This interactive chart shows "survival curves" for females in different countries.
Calcualted from life tables, these survival curves show the expected number of survivors from birth to 85 at 5-year intervals from a hypothetical cohort of 100,000.
[ | |
{ | |
"page": "1", | |
"pages": "1", | |
"per_page": "50", | |
"total": "28" | |
}, | |
[ | |
{ | |
"id": "11", |
import wbdata | |
import pandas | |
import matplotlib.pyplot as plt | |
#set up the countries I want | |
countries = ["CL","UY","HU"] | |
#set up the indicator I want (just build up the dict if you want more than one) | |
indicators = {'NY.GNP.PCAP.CD':'GNI per Capita'} | |
{ | |
"metadata": { | |
"name": "Grabbing World Bank Data with the wbdata module and plotting it" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ |
library(WDI) | |
library(ggplot2) | |
#Grab GNI per capita data for Chile, Hungary and Uruguay | |
dat = WDI(indicator='NY.GNP.PCAP.CD', country=c('CL','HU','UY'), start=1960, end=2012) | |
#a quick plot with legend, title and lable | |
ggplot(dat, aes(year, NY.GNP.PCAP.CD, color=country)) + geom_line() |
Country Name 2005 2006 2007 2008 2009 | |
Afghanistan 46.6 46.9 47.2 47.5 47.9 | |
Albania 76.1 76.3 76.5 76.6 76.8 | |
Algeria 71.6 71.9 72.2 72.4 72.6 |
Country | Year | Life Expectancy | |
---|---|---|---|
Afghanistan | 2005 | 46.6 | |
Afghanistan | 2006 | 46.9 | |
Afghanistan | 2007 | 47.2 | |
Afghanistan | 2008 | 47.5 | |
Afghanistan | 2009 | 47.9 | |
Albania | 2005 | 76.1 | |
Albania | 2006 | 76.3 | |
Albania | 2007 | 76.5 | |
Albania | 2008 | 76.6 |
Afghanistan | 2005 | 46.6 | |
---|---|---|---|
Afghanistan | 2006 | 46.9 | |
Afghanistan | 2007 | 47.2 | |
Afghanistan | 2008 | 47.5 | |
Afghanistan | 2009 | 47.9 | |
Albania | 2005 | 76.1 | |
Albania | 2006 | 76.3 | |
Albania | 2007 | 76.5 | |
Albania | 2008 | 76.6 |
import pandas as pd | |
#read the normalized CSV file | |
df = pandas.read_csv('lifeexpectancy.csv') | |
#melt the normalized file, hold the country name and code variables, rename the melted columns | |
le = pd.melt(df, id_vars=['Country Name','Country Code'], var_name="year", value_name="life_expectancy") | |
#sort by country name for convenience | |
le2 = le.sort(['Country Name']) |
{ | |
"metadata": { | |
"name": "unpivoting-csv-pandas" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ |
This interactive chart shows "survival curves" for females in different countries.
Calcualted from life tables, these survival curves show the expected number of survivors from birth to 85 at 5-year intervals from a hypothetical cohort of 100,000.