Created
November 4, 2016 10:19
-
-
Save theref/7ffbe4026278e937bf8d473ec8f02766 to your computer and use it in GitHub Desktop.
Fingerprint Class example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"from new_fingerprint import *\n", | |
"import axelrod as axl" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[0.0, 0.5]" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"list(np.arange(0, 1, 0.5))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"axelrod.strategies.memoryone.WinStayLoseShift" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"s = axl.WinStayLoseShift\n", | |
"p = axl.TitForTat\n", | |
"f = AshlockFingerprint(s, p)\n", | |
"s" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Begin Spatial Tournament\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Spatial Tournament Finished\n" | |
] | |
} | |
], | |
"source": [ | |
"f.fingerprint(turns=5, repetitions=1, granularity=0.25, cores=4)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'axelrod.result_set.ResultSetFromFile'>\n", | |
"<class 'pandas.core.frame.DataFrame'>\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0.0</th>\n", | |
" <th>0.25</th>\n", | |
" <th>0.5</th>\n", | |
" <th>0.75</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0.00</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.25</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" <td>2.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.50</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>0.4</td>\n", | |
" <td>3.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.75</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.8</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0.00 0.25 0.50 0.75\n", | |
"0.00 3.0 1.8 1.4 1.0\n", | |
"0.25 3.0 1.4 1.0 2.0\n", | |
"0.50 3.0 2.0 0.4 3.2\n", | |
"0.75 3.0 2.8 3.2 1.4" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"print(type(f.results))\n", | |
"g = f._generate_data(f.results, f.probe_players.keys())\n", | |
"print(type(g))\n", | |
"g" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{(0, 2): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 3): [[('C', 'C'), ('C', 'D'), ('D', 'C'), ('D', 'D'), ('C', 'D')]],\n", | |
" (0, 4): [[('C', 'D'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 5): [[('C', 'C'), ('C', 'D'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 6): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 7): [[('C', 'D'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 8): [[('C', 'C'), ('C', 'D'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 9): [[('C', 'D'), ('D', 'D'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 10): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 11): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 12): [[('C', 'D'), ('D', 'D'), ('C', 'D'), ('D', 'D'), ('C', 'D')]],\n", | |
" (0, 14): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 15): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'D'), ('D', 'C')]],\n", | |
" (1, 13): [[('D', 'C'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'C')]],\n", | |
" (1, 16): [[('D', 'C'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'C')]],\n", | |
" (1, 17): [[('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'D'), ('C', 'D')]]}" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.results.interactions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"OrderedDict([((0.0, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.0, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.0, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.0, 0.75), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.75), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.75), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.75), Joss-Ann Tit For Tat)])" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.probe_players" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(0, 2),\n", | |
" (0, 3),\n", | |
" (0, 4),\n", | |
" (0, 5),\n", | |
" (0, 6),\n", | |
" (0, 7),\n", | |
" (0, 8),\n", | |
" (0, 9),\n", | |
" (0, 10),\n", | |
" (0, 11),\n", | |
" (0, 12),\n", | |
" (1, 13),\n", | |
" (0, 14),\n", | |
" (0, 15),\n", | |
" (1, 16),\n", | |
" (1, 17)]" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.edges" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAFRCAYAAAALn8i+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGHFJREFUeJzt3X9slfXd//HXdTgcWjkFRsbIdNgy2KnfkK8tkuyHSceP\ncGTO3okUDqPVghu33m4jUSnZPFSbsollbBmbgS6iCQ4QSioQSbNN03TUxP0IqRZXCGAYNgimQboJ\np5YemnPdfxDPLcFdp/bq+fE51/NBrqTnuugnb6+c+OL9uT7XdVm2bdsCAMAjfNkuAACATCL4AACe\nQvABADyF4AMAeArBBwDwFIIPAOAp/nQOvvD/LU3n8JAU/a97sl1C3rt15uRsl+AJU2dPy3YJee/W\ncDhtY99ZPH/Uv/tOb+cYVpIaHR8AwFPS2vEBALzBsqxslzBiBB8AwDXLMmcC0ZxKAQAYA3R8AADX\nfGKqEwDgISZd42OqEwDgKXR8AADXfAYtbiH4AACuMdUJAECOouMDALhmsaoTAOAlJl3jM6dSAADG\nAB0fAMA1kxa3EHwAANd8BgUfU50AAE+h4wMAuGYZ1EcRfAAA19J1jS+RSOipp57S2bNn5fP5tHHj\nRs2ePTt5vKOjQ83NzfL7/Vq2bJkikUjKMc2JaACA53R0dMiyLO3bt0+PPfaYfv3rXyePDQ8Pa/Pm\nzXrppZe0e/du7d+/X/39/SnHpOMDALiWrsUtixcv1qJFiyRJ58+f1+TJk5PHzpw5o+LiYgWDQUnS\nvHnzdPToUS1ZssRxTIIPAOBaOp/c4vP59OSTT6q9vV3PPfdccn8sFlNRUVHy88SJE3XlypWU4xF8\nAICct3nzZl26dEmRSER/+MMfVFBQoGAwqFgslvw7AwMDmjRpUsqxuMYHAHDNZ/lGvTl59dVXtWPH\nDknShAkT5PP55PNd/51Zs2apt7dXly9fVjwe19GjR1VeXp6yVjo+AIBr6VrVec899ygajerBBx/U\n8PCwNmzYoNdff12Dg4OKRCKKRqP6wQ9+INu2FYlE9KUvfSnlmAQfACBnFRYW6je/+c1/PL5gwQIt\nWLDgc41J8AEAXDPpkWUEHwDANZPex8fiFgCAp9DxAQBcM+lFtAQfAMA1k97HZ05EAwAwBuj4AACu\nsaoTAOApJq3qTBl8/f39Onr0qK5cuaJJkyapvLx8RHfGAwCQixyv8bW2tuqRRx7RW2+9pQsXLqir\nq0uPPvqo9u3bl6n6AAAGsCxr1FumOXZ8Bw4c0L59+zR+/Pjkvng8rurqalVXV6e9OACAGUy6xufY\n8Q0PD2toaOiGfVevXjVq2SoAAJ/m2PH96Ec/UlVVlYqLi1VUVKRYLKbe3l5Fo9FM1QcAMEDeLG5Z\ntGiRvv3tb+vMmTOKxWIKBoOaNWuW/H4WgwIA/k9ePbnF7/ertLT0hn2tra2KRCJpKwoAgHQZceuW\nSCSSb70tLCxMW0EAAPOYtPbDMfjOnTunpqYm9fT0yO/3K5FIKBQKcY0PAHADk1Z1OgZffX296urq\nVFZWltzX3d2taDSqlpaWtBcHAMBYcwy+eDx+Q+hJUnl5eVoLAgCYJ29WdZaWlioajaqiokJFRUUa\nGBhQZ2fnTYtdAADeljdTnY2NjWpvb1dXV1fydoaFCxcqHA5nqj4AAMaUY/BZlqVwOEzQAQAc5c2q\nTgAARsKkqU5zbrUHAGAM0PEBAFzLm1WdAACMBFOdAADkKDo+AIBrrOoEAHgKU50AAOQoOj4AgGus\n6gQAeApTnQAA5Cg6PgCAa6zqBAB4ClOdAADkKDo+AIBrTHUCADzFpNsZmOoEAHgKHR8AwDWfOQ0f\nwQcAcM+ka3xMdQIAPIWODwDgmkn38RF8AADXmOoEACBH0fEBAFzzGXQfH8EHAHCNqU4AAHIUHR8A\nwDVWdQIAPMWg3GOqEwDgLXR8hrt15uRsl5D3ps6elu0SPOGN1p5sl5D3VobDaRubqU4AgKfwWiIA\nAHIUHR8AwDWT7uMj+AAArnGNDwDgKQblHsEHAMhdw8PD2rBhg86fP69r167p0Ucf1aJFi276ew0N\nDZoyZYrWrVuXckyCDwDgWrqmOg8fPqwvfOEL2rJliz766CPdf//9NwVfS0uLTp8+ra9//esjGpPg\nAwDkrHvvvVff+c53JEmJREJ+/42x9fbbb+sf//iHVq5cqX/+858jGpPbGQAArlku/jgpLCzULbfc\nolgspscee0xPPPFE8tjFixe1bds2NTQ0yLbtEddKxwcAcC2dqzo/+OADrV27Vg8++KC++93vJvf/\n6U9/0r///W89/PDDunjxooaGhvTVr35V999/v+N4BB8AwLV05d6HH36oNWvWqKGhQd/85jdvOFZb\nW6va2lpJ0qFDh3T27NmUoScRfACAHPb888/r8uXLam5u1vbt22VZllasWKHBwUFFIpFRjUnwAQBc\nS9eTW+rr61VfX5/y7y1dunTEY7K4BQDgKXR8AADXeGQZAMBTDMo9gg8A4J5JHR/X+AAAnkLHBwBw\njTewAwCQo+j4AACu8QZ2AICn+MzJPYIPAOCeSR0f1/gAAJ5CxwcAcM2kjo/gAwC4ZtI1PqY6AQCe\nQscHAHCNqU4AgKcYlHsjn+pMJBLq6+tTIpFIZz0AAKSVY/Bt2LBBknTs2DEtWbJEa9euVWVlpbq7\nuzNSHADADD7LGvWWaY5Tne+//74kaevWrXrhhRdUUlKivr4+1dXVac+ePRkpEACQ+/LuIdXjxo1T\nSUmJJGn69OlMdwIAjOUYfLFYTFVVVTp//rxaW1s1NDSkjRs36stf/nKm6gMAGMCyRr9lmuNU58GD\nBxWPx3Xy5EkVFBTIsiyFQiFFIpFM1QcAMEBevYH9zTffVCwWUygUUiAQUHV1tY4cOZKB0gAAGHuO\nwdfY2Ki2tjbt379fjzzyiOLxuCRp165dGSkOAGAGy7JGvWWa41Tn6dOntXfvXknS7t279fjjj6u5\nuVm2bWekOACAGQya6XTu+IaHh5NdXm1trYqLi/XMM89kpDAAANLBMfhWrVqlyspK9ff3S5J+8pOf\n6OrVq+rq6spIcQAAM+TNVGdlZaXC4bACgYCk6/9hzzzzjGpqajJSHADADHn1WqIJEybclMjHjx9P\nW0EAAKTTiN/OkEgk5PNdz8nCwsK0FQQAME/evJbo3LlzampqUk9Pj/x+vxKJhEKhkKLRaKbqAwAY\nwKDccw6++vp61dXVqaysLLmvu7tb0WhULS0taS8OAICx5hh88Xj8htCTpPLy8rQWBAAwj0mPLHMM\nvtLSUkWjUVVUVKioqEgDAwPq7OxUaWlppuoDABggb67xNTY2qr29XV1dXYrFYgoGg1q4cKHC4XCm\n6gMAYEw5Bp9lWQqHwwQdAMCRQQ3fyG9nAADgPzFpqnNEb2AHACBf0PEBAFwzqOEj+AAA7pl0OwNT\nnQAAT6HjAwC4ZlDDR/ABANxjVScAADmKjg8A4JpBDR/BBwBwj6lOAAByFB0fAMA1gxo+gg8A4B43\nsAMAkKPo+AAArhnU8BF8AAD3WNUJAECOouMDALhmUMNH8AEA3GOqEwCAHEXHBwBwzaCGj+ADALjH\nVCcAAGPo2LFjqq2tvWn/4cOHVVVVpUgkon379o1oLDo+AIBr6Wz4XnzxRb366quaOHHiTce2bNmi\nP/7xjyooKNB9992nyspKFRUVOY5HxwcAcM2yrFFvqRQXF2v79u2feeyOO+7QRx99pKGhoWQdqdDx\nAQByWjgc1vnz5z/z2Ne+9jUtW7ZMt9xyi8LhsILBYMrx6PgAAK5Z1ui30Tp16pSOHDmijo4OdXR0\n6NKlS3rttddS/h4dn+F63u7Ldgl5r+qBJdkuwROe/e9nsl1C3lupJ9I2diZeS2Tb9g2fi4qKVFhY\nqEAgIMuyNHXqVF2+fDnlOAQfAMC1TNzN8Mn1u7a2Ng0ODioSiWjFihWqqalRIBDQ7bffrqVLl6Yc\nh+ADAOS82267TS0tLZKkysrK5P6VK1dq5cqVn2ssgg8A4Bo3sAMAkKPo+AAArhnU8BF8AAD3LJ85\nyUfwAQBcM6nj4xofAMBT6PgAAK6xqhMAgBxFxwcAcM2gho/gAwC4Z9JUJ8EHAHDNoNzjGh8AwFvo\n+AAA7hnU8tHxAQA8hY4PAOAai1sAAJ5iUO4RfAAA90x6SDXX+AAAnkLHBwBwzaSpTjo+AICn0PEB\nAFxjVScAwFMMyj2CDwDgnkkdH9f4AACeQscHAHDNoIaPjg8A4C10fAAA10y6xkfwAQDcM2j+kOAD\nALhmUsdnUEYDAOCeY/C99957yZ87Ozv1u9/9Tm+88Ua6awIAGMayRr9lmmPwNTQ0SJJ27NihvXv3\navLkyXrllVe0bdu2jBQHAMBYG9FU55EjR7R9+3bV1NTot7/9rf7617+muy4AgEEsyxr1lmmOwdff\n368TJ05o2rRpisVikqSrV69qaGgoI8UBAMyQN1Ody5cv186dO/Xuu+/q5ZdfViwW07333qtVq1Zl\nqj4AgAkMSj7H2xkeeuihm/a1tbUpGAymqx4AANLqc9/OEAwG1dramo5aAACGsnzWqLdMG3HwJRKJ\n5M+FhYVpKQYAgHRznOo8d+6cmpqa1NPTI7/fr0QioVAopGg0mqn6AAAGMOjBLc7BV19fr7q6OpWV\nlSX3dXd3KxqNqqWlJe3FAQDMYNIjyxyDLx6P3xB6klReXp7WggAA5jEo95yDr7S0VNFoVBUVFSoq\nKtLAwIA6OztVWlqaqfoAABhTjsHX2Nio9vZ2dXV1KRaLKRgMauHChQqHw5mqDwBgAoNaPsfgsyxL\n4XCYoAMA5A3exwcAcC0b9+ONFsEHAHDNoJlOgg8AMAYMSj7ewA4A8BQ6PgCAawY1fHR8AABvoeMD\nALjGqk4AgKfkzbM6AQAYEXNyj2t8AABvoeMDALhm0lQnHR8AwFPo+AAArpnU8RF8AAD3DJo/NKhU\nAECusixr1NtIHDt2TLW1tTftb2tr04oVK1RTU6PGxsYRjUXwAQBy2osvvqinnnpK165du2H/0NCQ\nnnvuOe3Zs0d79+7VlStX9Oc//znleAQfAMC1dHZ8xcXF2r59+037A4GAWlpaFAgEJEnDw8OaMGFC\nyvEIPgBATguHwxo3btxN+y3L0tSpUyVJu3fv1uDgoO6+++6U47G4BQDgXpYWddq2rS1btqi3t1fb\ntm0b0e8QfAAA1zLxkGrbtm/a9/TTT6ugoEDNzc0jHofgAwC4l4H7+D65HtjW1qbBwUHNmTNHBw8e\n1Lx581RbWyvLsrRq1SotXrzYcRyCDwCQ82677Ta1tLRIkiorK5P7T5w48bnHIvgAAK4Z9OAWVnUC\nALyFjg8A4BrP6gQAeEsGVnWOFYIPAOCaSR0f1/gAAJ5CxwcAcM+cho+ODwDgLXR8hjv0Vk+2S8h7\nz/7/qmyX4Al7n/yfbJcAF0y6xkfwAQBcy8SzOscKwQcAcI+ODwDgJSZNdbK4BQDgKQQfAMBTmOoE\nALhnzkwnwQcAcI9VnQAAbzFocQvBBwBwjVWdAADkKIIPAOApTHUCANxjcQsAwEtMusZH8AEA3DMn\n9wg+AIB7JnV8LG4BAHgKwQcA8BSmOgEA7rGqEwDgJSZd4yP4AADuEXwAAC8xqeNjcQsAwFMIPgCA\npzDVCQBwj1WdAAAvMekaH8EHAHCP4AMAeIll0FQni1sAAJ5C8AEAPGXEwZdIJNTX16dEIpHOegAA\nJrKs0W8Z5hh8GzZskCQdO3ZMS5Ys0dq1a1VZWanu7u6MFAcAMINlWaPeMs1xccv7778vSdq6date\neOEFlZSUqK+vT3V1ddqzZ09GCgQAGCDfVnWOGzdOJSUlkqTp06cz3QkAuEHerOqMxWKqqqrS+fPn\n1draqqGhIW3cuFG33nprpuoDAGBMOXZ8Bw8eVDwe18mTJ1VQUCDLshQKhbR8+fJM1QcAwJhy7Pj2\n79+v8ePH684771QoFFIgEFB1dbXGjx+fqfoAACbIl1Wdv/rVr/T9739fvb29maoHAGAig4LPcarz\njjvu0OOPP65169YpFAppxYoVmjt3bqZqAwAYwqSHVDt2fJZlqby8XAcOHFA4HNbvf/97LV68WEuX\nLs1UfQAAE/is0W8Z5tjx2bad/HnRokVatGiRJKm/vz+9VQEAkCaOHd/WrVs/c//UqVPTUgwAAOnm\nGHxf/OIXP3N/a2trWooBAJjJsnyj3jJtxO/jSyQS8vmuF1hYWJi2ggAABjJocYtj8J07d05NTU3q\n6emR3+9XIpFQKBRSNBrNVH0AAAOYtKrTMfjq6+tVV1ensrKy5L7u7m5Fo1G1tLSkvTgAgCHy5Vmd\n8Xj8htCTpPLy8rQWBABAOjl2fKWlpYpGo6qoqFBRUZEGBgbU2dmp0tLSTNUHAMCYcgy+xsZGtbe3\nq6urS7FYTMFgUAsXLlQ4HM5UfQAAA+TNNT7LshQOhwk6AICzfAk+AABGJE3349m2rcbGRp06dUqB\nQECbNm3SjBkzksffeecd/eIXv5B0/d7zX/7ylwoEAo5jZv7OQQBA3rF81qg3J+3t7YrH42ppaVFd\nXZ2amppuON7Q0KDNmzfr5ZdfVkVFhS5cuJCyVjo+AEDO6urqUkVFhSSprKxMPT09yWNnz57VlClT\ntHPnTr377rtasGCBSkpKUo5JxwcAyFmxWExFRUXJz588TEWS/vWvf6m7u1u1tbXauXOn/vKXv+jv\nf/97yjEJPgCAe2l6EW0wGNTAwEDy86cfnzllyhTdfvvtmjlzpvx+vyoqKm7oCP8Tgg8A4JplWaPe\nnNx1113q7OyUdP3JYaFQKHlsxowZ+vjjj3Xu3DlJ16dFZ8+enbJWrvEBANxL06rOcDisN998UytX\nrpQkNTU1qa2tTYODg4pEItq0aZPWrVsnSZo7d67mz5+fckyCDwDgWqrVmaMe17K0cePGG/bNnDkz\n+fM3vvGNz/2qPKY6AQCeQvABADyFqU4AgHs8sgwA4CV585BqAABGJE2rOtOB4AMAuJcvb2AHACDf\nEHwAAE9hqhMA4BqLWwAA3sLiFgCAl9DxAQC8xaCOz5xKAQAYAwQfAMBTmOoEALiWrtcSpQPBBwBw\nj8UtAAAvsQxa3ELwAQDcM6jjs2zbtrNdBAAAmWJObwoAwBgg+AAAnkLwAQA8heADAHgKwQcA8BSC\nDwDgKZ68j8+2bTU2NurUqVMKBALatGmTZsyYkTze0dGh5uZm+f1+LVu2TJFIJIvVmiXVuW1ra9Ou\nXbvk9/sVCoXU2NgoSaqqqlIwGJQkfeUrX9Gzzz6bjfKNk+p8v/TSS3rllVc0depUSdLPfvYzlZSU\nZKlaczid1w8//FBPPPGELMuSbds6efKk1q9fr+9973t8j01he9Drr79uP/nkk7Zt23Z3d7f9wx/+\nMHns2rVrdjgctq9cuWLH43F72bJl9qVLl7JVqnGczu3Vq1ftcDhsDw0N2bZt2+vWrbM7OjrsoaEh\ne+nSpVmp13RO59u2bXv9+vX28ePHs1Ga0VKd10+8/fbb9urVq+1EIsH32CCenOrs6upSRUWFJKms\nrEw9PT3JY2fOnFFxcbGCwaDGjx+vefPm6ejRo9kq1ThO5zYQCKilpUWBQECSNDw8rAkTJujkyZP6\n+OOPtWbNGj300EM6duxYVmo3kdP5lqTjx4/r+eefV01NjXbs2JGNEo2U6rx+4uc//7k2btwoy7L4\nHhvEk1OdsVhMRUVFyc9+v1+JREI+n++mYxMnTtSVK1eyUaaRnM6tZVnJKbfdu3drcHBQd999t06f\nPq01a9YoEonovffe08MPP6zXXntNPp8n/132uTidb0m677779MADDygYDOrHP/6xOjs7NX/+/GyV\na4xU51W6fkkkFAqpuLhYklRQUMD32BCeDL5gMKiBgYHk509/oYPBoGKxWPLYwMCAJk2alPEaTeV0\nbqXr1062bNmi3t5ebdu2TZJUUlKS/J9HSUmJpkyZoosXL2r69OmZLd5Aqc736tWrk9ec5s+frxMn\nThB8I5DqvErS4cOHtXr16uRnvsfm8OQ/Re666y51dnZKkrq7uxUKhZLHZs2apd7eXl2+fFnxeFxH\njx5VeXl5tko1jtO5laSnn35a165dU3Nzc3LK88CBA9q8ebMkqa+vTwMDA5o2bVpmCzeU0/mOxWKq\nrKzU4OCgbNvW3/72N82ZMydbpRol1fdYknp6ejR37tzkZ77H5vDkQ6rtT63YkqSmpiYdP35cg4OD\nikQiOnLkiLZt2ybbtrV8+XJVV1dnuWJzOJ3bOXPmaPny5Zo3b54kybIsrVq1SgsWLNBPf/pTffDB\nB/L5fFq/fj3/2BihVN/lw4cPa9euXZowYYK+9a1vae3atVmu2Aypzmt/f7/WrFmjQ4cOJX/n2rVr\nikajunDhAt/jHOfJ4AMAeJcnpzoBAN5F8AEAPIXgAwB4CsEHAPAUgg8A4CkEHwDAUwg+AICnEHwA\nAE/5Xw9UjyHjGW41AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11483ac88>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"f.plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0.0</th>\n", | |
" <th>0.25</th>\n", | |
" <th>0.5</th>\n", | |
" <th>0.75</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0.00</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.25</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" <td>2.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.50</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>0.4</td>\n", | |
" <td>3.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.75</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.8</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0.00 0.25 0.50 0.75\n", | |
"0.00 3.0 1.8 1.4 1.0\n", | |
"0.25 3.0 1.4 1.0 2.0\n", | |
"0.50 3.0 2.0 0.4 3.2\n", | |
"0.75 3.0 2.8 3.2 1.4" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [Root]", | |
"language": "python", | |
"name": "Python [Root]" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"from new_fingerprint import *\n", | |
"import axelrod as axl" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[0.0, 0.5]" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"list(np.arange(0, 1, 0.5))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"axelrod.strategies.memoryone.WinStayLoseShift" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"s = axl.WinStayLoseShift\n", | |
"p = axl.TitForTat\n", | |
"f = AshlockFingerprint(s, p)\n", | |
"s" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Begin Spatial Tournament\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Spatial Tournament Finished\n" | |
] | |
} | |
], | |
"source": [ | |
"f.fingerprint(turns=5, repetitions=1, granularity=0.25, cores=4)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'axelrod.result_set.ResultSetFromFile'>\n", | |
"<class 'pandas.core.frame.DataFrame'>\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0.0</th>\n", | |
" <th>0.25</th>\n", | |
" <th>0.5</th>\n", | |
" <th>0.75</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0.00</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.25</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" <td>2.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.50</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>0.4</td>\n", | |
" <td>3.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.75</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.8</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0.00 0.25 0.50 0.75\n", | |
"0.00 3.0 1.8 1.4 1.0\n", | |
"0.25 3.0 1.4 1.0 2.0\n", | |
"0.50 3.0 2.0 0.4 3.2\n", | |
"0.75 3.0 2.8 3.2 1.4" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"print(type(f.results))\n", | |
"g = f._generate_data(f.results, f.probe_players.keys())\n", | |
"print(type(g))\n", | |
"g" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{(0, 2): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 3): [[('C', 'C'), ('C', 'D'), ('D', 'C'), ('D', 'D'), ('C', 'D')]],\n", | |
" (0, 4): [[('C', 'D'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 5): [[('C', 'C'), ('C', 'D'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 6): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 7): [[('C', 'D'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 8): [[('C', 'C'), ('C', 'D'), ('D', 'D'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 9): [[('C', 'D'), ('D', 'D'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 10): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 11): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'D'), ('D', 'D')]],\n", | |
" (0, 12): [[('C', 'D'), ('D', 'D'), ('C', 'D'), ('D', 'D'), ('C', 'D')]],\n", | |
" (0, 14): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'C')]],\n", | |
" (0, 15): [[('C', 'C'), ('C', 'C'), ('C', 'C'), ('C', 'D'), ('D', 'C')]],\n", | |
" (1, 13): [[('D', 'C'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'C')]],\n", | |
" (1, 16): [[('D', 'C'), ('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'C')]],\n", | |
" (1, 17): [[('D', 'C'), ('D', 'D'), ('C', 'D'), ('D', 'D'), ('C', 'D')]]}" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.results.interactions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"OrderedDict([((0.0, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.0, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.0, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.0, 0.75), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.25, 0.75), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.5, 0.75), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.0), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.25), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.5), Joss-Ann Tit For Tat),\n", | |
" ((0.75, 0.75), Joss-Ann Tit For Tat)])" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.probe_players" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[(0, 2),\n", | |
" (0, 3),\n", | |
" (0, 4),\n", | |
" (0, 5),\n", | |
" (0, 6),\n", | |
" (0, 7),\n", | |
" (0, 8),\n", | |
" (0, 9),\n", | |
" (0, 10),\n", | |
" (0, 11),\n", | |
" (0, 12),\n", | |
" (1, 13),\n", | |
" (0, 14),\n", | |
" (0, 15),\n", | |
" (1, 16),\n", | |
" (1, 17)]" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.edges" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAFRCAYAAAALn8i+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGHFJREFUeJzt3X9slfXd//HXdTgcWjkFRsbIdNgy2KnfkK8tkuyHSceP\ncGTO3okUDqPVghu33m4jUSnZPFSbsollbBmbgS6iCQ4QSioQSbNN03TUxP0IqRZXCGAYNgimQboJ\np5YemnPdfxDPLcFdp/bq+fE51/NBrqTnuugnb6+c+OL9uT7XdVm2bdsCAMAjfNkuAACATCL4AACe\nQvABADyF4AMAeArBBwDwFIIPAOAp/nQOvvD/LU3n8JAU/a97sl1C3rt15uRsl+AJU2dPy3YJee/W\ncDhtY99ZPH/Uv/tOb+cYVpIaHR8AwFPS2vEBALzBsqxslzBiBB8AwDXLMmcC0ZxKAQAYA3R8AADX\nfGKqEwDgISZd42OqEwDgKXR8AADXfAYtbiH4AACuMdUJAECOouMDALhmsaoTAOAlJl3jM6dSAADG\nAB0fAMA1kxa3EHwAANd8BgUfU50AAE+h4wMAuGYZ1EcRfAAA19J1jS+RSOipp57S2bNn5fP5tHHj\nRs2ePTt5vKOjQ83NzfL7/Vq2bJkikUjKMc2JaACA53R0dMiyLO3bt0+PPfaYfv3rXyePDQ8Pa/Pm\nzXrppZe0e/du7d+/X/39/SnHpOMDALiWrsUtixcv1qJFiyRJ58+f1+TJk5PHzpw5o+LiYgWDQUnS\nvHnzdPToUS1ZssRxTIIPAOBaOp/c4vP59OSTT6q9vV3PPfdccn8sFlNRUVHy88SJE3XlypWU4xF8\nAICct3nzZl26dEmRSER/+MMfVFBQoGAwqFgslvw7AwMDmjRpUsqxuMYHAHDNZ/lGvTl59dVXtWPH\nDknShAkT5PP55PNd/51Zs2apt7dXly9fVjwe19GjR1VeXp6yVjo+AIBr6VrVec899ygajerBBx/U\n8PCwNmzYoNdff12Dg4OKRCKKRqP6wQ9+INu2FYlE9KUvfSnlmAQfACBnFRYW6je/+c1/PL5gwQIt\nWLDgc41J8AEAXDPpkWUEHwDANZPex8fiFgCAp9DxAQBcM+lFtAQfAMA1k97HZ05EAwAwBuj4AACu\nsaoTAOApJq3qTBl8/f39Onr0qK5cuaJJkyapvLx8RHfGAwCQixyv8bW2tuqRRx7RW2+9pQsXLqir\nq0uPPvqo9u3bl6n6AAAGsCxr1FumOXZ8Bw4c0L59+zR+/Pjkvng8rurqalVXV6e9OACAGUy6xufY\n8Q0PD2toaOiGfVevXjVq2SoAAJ/m2PH96Ec/UlVVlYqLi1VUVKRYLKbe3l5Fo9FM1QcAMEDeLG5Z\ntGiRvv3tb+vMmTOKxWIKBoOaNWuW/H4WgwIA/k9ePbnF7/ertLT0hn2tra2KRCJpKwoAgHQZceuW\nSCSSb70tLCxMW0EAAPOYtPbDMfjOnTunpqYm9fT0yO/3K5FIKBQKcY0PAHADk1Z1OgZffX296urq\nVFZWltzX3d2taDSqlpaWtBcHAMBYcwy+eDx+Q+hJUnl5eVoLAgCYJ29WdZaWlioajaqiokJFRUUa\nGBhQZ2fnTYtdAADeljdTnY2NjWpvb1dXV1fydoaFCxcqHA5nqj4AAMaUY/BZlqVwOEzQAQAc5c2q\nTgAARsKkqU5zbrUHAGAM0PEBAFzLm1WdAACMBFOdAADkKDo+AIBrrOoEAHgKU50AAOQoOj4AgGus\n6gQAeApTnQAA5Cg6PgCAa6zqBAB4ClOdAADkKDo+AIBrTHUCADzFpNsZmOoEAHgKHR8AwDWfOQ0f\nwQcAcM+ka3xMdQIAPIWODwDgmkn38RF8AADXmOoEACBH0fEBAFzzGXQfH8EHAHCNqU4AAHIUHR8A\nwDVWdQIAPMWg3GOqEwDgLXR8hrt15uRsl5D3ps6elu0SPOGN1p5sl5D3VobDaRubqU4AgKfwWiIA\nAHIUHR8AwDWT7uMj+AAArnGNDwDgKQblHsEHAMhdw8PD2rBhg86fP69r167p0Ucf1aJFi276ew0N\nDZoyZYrWrVuXckyCDwDgWrqmOg8fPqwvfOEL2rJliz766CPdf//9NwVfS0uLTp8+ra9//esjGpPg\nAwDkrHvvvVff+c53JEmJREJ+/42x9fbbb+sf//iHVq5cqX/+858jGpPbGQAArlku/jgpLCzULbfc\nolgspscee0xPPPFE8tjFixe1bds2NTQ0yLbtEddKxwcAcC2dqzo/+OADrV27Vg8++KC++93vJvf/\n6U9/0r///W89/PDDunjxooaGhvTVr35V999/v+N4BB8AwLV05d6HH36oNWvWqKGhQd/85jdvOFZb\nW6va2lpJ0qFDh3T27NmUoScRfACAHPb888/r8uXLam5u1vbt22VZllasWKHBwUFFIpFRjUnwAQBc\nS9eTW+rr61VfX5/y7y1dunTEY7K4BQDgKXR8AADXeGQZAMBTDMo9gg8A4J5JHR/X+AAAnkLHBwBw\njTewAwCQo+j4AACu8QZ2AICn+MzJPYIPAOCeSR0f1/gAAJ5CxwcAcM2kjo/gAwC4ZtI1PqY6AQCe\nQscHAHCNqU4AgKcYlHsjn+pMJBLq6+tTIpFIZz0AAKSVY/Bt2LBBknTs2DEtWbJEa9euVWVlpbq7\nuzNSHADADD7LGvWWaY5Tne+//74kaevWrXrhhRdUUlKivr4+1dXVac+ePRkpEACQ+/LuIdXjxo1T\nSUmJJGn69OlMdwIAjOUYfLFYTFVVVTp//rxaW1s1NDSkjRs36stf/nKm6gMAGMCyRr9lmuNU58GD\nBxWPx3Xy5EkVFBTIsiyFQiFFIpFM1QcAMEBevYH9zTffVCwWUygUUiAQUHV1tY4cOZKB0gAAGHuO\nwdfY2Ki2tjbt379fjzzyiOLxuCRp165dGSkOAGAGy7JGvWWa41Tn6dOntXfvXknS7t279fjjj6u5\nuVm2bWekOACAGQya6XTu+IaHh5NdXm1trYqLi/XMM89kpDAAANLBMfhWrVqlyspK9ff3S5J+8pOf\n6OrVq+rq6spIcQAAM+TNVGdlZaXC4bACgYCk6/9hzzzzjGpqajJSHADADHn1WqIJEybclMjHjx9P\nW0EAAKTTiN/OkEgk5PNdz8nCwsK0FQQAME/evJbo3LlzampqUk9Pj/x+vxKJhEKhkKLRaKbqAwAY\nwKDccw6++vp61dXVqaysLLmvu7tb0WhULS0taS8OAICx5hh88Xj8htCTpPLy8rQWBAAwj0mPLHMM\nvtLSUkWjUVVUVKioqEgDAwPq7OxUaWlppuoDABggb67xNTY2qr29XV1dXYrFYgoGg1q4cKHC4XCm\n6gMAYEw5Bp9lWQqHwwQdAMCRQQ3fyG9nAADgPzFpqnNEb2AHACBf0PEBAFwzqOEj+AAA7pl0OwNT\nnQAAT6HjAwC4ZlDDR/ABANxjVScAADmKjg8A4JpBDR/BBwBwj6lOAAByFB0fAMA1gxo+gg8A4B43\nsAMAkKPo+AAArhnU8BF8AAD3WNUJAECOouMDALhmUMNH8AEA3GOqEwCAHEXHBwBwzaCGj+ADALjH\nVCcAAGPo2LFjqq2tvWn/4cOHVVVVpUgkon379o1oLDo+AIBr6Wz4XnzxRb366quaOHHiTce2bNmi\nP/7xjyooKNB9992nyspKFRUVOY5HxwcAcM2yrFFvqRQXF2v79u2feeyOO+7QRx99pKGhoWQdqdDx\nAQByWjgc1vnz5z/z2Ne+9jUtW7ZMt9xyi8LhsILBYMrx6PgAAK5Z1ui30Tp16pSOHDmijo4OdXR0\n6NKlS3rttddS/h4dn+F63u7Ldgl5r+qBJdkuwROe/e9nsl1C3lupJ9I2diZeS2Tb9g2fi4qKVFhY\nqEAgIMuyNHXqVF2+fDnlOAQfAMC1TNzN8Mn1u7a2Ng0ODioSiWjFihWqqalRIBDQ7bffrqVLl6Yc\nh+ADAOS82267TS0tLZKkysrK5P6VK1dq5cqVn2ssgg8A4Bo3sAMAkKPo+AAArhnU8BF8AAD3LJ85\nyUfwAQBcM6nj4xofAMBT6PgAAK6xqhMAgBxFxwcAcM2gho/gAwC4Z9JUJ8EHAHDNoNzjGh8AwFvo\n+AAA7hnU8tHxAQA8hY4PAOAai1sAAJ5iUO4RfAAA90x6SDXX+AAAnkLHBwBwzaSpTjo+AICn0PEB\nAFxjVScAwFMMyj2CDwDgnkkdH9f4AACeQscHAHDNoIaPjg8A4C10fAAA10y6xkfwAQDcM2j+kOAD\nALhmUsdnUEYDAOCeY/C99957yZ87Ozv1u9/9Tm+88Ua6awIAGMayRr9lmmPwNTQ0SJJ27NihvXv3\navLkyXrllVe0bdu2jBQHAMBYG9FU55EjR7R9+3bV1NTot7/9rf7617+muy4AgEEsyxr1lmmOwdff\n368TJ05o2rRpisVikqSrV69qaGgoI8UBAMyQN1Ody5cv186dO/Xuu+/q5ZdfViwW07333qtVq1Zl\nqj4AgAkMSj7H2xkeeuihm/a1tbUpGAymqx4AANLqc9/OEAwG1dramo5aAACGsnzWqLdMG3HwJRKJ\n5M+FhYVpKQYAgHRznOo8d+6cmpqa1NPTI7/fr0QioVAopGg0mqn6AAAGMOjBLc7BV19fr7q6OpWV\nlSX3dXd3KxqNqqWlJe3FAQDMYNIjyxyDLx6P3xB6klReXp7WggAA5jEo95yDr7S0VNFoVBUVFSoq\nKtLAwIA6OztVWlqaqfoAABhTjsHX2Nio9vZ2dXV1KRaLKRgMauHChQqHw5mqDwBgAoNaPsfgsyxL\n4XCYoAMA5A3exwcAcC0b9+ONFsEHAHDNoJlOgg8AMAYMSj7ewA4A8BQ6PgCAawY1fHR8AABvoeMD\nALjGqk4AgKfkzbM6AQAYEXNyj2t8AABvoeMDALhm0lQnHR8AwFPo+AAArpnU8RF8AAD3DJo/NKhU\nAECusixr1NtIHDt2TLW1tTftb2tr04oVK1RTU6PGxsYRjUXwAQBy2osvvqinnnpK165du2H/0NCQ\nnnvuOe3Zs0d79+7VlStX9Oc//znleAQfAMC1dHZ8xcXF2r59+037A4GAWlpaFAgEJEnDw8OaMGFC\nyvEIPgBATguHwxo3btxN+y3L0tSpUyVJu3fv1uDgoO6+++6U47G4BQDgXpYWddq2rS1btqi3t1fb\ntm0b0e8QfAAA1zLxkGrbtm/a9/TTT6ugoEDNzc0jHofgAwC4l4H7+D65HtjW1qbBwUHNmTNHBw8e\n1Lx581RbWyvLsrRq1SotXrzYcRyCDwCQ82677Ta1tLRIkiorK5P7T5w48bnHIvgAAK4Z9OAWVnUC\nALyFjg8A4BrP6gQAeEsGVnWOFYIPAOCaSR0f1/gAAJ5CxwcAcM+cho+ODwDgLXR8hjv0Vk+2S8h7\nz/7/qmyX4Al7n/yfbJcAF0y6xkfwAQBcy8SzOscKwQcAcI+ODwDgJSZNdbK4BQDgKQQfAMBTmOoE\nALhnzkwnwQcAcI9VnQAAbzFocQvBBwBwjVWdAADkKIIPAOApTHUCANxjcQsAwEtMusZH8AEA3DMn\n9wg+AIB7JnV8LG4BAHgKwQcA8BSmOgEA7rGqEwDgJSZd4yP4AADuEXwAAC8xqeNjcQsAwFMIPgCA\npzDVCQBwj1WdAAAvMekaH8EHAHCP4AMAeIll0FQni1sAAJ5C8AEAPGXEwZdIJNTX16dEIpHOegAA\nJrKs0W8Z5hh8GzZskCQdO3ZMS5Ys0dq1a1VZWanu7u6MFAcAMINlWaPeMs1xccv7778vSdq6date\neOEFlZSUqK+vT3V1ddqzZ09GCgQAGCDfVnWOGzdOJSUlkqTp06cz3QkAuEHerOqMxWKqqqrS+fPn\n1draqqGhIW3cuFG33nprpuoDAGBMOXZ8Bw8eVDwe18mTJ1VQUCDLshQKhbR8+fJM1QcAwJhy7Pj2\n79+v8ePH684771QoFFIgEFB1dbXGjx+fqfoAACbIl1Wdv/rVr/T9739fvb29maoHAGAig4LPcarz\njjvu0OOPP65169YpFAppxYoVmjt3bqZqAwAYwqSHVDt2fJZlqby8XAcOHFA4HNbvf/97LV68WEuX\nLs1UfQAAE/is0W8Z5tjx2bad/HnRokVatGiRJKm/vz+9VQEAkCaOHd/WrVs/c//UqVPTUgwAAOnm\nGHxf/OIXP3N/a2trWooBAJjJsnyj3jJtxO/jSyQS8vmuF1hYWJi2ggAABjJocYtj8J07d05NTU3q\n6emR3+9XIpFQKBRSNBrNVH0AAAOYtKrTMfjq6+tVV1ensrKy5L7u7m5Fo1G1tLSkvTgAgCHy5Vmd\n8Xj8htCTpPLy8rQWBABAOjl2fKWlpYpGo6qoqFBRUZEGBgbU2dmp0tLSTNUHAMCYcgy+xsZGtbe3\nq6urS7FYTMFgUAsXLlQ4HM5UfQAAA+TNNT7LshQOhwk6AICzfAk+AABGJE3349m2rcbGRp06dUqB\nQECbNm3SjBkzksffeecd/eIXv5B0/d7zX/7ylwoEAo5jZv7OQQBA3rF81qg3J+3t7YrH42ppaVFd\nXZ2amppuON7Q0KDNmzfr5ZdfVkVFhS5cuJCyVjo+AEDO6urqUkVFhSSprKxMPT09yWNnz57VlClT\ntHPnTr377rtasGCBSkpKUo5JxwcAyFmxWExFRUXJz588TEWS/vWvf6m7u1u1tbXauXOn/vKXv+jv\nf/97yjEJPgCAe2l6EW0wGNTAwEDy86cfnzllyhTdfvvtmjlzpvx+vyoqKm7oCP8Tgg8A4JplWaPe\nnNx1113q7OyUdP3JYaFQKHlsxowZ+vjjj3Xu3DlJ16dFZ8+enbJWrvEBANxL06rOcDisN998UytX\nrpQkNTU1qa2tTYODg4pEItq0aZPWrVsnSZo7d67mz5+fckyCDwDgWqrVmaMe17K0cePGG/bNnDkz\n+fM3vvGNz/2qPKY6AQCeQvABADyFqU4AgHs8sgwA4CV585BqAABGJE2rOtOB4AMAuJcvb2AHACDf\nEHwAAE9hqhMA4BqLWwAA3sLiFgCAl9DxAQC8xaCOz5xKAQAYAwQfAMBTmOoEALiWrtcSpQPBBwBw\nj8UtAAAvsQxa3ELwAQDcM6jjs2zbtrNdBAAAmWJObwoAwBgg+AAAnkLwAQA8heADAHgKwQcA8BSC\nDwDgKZ68j8+2bTU2NurUqVMKBALatGmTZsyYkTze0dGh5uZm+f1+LVu2TJFIJIvVmiXVuW1ra9Ou\nXbvk9/sVCoXU2NgoSaqqqlIwGJQkfeUrX9Gzzz6bjfKNk+p8v/TSS3rllVc0depUSdLPfvYzlZSU\nZKlaczid1w8//FBPPPGELMuSbds6efKk1q9fr+9973t8j01he9Drr79uP/nkk7Zt23Z3d7f9wx/+\nMHns2rVrdjgctq9cuWLH43F72bJl9qVLl7JVqnGczu3Vq1ftcDhsDw0N2bZt2+vWrbM7OjrsoaEh\ne+nSpVmp13RO59u2bXv9+vX28ePHs1Ga0VKd10+8/fbb9urVq+1EIsH32CCenOrs6upSRUWFJKms\nrEw9PT3JY2fOnFFxcbGCwaDGjx+vefPm6ejRo9kq1ThO5zYQCKilpUWBQECSNDw8rAkTJujkyZP6\n+OOPtWbNGj300EM6duxYVmo3kdP5lqTjx4/r+eefV01NjXbs2JGNEo2U6rx+4uc//7k2btwoy7L4\nHhvEk1OdsVhMRUVFyc9+v1+JREI+n++mYxMnTtSVK1eyUaaRnM6tZVnJKbfdu3drcHBQd999t06f\nPq01a9YoEonovffe08MPP6zXXntNPp8n/132uTidb0m677779MADDygYDOrHP/6xOjs7NX/+/GyV\na4xU51W6fkkkFAqpuLhYklRQUMD32BCeDL5gMKiBgYHk509/oYPBoGKxWPLYwMCAJk2alPEaTeV0\nbqXr1062bNmi3t5ebdu2TZJUUlKS/J9HSUmJpkyZoosXL2r69OmZLd5Aqc736tWrk9ec5s+frxMn\nThB8I5DqvErS4cOHtXr16uRnvsfm8OQ/Re666y51dnZKkrq7uxUKhZLHZs2apd7eXl2+fFnxeFxH\njx5VeXl5tko1jtO5laSnn35a165dU3Nzc3LK88CBA9q8ebMkqa+vTwMDA5o2bVpmCzeU0/mOxWKq\nrKzU4OCgbNvW3/72N82ZMydbpRol1fdYknp6ejR37tzkZ77H5vDkQ6rtT63YkqSmpiYdP35cg4OD\nikQiOnLkiLZt2ybbtrV8+XJVV1dnuWJzOJ3bOXPmaPny5Zo3b54kybIsrVq1SgsWLNBPf/pTffDB\nB/L5fFq/fj3/2BihVN/lw4cPa9euXZowYYK+9a1vae3atVmu2Aypzmt/f7/WrFmjQ4cOJX/n2rVr\nikajunDhAt/jHOfJ4AMAeJcnpzoBAN5F8AEAPIXgAwB4CsEHAPAUgg8A4CkEHwDAUwg+AICnEHwA\nAE/5Xw9UjyHjGW41AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11483ac88>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"f.plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0.0</th>\n", | |
" <th>0.25</th>\n", | |
" <th>0.5</th>\n", | |
" <th>0.75</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0.00</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.8</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.25</th>\n", | |
" <td>3.0</td>\n", | |
" <td>1.4</td>\n", | |
" <td>1.0</td>\n", | |
" <td>2.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.50</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.0</td>\n", | |
" <td>0.4</td>\n", | |
" <td>3.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.75</th>\n", | |
" <td>3.0</td>\n", | |
" <td>2.8</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0.00 0.25 0.50 0.75\n", | |
"0.00 3.0 1.8 1.4 1.0\n", | |
"0.25 3.0 1.4 1.0 2.0\n", | |
"0.50 3.0 2.0 0.4 3.2\n", | |
"0.75 3.0 2.8 3.2 1.4" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"f.data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [Root]", | |
"language": "python", | |
"name": "Python [Root]" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment