Last active
September 12, 2020 10:13
-
-
Save tmtk75/d1e2bbf11d82d37d5318f0145312ff60 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import json\n", | |
"import glob\n", | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"import math\n", | |
"from functools import reduce\n", | |
"from pandas.tseries.offsets import MonthEnd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"js = [json.load(open(f))['ExposureChecks'] for f in glob.glob(\"../COVID19/Exposure*.json\")]\n", | |
"checks = reduce(lambda a, b: a + b, js)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = pd.DataFrame(checks).drop_duplicates()\n", | |
"df[\"year\"] = df.Timestamp.map(lambda x: pd.to_datetime(x).year)\n", | |
"df[\"month\"] = df.Timestamp.map(lambda x: pd.to_datetime(x).month)\n", | |
"df[\"day\"] = df.Timestamp.map(lambda x: pd.to_datetime(x).day)\n", | |
"df.reset_index(drop=True)\n", | |
"del df[\"DataSource\"]\n", | |
"df[:1]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#\n", | |
"ym = df.groupby([\"year\", \"month\", \"day\"]).sum(\"RandomIDCount\")\n", | |
"yms = pd.unique(pd.Series([e[0:2] for e in ym.index]))\n", | |
"\n", | |
"#\n", | |
"def p(k):\n", | |
" s = pd.to_datetime(\"%d-%02d-01\" % k)\n", | |
" idx = [e.day for e in pd.date_range(s, s + MonthEnd(1))]\n", | |
" h = ym.loc[k]\n", | |
" g = h.reindex(index=idx, fill_value=0)\n", | |
"# g[\"MatchCount\"][15] = 1\n", | |
" return g\n", | |
"\n", | |
"dfs = [(p(k), k) for k in yms]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"R = 0.77\n", | |
"s = len(dfs)\n", | |
"t = math.ceil(s / 2)\n", | |
"fig, axs = plt.subplots(t, 2, figsize=(16*R, 4*R*2))\n", | |
"fig.tight_layout(pad=3.5)\n", | |
"if s % 2 == 1:\n", | |
" fig.delaxes(axs[t-1, 1])\n", | |
"maxRIC = pd.Series([e[0].RandomIDCount.max() for e in dfs]).max()\n", | |
"\n", | |
"\n", | |
"def plot(idx, df, k):\n", | |
" ax = axs[int(idx/t),idx%2]\n", | |
" a = df.plot(kind=\"bar\", ax=ax, grid=True, colormap='Accent', y=\"RandomIDCount\")\n", | |
" right = a.twinx();\n", | |
" df.plot(ax=right, y=\"MatchCount\")\n", | |
"# a.legend(bbox_to_anchor=(0.4,0.8))\n", | |
" a.legend(loc='upper left')\n", | |
" a.set_title(\"%d-%02d\" % k)\n", | |
"# a.set_ylim([0, maxRIC*1.1])\n", | |
" right.set_ylim([0, 2])\n", | |
"# right.get_legend().remove()\n", | |
"# right.set_ylabel(\"MatchCount\")\n", | |
"# a.set_xlabel(\"day\")\n", | |
" return k\n", | |
"\n", | |
"[plot(i, e[0], e[1]) for i, e in enumerate(dfs)]" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment