719.73655,
11743.9341,
5377.4578,
7160.3303,
4402.233,
11657.7189,
6402.29135,
12622.1795,
1526.3120000000001,
12323.936000000002,
10072.05505,
9872.701,
2438.0552,
2974.1259999999997,
10601.63225,
14119.62,
11729.6795,
1875.344,
18218.16139,
10965.446000000002,
7151.092,
12269.68865,
5458.04645,
8782.469000000001,
6600.361,
1141.4451,
11576.13,
13129.60345,
4391.652,
8457.818000000001,
3392.3652,
5966.8874,
6849.026,
8891.1395,
2690.1138,
26140.3603,
6653.7886,
6282.235,
6311.951999999999,
3443.0640000000003,
2789.0574,
2585.85065,
4877.98105,
5272.1758,
1682.5970000000002,
11945.1327,
7243.8136,
10422.91665,
13555.0049,
13063.883,
2221.56445,
1634.5734,
2117.33885,
8688.85885,
4661.28635,
8125.7845,
12644.589,
4564.19145,
4846.92015,
7633.7206,
15170.069,
2639.0429,
14382.70905,
7626.993,
5257.50795,
2473.3341,
13041.921,
5245.2269,
13451.122,
13462.52,
5488.262,
4320.41085,
6250.435,
25333.33284,
2913.5690000000004,
12032.326000000001,
13470.8044,
6289.7549,
2927.0647,
6238.298000000001,
10096.97,
7348.142,
4673.3922,
12233.828000000001,
32108.662819999998,
8965.79575,
2304.0022,
9487.6442,
1121.8739,
9549.5651,
2217.46915,
1628.4709,
12982.8747,
11674.13,
7160.094,
6358.77645,
11534.87265,
4527.18295,
3875.7341,
12609.88702,
28468.91901,
2730.10785,
3353.284,
14474.675,
9500.57305,
26467.09737,
4746.344,
7518.02535,
3279.86855,
8596.8278,
10702.6424,
4992.3764,
2527.81865,
1759.338,
2322.6218,
7804.1605,
2902.9065,
9704.66805,
4889.0368,
25517.11363,
4500.33925,
16796.41194,
4915.05985,
7624.63,
8410.04685,
28340.18885,
4518.82625,
3378.91,
7144.86265,
10118.424,
5484.4673,
7986.47525,
7418.522,
13887.9685,
6551.7501,
5267.81815,
1972.95,
21232.182259999998,
8627.5411,
4433.3877,
4438.2634,
23241.47453,
9957.7216,
8269.044,
36580.28216,
8765.249,
5383.536,
12124.9924,
2709.24395,
3987.926,
12495.29085,
26018.95052,
8798.593,
1711.0268,
8569.8618,
2020.1770000000001,
21595.38229,
9850.431999999999,
6877.9801,
4137.5227,
12950.0712,
12094.478000000001,
2250.8352,
22493.65964,
1704.70015,
3161.454,
11394.06555,
7325.0482,
3594.17085,
8023.13545,
14394.5579,
9288.0267,
3353.4703,
10594.50155,
8277.523000000001,
17929.303369999998,
2480.9791,
4462.7218,
1981.5819,
11554.2236,
6548.19505,
5708.866999999999,
7045.499,
8978.1851,
5757.41345,
14349.8544,
10928.848999999998,
13974.45555,
1909.52745,
12096.6512,
13204.28565,
4562.8421,
8551.347,
2102.2647,
15161.5344,
11884.04858,
4454.40265,
5855.9025,
4076.4970000000003,
15019.76005,
10796.35025,
11353.2276,
9748.9106,
10577.087,
11286.5387,
3591.48,
11299.343,
4561.1885,
1674.6323,
23045.56616,
3227.1211,
11253.421,
3471.4096,
11363.2832,
20420.60465,
10338.9316,
8988.15875,
10493.9458,
2904.0879999999997,
8605.3615,
11512.405,
5312.16985,
2396.0959,
10807.4863,
9222.4026,
5693.4305,
8347.1643,
18903.49141,
14254.6082,
10214.636,
5836.5204,
14358.36437,
1728.8970000000002,
8582.3023,
3693.428,
20709.02034,
9991.03765,
19673.335730000003,
11085.5868,
7623.518,
3176.2877,
3704.3545,
9048.0273,
7954.517,
27117.99378,
6338.0756,
9630.396999999999,
11289.10925,
2261.5688,
10791.96,
5979.731,
2203.73595,
12235.8392,
5630.45785,
11015.1747,
7228.21565,
14426.07385,
2459.7201,
3989.841,
7727.2532,
5124.1887,
18963.171919999997,
2200.83085,
7153.5539,
5227.98875,
10982.5013,
4529.477,
4670.64,
6112.35295,
11093.6229,
6457.8434,
4433.9159,
2154.361,
6496.8859999999995,
2899.48935,
7650.77375,
2850.68375,
2632.992,
9447.3824,
8603.8234,
13844.7972,
13126.67745,
5327.40025,
13725.47184,
13019.16105,
8671.19125,
4134.08245,
18838.70366,
5699.8375,
6393.60345,
4934.705,
6198.7518,
8733.22925,
2055.3249,
9964.06,
5116.5004,
36910.60803,
12347.171999999999,
5373.36425,
23563.016180000002,
1702.4553,
10806.839,
3956.07145,
12890.05765,
5415.6612,
4058.1161,
7537.1639,
4718.20355,
6593.5083,
8442.667,
6858.4796,
4795.6568,
6640.54485,
7162.0122,
10594.2257,
11938.25595,
12479.70895,
11345.518999999998,
8515.7587,
2699.56835,
14449.8544,
12224.35085,
6985.50695,
3238.4357,
4296.2712,
3171.6149,
1135.9407,
5615.369000000001,
9101.798,
6059.173000000001,
1633.9618,
1241.565,
15828.821730000001,
4415.1588,
6474.013000000001,
11436.73815,
11305.93455,
30063.58055,
10197.7722,
4544.2348,
3277.1609999999996,
6770.1925,
7337.7480000000005,
10370.91255,
10704.47,
1880.487,
8615.3,
3292.52985,
3021.80915,
14478.33015,
4747.0529,
10959.33,
2741.948,
4357.04365,
4189.1131,
8283.6807,
1720.3537,
8534.6718,
3732.6251,
5472.4490000000005,
7147.4728,
7133.9025,
1515.3449,
9301.89355,
11931.12525,
1964.78,
1708.92575,
4340.4409,
5261.46945,
2710.82855,
3208.7870000000003,
2464.6188,
6875.960999999999,
6940.90985,
4571.41305,
4536.259,
11272.331390000001,
1731.6770000000001,
1163.4627,
19496.71917,
7201.70085,
5425.02335,
12981.3457,
4239.89265,
13143.33665,
7050.0213,
9377.9047,
22395.74424,
10325.206,
12629.1656,
10795.937329999999,
11411.685,
10600.5483,
2205.9808,
1629.8335,
2007.945
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"scene": {
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"xaxis": {
"title": {
"text": "age"
}
},
"yaxis": {
"title": {
"text": "bmi"
}
},
"zaxis": {
"title": {
"text": "charges"
}
}
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
}
}
},
"text/html": [
"<div> <div id=\"84a3900c-934c-4fdb-ac63-078b6725d0d4\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"84a3900c-934c-4fdb-ac63-078b6725d0d4\")) { Plotly.newPlot( \"84a3900c-934c-4fdb-ac63-078b6725d0d4\", [{\"hovertemplate\": \"age=%{x}<br>bmi=%{y}<br>charges=%{z}<extra></extra>\", \"legendgroup\": \"\", \"marker\": {\"color\": \"#636efa\", \"opacity\": 0.5, \"size\": 3, \"symbol\": \"circle\"}, \"mode\": \"markers\", \"name\": \"\", \"scene\": \"scene\", \"showlegend\": false, \"type\": \"scatter3d\", \"x\": [18, 28, 33, 32, 31, 46, 37, 37, 60, 25, 23, 56, 19, 52, 23, 56, 60, 30, 18, 37, 59, 63, 55, 23, 18, 19, 63, 19, 62, 26, 24, 31, 41, 37, 38, 55, 18, 28, 60, 18, 21, 40, 58, 34, 43, 25, 64, 28, 19, 61, 40, 40, 31, 53, 58, 44, 57, 29, 21, 22, 41, 31, 45, 48, 56, 46, 55, 21, 53, 35, 28, 54, 55, 41, 30, 18, 34, 19, 26, 29, 54, 55, 37, 21, 52, 60, 58, 49, 37, 44, 18, 20, 47, 26, 52, 38, 59, 61, 53, 19, 20, 22, 19, 22, 54, 22, 34, 26, 29, 29, 51, 53, 19, 35, 48, 32, 40, 44, 50, 54, 32, 37, 47, 20, 32, 19, 27, 63, 49, 18, 35, 24, 38, 54, 46, 41, 58, 18, 22, 44, 44, 26, 30, 41, 29, 61, 36, 25, 56, 18, 19, 39, 45, 51, 64, 19, 48, 60, 46, 28, 59, 63, 40, 20, 40, 24, 34, 45, 41, 53, 27, 26, 24, 34, 53, 32, 55, 28, 58, 41, 47, 42, 59, 19, 59, 39, 18, 31, 44, 33, 55, 40, 54, 60, 24, 19, 29, 27, 55, 38, 51, 58, 53, 59, 45, 49, 18, 41, 50, 25, 47, 19, 22, 59, 51, 30, 55, 52, 46, 46, 63, 52, 28, 29, 22, 25, 18, 48, 36, 56, 28, 57, 29, 28, 30, 58, 41, 50, 19, 49, 52, 50, 54, 44, 32, 34, 26, 57, 29, 40, 27, 52, 61, 56, 43, 64, 60, 62, 46, 24, 62, 60, 63, 49, 34, 33, 46, 36, 19, 57, 50, 30, 33, 18, 46, 46, 47, 23, 18, 48, 35, 21, 21, 49, 56, 42, 44, 18, 61, 57, 42, 20, 64, 62, 55, 35, 44, 19, 58, 50, 26, 24, 48, 19, 48, 49, 46, 46, 43, 21, 64, 18, 51, 47, 64, 49, 31, 52, 33, 47, 38, 32, 19, 25, 19, 43, 52, 64, 25, 48, 45, 38, 18, 21, 27, 19, 29, 42, 60, 31, 60, 22, 35, 52, 26, 31, 18, 59, 45, 60, 56, 40, 35, 39, 30, 24, 20, 32, 59, 55, 57, 56, 40, 49, 62, 56, 19, 60, 56, 28, 18, 27, 18, 19, 47, 25, 21, 23, 63, 49, 18, 51, 48, 31, 54, 19, 53, 19, 61, 18, 61, 20, 31, 45, 44, 62, 43, 38, 37, 22, 21, 24, 57, 56, 27, 51, 19, 58, 20, 45, 35, 31, 50, 32, 51, 38, 18, 19, 51, 46, 18, 62, 59, 37, 64, 38, 33, 46, 46, 53, 34, 20, 63, 54, 28, 54, 25, 63, 32, 62, 52, 25, 28, 46, 34, 19, 46, 54, 27, 50, 18, 19, 38, 41, 49, 31, 18, 30, 62, 57, 58, 22, 52, 25, 59, 19, 39, 32, 19, 33, 21, 61, 38, 58, 47, 20, 41, 46, 42, 34, 43, 52, 18, 51, 56, 64, 51, 27, 28, 47, 38, 18, 34, 20, 56, 55, 30, 49, 59, 29, 36, 33, 58, 53, 24, 29, 40, 51, 64, 19, 35, 56, 33, 61, 23, 43, 48, 39, 40, 18, 58, 49, 53, 48, 45, 59, 26, 27, 48, 57, 37, 57, 32, 18, 49, 40, 30, 29, 36, 41, 45, 55, 56, 49, 21, 19, 53, 33, 53, 42, 40, 47, 21, 47, 20, 24, 27, 26, 53, 56, 23, 21, 50, 53, 34, 47, 33, 49, 31, 36, 18, 50, 43, 20, 24, 60, 49, 60, 51, 58, 51, 53, 62, 19, 50, 41, 18, 41, 53, 24, 48, 59, 49, 26, 45, 31, 50, 50, 34, 19, 47, 28, 21, 64, 58, 24, 31, 39, 30, 22, 23, 27, 45, 57, 47, 42, 64, 38, 61, 53, 44, 41, 51, 40, 45, 35, 53, 18, 51, 31, 35, 60, 21, 29, 62, 39, 19, 22, 39, 30, 30, 58, 42, 64, 21, 23, 45, 40, 19, 18, 25, 46, 33, 54, 28, 36, 20, 24, 23, 45, 26, 18, 44, 60, 64, 39, 63, 36, 28, 58, 36, 42, 36, 56, 35, 59, 21, 59, 53, 51, 23, 27, 55, 61, 53, 20, 25, 57, 38, 55, 36, 51, 40, 18, 57, 61, 25, 50, 26, 42, 43, 44, 23, 49, 33, 41, 37, 22, 23, 21, 25, 36, 22, 57, 36, 54, 62, 61, 19, 18, 19, 49, 26, 49, 60, 26, 27, 44, 63, 22, 59, 44, 33, 24, 61, 35, 62, 62, 38, 34, 43, 50, 19, 57, 62, 41, 26, 39, 46, 45, 32, 59, 44, 39, 18, 53, 18, 50, 18, 19, 62, 56, 42, 42, 57, 30, 31, 24, 48, 19, 29, 63, 46, 52, 35, 44, 21, 39, 50, 34, 22, 19, 26, 48, 26, 45, 36, 54, 34, 27, 20, 44, 43, 45, 34, 26, 38, 50, 38, 39, 39, 63, 33, 36, 24, 48, 47, 29, 28, 25, 51, 48, 61, 48, 38, 59, 19, 26, 54, 21, 51, 18, 47, 21, 23, 54, 37, 30, 61, 54, 22, 19, 18, 28, 55, 43, 25, 44, 64, 49, 27, 55, 48, 45, 24, 32, 24, 57, 36, 29, 42, 48, 39, 63, 54, 63, 21, 54, 60, 32, 47, 21, 63, 18, 32, 38, 32, 62, 55, 57, 52, 56, 55, 23, 50, 18, 22, 52, 25, 53, 29, 58, 37, 54, 49, 50, 26, 45, 54, 28, 23, 55, 41, 30, 46, 27, 63, 55, 35, 34, 19, 39, 27, 57, 52, 28, 50, 44, 26, 33, 50, 41, 52, 39, 50, 52, 20, 55, 42, 18, 58, 35, 48, 36, 23, 20, 32, 43, 34, 30, 18, 41, 35, 57, 29, 32, 37, 56, 38, 29, 22, 40, 23, 42, 24, 25, 48, 45, 62, 23, 31, 41, 58, 48, 31, 19, 41, 40, 31, 37, 46, 22, 51, 35, 59, 59, 36, 39, 18, 52, 27, 18, 40, 29, 38, 30, 40, 50, 41, 33, 38, 42, 56, 58, 54, 58, 45, 26, 63, 58, 37, 25, 22, 28, 18, 28, 45, 33, 18, 19, 40, 34, 42, 51, 54, 55, 52, 32, 28, 41, 43, 49, 55, 20, 45, 26, 25, 43, 35, 57, 22, 32, 25, 48, 18, 47, 28, 36, 44, 38, 21, 46, 58, 20, 18, 28, 33, 19, 25, 24, 41, 42, 33, 34, 18, 19, 18, 35, 39, 31, 62, 31, 61, 42, 51, 23, 52, 57, 23, 52, 50, 18, 18, 21], \"y\": [33.77, 33.0, 22.705, 28.88, 25.74, 33.44, 27.74, 29.83, 25.84, 26.22, 34.4, 39.82, 24.6, 30.78, 23.845, 40.3, 36.005, 32.4, 34.1, 28.025, 27.72, 23.085, 32.775, 17.385, 26.315, 28.6, 28.31, 20.425, 32.965, 20.8, 26.6, 36.63, 21.78, 30.8, 37.05, 37.3, 38.665, 34.77, 24.53, 35.625, 33.63, 28.69, 31.825, 37.335, 27.36, 33.66, 24.7, 25.935, 28.9, 39.1, 26.315, 36.19, 28.5, 28.1, 32.01, 27.4, 34.01, 29.59, 35.53, 39.805, 32.965, 26.885, 38.285, 41.23, 27.2, 27.74, 26.98, 39.49, 24.795, 34.77, 37.62, 30.8, 38.28, 31.6, 25.46, 30.115, 27.5, 28.4, 30.875, 27.94, 33.63, 29.7, 30.8, 35.72, 32.205, 28.595, 49.06, 27.17, 23.37, 37.1, 23.75, 28.975, 33.915, 28.785, 37.4, 34.7, 26.505, 22.04, 35.9, 25.555, 28.785, 28.05, 34.1, 25.175, 31.9, 36.0, 22.42, 32.49, 29.735, 38.83, 37.73, 37.43, 28.4, 24.13, 29.7, 37.145, 25.46, 39.52, 27.83, 39.6, 29.8, 29.64, 28.215, 37.0, 33.155, 31.825, 18.905, 41.47, 30.3, 15.96, 34.8, 33.345, 27.835, 29.2, 28.9, 33.155, 28.595, 38.28, 19.95, 26.41, 30.69, 29.92, 30.9, 32.2, 32.11, 31.57, 26.2, 25.74, 26.6, 34.43, 30.59, 32.8, 28.6, 18.05, 39.33, 32.11, 32.23, 24.035, 22.3, 28.88, 26.4, 31.8, 41.23, 33.0, 30.875, 28.5, 26.73, 30.9, 37.1, 26.6, 23.1, 29.92, 23.21, 33.7, 33.25, 30.8, 33.88, 38.06, 41.91, 31.635, 25.46, 36.195, 27.83, 17.8, 27.5, 24.51, 26.73, 38.39, 38.06, 22.135, 26.8, 35.3, 30.02, 38.06, 35.86, 20.9, 28.975, 30.3, 25.365, 40.15, 24.415, 25.2, 38.06, 32.395, 30.2, 25.84, 29.37, 37.05, 27.455, 27.55, 26.6, 20.615, 24.3, 31.79, 21.56, 27.645, 32.395, 31.2, 26.62, 48.07, 26.22, 26.4, 33.4, 29.64, 28.82, 26.8, 22.99, 28.88, 27.55, 37.51, 33.0, 38.0, 33.345, 27.5, 33.33, 34.865, 33.06, 26.6, 24.7, 35.86, 33.25, 32.205, 32.775, 27.645, 37.335, 25.27, 29.64, 40.945, 27.2, 34.105, 23.21, 36.7, 31.16, 28.785, 35.72, 34.5, 25.74, 27.55, 27.72, 27.6, 30.02, 27.55, 36.765, 41.47, 29.26, 35.75, 33.345, 29.92, 27.835, 23.18, 25.6, 27.7, 35.245, 38.28, 27.6, 43.89, 29.83, 41.91, 20.79, 32.3, 30.5, 26.4, 21.89, 30.78, 32.3, 24.985, 32.015, 30.4, 21.09, 22.23, 33.155, 33.33, 30.115, 31.46, 33.0, 43.34, 22.135, 34.4, 39.05, 25.365, 22.61, 30.21, 35.625, 37.43, 31.445, 31.35, 32.3, 19.855, 34.4, 31.02, 25.6, 38.17, 20.6, 47.52, 32.965, 32.3, 20.4, 38.38, 24.31, 23.6, 21.12, 30.03, 17.48, 23.9, 35.15, 35.64, 34.1, 39.16, 30.59, 30.2, 24.31, 27.265, 29.165, 16.815, 30.4, 33.1, 20.235, 26.9, 30.5, 28.595, 33.11, 31.73, 28.9, 46.75, 29.45, 32.68, 43.01, 36.52, 33.1, 29.64, 25.65, 29.6, 38.6, 29.6, 24.13, 23.4, 29.735, 46.53, 37.4, 30.14, 30.495, 39.6, 33.0, 36.63, 38.095, 25.935, 25.175, 28.7, 33.82, 24.32, 24.09, 32.67, 30.115, 29.8, 33.345, 35.625, 36.85, 32.56, 41.325, 37.51, 31.35, 39.5, 34.3, 31.065, 21.47, 28.7, 31.16, 32.9, 25.08, 25.08, 43.4, 27.93, 23.6, 28.7, 23.98, 39.2, 26.03, 28.93, 30.875, 31.35, 23.75, 25.27, 28.7, 32.11, 33.66, 22.42, 30.4, 35.7, 35.31, 30.495, 31.0, 30.875, 27.36, 44.22, 33.915, 37.73, 33.88, 30.59, 25.8, 39.425, 25.46, 31.73, 29.7, 36.19, 40.48, 28.025, 38.9, 30.2, 28.05, 31.35, 38.0, 31.79, 36.3, 30.21, 35.435, 46.7, 28.595, 30.8, 28.93, 21.4, 31.73, 41.325, 23.8, 33.44, 34.21, 35.53, 19.95, 32.68, 30.5, 44.77, 32.12, 30.495, 40.565, 30.59, 31.9, 29.1, 37.29, 43.12, 36.86, 34.295, 27.17, 26.84, 30.2, 23.465, 25.46, 30.59, 45.43, 23.65, 20.7, 28.27, 20.235, 35.91, 30.69, 29.0, 19.57, 31.13, 40.26, 33.725, 29.48, 33.25, 32.6, 37.525, 39.16, 31.635, 25.3, 39.05, 34.1, 25.175, 26.98, 29.37, 34.8, 33.155, 19.0, 33.0, 28.595, 37.1, 31.4, 21.3, 28.785, 26.03, 28.88, 42.46, 38.0, 36.1, 29.3, 35.53, 22.705, 39.7, 38.19, 24.51, 38.095, 33.66, 42.4, 33.915, 34.96, 35.31, 30.78, 26.22, 23.37, 28.5, 32.965, 42.68, 39.6, 31.13, 36.3, 35.2, 42.4, 33.155, 35.91, 28.785, 46.53, 23.98, 31.54, 33.66, 28.7, 29.81, 31.57, 31.16, 29.7, 31.02, 21.375, 40.81, 36.1, 23.18, 17.4, 20.3, 24.32, 18.5, 26.41, 26.125, 41.69, 24.1, 27.36, 36.2, 32.395, 23.655, 34.8, 40.185, 32.3, 33.725, 39.27, 34.87, 44.745, 41.47, 26.41, 29.545, 32.9, 28.69, 30.495, 27.74, 35.2, 23.54, 30.685, 40.47, 22.6, 28.9, 22.61, 24.32, 36.67, 33.44, 40.66, 36.6, 37.4, 35.4, 27.075, 28.405, 40.28, 36.08, 21.4, 30.1, 27.265, 32.1, 34.77, 23.7, 24.035, 26.62, 26.41, 30.115, 27.0, 21.755, 36.0, 30.875, 28.975, 37.905, 22.77, 33.63, 27.645, 22.8, 37.43, 34.58, 35.2, 26.03, 25.175, 31.825, 32.3, 29.0, 39.7, 19.475, 36.1, 26.7, 36.48, 34.2, 33.33, 32.3, 39.805, 34.32, 28.88, 41.14, 35.97, 29.26, 27.7, 36.955, 36.86, 22.515, 29.92, 41.8, 27.6, 23.18, 31.92, 44.22, 22.895, 33.1, 26.18, 35.97, 22.3, 26.51, 35.815, 41.42, 36.575, 30.14, 25.84, 30.8, 42.94, 21.01, 22.515, 34.43, 31.46, 24.225, 37.1, 33.7, 17.67, 31.13, 29.81, 24.32, 31.825, 21.85, 33.1, 25.84, 23.845, 34.39, 33.82, 35.97, 31.5, 28.31, 23.465, 31.35, 31.1, 24.7, 30.495, 34.2, 50.38, 24.1, 32.775, 32.3, 23.75, 29.6, 32.23, 28.1, 28.0, 33.535, 19.855, 25.4, 29.9, 37.29, 43.7, 23.655, 24.3, 36.2, 29.48, 24.86, 30.1, 21.85, 28.12, 27.1, 33.44, 28.8, 29.5, 34.8, 27.36, 22.135, 26.695, 30.02, 39.5, 33.63, 29.04, 24.035, 32.11, 44.0, 25.555, 40.26, 22.515, 22.515, 27.265, 36.85, 35.1, 29.355, 32.585, 32.34, 39.8, 28.31, 26.695, 27.5, 24.605, 33.99, 28.2, 34.21, 25.0, 33.2, 31.0, 35.815, 23.2, 32.11, 23.4, 20.1, 39.16, 34.21, 46.53, 32.5, 25.8, 35.3, 37.18, 27.5, 29.735, 24.225, 26.18, 29.48, 23.21, 46.09, 40.185, 22.61, 39.93, 35.8, 35.8, 31.255, 18.335, 28.405, 39.49, 26.79, 36.67, 39.615, 25.9, 35.2, 24.795, 36.765, 27.1, 25.365, 25.745, 34.32, 28.16, 23.56, 20.235, 40.5, 35.42, 40.15, 29.15, 39.995, 29.92, 25.46, 21.375, 30.59, 30.115, 25.8, 30.115, 27.645, 34.675, 19.8, 27.835, 31.6, 28.27, 23.275, 34.1, 36.85, 36.29, 26.885, 25.8, 29.6, 19.19, 31.73, 29.26, 24.985, 27.74, 22.8, 33.33, 32.3, 27.6, 25.46, 24.605, 34.2, 35.815, 32.68, 37.0, 23.32, 45.32, 34.6, 18.715, 31.6, 17.29, 27.93, 38.38, 23.0, 28.88, 27.265, 23.085, 25.8, 35.245, 25.08, 22.515, 36.955, 26.41, 29.83, 21.47, 27.645, 28.9, 31.79, 39.49, 33.82, 32.01, 27.94, 28.595, 25.6, 25.3, 37.29, 42.655, 21.66, 31.9, 31.445, 31.255, 28.88, 18.335, 29.59, 32.0, 26.03, 33.66, 21.78, 27.835, 19.95, 31.5, 30.495, 28.975, 31.54, 47.74, 22.1, 29.83, 32.7, 33.7, 31.35, 33.77, 30.875, 33.99, 28.6, 38.94, 36.08, 29.8, 31.24, 29.925, 26.22, 30.0, 20.35, 32.3, 26.315, 24.51, 32.67, 29.64, 19.95, 38.17, 32.395, 25.08, 29.9, 35.86, 32.8, 18.6, 23.87, 45.9, 40.28, 18.335, 33.82, 28.12, 25.0, 22.23, 30.25, 37.07, 32.6, 24.86, 32.34, 32.3, 32.775, 31.92, 21.5, 34.1, 30.305, 36.48, 35.815, 27.93, 22.135, 23.18, 30.59, 41.1, 34.58, 42.13, 38.83, 28.215, 28.31, 26.125, 40.37, 24.6, 35.2, 34.105, 41.91, 29.26, 32.11, 27.1, 27.4, 34.865, 41.325, 29.925, 30.3, 27.36, 23.56, 32.68, 28.0, 32.775, 21.755, 32.395, 36.575, 21.755, 27.93, 33.55, 29.355, 25.8, 24.32, 40.375, 32.11, 32.3, 17.86, 34.8, 37.1, 30.875, 34.1, 21.47, 33.3, 31.255, 39.14, 25.08, 37.29, 30.21, 21.945, 24.97, 25.3, 23.94, 39.82, 16.815, 37.18, 34.43, 30.305, 24.605, 23.3, 27.83, 31.065, 21.66, 28.215, 22.705, 42.13, 21.28, 33.11, 33.33, 24.3, 25.7, 29.4, 39.82, 19.8, 29.3, 27.72, 37.9, 36.385, 27.645, 37.715, 23.18, 20.52, 37.1, 28.05, 29.9, 33.345, 30.5, 33.3, 27.5, 33.915, 34.485, 25.52, 27.61, 23.7, 30.4, 29.735, 26.79, 33.33, 30.03, 24.32, 17.29, 25.9, 34.32, 19.95, 23.21, 25.745, 25.175, 22.0, 26.125, 26.51, 27.455, 25.745, 20.8, 27.72, 32.2, 26.315, 26.695, 42.9, 28.31, 20.6, 53.13, 39.71, 26.315, 31.065, 38.83, 25.935, 33.535, 32.87, 30.03, 24.225, 38.6, 25.74, 33.4, 44.7, 30.97, 31.92, 36.85, 25.8], \"z\": [1725.5523, 4449.462, 21984.47061, 3866.8552, 3756.6216, 8240.5896, 7281.5056, 6406.4107, 28923.136919999997, 2721.3208, 1826.8429999999998, 11090.7178, 1837.237, 10797.3362, 2395.17155, 10602.385, 13228.84695, 4149.736, 1137.011, 6203.90175, 14001.1338, 14451.83515, 12268.63225, 2775.19215, 2198.18985, 4687.7970000000005, 13770.0979, 1625.43375, 15612.19335, 2302.3, 3046.062, 4949.7587, 6272.4772, 6313.759, 6079.6715, 20630.28351, 3393.35635, 3556.9223, 12629.8967, 2211.13075, 3579.8287, 8059.6791, 13607.36875, 5989.52365, 8606.2174, 4504.6624, 30166.618169999998, 4133.64165, 1743.214, 14235.072, 6389.37785, 5920.1041, 6799.4580000000005, 11741.726, 11946.6259, 7726.854, 11356.6609, 3947.4131, 1532.4697, 2755.02095, 6571.02435, 4441.21315, 7935.29115, 11033.6617, 11073.176000000001, 8026.6666, 11082.5772, 2026.9741, 10942.13205, 5729.0053, 3766.8838, 12105.32, 10226.2842, 6186.1269999999995, 3645.0894, 21344.8467, 5003.853, 2331.519, 3877.30425, 2867.1196, 10825.2537, 11881.358, 4646.759, 2404.7338, 11488.31695, 30259.995560000003, 11381.3254, 8601.3293, 6686.4313, 7740.3369999999995, 1705.6245, 2257.47525, 10115.00885, 3385.39915, 9634.538, 6082.405, 12815.44495, 13616.3586, 11163.568000000001, 1632.56445, 2457.21115, 2155.6815, 1261.442, 2045.68525, 27322.733860000004, 2166.732, 27375.90478, 3490.5491, 18157.876, 5138.2567, 9877.6077, 10959.6947, 1842.519, 5125.2157, 7789.635, 6334.34355, 7077.1894, 6948.7008, 19749.383380000003, 10450.552, 5152.134, 5028.1466, 10407.08585, 4830.63, 6128.79745, 2719.27975, 4827.90495, 13405.3903, 8116.68, 1694.7964, 5246.047, 2855.43755, 6455.86265, 10436.096, 8823.279, 8538.28845, 11735.87905, 1631.8212, 4005.4225, 7419.4779, 7731.4271, 3981.9768, 5325.651, 6775.960999999999, 4922.9159, 12557.6053, 4883.866, 2137.6536, 12044.341999999999, 1137.4697, 1639.5631, 5649.715, 8516.829, 9644.2525, 14901.5167, 2130.6759, 8871.1517, 13012.20865, 7147.105, 4337.7352, 11743.298999999999, 13880.948999999999, 6610.1097, 1980.07, 8162.71625, 3537.703, 5002.7827, 8520.026, 7371.772, 10355.641, 2483.736, 3392.9768, 25081.76784, 5012.471, 10564.8845, 5253.524, 11987.1682, 2689.4954, 24227.33724, 7358.17565, 9225.2564, 7443.64305, 14001.2867, 1727.785, 12333.828000000001, 6710.1919, 1615.7667, 4463.2051, 7152.6714, 5354.07465, 35160.13457, 7196.866999999999, 24476.47851, 12648.7034, 1986.9334, 1832.094, 4040.55825, 4260.744000000001, 13047.33235, 5400.9805, 11520.09985, 11837.16, 20462.99766, 14590.63205, 7441.053000000001, 9282.4806, 1719.4363, 7265.7025, 9617.66245, 2523.1695, 9715.841, 2803.69785, 2150.469, 12928.7911, 9855.1314, 4237.12655, 11879.10405, 9625.92, 7742.1098, 9432.9253, 14256.1928, 25992.82104, 3172.018, 20277.80751, 2156.7518, 3906.127, 1704.5681, 9249.4952, 6746.7425, 12265.5069, 4349.462, 12646.207, 19442.3535, 20177.671130000002, 4151.0287, 11944.59435, 7749.1564, 8444.474, 1737.376, 8124.4084, 9722.7695, 8835.26495, 10435.06525, 7421.19455, 4667.60765, 4894.7533, 24671.66334, 11566.30055, 2866.091, 6600.20595, 3561.8889, 9144.565, 13429.0354, 11658.37915, 19144.57652, 13822.803, 12142.5786, 13937.6665, 8232.6388, 18955.22017, 13352.0998, 13217.0945, 13981.85035, 10977.2063, 6184.2994, 4889.9995, 8334.45755, 5478.0368, 1635.73365, 11830.6072, 8932.084, 3554.203, 12404.8791, 14133.03775, 24603.04837, 8944.1151, 9620.3307, 1837.2819, 1607.5101, 10043.249, 4751.07, 2597.779, 3180.5101, 9778.3472, 13430.265, 8017.06115, 8116.26885, 3481.868, 13415.0381, 12029.2867, 7639.41745, 1391.5287, 16455.70785, 27000.98473, 20781.48892, 5846.9176, 8302.53565, 1261.859, 11856.4115, 30284.642939999998, 3176.8159, 4618.0799, 