Created
September 26, 2019 09:53
-
-
Save thomasbrandon/16915d8a01bcdd9d4b74abbc7cf6638b to your computer and use it in GitHub Desktop.
Semi-successful training of Mish
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"Collapsed": "false" | |
}, | |
"outputs": [], | |
"source": [ | |
"from fastai.vision import *" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"Collapsed": "false" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"ImageDataBunch;\n", | |
"\n", | |
"Train: LabelList (12396 items)\n", | |
"x: ImageList\n", | |
"Image (1, 28, 28),Image (1, 28, 28),Image (1, 28, 28),Image (1, 28, 28),Image (1, 28, 28)\n", | |
"y: CategoryList\n", | |
"3,3,3,3,3\n", | |
"Path: /home/user/.fastai/data/mnist_sample;\n", | |
"\n", | |
"Valid: LabelList (2038 items)\n", | |
"x: ImageList\n", | |
"Image (1, 28, 28),Image (1, 28, 28),Image (1, 28, 28),Image (1, 28, 28),Image (1, 28, 28)\n", | |
"y: CategoryList\n", | |
"3,3,3,3,3\n", | |
"Path: /home/user/.fastai/data/mnist_sample;\n", | |
"\n", | |
"Test: None" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"DATA = untar_data(URLs.MNIST_SAMPLE)\n", | |
"src = (ImageList.from_folder(DATA, convert_mode='L')\n", | |
" .split_by_folder(valid='valid')\n", | |
" .label_from_folder())\n", | |
"data = (src.databunch(bs=8, num_workers=0)\n", | |
" .normalize((tensor(0.128), tensor(0.305))))\n", | |
"data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"Collapsed": "false" | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_mdl(actn:Callable):\n", | |
" layers = [conv2d(1, 16, stride=2), actn(), conv2d(16, 32, stride=2), actn(), AdaptiveConcatPool2d(1), Flatten(), nn.Linear(64, data.c)]\n", | |
" return nn.Sequential(*layers)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"Collapsed": "false" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Sequential(\n", | |
" (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | |
" (1): MishCuda()\n", | |
" (2): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | |
" (3): MishCuda()\n", | |
" (4): AdaptiveConcatPool2d(\n", | |
" (ap): AdaptiveAvgPool2d(output_size=1)\n", | |
" (mp): AdaptiveMaxPool2d(output_size=1)\n", | |
" )\n", | |
" (5): Flatten()\n", | |
" (6): Linear(in_features=64, out_features=2, bias=True)\n", | |
")" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"from mish_cuda import *\n", | |
"mdl_mish = get_mdl(MishCuda)\n", | |
"mdl_mish" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"Collapsed": "false" | |
}, | |
"outputs": [], | |
"source": [ | |
"lrn_mish = Learner(data, mdl_mish, metrics=[accuracy])\n", | |
"cbs = []" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"Collapsed": "false" | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: left;\">\n", | |
" <th>epoch</th>\n", | |
" <th>train_loss</th>\n", | |
" <th>valid_loss</th>\n", | |
" <th>accuracy</th>\n", | |
" <th>time</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>0.093107</td>\n", | |
" <td>0.102739</td>\n", | |
" <td>0.959764</td>\n", | |
" <td>00:06</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>0.043055</td>\n", | |
" <td>0.049509</td>\n", | |
" <td>0.983808</td>\n", | |
" <td>00:06</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>nan</td>\n", | |
" <td>nan</td>\n", | |
" <td>0.495584</td>\n", | |
" <td>00:06</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"lrn_mish.fit_one_cycle(3, 1e-3)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python [conda env:.conda-fastai]", | |
"language": "python", | |
"name": "conda-env-.conda-fastai-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment