#mlpack on Windows
mlpack, while not designed with Windows as a specific target, can still be built and run on Windows with some configuration. This document details the steps necessary to get MLPACK compiled using MinGW64.
#Prerequisites
| require('tcltk') | |
| calcinp ='' | |
| mkput = function(sym){ | |
| function(...){ | |
| calcinp <<- paste(calcinp,sym,sep='') | |
| tkconfigure(display,text=calcinp) | |
| } | |
| } | |
| clearit = function(...){ |
| # required: RGtk2 | |
| calculateGUI <- function() { | |
| ## Run on "OK" | |
| performStatistics <- function(button, user.data) { | |
| res <- NULL | |
| d <- NULL | |
| error <- NULL | |
| warning <- NULL | |
| # Get the information about data and the file | |
| the.file <- filename$getText() |
| # improved list of objects by Dirk | |
| .ls.objects <- function (pos = 1, pattern, order.by, | |
| decreasing=FALSE, head=FALSE, n=5) { | |
| napply <- function(names, fn) sapply(names, function(x) | |
| fn(get(x, pos = pos))) | |
| names <- ls(pos = pos, pattern = pattern) | |
| obj.class <- napply(names, function(x) as.character(class(x))[1]) | |
| obj.mode <- napply(names, mode) | |
| obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class) | |
| obj.size <- napply(names, object.size) |
| // | |
| // Based on code sent by Kevin Ushey | |
| // to Rcpp-devel on Tue, 8 Jul 2014 | |
| // | |
| #ifndef LIST_BUILDER_H | |
| #define LIST_BUILDER_H | |
| #include <Rcpp.h> | |
| using namespace Rcpp; |
| #include <iostream> | |
| #include <fstream> | |
| #include <unistd.h> | |
| void process_mem_usage(double& vm_usage, double& resident_set) | |
| { | |
| vm_usage = 0.0; | |
| resident_set = 0.0; | |
| // the two fields we want |
| #include <iostream> | |
| #include <vector> | |
| #include <algorithm> | |
| using namespace std; | |
| vector<vector<int> > cart_product (const vector<vector<int>>& v) { | |
| vector<vector<int>> s = {{}}; | |
| for (auto& u : v) { | |
| vector<vector<int>> r; |
| require(reshape2) | |
| require(rgl) | |
| plot_rgl_model <- function(fdata){ | |
| fdata <- fdata[order(fdata[, 1], fdata[, 2]), ] | |
| orig_names <- colnames(fdata) | |
| colnames(fdata) <- c("x", "y", "z") | |
| fdata <- as.data.frame(fdata) |
| // callback4.cpp - C++11 Lambda Callback | |
| // To build: | |
| // g++ -std=c++11 callback4.cpp | |
| // Situation: A "Caller" class allows another class "Callee" | |
| // to connect to it via callback. How to implement this? | |
| // A C++11 lambda function can be used. |
#mlpack on Windows
mlpack, while not designed with Windows as a specific target, can still be built and run on Windows with some configuration. This document details the steps necessary to get MLPACK compiled using MinGW64.
#Prerequisites
| set backspace=indent,eol,start | |
| colorscheme default | |
| set nocompatible " be iMproved, required | |
| filetype off " required | |
| " set the runtime path to include Vundle and initialize | |
| set rtp+=~/.vim/bundle/Vundle.vim | |
| call vundle#begin() | |
| " alternatively, pass a path where Vundle should install plugins | |
| "call vundle#begin('~/some/path/here') |