10736.87075, 2138.0707, 8964.06055, 9290.1395, 9411.005, 7526.70645, 8522.003, 16586.49771, 14988.431999999999, 1631.6683, 9264.796999999999, 8083.9198, 14692.66935, 10269.46, 3260.199, 11396.9002, 4185.0979, 8539.671, 6652.5288, 4074.4537, 1621.3402, 5080.096, 2134.9015, 7345.7266, 9140.951, 14418.2804, 2727.3951, 8968.33, 9788.8659, 6555.07035, 7323.734818999999, 3167.45585, 18804.7524, 23082.95533, 4906.40965, 5969.723000000001, 12638.195, 4243.59005, 13919.8229, 2254.7967, 5926.846, 12592.5345, 2897.3235, 4738.2682, 1149.3959, 28287.897660000002, 7345.084, 12730.9996, 11454.0215, 5910.944, 4762.329000000001, 7512.267, 4032.2407, 1969.614, 1769.53165, 4686.3887, 21797.0004, 11881.9696, 11840.77505, 10601.412, 7682.67, 10381.4787, 15230.32405, 11165.41765, 1632.03625, 13224.693000000001, 12643.3778, 23288.9284, 2201.0971, 2497.0383, 2203.47185, 1744.465, 20878.78443, 2534.39375, 1534.3045, 1824.2854, 15555.18875, 9304.7019, 1622.1885, 9880.068000000001, 9563.029, 4347.02335, 12475.3513, 1253.9360000000001, 10461.9794, 1748.774, 24513.09126, 2196.4732, 12574.048999999999, 1967.0227, 4931.647, 8027.968000000001, 8211.1002, 13470.86, 6837.3687, 5974.3847, 6796.86325, 2643.2685, 3077.0955, 3044.2133, 11455.28, 11763.0009, 2498.4144, 9361.3268, 1256.299, 11362.755, 27724.28875, 8413.46305, 5240.765, 3857.75925, 25656.575259999998, 3994.1778, 9866.30485, 5397.6167, 11482.63485, 24059.68019, 9861.025, 8342.90875, 1708.0014, 14043.4767, 12925.886, 19214.705530000003, 13831.1152, 6067.12675, 5972.378000000001, 8825.086, 8233.0975, 27346.04207, 6196.448, 3056.3881, 13887.204, 10231.4999, 3268.84665, 11538.421, 3213.62205, 13390.559, 3972.9247, 12957.118, 11187.6567, 17878.900680000002, 3847.6740000000004, 8334.5896, 3935.1799, 1646.4297, 9193.8385, 10923.9332, 2494.022, 9058.7303, 2801.2588, 2128.43105, 6373.55735, 7256.7231, 11552.903999999999, 3761.292, 2219.4451, 4753.6368, 31620.001060000002, 13224.05705, 12222.8983, 1664.9996, 9724.53, 3206.49135, 12913.9924, 1639.5631, 6356.2707, 17626.23951, 1242.816, 4779.6023, 3861.20965, 13635.6379, 5976.8311, 11842.442, 8428.0693, 2566.4707, 5709.1644, 8823.98575, 7640.3092, 5594.8455, 7441.501, 33471.97189, 1633.0444, 9174.13565, 11070.535, 16085.1275, 9283.562, 3558.62025, 4435.0942, 8547.6913, 6571.544, 2207.69745, 6753.0380000000005, 1880.07, 11658.11505, 10713.643999999998, 3659.3459999999995, 9182.17, 12129.61415, 3736.4647, 6748.5912, 11326.71487, 11365.952, 10085.846, 1977.815, 3366.6697, 7173.35995, 9391.346, 14410.9321, 2709.1119, 24915.04626, 12949.1554, 6666.243, 13143.86485, 4466.6214, 18806.14547, 10141.1362, 6123.5688, 8252.2843, 1712.227, 12430.95335, 9800.8882, 10579.711000000001, 8280.6227, 8527.532, 12244.531, 3410.324, 4058.71245, 26392.260290000002, 14394.39815, 6435.6237, 22192.43711, 5148.5526, 1136.3994, 8703.456, 6500.2359, 4837.5823, 3943.5954, 4399.731, 6185.3208, 7222.78625, 12485.8009, 12363.546999999999, 10156.7832, 2585.269, 1242.26, 9863.4718, 4766.022, 11244.3769, 7729.64575, 5438.7491, 26236.57997, 2104.1134, 8068.185, 2362.22905, 2352.96845, 3577.9990000000003, 3201.24515, 29186.48236, 10976.24575, 3500.6123, 2020.5523, 9541.69555, 9504.3103, 5385.3379, 8930.93455, 5375.0380000000005, 10264.4421, 6113.23105, 5469.0066, 1727.54, 10107.2206, 8310.83915, 1984.4533, 2457.502, 12146.971000000001, 9566.9909, 13112.6048, 10848.1343, 12231.6136, 9875.6804, 11264.541000000001, 12979.358, 1263.249, 10106.13425, 6664.68595, 2217.6012, 6781.3542, 10065.413, 4234.927, 9447.25035, 14007.222, 9583.8933, 3484.3309999999997, 8604.48365, 3757.8448, 8827.2099, 9910.35985, 11737.84884, 1627.28245, 8556.907, 3062.50825, 1906.35825, 14210.53595, 11833.7823, 17128.42608, 5031.26955, 7985.815, 5428.7277, 3925.7582, 2416.955, 3070.8087, 9095.06825, 11842.62375, 8062.764, 7050.642, 14319.031, 6933.24225, 27941.28758, 11150.78, 12797.20962, 7261.741, 10560.4917, 6986.696999999999, 7448.40395, 5934.3798, 9869.8102, 1146.7966, 9386.1613, 4350.5144, 6414.178000000001, 12741.16745, 1917.3184, 5209.57885, 13457.9608, 5662.225, 1252.407, 2731.9122, 7209.4918, 4266.1658, 4719.52405, 11848.141000000001, 7046.7222, 14313.8463, 2103.08, 1815.8759, 7731.85785, 28476.734989999997, 2136.88225, 1131.5066, 3309.7926, 9414.92, 6360.9936, 11013.7119, 4428.88785, 5584.3057, 1877.9294, 2842.76075, 3597.5959999999995, 7445.918000000001, 2680.9493, 1621.8827, 8219.2039, 12523.6048, 16069.08475, 6117.4945, 13393.756000000001, 5266.3656, 4719.73655, 11743.9341, 5377.4578, 7160.3303, 4402.233, 11657.7189, 6402.29135, 12622.1795, 1526.3120000000001, 12323.936000000002, 10072.05505, 9872.701, 2438.0552, 2974.1259999999997, 10601.63225, 14119.62, 11729.6795, 1875.344, 18218.16139, 10965.446000000002, 7151.092, 12269.68865, 5458.04645, 8782.469000000001, 6600.361, 1141.4451, 11576.13, 13129.60345, 4391.652, 8457.818000000001, 3392.3652, 5966.8874, 6849.026, 8891.1395, 2690.1138, 26140.3603, 6653.7886, 6282.235, 6311.951999999999, 3443.0640000000003, 2789.0574, 2585.85065, 4877.98105, 5272.1758, 1682.5970000000002, 11945.1327, 7243.8136, 10422.91665, 13555.0049, 13063.883, 2221.56445, 1634.5734, 2117.33885, 8688.85885, 4661.28635, 8125.7845, 12644.589, 4564.19145, 4846.92015, 7633.7206, 15170.069, 2639.0429, 14382.70905, 7626.993, 5257.50795, 2473.3341, 13041.921, 5245.2269, 13451.122, 13462.52, 5488.262, 4320.41085, 6250.435, 25333.33284, 2913.5690000000004, 12032.326000000001, 13470.8044, 6289.7549, 2927.0647, 6238.298000000001, 10096.97, 7348.142, 4673.3922, 12233.828000000001, 32108.662819999998, 8965.79575, 2304.0022, 9487.6442, 1121.8739, 9549.5651, 2217.46915, 1628.4709, 12982.8747, 11674.13, 7160.094, 6358.77645, 11534.87265, 4527.18295, 3875.7341, 12609.88702, 28468.91901, 2730.10785, 3353.284, 14474.675, 9500.57305, 26467.09737, 4746.344, 7518.02535, 3279.86855, 8596.8278, 10702.6424, 4992.3764, 2527.81865, 1759.338, 2322.6218, 7804.1605, 2902.9065, 9704.66805, 4889.0368, 25517.11363, 4500.33925, 16796.41194, 4915.05985, 7624.63, 8410.04685, 28340.18885, 4518.82625, 3378.91, 7144.86265, 10118.424, 5484.4673, 7986.47525, 7418.522, 13887.9685, 6551.7501, 5267.81815, 1972.95, 21232.182259999998, 8627.5411, 4433.3877, 4438.2634, 23241.47453, 9957.7216, 8269.044, 36580.28216, 8765.249, 5383.536, 12124.9924, 2709.24395, 3987.926, 12495.29085, 26018.95052, 8798.593, 1711.0268, 8569.8618, 2020.1770000000001, 21595.38229, 9850.431999999999, 6877.9801, 4137.5227, 12950.0712, 12094.478000000001, 2250.8352, 22493.65964, 1704.70015, 3161.454, 11394.06555, 7325.0482, 3594.17085, 8023.13545, 14394.5579, 9288.0267, 3353.4703, 10594.50155, 8277.523000000001, 17929.303369999998, 2480.9791, 4462.7218, 1981.5819, 11554.2236, 6548.19505, 5708.866999999999, 7045.499, 8978.1851, 5757.41345, 14349.8544, 10928.848999999998, 13974.45555, 1909.52745, 12096.6512, 13204.28565, 4562.8421, 8551.347, 2102.2647, 15161.5344, 11884.04858, 4454.40265, 5855.9025, 4076.4970000000003, 15019.76005, 10796.35025, 11353.2276, 9748.9106, 10577.087, 11286.5387, 3591.48, 11299.343, 4561.1885, 1674.6323, 23045.56616, 3227.1211, 11253.421, 3471.4096, 11363.2832, 20420.60465, 10338.9316, 8988.15875, 10493.9458, 2904.0879999999997, 8605.3615, 11512.405, 5312.16985, 2396.0959, 10807.4863, 9222.4026, 5693.4305, 8347.1643, 18903.49141, 14254.6082, 10214.636, 5836.5204, 14358.36437, 1728.8970000000002, 8582.3023, 3693.428, 20709.02034, 9991.03765, 19673.335730000003, 11085.5868, 7623.518, 3176.2877, 3704.3545, 9048.0273, 7954.517, 27117.99378, 6338.0756, 9630.396999999999, 11289.10925, 2261.5688, 10791.96, 5979.731, 2203.73595, 12235.8392, 5630.45785, 11015.1747, 7228.21565, 14426.07385, 2459.7201, 3989.841, 7727.2532, 5124.1887, 18963.171919999997, 2200.83085, 7153.5539, 5227.98875, 10982.5013, 4529.477, 4670.64, 6112.35295, 11093.6229, 6457.8434, 4433.9159, 2154.361, 6496.8859999999995, 2899.48935, 7650.77375, 2850.68375, 2632.992, 9447.3824, 8603.8234, 13844.7972, 13126.67745, 5327.40025, 13725.47184, 13019.16105, 8671.19125, 4134.08245, 18838.70366, 5699.8375, 6393.60345, 4934.705, 6198.7518, 8733.22925, 2055.3249, 9964.06, 5116.5004, 36910.60803, 12347.171999999999, 5373.36425, 23563.016180000002, 1702.4553, 10806.839, 3956.07145, 12890.05765, 5415.6612, 4058.1161, 7537.1639, 4718.20355, 6593.5083, 8442.667, 6858.4796, 4795.6568, 6640.54485, 7162.0122, 10594.2257, 11938.25595, 12479.70895, 11345.518999999998, 8515.7587, 2699.56835, 14449.8544, 12224.35085, 6985.50695, 3238.4357, 4296.2712, 3171.6149, 1135.9407, 5615.369000000001, 9101.798, 6059.173000000001, 1633.9618, 1241.565, 15828.821730000001, 4415.1588, 6474.013000000001, 11436.73815, 11305.93455, 30063.58055, 10197.7722, 4544.2348, 3277.1609999999996, 6770.1925, 7337.7480000000005, 10370.91255, 10704.47, 1880.487, 8615.3, 3292.52985, 3021.80915, 14478.33015, 4747.0529, 10959.33, 2741.948, 4357.04365, 4189.1131, 8283.6807, 1720.3537, 8534.6718, 3732.6251, 5472.4490000000005, 7147.4728, 7133.9025, 1515.3449, 9301.89355, 11931.12525, 1964.78, 1708.92575, 4340.4409, 5261.46945, 2710.82855, 3208.7870000000003, 2464.6188, 6875.960999999999, 6940.90985, 4571.41305, 4536.259, 11272.331390000001, 1731.6770000000001, 1163.4627, 19496.71917, 7201.70085, 5425.02335, 12981.3457, 4239.89265, 13143.33665, 7050.0213, 9377.9047, 22395.74424, 10325.206, 12629.1656, 10795.937329999999, 11411.685, 10600.5483, 2205.9808, 1629.8335, 2007.945]}], {\"legend\": {\"tracegroupgap\": 0}, \"margin\": {\"t\": 60}, \"scene\": {\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"xaxis\": {\"title\": {\"text\": \"age\"}}, \"yaxis\": {\"title\": {\"text\": \"bmi\"}}, \"zaxis\": {\"title\": {\"text\": \"charges\"}}}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('84a3900c-934c-4fdb-ac63-078b6725d0d4');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = px.scatter_3d(non_smoker_df, x='age', y='bmi', z='charges')\n",
"fig.update_traces(marker_size=3, marker_opacity=0.5)\n",
"fig.show()"
]
},
{
"cell_type": "markdown",
"id": "56b6b254",
"metadata": {
"id": "56b6b254"
},
"source": [
"You can see that it's harder to interpret a 3D scatter plot compared to a 2D scatter plot. As we add more features, it becomes impossible to visualize all feature at once, which is why we use measures like correlation and loss. \n",
"\n",
"Let's also check the parameters of the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c9bfa29",
"metadata": {
"id": "5c9bfa29",
"outputId": "03ac4bc0-8ddf-47b5-be2a-4bd99bb4b010"
},
"outputs": [
{
"data": {
"text/plain": [
"(array([266.87657817, 7.07547666]), -2293.6320906488727)"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.coef_, model.intercept_"
]
},
{
"cell_type": "markdown",
"id": "284763df",
"metadata": {
"id": "284763df"
},
"source": [
"Clearly, BMI has a much lower weightage, and you can see why. It has a tiny contribution, and even that is probably accidental. This is an important thing to keep in mind: you can't find a relationship that doesn't exist, no matter what machine learning technique or optimization algorithm you apply. "
]
},
{
"cell_type": "markdown",
"id": "90530eaf",
"metadata": {
"id": "90530eaf"
},
"source": [
"> **EXERCISE**: Train a linear regression model to estimate charges using BMI alone. Do you expect it to be better or worse than the previously trained models?"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1b74343",
"metadata": {
"id": "f1b74343"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a926898",
"metadata": {
"id": "7a926898"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f5085011",
"metadata": {
"id": "f5085011"
},
"outputs": [],
"source": [
""
]
},
{
"cell_type": "markdown",
"id": "fd7cc138",
"metadata": {
"id": "fd7cc138"
},
"source": [
"Let's go one step further, and add the final numeric column: \"children\", which seems to have some correlation with \"charges\".\n",
"\n",
"$charges = w_1 \\times age + w_2 \\times bmi + w_3 \\times children + b$"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6cd797b",
"metadata": {
"id": "c6cd797b",
"outputId": "854ff296-45b0-4e45-92b7-ee991630306c"
},
"outputs": [
{
"data": {
"text/plain": [
"0.13892870453542194"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"non_smoker_df.charges.corr(non_smoker_df.children)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6396301",
"metadata": {
"id": "d6396301",
"outputId": "ca4a266a-c95b-4573-f2fb-99da38f26814"
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"boxpoints": "all",
"fillcolor": "rgba(255,255,255,0)",
"hoveron": "points",
"hovertemplate": "children=%{x}<br>charges=%{y}<extra></extra>",
"legendgroup": "",
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment