Skip to content

Instantly share code, notes, and snippets.

@tkanmae
Created August 28, 2018 01:56
Show Gist options
  • Save tkanmae/9a528dccf0d0a9fb2666b6cc6fbed144 to your computer and use it in GitHub Desktop.
Save tkanmae/9a528dccf0d0a9fb2666b6cc6fbed144 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Benchmark Depthwise Convolution in Chainer"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import chainer\n",
"import numpy as np\n",
"from numpy.testing import assert_allclose"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'4.2.0'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chainer.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## On CPU"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"input = np.random.randn(1, 32, 112, 112).astype(np.float32)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"input_var = chainer.Variable(input)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"l_1 = chainer.Sequential(\n",
" chainer.links.Convolution2D(32, 32, ksize=3, stride=1, pad=1, groups=32, nobias=True),\n",
" chainer.links.Convolution2D(32, 32, ksize=3, stride=1, pad=1, groups=32, nobias=True),\n",
" chainer.links.Convolution2D(32, 32, ksize=3, stride=1, pad=1, groups=32, nobias=True),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(32, 1, 3, 3)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l_1[0].W.shape"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"weight_1 = np.random.randn(32, 1, 3, 3).astype(np.float32)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"for l in l_1:\n",
" l.W.array = weight_1"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"231 ms ± 5.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"with chainer.using_config('enable_backprop', False):\n",
" for _ in range(10):\n",
" l_1(input_var)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"693 ms ± 17 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"for _ in range(10):\n",
" y = chainer.functions.sum(l_1(input_var))\n",
" l_1.cleargrads()\n",
" y.backward()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"l_2 = chainer.Sequential(\n",
" chainer.links.DepthwiseConvolution2D(32, 1, ksize=3, stride=1, pad=1, nobias=True),\n",
" chainer.links.DepthwiseConvolution2D(32, 1, ksize=3, stride=1, pad=1, nobias=True),\n",
" chainer.links.DepthwiseConvolution2D(32, 1, ksize=3, stride=1, pad=1, nobias=True),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 32, 3, 3)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l_2[0].W.shape"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"for l in l_2:\n",
" l.W.array = weight_1.transpose((1, 0, 2, 3))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"108 ms ± 9.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"with chainer.using_config('enable_backprop', False):\n",
" for _ in range(10):\n",
" l_2(input_var)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"430 ms ± 6.09 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"for _ in range(10):\n",
" y = chainer.functions.sum(l_2(input_var))\n",
" l_2.cleargrads()\n",
" y.backward()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"with chainer.using_config('enable_backprop', False):\n",
" assert_allclose(l_1(input_var).array, l_2(input_var).array, atol=1e-5, rtol=1e-3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## On GPU"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<chainer.sequential.Sequential at 0x7f008463c128>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"input_var.to_gpu()\n",
"l_1.to_gpu()\n",
"l_2.to_gpu()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"123 ms ± 17.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"with chainer.using_config('enable_backprop', False):\n",
" for _ in range(10):\n",
" l_1(input_var)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"117 ms ± 94.5 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"for _ in range(10):\n",
" y = chainer.functions.sum(l_1(input_var))\n",
" l_1.cleargrads()\n",
" y.backward()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"73.5 ms ± 83.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"with chainer.using_config('enable_backprop', False):\n",
" for _ in range(10):\n",
" l_2(input_var)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The slowest run took 7.03 times longer than the fastest. This could mean that an intermediate result is being cached.\n",
"134 ms ± 80.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"for _ in range(10):\n",
" y = chainer.functions.sum(l_2(input_var))\n",
" l_2.cleargrads()\n",
" y.backward()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment