Created
December 20, 2023 21:52
-
-
Save tofunori/6a8a49cf06747c6865e34afe0f737ec9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"source": [], | |
"metadata": { | |
"collapsed": false | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"DEM alignment, modification, and subtraction complete.\n" | |
] | |
} | |
], | |
"source": [ | |
"from osgeo import gdal, gdalconst\n", | |
"import numpy as np\n", | |
"\n", | |
"def align_dems(base_dem_path, target_dem_path, aligned_dem_path):\n", | |
" # Open base DEM (reference) and get its properties\n", | |
" base_dem = gdal.Open(base_dem_path, gdalconst.GA_ReadOnly)\n", | |
" base_dem_proj = base_dem.GetProjection()\n", | |
" base_dem_geotrans = base_dem.GetGeoTransform()\n", | |
" base_dem_xsize = base_dem.RasterXSize\n", | |
" base_dem_ysize = base_dem.RasterYSize\n", | |
" base_dem_nodata = base_dem.GetRasterBand(1).GetNoDataValue()\n", | |
"\n", | |
" # Open the target DEM\n", | |
" target_dem = gdal.Open(target_dem_path, gdalconst.GA_ReadOnly)\n", | |
" target_dem_nodata = target_dem.GetRasterBand(1).GetNoDataValue()\n", | |
"\n", | |
" # Create a new aligned DEM file\n", | |
" driver = gdal.GetDriverByName('GTiff')\n", | |
" aligned_dem = driver.Create(aligned_dem_path, base_dem_xsize, base_dem_ysize, 1, target_dem.GetRasterBand(1).DataType)\n", | |
" aligned_dem.SetProjection(base_dem_proj)\n", | |
" aligned_dem.SetGeoTransform(base_dem_geotrans)\n", | |
"\n", | |
" # Set NoData value for aligned DEM\n", | |
" nodata_value = target_dem_nodata if target_dem_nodata is not None else base_dem_nodata\n", | |
" aligned_dem.GetRasterBand(1).SetNoDataValue(nodata_value)\n", | |
"\n", | |
" # Perform the alignment/resampling\n", | |
" gdal.ReprojectImage(target_dem, aligned_dem, target_dem.GetProjection(), base_dem_proj, gdalconst.GRA_Bilinear)\n", | |
"\n", | |
" # Close the datasets\n", | |
" base_dem = None\n", | |
" target_dem = None\n", | |
" aligned_dem = None\n", | |
"\n", | |
" # Modify the aligned DEM to set 0 values to NoData\n", | |
" modify_dem(aligned_dem_path, nodata_value)\n", | |
"\n", | |
"def modify_dem(dem_path, nodata_value):\n", | |
" # Open the aligned DEM\n", | |
" dem = gdal.Open(dem_path, gdalconst.GA_Update)\n", | |
" band = dem.GetRasterBand(1)\n", | |
" data = band.ReadAsArray()\n", | |
"\n", | |
" # Set 0 values to NoData\n", | |
" data[data == 0] = nodata_value\n", | |
"\n", | |
" # Write the modified array back to the DEM\n", | |
" band.WriteArray(data)\n", | |
"\n", | |
" # Close the dataset\n", | |
" dem = None\n", | |
"\n", | |
"def subtract_dems(base_dem_path, aligned_dem_path, subtracted_dem_path):\n", | |
" # Open the base (reference) DEM\n", | |
" base_dem = gdal.Open(base_dem_path)\n", | |
" base_band = base_dem.GetRasterBand(1)\n", | |
" base_array = base_band.ReadAsArray()\n", | |
"\n", | |
" # Open the aligned DEM\n", | |
" aligned_dem = gdal.Open(aligned_dem_path)\n", | |
" aligned_band = aligned_dem.GetRasterBand(1)\n", | |
" aligned_array = aligned_band.ReadAsArray()\n", | |
"\n", | |
" # Perform subtraction (aligned DEM minus base DEM)\n", | |
" nodata_value = base_band.GetNoDataValue()\n", | |
" difference = np.where((base_array == nodata_value) | (aligned_array == nodata_value), nodata_value, aligned_array - base_array)\n", | |
"\n", | |
" # Create a new raster file for the subtracted DEM\n", | |
" driver = gdal.GetDriverByName('GTiff')\n", | |
" subtracted_dem = driver.Create(subtracted_dem_path, base_dem.RasterXSize, base_dem.RasterYSize, 1, gdal.GDT_Float32)\n", | |
" subtracted_dem.SetProjection(base_dem.GetProjection())\n", | |
" subtracted_dem.SetGeoTransform(base_dem.GetGeoTransform())\n", | |
"\n", | |
" # Write the difference array to the new DEM file\n", | |
" subtracted_band = subtracted_dem.GetRasterBand(1)\n", | |
" subtracted_band.SetNoDataValue(nodata_value)\n", | |
" subtracted_band.WriteArray(difference)\n", | |
"\n", | |
" # Close the datasets\n", | |
" base_dem = None\n", | |
" aligned_dem = None\n", | |
" subtracted_dem = None\n", | |
"\n", | |
"# Specify your DEM file paths\n", | |
"base_dem_path = r\"D:\\Bylot\\summer_2017\\Blocs\\2017_ravin_DEM.tif\"\n", | |
"target_dem_path = r\"D:\\Bylot\\Summer_2022\\Blocs\\ravin_corrige.tif\"\n", | |
"aligned_dem_path = r\"D:\\Bylot\\Summer_2022\\Blocs\\ravin_corrige_aligned4.tif\"\n", | |
"subtracted_dem_path = r\"D:\\Bylot\\ravin_difference4.tif\"\n", | |
"\n", | |
"# Align the DEMs\n", | |
"align_dems(base_dem_path, target_dem_path, aligned_dem_path)\n", | |
"\n", | |
"# Subtract the aligned DEM from the base DEM\n", | |
"subtract_dems(base_dem_path, aligned_dem_path, subtracted_dem_path)\n", | |
"\n", | |
"print(\"DEM alignment, modification, and subtraction complete.\")\n", | |
"\n", | |
"\n" | |
], | |
"metadata": { | |
"collapsed": false, | |
"ExecuteTime": { | |
"end_time": "2023-12-20T21:49:38.221995500Z", | |
"start_time": "2023-12-20T21:48:45.728717300Z" | |
} | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [], | |
"metadata": { | |
"collapsed": false | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": "<Figure size 3600x2400 with 1 Axes>", | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAC5IAAAgwCAYAAADqYepIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3gU1fv38U8KJEASQiChE3qR3nsXEFB6B+kq9vIVQUFBRFHsigUUKQoIKCigIkgTpHfpNfQSIAkEAgnJPH/4kB+zs0l2N5uEkPfruvbSOcw5597NlLOz95zxMAzDEAAAAAAAAAAAAAAAAAAAAAAgy/DM6AAAAAAAAAAAAAAAAAAAAAAAAOmLRHIAAAAAAAAAAAAAAAAAAAAAyGJIJAcAAAAAAAAAAAAAAAAAAACALIZEcgAAAAAAAAAAAAAAAAAAAADIYkgkBwAAAAAAAAAAAAAAAAAAAIAshkRyAAAAAAAAAAAAAAAAAAAAAMhiSCQHAAAAAAAAAAAAAAAAAAAAgCyGRHIAAAAAAAAAAAAAAAAAAAAAyGJIJAcAAAAAAAAAAAAAAAAAAACALIZEcgAAAAAAAAAAAAAAAAAAAADIYkgkBwAAAAAAAAAAAAAAAAAAAIAshkRyAAAAAAAAAAAAAAAAAAAAAMhiSCQHAAAAAAAAAAAAAAAAAAAAgCyGRHIAAAAAAAAAAAAAAAAAAAAAyGJIJAcAAAAAAAAAAAAAAAAAAACALIZEcgAAAAAAAAAAAAAAAAAAAADIYkgkBwAAAAAAAAAAAAAAAAAAAIAshkRyAAAAAAAAAAAAAAAAAAAAAMhiSCQHAAAAAAAAAAAAAAAAAAAAgCyGRHIAAAAAAAAAAAAAAAAAAAAAyGJIJAcAAAAAAAAAAAAAAAAAAACALIZEcgAAAAAAAAAAAAAAAAAAAADIYkgkBwAAAAAAAAAAAAAAAAAAAIAshkRyAAAAAAAAAAAAAAAAAAAAAMhiSCQHAAAAAAAAAAAAAAAAAAAAgCyGRHIAAAAAAAAAAAAAAAAAAAAAyGJIJAcAAAAAAAAAAAAAAAAAAACALIZEcgAAAAAAAAAAAAAAAAAAAADIYkgkBwAAAAAAAAAAAAAAAAAAAIAshkRyAAAA4D7QrFkzeXh4JL6aNWuW0SEByESioqI0adIkde/eXWXKlFFQUJC8vLxMx5Vq1apldJhuVbx4cdP7GzhwYEaHhDQUFhZm+nt7eHho+vTpGR0WMsDYsWMt24Kr1q9frxdffFENGjRQoUKFlCNHDkvbv/zyS7Jt3Lx5U9OnT1e/fv1UoUIF5cuXT97e3qY2AgMDXY4RgOtu3ryp0qVLJ+6LAQEBunjxYkaHBQD3jHvhWtTq1ast46/Vq1enexyAs6ZPn27ZdsPCwrJM//e7e+H4eC/6999/TdcbmzRpktEhAQAA4P/zzugAAAAAAABAxvn666/1yiuv6Nq1axkdCgBkCmfOnFG/fv1SnaT0yy+/6PHHH1d4eLh7AgPgVu+9956OHj2auPzKK68oJCQkAyP6P3FxcdqyZYv279+vy5cvKy4uTgEBASpVqpRq166t4ODgjA7RIfHx8fr333914MABnTt3TtevX1f27NmVO3duFS9eXGXLllWJEiUyOkwkISoqSps3b9bhw4cVFRUlDw8P5cmTR+XKlVPdunWVI0eOjA7RITdu3ND27dt1+PBhXb58WTdv3lSOHDkUFBSkkiVL6oEHHsg0+xTuP0eOHNHOnTt16tQpXb9+XTly5FChQoVUpUoVVaxYMaPDS1ZCQoJ27NihPXv26OLFi7p165b8/PxUokQJ1axZU0WKFEmTfq9du6a9e/fq8OHDioiI0LVr15QrVy7lyZNHhQsXVu3atZU7d+406RtA8ipXrqx+/fpp5syZkqS1a9fqhx9+UL9+/TI4MgAAAJBIDgAAADghLCzM8kN206ZN3TLb0erVq9W8eXNT2YABA5gxFUCaeeutt/TGG29kSN/Tp0/XoEGD0qTtjh07pjgLMIC0Vbx4cZ04cSLF9Tw9PeXj4yMfHx/lyZNHISEhKly4sMqVK6dKlSqpQYMGKl68eNoH7KALFy6oTp06Onv2bKra+f7779W/f383RQXA3Y4fP6533303cblgwYJ66aWXMjCi/xw8eFATJ07U/Pnzk7wJ0MPDQ40aNdLzzz+vrl27pnOEjlm7dq2mTJmiJUuWKDIyMtl18+XLpwYNGqhdu3bq1q2b8ubNmz5BIkl//fWXPvzwQ/3111+6ffu23XV8fX3VoUMHDR8+XLVq1UrnCFMWHx+vefPmadq0aVqzZo1iY2OTXb9EiRJq2rSp2rVrp86dO8vbm59XkXZiYmL01Vdf6euvv9bhw4eTXK9IkSIaMmSIXnjhhXvqCTZnzpzRBx98oO+//16XL19Ocr3q1avr6aef1sCBA+Xl5eVyf1FRUVq6dKlWrVqlVatW6dChQ8mu7+HhoUqVKql///4aPHiwgoKCXO4bgPPeeustzZ07V7du3ZL0382aHTt2lL+/fwZHBgAAkLV5ZnQAAAAAAO5/PM4TuPds27ZNY8eOtZR7eHioWLFiqlKliqpWrZr4KleuXPoHiSzN9jHb9rZXZH4JCQmKiYlRZGSkjh8/rk2bNmnBggWaMGGC+vbtqxIlSqh48eJ66aWXtH379owOV48//rjdJPKAgACVL1/edNysWrWq3dkOz5w5o2HDhtltv3DhwqpcubKpjcqVK7v9fQBI3qhRo3Tz5s3E5eHDhytnzpwZFk9CQoLefPNNVa5cWd99912yT5IxDENr165Vt27d1Lx5c507dy4dI03ekSNH1KZNGzVp0kQ//PBDiknkknTp0iUtWrRIw4YN0x9//JH2QUoaO3asZRyC/5I1u3XrplatWmnp0qVJJpFL0s2bNzVv3jzVqVNHzz77bIqJ2ulp+fLlqlixovr06aPly5c7FNvx48c1ffp09ejRQ+fPn0+HKO9vxYsXN+1fAwcOzOiQ7hn//POPKlSooP/973/JJpFL0unTp/Xmm2+qbNmyWrRoUTpFmLzJkyerfPny+uSTT5JNIpekHTt2aOjQoapZs6YOHjzodF+LFi3SI488opCQEPXq1UuTJ09OMYlc+u88+e+//2r48OEqWrSoPv74YyUkJDjdPwDXFCtWzHTcP3funD788MOMCwgAAACSSCQHAAAAACBL+uijjyw/lr766qu6dOmSTpw4oV27dmnnzp2Jr7lz52ZQpACyuhMnTujjjz9WzZo11axZM/3zzz8ZEsehQ4e0ePFiU1nZsmX1999/KzIyUvv37zcdN3fu3Gl52owkffnll7px44apbPDgwTp9+rROnz6t3bt3m9pYu3Ztmr4vAGb//vuvadyTN29ePf744xkWT3x8vHr37q2xY8cqLi7OqbqrV69W7dq1deTIkTSKznHz5s1TtWrVtGzZsowOBS64ePGiGjRooJ9//tmpeoZhaNKkSWrTpo3l3JfeDMPQiBEj1KZNG5eSVoG0tmDBAjVv3tyhp/rcLTw8XJ06ddKXX36ZRpE55uWXX9awYcMUHR3tVL1du3apTp062rhxo1P1PvroIy1ZsiRVN6rcuHFDL730klq3bq3r16+73A4A5wwfPtz0JIKPPvooxZtPAAAAkLZ49hoAAAAAAFlMQkKCJRmye/fueueddzIoov/kz59fBQoUSHU7JUqUcEM0ANytatWqdstjYmIUFRWlyMjIxMdbJ2XNmjVq1KiRBg8erM8//zxdZwj+9ddfZRiGqWzBggWqWLGiU+388ssvpuU6dero22+/ZcZb4B4xevRo0812zz33nHLlypVh8Tz33HOaN2+epTwoKEj9+vVThQoVFBAQoLCwMC1btkxr1qwxrXfmzBm1bt1a27ZtU548edIrbJMpU6Zo2LBhlmOoJFWoUEEPPfSQQkNDlT9/fiUkJCgyMlIHDx7Uzp07tXHjxntqNuus6NatW2rXrp327dtn+beyZcuqR48eKlWqlAzD0NGjRzV37lzLzQurV69W3759tXDhwvQK28QwDA0YMEDff/+95d+8vLxUv359NW/eXAULFlS+fPkUExOjy5cva8+ePdq2bZt27dqVAVEjK1m/fr169epluWHI09NTDz/8sBo1aqSiRYsqPDxcu3bt0pw5c0w3ZxiGoWeeeUYFCxZU586d0zt8vf/++3ZnFM6VK5d69+6tKlWqKF++fDp16pTWrl2r3377zXROuHr1qtq1a6dt27al+vt8YGCgGjZsqFq1aikkJET58uXTjRs3dPz4ca1cuVLr1q2z1FmxYoU6dOig33//XT4+PqnqH0DKSpUqpW7duiXevHnt2jW99957mjhxYgZHBgAAkHWRSA4AAADcB1avXp3RIQDIRPbv369r166Zynr27JlB0fyfYcOGaezYsRkdBu5DxYsXt5u8hvS1c+fOFNeJjo7Wtm3btHnzZq1bt06///67bt++bVnvu+++05YtW7Rs2TKnbkAZO3asy8eZzZs3m5YrVarkdBL5tWvXdODAAVNZjx49SCIH7hH79+833Wzn7e2txx57LMPiWbx4sd0ZZocNG6YPP/zQcjPNa6+9pn/++Uddu3bVhQsXEsuPHz+uYcOGZcgTZhYtWqQnn3zSch5u0aKFPv74Y1WpUiXZ+teuXdMff/yhb775Rp6ePGQ3I7z22mvatm2bqSxbtmz64osvNHToUMs5bNy4cfr222/19NNPm87hv/zyi7766is9+eST6RL33V555RVLErmnp6eGDh2qt956SyEhIcnWP3PmjBYsWKDJkyenZZiZDtei3OP69evq3bu3JYm8XLlyWrhwoSpUqGCpM3HiRA0aNEiLFi1KLDMMQ4MGDVL9+vXdcoO2o7Zv367XXnvNUt6xY0dNmzbNchPTK6+8on379qlz5846dOhQYnlERIT69Omj9evXOz02zp07t3r27KmBAweqbt26SZ4v3nzzTe3cuVNDhw61HNdWrlypCRMmZJlrEgMHDtTAgQMzOoz7FsfHlD355JOmsenXX3+t0aNHKyAgIAOjAgAAyLq46gYAAAAAQBZz8uRJS1m5cuUyIBIAMPPz81PTpk01fPhw/frrrzp+/Lhee+01+fn5Wdb9999/1aJFC0VERKRLbLbHTleOm6dPnzbNdOxqOwDSxkcffWRKeO7QoYMKFiyYIbHExcXpueees5S/9NJL+uqrr5J8IkPDhg21YcMGBQUFmcrnzZunVatWpUmsSTl58qQGDhxoOe5NmDBBK1asSDGJXJL8/f3Vo0cPLV++XL17906rUJGE/fv367PPPrOU//TTT3rsscfsJnt6enrq8ccf108//WT5t9deey3dztt3LF68WB988IGpLGfOnFq2bJkmT56cYhK5JBUuXFjPPvus9uzZo8KFC6dVqMii3nnnHcs4s0yZMlq/fr3dJHLpv6dSLFiwQF27djWVR0VFacSIEWkWqz3PPvus5cbP7t27a8GCBUk+CeOBBx7Q+vXrVbp0aVP5xo0bNX36dIf7LliwoD799FOdO3dOkydPVv369VO86ahatWpav369HnroIcu/vffeezp9+rTD/QNwXdOmTU3fha9du6ZvvvkmAyMCAADI2kgkBwAAAAAgi4mKirKU5cqVKwMiAYDkFSlSRG+//ba2bt2qqlWrWv59//79GjBgQLrEYnvsdOW4yfEXuHddvnxZP/zwg6lsyJAhGRSN9P333yssLMxUVrFiRU2YMCHFuiVKlLCb/PvWW2+5KzyHPPvss5ak4XHjxmnkyJEutcfTG9LfhAkTLAmijz32mDp06JBi3Y4dO2ro0KGmssjISH3++edujTE5169ft8yA7uXlpSVLlqhly5Yutcl2CHeKjIzUpEmTTGWenp767rvvLDcE2fLy8tLkyZOVP39+U/msWbN07Ngxt8dqz8qVK7V+/XpTWf78+fX111+nmNCdN29efffdd5b13nnnHcsNSPaMHDlSx44d03PPPaccOXI4FXf27Nk1f/58y81iN2/e1Pz5851qC4DrBg0aZFr+/PPPHdr/AQAA4H4kkgMAAAAAkMXcvHnTUkZCBIB7Wbly5bRx40Y1btzY8m+LFy82PRI7rdgeO105bnL8Be5ds2fPNu2jgYGBatWqVYbF89VXX1nKxo0bp+zZsztUv2/fvqpUqZKpbNWqVTp48KBb4kvJ33//rUWLFpnK6tSpo1GjRqVL/0i9iIgIzZs3z1SWLVs2p25IeOutt5QtWzZT2ZQpU9ItSezDDz/UmTNnTGUvvPCCmjdvni79AymZNWuWrl69aipr3769GjVq5FD9vHnzavjw4aay+Pj4dJvV19656pVXXkkxCf6Oxo0bq127dqayI0eOaPny5SnWfeihh+Tr6+tYoHb4+fnp5ZdftpQvWbLE5TYBOKd79+6m5RMnTqT7E3QAAADwH++MDgAAAADAvSMuLk779+/Xnj17dOXKFV29elUeHh7KkSOHAgMDVaxYMZUsWVLFixfP6FCTdOjQIe3bt08XL17U5cuXlStXLoWEhKho0aKqU6eO5Udsd0hISNCWLVt09OhRnTt3TnFxcQoKClL58uVVt25d+fj4uL3P5Fy8eFFbt27V8ePHFRUVJQ8PD+XLl0+dO3dWvnz5UqwfERGhAwcO6PDhw4qIiFB0dLRy5sypoKAg5c+fX3Xq1HH4R8HUioqK0saNG3X48GFFRUXJ19dXhQsXVv369RUaGupwO2fPntWWLVsUFham6OhoBQUFqUiRImratKkCAgLS8B245s7f8OLFi7p48aK8vLwUEhKi/Pnzq169evdkzPjvWLBjxw6FhYUpPDxcV65cUUBAgIKDg1W6dGlVr149xVnZMoPY2FgdOXJEBw4c0Pnz5xMTH4KCghQUFKTKlSubHk98v4qPj9f27dt1/PhxhYeHKyoqSkFBQQoODlbZsmVVuXLldIkjPDxcGzdu1LFjxxQdHa3cuXMrJCREdevWdeo4mRn4+vpq3rx5qlGjhs6dO2f6t5EjR6pbt27y8vLKoOjuHVevXtXmzZt14cIFhYeH6+bNm8qXL5+Cg4NVq1YtFS5cOM1jSO1YRPpvXLp161adOnUqcR8LDAxUcHCwHnjgAVWsWDGN34UUExOjjRs36sCBA4qIiFCOHDkUHBysSpUqqWrVqml2E8CpU6e0a9cuXbp0SZcvX9atW7fk7++v/Pnzq3z58ipfvrzDycQpiYmJ0ebNm3Xu3DldvHhR0dHRyps3r4KDg1W1alWVKlXKLf3ccee9nTlzRlevXtWtW7eUI0cO5cqVS4UKFVLx4sVVtmzZVCWGuWrmzJmm5Q4dOqTJdwdHHD16VFu3bjWVFSxY0KFZoO/2xBNP6NlnnzWVzZkzR2PHjk1tiCmaOHGipeyzzz67L8ZC7nQvj/sXLFigW7dumco6depkmf04OQUKFFCHDh30888/J5adOXNGf//9t5o1a+auUO2KiYmxzH6eN29ejRs3Lk37xb0pISFB27dv17///quLFy8mjk1KliypBg0auO286qwff/zRUjZs2DCn2hg4cKBGjRpl2l/nzJnj0BMsUuP69etavHixqczX11cDBw50qp0nnnjCkrw9Z84ctWnTJrUhpqhdu3b63//+ZypLr9ncHXXt2rXE62KRkZHKmTOnChUqpIoVK6bLeNhVttfz/Pz8FBwcrBo1aqh8+fIZHV6imJgY7d27V/v371dERISuXbsmLy8v5cyZU3ny5FFoaKhKlSqVLt+h7iWnT5/Wrl27FB4ervDwcHl4eCg4OFgFCxZ06/ikZMmSql69unbs2JFYNnPmTJefGgIAAIBUMAAAAAA47Pjx44Yk06tp06ZuaXvVqlWWtgcMGOBQ3aZNm6YqppUrVxo9e/Y0cuTIYYnB3itfvnzGww8/bEyZMsUIDw+326Yj7aT0On78uEPxnzlzxnj++eeNEiVKJNuev7+/0alTJ2PVqlVOfT5JuXTpkvH8888bBQoUSLJPPz8/47HHHjO9F3t/a0diSu7vnJCQYMyaNcuoV6+e4eHhYTeWpPqIiYkxFixYYDz++ONG2bJlU/y7eHh4GBUrVjQ++OAD4+rVqy59dmPGjLG0e7fNmzcbHTp0MLy9vZOMo2nTpsaGDRuS7WfRokVGw4YNk/xMsmfPbvTs2dM4ceKES+/DnW7cuGFMnDjRqFmzZpLxSjK8vb2Nxo0bG1OnTjVu377tUNsDBgxI1b7o6LHIGdOmTbP0M2bMGLf3k5TQ0FC3vce///7b6NmzpxEUFJTs5xgUFGT069fP2Lt3r0PtbtmyxdLGCy+84HKcd7Ru3drUpo+Pj3H58uVk6+zYscMYM2aM0aRJE8PHxyfFbSY4ONgYNGiQw+/VMOwfG519hYaG2m3b3vl72rRpTnxq/2fLli1Gr169Uvx7FypUyHjssceMI0eOuNRPSuf2VatWGa1atTI8PT2TjOGBBx4wfvjhByMhIcGlGFLDdh+zPc6nxs8//2z3/f78888p1k3p/HOHvW3G2dfx48ft9ufMy9Ex3c2bN43PP//caNy4cbLnzjvbxTvvvGNcu3bNmY/dMIy0G4vc7ddffzU6dOhg+Pv7J/s+ChYsaDz55JMuncNT2g6OHDliDBw40MiZM2eS/efPn9948803jejoaKf7t+fo0aPGs88+a5QpUybF7SJnzpxG27ZtjW+//dal/uPj442ZM2carVq1Mnx9fZPtq0SJEsaIESOSHPM74uzZs8arr75qFC9e3KHtPnv27EadOnWM1157zdixY4fL/TrjyJEjljjmzZuXLn3bM2nSJEs8Tz75pNPtnDt3ztJOnTp10iBiszNnzljOT9WqVUvzflPD9vjmysvRsUVajvvdqVu3bpaY5s6d63Q7c+bMsbTzyiuvpEHEKffrjrF0Wjpw4IAl5tmzZztcv23btpb6ZcuWdbj+pk2bLPV///33JNd39FqUO8ZVtufqO1K6vhIVFWW88cYbRv78+ZNsN1euXMbAgQONkydPOvxZuUNkZKTh5eVlisXPz8+l/b1NmzaW97Vv3740iPr/LFmyxNJn27ZtnW4nLi7O8PPzM7WTP3/+dPkOc/36dct78PX1TfN+DcP+NZG7rx3u2LHD6Nq1q5E9e/Ykt93y5csb77//vhEbG+v2/pNie33J9jv4nbizZcuWZNyhoaHGZ5995lLc7rJgwQLj4YcfTjbOu1+FChUyunfvbvzwww9GVFRUiu07e63eHeMQ25ez17kuXLhgjBw50qhYsWKy7Xp7exsNGzY0Zs+ebcTHxzvVhz1vvPGG5Th48+bNVLcLAAAA55BIDgAAADjhfkskj4iIMDp37pyqi9I9e/a027Y7Lnin9APG7du3jddffz3ZJJ+kXu3atUtV8vCPP/5o5M2b1+H+cuXKZUyfPt0wDPcnkp8/f95o0qRJijHY6+OTTz4xAgICXP4b5cmTx6HEPVtJJXAlJCQYo0ePTjYx8u6Xh4eH8f7771vaj4yMNLp06eLU32f58uVOvw93+fHHH43ChQs7/flXrFjRWLNmTYrtk0hu5Y5E8oMHD9pN1kjp5enpaQwZMsSIiYlJsY/KlSub6gYHB6fqx9bTp09b9q8ePXokuf7+/fsdusEkuX106NChDv0IeK8nkoeHhxs9e/ZMNuHL3itbtmzGc8895/QPoUkd82/evGkMHTrUqRhat27ttmRXR6VlInl8fLxRqlQpS/udO3dOse79mEj+ww8/GEWLFnW67eDgYOPHH3906rNPi7HIHZs2bTLq1avn9PvInj278eqrrzqVxJDcdjBp0qQUk6vvfhUvXtw4dOiQU5/j3cLDw41BgwaleANAUi9/f3+n+vvjjz+MBx54wKV+PvnkE6ff36RJkyzJYc6+HDlfptann35q6ffChQtp3m9SevbsaYln1qxZLrVVunRpUzteXl7G9evX3Ryx2WeffWaJ/9NPP03TPlMrvRLJ03rc7072Em/PnDnjdDunT5+2tFO/fv00iNjM3vfBXbt2pXm/qWV7Th80aJBD9WJjY41cuXLZ3X4cvfbx9ttvm+ply5Yt2THkvZ5IvmbNGqf2txw5chi//vqrQ5+VO/zxxx+WGFq1auVSW+PHj7e0NXnyZDdHbDZixAhLn2+//bZLbT344IOWtg4ePOjmiK3Cw8Mt/ebJkyfN+zWM5BO5x48f79TYsFKlSsb27dvd1n9ykkokj4+PN0aPHm25OSK5V/Xq1dN9vHXixAmHvrck9xoxYkSK/WSmRPJbt24Zr7/+epLnkJS2vdSeW+0dx//8889UtQkAAADn8QxBAAAAIIuKiIhQ06ZNtXDhwowOxSU3btxQ586d9dZbb+nGjRtO1//9999Vv3597d692+m6U6ZMUe/evXX58mWH61y/fl0DBw7U119/7XR/yTl//rwaNGigv//+26X6O3bs0NWrV13uPyIiQt26ddO7777rcht3GzZsmMaPH6+EhASH1jcMQ8OHD9eUKVMSyyIjI9WyZUstWLDA4X6vX7+uDh06aMuWLU7HnFpvvfWWevXqpTNnzjhdd+/evWrVqpVmz56dBpEhOStWrFDdunX1xx9/OF03ISFBU6dOVdOmTXXhwoVk1x00aJBpOTw83PLYb2fMmDHDsn/Z9nG38+fP69ChQy73ZxiGvv32WzVp0iRVx5qMduzYMTVo0EBz586VYRhO1Y2Li9Nnn32mVq1aKSIiIlVx3Lx5U23bttW3337rVL1ly5apXbt2io+PT1X/9wpPT089++yzlvJly5YpNjY2AyLKGAkJCXrxxRfVr18/nTp1yun64eHh6tWrl8aMGZOqOFI7FpGk2bNnq0mTJtq4caPTdWNjYzVhwgR16NBB0dHRLscgSa+99pqeeeYZ3bx50+E6YWFhatSokUvn8d27d6t27dqaNm2abt++7XR9Sbp27ZrD637wwQdq37699u3b51I/L7zwgoYOHepwrK+//rqeeeaZVP9d0oPt+fyBBx5QSEhIBkUjbdu2zVJWv359l9pq0KCBaTk+Pl67du1yqS1HLV++3FLWvHnzNO0zM8hM4/4zZ85YxqnFihVToUKFnG6rcOHCKlasmKls165daTouSUhI0MqVK01lefPmVZUqVdKsT3dp2bKlafmvv/5yqN6GDRt0/fp1u//maBu269WrV0+5cuVyqO69ZsmSJXrwwQed2t9iYmLUtWtXLV26NA0j+z9peaxPqn13yuzxS9KRI0csZQULFkzzfpMzYsQIjR492qmx4Z49e9S8eXNt3bo1DSNLWkJCgvr376/x48c7dWzfsWOHmjRpkm5jxTvj9tR8b7nfXLlyRa1bt9Zbb72V5DkkOXv27FHDhg21ePFil2OoX7++fH19TWWuXGsDAABA6nhndAAAAAAAMsZLL71kN4m6bNmyevDBB1W+fHnlzZtXPj4+io6OVmRkpA4dOqQ9e/Zo06ZNunXrVrLtV61aNfH/jxw5YroYnStXLpUuXTrFGLNnz263PCEhQR07drT7Y6i/v78eeeQR1alTRwUKFNDVq1d1+PBhLVy40PID0dmzZ9WkSRNt3brVoXgkaeHChRo2bJglkdDLy0uNGzdW69atVbhwYXl5eens2bNatWqVVqxYkZjY9swzz2j8+PEO9ZWShIQE9ejRQ8eOHUssK1mypNq3b6/y5csrX758unz5so4fP66ffvrJoTbLlSunqlWrqkKFCipYsKD8/f2VPXt2Xbt2TSdPntSOHTu0bNkyxcTEJNYxDEOvvfaaKleurPbt27v8fj799FNTQnhoaKgeeeQRVapUSUFBQYqMjNSmTZs0f/58S0LqCy+8oDZt2qho0aLq1auX6QfHmjVr6qGHHlKJEiXk7++vCxcuaOXKlVq0aJEpoTYmJkaPPfaYtm7dKm/v9Pm6/NZbb+mNN96wlHt7e6t58+Z68MEHVbhwYd2+fVunTp3S77//ro0bN5q2v9jYWPXr10/e3t7q0aOH3X6KFStm2ievXLliSTqsUKFCkvucbeJHVrd48WJ17dpVcXFxpvLs2bOrRYsWqlu3rooWLarcuXMrOjpaYWFhWrlypdauXWtaf/PmzerUqZP+/vtvZcuWzW5f/fr104gRI0x9TZ8+XZ07d3Yp9hkzZpiWCxcurNatWztcP0+ePKpdu7YqVKigUqVKKSAgQH5+foqJidGlS5e0d+9eLVu2TCdPnjTV27x5s4YOHap58+Yl2bafn59pO7VNcsufP78KFCiQbHyuJDel5OLFi2rUqJHOnTtn+bciRYqoS5cuqlChgoKCgnTx4kXt2rVLCxcutNxstHbtWj344INav369fHx8XIpl8ODBWrVqVeJyuXLl1LZtW5UvX15BQUGKiorSjh079PPPP1uSv/7++299/PHHevnll13q+15jm2Ql/XdT0O7du1WrVq1Ut589e3bT9ihJ+/btM+2LefLkSfb4mD17dhUoUMDUTnR0tI4ePWpar1SpUvLz87PbRnLjk759++rHH3+0lBcqVEgtW7ZU9erVlS9fPvn6+urKlSvasWOH/vjjD8v+OW7cOAUHB+uZZ55Jsq+kuGMs8tVXX+mpp56ylOfKlUutWrVS7dq1E8ckUVFROnz4sJYvX67t27eb1v/tt980cOBAh8c8tiZPnqwJEyYkLgcHB6tt27aqXbu2goODdfPmTR05ckQLFy7U3r17TXUvXryoJ554wqkbfbZv364mTZrYTdgICAhQ8+bNVb9+fYWEhMjPz09RUVE6c+aMtm3bpvXr1zt1Q6MkjRw5Uu+9956lPCgoSK1atVLNmjUVEhKinDlzKjIyUnv37tXSpUt18OBB0/pTp05VYGCgPvjgg2T7W716td5++21Lee7cudWqVStVq1ZNRYsWVa5cuXTr1q3EsebevXu1adMmnT9/3qn3lxoJCQlat26dqcwdxxFXxcXFmfYpScqWLZtCQ0Ndaq9UqVKWsoMHD7qc7OeIDRs2mJYDAgJUsWLFxOXz589r5syZWrZsmfbu3avLly/Lx8dHwcHBKly4sJo0aaLWrVurSZMm8vDwSLM471a6dGlFRkYmxmd7HrU9J9gTFBSU5L+l17jfXQ4cOGApc/Q7sz2lSpUynX9u3LihU6dOqXjx4i63mZx9+/Yl/j3vsN3md+3apVmzZmnNmjU6fPiwrl27Jn9/fwUHB6tkyZJq2bKl2rVrpwceeCBNYkzKgw8+qOnTpycunzp1SocOHVLZsmWTrZdcsvjy5cs1ePDgZOvHxMRo/fr1lljcwXZc5eyYylk7d+7Uq6++mthHjhw51LJlSzVp0kQFChSQt7e3Tp06pWXLlmnFihWmurdv39bQoUO1d+9e5c6d220x2ePO/SypY31ayuzxS7I7bqxdu3aa95uU+fPna+LEiYnLvr6+atu2rRo3bqyCBQsmfpdYuHCh5fOJiopSq1attG3bNpUsWTJd4x41apRmzZqVuFy0aFG1b99elStXVr58+RQdHa39+/fr559/1vHjx011Dx48qJEjR2rSpElpHufgwYPt3oBbrVo1NWvWTGXLllVgYKCyZcuma9euKSIiQgcOHNDu3bu1devWNL0B6u5xiCvOnTunixcvOlUnMjJSDRs2tLsvV6pUSU2bNlXFihUVGBgo6b/vPBs2bNDvv/9uupk1Ojpa3bt31z///KOaNWs6HbuPj48qV65smtxj9erVTrcDAACAVMrA2dABAACATMfe43hTejSlo+w9xtHRR1A6+7jMkydPGh4eHqY6wcHBxqJFixzqLzo62li4cKHRvn17o0+fPm6PLyUTJkyw+zjNxx57zIiMjEyy3nfffWcEBgZa6tWuXduIjY1Nsd/w8HAjJCTEbv3kHuN57Ngx02N6c+TIYWnjzqOXk2P7Od79uNi8efMaM2fONBISEuzWTUhIMG7evGkpHzhwoFG/fn1jypQpxqlTp1KMwTAM49q1a8bYsWON7NmzW7ahGzduONTGmDFjLJ+Bj4+PIcnImTOn8dVXXxm3b9+2W/f8+fNGw4YNLfUff/xx48MPP0xcLlmypPHXX38lGcOWLVvs/j1nz57t0HtIrXXr1tl95G+jRo2SfYTz+vXrjfLly1vq5c6d2wgLC3Oob1cfYexO9mIYM2ZMuvUfGhrq0vH22LFjluOIt7e3MXz4cOPixYvJ1t2xY4dRs2ZNy/t+6aWXkq3XuXNnS3+uPP553bp1lr5fe+21ZOusWrXKKFCggDFy5Ehj06ZNRnx8fIr9JCQkGL/99ptRpkwZS3/z5893OF53bh/2zt/Tpk1z6L20bdvWUjdHjhzGRx99lORx6saNG8bw4cMNT09PS90XXnjBoZhtj/m+vr6J/1+gQIFkP8tr164Z/fv3t/QdGBjo8HE6tWz3MXdfhoyPjzcCAgIsfUyePDnZevbOP45y9bhxN3vjPUfGALY++ugjSztFihQx5s2bl+R2aRiGERcXZ3zzzTeGn5+fqW727NmNrVu3ptivu8cimzZtsowncuTIYUyYMMGIiopKNpbVq1cbpUqVsnwOn332WYrvw952cGcfy5YtmzFhwgQjJiYmyffx2Wef2d2/N2zYkGLfhmEYly5dMooXL26p7+/vb7zzzjvG9evXk61/+/ZtY/ny5Ubv3r0NLy+vFPtbsGCBpa88efIYkydPTvJ93nmvCxYssDte+vXXX5Pts2XLlpY6//vf/4yrV6+mGG9CQoKxdetWY/jw4UZQUFCyMbrDnj17LLF+8MEHadpnco4cOWKJp0SJEi63Z2/M9frrr7sxYrOzZ89a+mvcuLFhGP8dg+x9j0jqVa1aNYe/o7pTas4V9mTkuN9V3377raXfQYMGudzegAEDLO2tWLHCjRGbzZ49O8ntPjw83OjRo4dD26Ako2PHjsbu3bvTLFZb58+ft8TwxRdfpFivfv36pjp3X/MJCQlJ8vx8x7Jlyyz9/vPPP8nWcfVajzvGVHfYG1vdPW5+9NFHjbNnzyZZf/Xq1UZQUJCljQkTJrgck6MaNWpk6XfNmjUutXX79m3LcaZo0aJujvj/3Lp1yzIW8vb2TnYcmhx7f8dHH33UzVGb3bhxw+4YZ8GCBWna7x32zs93b7vt27c3zpw5k2T9GTNm2L3G2bx58xT396T6d+S6kO3xPHv27InHG39/f2PKlClJbgexsbHGyJEjLf16eXkZp0+fTrHv1Fi7dq2l35IlSxrr1q1zqP6VK1eMWbNmGU2aNDFGjhyZ4vruvhaenMOHD9vdlr/88stk63Xq1MlSp0GDBsbGjRuTrRcREWG89NJLlt8Wihcv7tBY356hQ4dajifpde0CAAAA/yGRHAAAAHDC/ZJIPmnSJEtfq1evdinulBJdXIkvOcePHzeyZctmiX/8+PEO1d+6davdxDNHkkWGDRtmqde4cWMjOjo6xbpxcXFGly5dkvxx2pVE8juv/PnzG3v37nXk7Vskl3ifkuXLlxve3t6mWFJK4LvDXnKG9F8S+fr161OsHxERYfmRJGfOnEauXLkMSUbFihUdSrS190NSq1atHHoPqZGQkGCUK1fO0ne7du2MW7dupVj/8uXLRuXKlS31H374YYf6J5Hc9eQF2wSNnDlzOpUEc+vWLaNVq1amNrJly2acPHkyyTqLFi2yfFYffvihw33eYfvDnCTj0KFDyda5fv26ERcX53RfhvHfD63Vq1c39Ve/fn2H67tz+3A1kXzWrFmWer6+vsnepHK3yZMnW+p7eHgYW7ZsSbFuUsf8kiVLOpQ8lpCQYLRp08ZS//vvv3co9tRK60RywzCM5s2bW/oYMWJEsnXuh0Tyf//91zIWqlevnlPn9J07d1rGQw899FCK9dw5Frl586YlmTokJMSpZL3IyEijSpUqpjby5s2b4tgsqXGIj4+Pw/v322+/bak/ZMgQh+r27NnTUrdIkSIuJSoeO3Ys2X+/cOGCkTt3blNfZcqUcfgGQsP47ybUIkWKmNp44IEHkkxSioqKsiSzDRw40Kn3dceNGzccSoZKjenTp1v+HkuXLk3TPpNj78avJk2auNzeX3/9ZWnv8ccfd2PEZvbi79Wrl3Hx4kW7N9Q58nrqqadcHo+4wp2J5Bk97nfV+PHjLX2+8cYbLrc3evRoS3tpeQOvvfi//vprY/369Ub+/Pmd3gazZ8/u0NjRXSpVqmTqv3PnzsmuHxUVZfpunj9/fqNx48amNnbu3JlsG6+88oppfX9//xT3u3s1kfzO66233nKojXXr1lkSIkuXLu1yTI4qXbq0JeaUzuvJsT1XZ8+e3Y3Rmp0+fdoSe7FixVxuz95NVK1bt3ZjxFZvvPGGpc9ChQrZnYQhLdi7JnLn1adPH4du4t68ebPh7+9vqT9z5kyX+nclkfzOKygoKMXjzB2PPfaYy/urq15++WVTf9myZTMOHz7sUlvpfS08ORcuXLB7c21KN7Dbu1bx1FNPOTXu/u677yxtvPvuuy69j08//dTSliPXhwEAAOA+ngIAAACQKlu3blW1atVS/Ro6dGi6xWz7qPQyZcqoadOmLrWVM2dOd4TksEmTJpkegSxJXbp00ahRoxyqX7NmTU2ZMsVS/tlnnyX7iNKrV6/q+++/N5Xlzp1b8+bNU65cuVLs19vbWzNnznTr45rv+Pbbb11+3HZqHtX84IMP6oUXXrDEkhqffPKJ5ZHj9gQGBurll182ld24cUPXr1+Xr6+v5s2bp5CQkBTbadSokR566CFT2apVq3Tz5k3nAnfSb7/9ZnkMcbFixTRv3jxlz549xfpBQUH69ddflSNHjhTbzUy+/vrrVB9LGzdunGbxLV++XBs2bDCVfffdd2rRooXDbWTPnl3z589Xvnz5Esvi4uL00UcfJVmnbdu2KlCggKls2rRpDvcp/bd/zJs3z1TWuHFjlSlTJtl6OXPmlLe3t1N93ZEnTx7NnDnTVLZhwwbt27fPpfYygr2/y8SJE9WyZUuH6j/++OMaNmyYqcwwjGT/3snJli2b5s2bp9DQ0BTX9fDwsNvPn3/+6VLf9yJ7x/nTp09nQCTpa8KECaaxUMGCBfX77787dU6vWrWqvvzyS1PZ0qVLtXPnTpdicmUsMnPmTIWFhSUue3p6auHChapcubLDbeTOnVsLFy40nTsvX77s8njk/fffd3j/Hj58uAoXLmwqc2T/OnDggObPn28q8/X11e+//+7Ue7+jRIkSyf77p59+qqioqMTlnDlzaunSpSpSpIjDfRQtWlQ//vijqWzfvn1atGiR3fVPnDhhGVc/9thjDvd3txw5csjDw8Oluo46dOiQpcyR42xauXLliqXMz8/P5fbs1b18+bLL7aXk3LlzlrLAwEA9/PDD2rZtm6ncw8ND+fPnV4UKFVSwYEF5etr/yerLL79U165dZRhGmsScljLruP9+3A6jo6P1yCOP6MKFC6Zyb29vFSlSRBUqVDCN0e8WGxurQYMG6cMPP0yTeG09+OCDpuVVq1Yle71i9erVun37tqm+bRvLly9Pts+//vrLtNysWTOXvwfcC7p06aLRo0c7tG7Dhg3VvXt3U9mRI0d09OjRtAgtUVrvZ7GxsYqOjna5veRk9mPE1q1bNWHCBEv5uHHj5OPjk2b9OqJs2bKaNm1akufEu9WuXVuff/65pfzTTz9Ni9CSNW3aNFWtWtWhdd999135+vqaytL6e6rttfBmzZqpdOnSLrWV3tfCkxIdHa127dpZjlU9e/ZM9prD7du39c4775jKHnroIX3xxRdOjbsHDRpk+T3j448/1q1btxxu4w57Y297Y3QAAACkHRLJAQAAgFS6fv26du3alepXWv9Adbdr166ZlvPmzZtufafGzZs3NXXqVFNZ9uzZ9dlnnznVTs+ePdWsWTNT2cmTJ/Xrr78mWWfWrFm6fv26qWzkyJGW5M7k5MqVy3KhPrWaN2+uhx9+2K1tOqN///6m5R07dujGjRsutVW2bFmnbqjo2rWr3fJHH33UqWS2bt26mZZv376tf//91+H6rpg0aZKl7IMPPnDopoQ7SpQooREjRpjKDMPQF198ker4MsqFCxdSfSxNy7/de++9Z1pu3Lixevbs6XQ7uXPn1vPPP28qW7hwYZLre3t769FHHzWV7dmzR1u3bnW4z59//llXr141lQ0aNMjh+q6qVKmSatSoYSpbt25dmvfrDhs3brQkvFWuXFlPP/20U+1MmDBBefLkMZX99NNPliQmR/Tp00c1a9Z0eP0HHnjA8vnbvqfMLDAw0FJmu53fb8LCwiw3hYwfP96yjTmiT58+lptJfvnlF6fbcWUsYhiG3n//fVNZ37591aBBA6f7L1mypOUYmdwxNbl2nNm/s2XLZjkHnD59WhcvXky23vvvv6+EhART2ZgxY1xKIk9JdHS05YaB//3vfypZsqTTbTVs2NCSZJ/U52z7XUO6t79v3H1Dwx22NwmkJ9vvHJIsScTOsFfX1fG6IyIiIixl06dP1+bNmxOX8+bNqw8//FCnT5/W+fPntW/fPp09e1YXL17UlClT7N7osGjRIo0bNy7N4k4rmXXcfz9uh6NHjzYlpj7wwAP68ccfdeXKFZ06dUr79u1TeHi4Dh8+rNGjR9tNFBwxYoRWrlyZZnHfYXu8jYyMTHbsb5sEbi+R3Hadu125csVyM5mjN1bdizw9PTVx4kSn6vTr189Sltbj5sy8n2Xm2C9fvqzu3btbJqlo2rSpBg8enCZ9OuPDDz906EajO/r3769atWqZyrZt2+bU9YLUatq0qTp06ODw+kFBQWrXrp2pbOfOnZYxsjtl1mvhSYmLi1PXrl0tx6kWLVpo5syZySaE//jjjzpx4kTisoeHh90bEhzxxhtvmPq6cOGCZQIGR9gb+9kbowMAACDtkEgOAAAAZEG2F8v//fdf00yF96otW7YoMjLSVNahQweXEj2eeuopS1lyM3TZ/ljs5eWlAQMGON1v165d7Sa+uWrIkCFua8sVtglot2/fdvnHqkGDBjk1803JkiXtzr7q7GdSvXp1S1lazu4XGxurNWvWmMoKFCigzp07O93WE088YZklLqWZ5uCaK1euWI4DqXmSRPv27U3LJ06cMP2QZ8te0vf06dMd7s92XT8/P8use2nF9jixcePGdOk3teztS0888YRDM8PdLTAwUL179zaVxcXFafXq1U7H5MqMvnXq1DEt30+zetlLno6JicmASNLPL7/8YppxNFeuXOrVq5dLbXl4eKht27amMtvzkyNcGYvs2rVLhw8fNpW585i6adMmp2fCGzx4sNP7t+3+JaU8hliyZIlp2c/PT08++aRT/Trqr7/+soydUzN2tP2ck9pe7CXm3Ms3Edk+ySBnzpzy9/fPoGhkSWyTZJm10xn2kvNiY2Ndbi8l9va9u5/2U61aNe3du1cvvfSSChUqZFovb968euyxx7Rv3z67T3wZN26cDhw44P6g00hmHvff79vho48+ql27dqlnz56W/b106dJ66623tG3bNhUtWtT0b/Hx8Ro0aJDdz8edmjVrpmzZspnKkksEt5dIXqdOHQUEBCSWrV27Nslz44oVKywJnLaJ6JlJixYtVKpUKafq1K1b11KW1k/7ysz7WWaNPTY2Vl26dLEkqAYFBaWYfJseChUqZEmwTomHh4fd74l//PGHu8JKkTu+p0ZHR+vMmTPuCsnCdny6adMm0/eqzMQwDA0ePFjLli0zlVetWtXytCZ7fvrpJ9NyamZnL1q0qOWGWFe+UxYsWNBSdurUKZdiAgAAgGtIJAcAAACyINsfyK5fv65evXrZfTTtveSff/6xlNnOJu2ojh07Wh5Xa6/9O2wTH6tXr273IndKfH193TqzV/Pmzd3WlvTfD+Pr1q3TpEmT9MQTT6hDhw5q3ry5atWqpWrVqlle9erVs7Rx8uRJl/pu0qSJ03WKFStmWs6ZM6dTs/VKUvHixS1ltklX7rR9+3ZTEoMkderUyaXHhhcoUECNGjUylR08eDBNHwGdVa1du1aGYZjKXJk5944SJUpYynbs2JHk+hUqVLAcu2fPnu1QouSJEye0atUqU1n37t1dfvT40aNHNWvWLI0YMULdunVT69atVa9ePVWvXt3uccL2x01XjxHpzd45IaknIaSkR48eDrWfnBw5cthNWk2JbRJNfHx8mj3iPr3Zm7Euo5M/0prtj/LVqlVL1aPVbY9FyR2HkuLKWMT2fXh5ebm0fd9h+z5u3ryp/fv3O9VG06ZNne7XXpJacjdn7t271zJjeYcOHezeGOcOtp9z4cKF7T423lG2n3NYWJjdMVOZMmUUFBRkKhsxYoTWrl3rct9pyfZJBs7MFJ1eUnNss1fXdkzjTsm1HRISomXLlil//vzJtuHv76/FixerbNmypvKEhARNmDDBLXGmh/tt3H+/bIctWrTQjBkzUvw7lC9fXn/88YflusHJkyf1ww8/uCXOpPj5+VnOi0klkp89e9Z0zitfvryKFCkib29v05PYbty4ofXr19ttY8WKFablggULqmLFii5Gn/FcOaeHhIRYjv8ZMeFCZtrPHOk/NXXdHXtCQoL69++vv//+21Tu5eWlWbNmWa4vZYQOHTo4fWOjJHXp0sVSlp43cKfHODq1bK+nHD9+XI899liaPh0jrbzyyiuW81Dx4sX1xx9/mG4gsscwDMuYPDXXtiT3fKe0953W3lOOAAAAkHacv1oFOODYsWPasmWLtm7dqi1btmj79u2mwX5oaOg9+ziisWPH6s0333Rbe+l5kQYAAGSMpk2bujSrqK3Vq1e7PSk4KW3atFHBggV17ty5xLKlS5eqZMmS6tu3r7p166ZGjRpZZsDKaNu3b7eU2T6+1VHZs2dXlSpVtGXLlsSyvXv36tatW5YfiiMjIy0zFdaoUcOlfqX/ktB//vlnl+vfERISYpnFz1Xnz5/Xu+++qx9//FEXLlxIVVuuJmG7MvuN7exxoaGhTidm2JtxMi1/vHLndixJtWvXNh2DDMPQjh07MuUMcmPGjNHYsWMzOgy7kkoqdmfS6qVLl5L998GDB2vTpk2JyxEREVq0aFGKM4vPmDHD8t3U3gznyUlISNDUqVP1zTffmI6brkjLGzXcyXZfLVKkiAoUKOBSWzVr1pSnp6cp8dnesSA5oaGhLp2X7SWoRkVFuXwjwb3E3rZkbzbD+4ntsWjv3r2qVq2ay+3Z3kQYFRWluLg4h7c1V8citu/Dw8PD7s1pjrI3Y2VKx1Rbtk9PcERS+1dS7D3mvWHDhk736yjbzzkiIiJV24u9m1AuXbpkedqOp6en+vfvr08++SSx7PLly2rSpIlatWqlfv36qV27dsqXL5/LsbiTbQJRRh9H7O1/qXnagr26Kc1UmRrJHT8mTpyo4OBgh9rJmTOnvvzyS8uYds6cOfriiy8yxXksM4/779ft0NPTU998843DY/iKFStq+PDhGj9+vKl8ypQpTo+nnfXggw+ajuPr16/XjRs3LMl29mYjv/v/Fy1aZFrX3nUn2zbcefN7RnDlnC79d16/fv164nJaJ5Jny5bNcmNwTEyMy8e39NzPMuMx4qmnntLcuXNNZR4eHpo8ebIeeught/blKmcnRrgjX758Klq0qGkG523btrkrrGT5+vqqSJEiTtdzdhydWr169dJrr71m2tamT5+u33//XQMHDlSXLl1Uu3ZtlxL509Mnn3yiDz74wFSWN29eLV261KEJT/bv32/5DjhjxgzLU5OcYTtZgLPfwyT74++7j8cAAABIeySSw21Wr16tCRMmaOvWrff8TJbpJTWPcQMAAEhLOXLk0KRJk9StWzdTcmFUVJS+/PJLffnll8qZM6fq16+vunXrqm7dumrcuLHy5MmTgVFbL0Rnz57d6ccV3+2BBx4wJUQmJCQoIiLCkihob5Y3e7NYO8reTMSuSGkmP0dNmTJFw4cPt8zG6CpXf/hxZfuy/fHSHW1I9h/T7C72flCpUKGCy+098MADDvWB1LG9mUSSdu/e7dY+UppRslevXnrhhRdMP3xOmzYt2URywzA0Y8YMU1np0qXVuHFjh+Pav3+/+vbt69KsUvZkxMx+zjIMw3JtIzX7qZ+fn4oWLaoTJ04kljm7n9rO7uuo9D7GpaeIiAhLWUozsGVmsbGxCg8PN5VFRka6/eaMK1euODzGcHUsYntMvX37tnbt2uVSW0lxdpZeV/YxZ/cvezfr2T4K3p1sP+cbN26kyeds72bA0aNHa9GiRTp27JipfPny5Vq+fLk8PDxUsWJFNWjQQLVr11bjxo1Vrlw5t8bmqPj4eNOyl5eX021s3bpVQ4cOdapOoUKF9Pvvv1vK7c3I6O7kvLScdT2ptvPly6fevXs71VbLli1VoUIF02zLcXFxWrdu3T2T9JeczDzuv1+3w/bt26tkyZJOtfXkk0/qnXfeMd0QuHXrVkVHR6fpDQ0PPvigadKj2NhYrV27Vm3atDGtl1Ii+d2WL1+ut99+21R24sQJHT16NMk2MiN3jZvTesycM2fONE8kT6v9LLMdI/73v/9p8uTJlvJPPvlEQ4YMcVs/qZWasVD58uVNieTh4eEyDCPNn9iUWb6nFihQQO+8845efPFFU/nFixc1ceJETZw4UYGBgWrQoIHq1q2revXqqUGDBvfUjWtz587VSy+9ZCrLmTOnlixZ4vC2Y+/a1unTp+2Wu8qVp6XYmxTk9u3b7ggHAAAADiKRHG6zc+dOy+OqszpXH3kNAACQHrp06aIffvhBjz/+uN0ZPm7cuKEVK1YkPuLY09NT1atXV/fu3dWnTx8VLVo0vUO2JIzZm73GGfaSjq9cuWJJJLeXqJaavlMb9x3uSJabOHGiRowY4YZo/o+rP/y4Ywb8e20WfXvsbU+2M3k6I6ntGO7lyg9hzkrph/eAgAB16dJFs2bNSixbtmyZzp49m+SMwH///bclic+Z2RP37NmjFi1aWJJXUyMzJDFfvXrVkliYmv1U+m9fvTuR3Nn9NDMc39KbvaTcjBifpJf0OA5JziUBuToWuReOqbbSYx+zt9+n5Y2a6TEeSOpzzps3r/766y917drV7o1IhmFoz5492rNnj6ZMmSLpvwSfjh07qnfv3mratGmaxn032xkQb9686XQb0dHRTifpJ3UTSN68ee227yp7de314S5Jtd20aVOXZpdt1aqVKZFcUqZJJM/M4/77dTts3bq1020VKlRIlSpVMt1Eevv2bW3cuDFNE67r1asnPz8/02e3fPlySyL5nWs20n+JeHfPOF6hQgUVLlxYZ86ckfTfDMURERGmbWn58uWWvjN7InlmGTfnzZvXcpyIjo52+MkNtmz3s+zZs6dZEmxmOka89tpr+uijjyzl7777rp577jm39OEu7rzWmJCQoGvXrqX5jbaZZX+TpBdeeEG3b9/Wq6++ajdJOTIyUr///nvijX7e3t6qV6+eevbsqV69emXo03RWrlyp/v37myaE8fLy0ty5c516stO9+D0sqTr2blgBAABA2rm3n82D+4KPj0+qZolMby+88IKOHz/u9Gv9+vWWu7qdnYUGAAAgvfXp00cHDx7UU089leIPCwkJCdq2bZtGjhypUqVKaejQoW5NLHTEtWvXTMupnZ3IXn3bPiRZZoiSUveIXR8fH5fr3s3ebC3OWLdund0k8ly5cqlPnz768ssvtXr1ah05ckQRERG6ceOGEhISZBiG6QXn2NvGUrMtO7odI3XsJQJlhMGDB5uW4+Pj9f333ye5/rRp00zLnp6e6t+/v0N9xcXFqUePHnaP9Q0bNtTYsWO1ZMkS7dq1SxcvXtS1a9d0+/ZtyzFiwIABDvV3L3H3fmqvPvtp6sTHx2v79u2WcmdnGc1M7pXj0N1cHYvci+8lPdh7+ktaJXjduHHD7hg2PZUoUUKbN2/W5MmTHZol8fz585o8ebKaNWum2rVra9WqVekQpfX4nJoZVd3B3kz/qZkl8u7ZSZPrw10KFixot7x69eoutWev3tmzZ11qK71l5nE/22HK9dJ6O/T29rbcVGM7+/i+fftMcdSuXdtybadly5aJ/5+QkGA5ttq2Wb58eRUuXDhVscMx7tzP4uPjde7cuRTbd5fg4GB5eprTDM6dO2eaud8ZaXWMGDt2rCZMmGApHzdunNsnVXCHzHKOyMxefvll7dmzR3379k3xyeK3b9/WunXr9Oyzzyo0NFTDhw+3OxlLWtu5c6c6d+6s2NhYU/nkyZP18MMPO9XWvfo9LL2fXAIAAAArEsnhVtmyZVO1atU0dOhQTZ48Wdu2bdO1a9f07bffZnRoDgsMDFTx4sWdfq1Zs8aURFOqVKl0nTkHAADAVYULF9YXX3yh8+fPa8GCBXrmmWdUtWrVZB/pHhcXp6lTp6pKlSp2k7jSir+/v2k5tRfv7dW37UOyPyNQan6MsZdElBFsH+cqSQMHDtTp06c1a9YsPfnkk2ratKlKlSqlwMBA5ciRw3LzpCszNmZ19rax1GzLjm7HSB3b2UoDAwMtCdOpfY0dOzbFOJo3b67ixYubyqZPn2533ejoaP3000+mslatWqlIkSIOvecpU6ZYZgAtVaqUtmzZonXr1mnMmDFq3769qlSpouDgYPn5+dk9d2R0Qp4r3L2f2qvPfpo6//77r92ZC2vUqJEB0aQP2+OQ9N+ECO4+FtkeY9LjvVSrVs3t72PgwIFp/j6cZe/GzdTM3pkcX19fS4JXp06d3P45N2vWLNk4vL299fjjj+vAgQPaunWrxo8fr9atW6d4E+vWrVvVsmVLvf3226n9KFIUEhJiWr569ardWSrTS7FixSx/u1OnTrmcnHfy5ElLWYkSJVxqyxFJ3dDj6syy9uql1xMaUiszj/vtbSN3P1nFWWyHrrk7CVySdu/ebbrJ0zYJ3N5M4q1atTIt3z0DuWEYWrlyZbJ9Iu24cz87e/as5dyVlvtY9uzZLU/FiouLc/kGi7Q4RowfP15vvvmmpfz111/X66+/nqq200pmOUdkduXKldMPP/yg8+fPa9asWRo6dKjKly9vueZ5txs3buiDDz5QjRo1UnU+dFZYWJjatWtnuZY8btw4DRkyxOn27H2n/OWXX9z6/SAsLMzpuOw9YcV2jA4AAIC0RSI53GbAgAG6evWqduzYoW+++UaPP/64atSokakeaZUa3333nWl58ODByX7hBAAAuNfkyJFDnTt31ueff66dO3cqMjJSy5cv15gxY1S3bl1LMoP036yB7du3T7cf8m0f5R0VFZWq9uw9Tj4oKCjFfqXU/Wh8LyQ+HDlyRFu3bjWVPfLII5o2bZpTj1u/F95LZmNve7K3LTrK0e0YqWP7COPIyMhU/d1c5eHhYZnh+8CBA9q4caNl3fnz51t+TLad0Tw5c+bMMS37+/vrr7/+Uq1atZyI2P4Pgve6gIAAS1J8av/etvXZT1PHNnFK+m8brVy5cgZEkz7sPUr9+PHjGRBJ6tm+l8z6PpxlLxExrWYF9PT0tIzpMvpzrlmzpkaNGqU///xTERER2r17t7744gt169bNbmK5YRgaPXq0Zs2alaZxhYaGmpYTEhIss7qmpFmzZm5LssmePbsleS4uLs5ukp0jjh49aikrX768S205Infu3HZng3b1qUz2ZgvNLDezZuZxv72nCBw5csTl9my3wxw5cqhYsWIut5eSChUq2C3PbNuhbWK4YRhasWJF4rLteMg2adxeG3fXsU1Mt7c+0o4797P0PtZL93b87733nt1k8ZEjR2rcuHEut5vWUnOd07aup6cnieQpyJ07t/r06aNvvvlG+/fv1+XLl7VkyRKNGDEiye+Vhw4dUvv27S2zg6eFy5cvq02bNpZx6RNPPOHyzRD36ndKe09jsB2jAwAAIG2RSA63yZMnT4qPgLpfrV27VocPH05c9vLyypSP7gYAALibn5+fHnzwQY0dO1YbN27UiRMn9Oqrr1rGfOfPn9fEiRPTJabg4GDTcmxsrN0fmxy1b98+07Knp6fdH+JDQkIsPzj/+++/Lve7e/dul+u6y92zkN3xxhtvON3OsWPH3BFOlmK7HUuyzPrsDNvtWLL/wxBSx95jtTNqXx40aJDlxuVp06ZZ1rMty5Mnjzp27OhQH9HR0dqwYYOprH///i7NVJwZjxMeHh6WhM/U7KfXr1+3JACyn7ouPj5eX3zxhaX8oYceuq8nNPD397fMIHcvjClcYXtMjYqKcjlJNjMpUKCApSwt/4a2n/OhQ4d069atNOvPGZ6enqpcubKeeuopzZ8/XxcvXtTs2bNVtmxZy7ojRoxI0xnC7c1cbC+ZJT3VrFnTUmZ7XnbU+vXrTcteXl6qWrWqS205yt5NZ64mx9lLnnZ1Vun0lpnH/UWKFLHMBHrixAmnb7KQ/psp2Xb21pSegpZaZcqUsftkscy2HVauXNly7riTCH779m2tWbMmsdzPz0/16tWztFGgQAFVrFgxcfnIkSOJfw/bRHQvLy81b97cbfEjeWl5rJfS/kk992r8H3zwgUaOHGkpHz58uCZMmOBSm+nl0KFDLtc9ePCgaTk4OJgJz5yUJ08etW/fXu+++652796tgwcP6sknn7Scr/bu3aupU6emaSw3btxQ+/btLdtEp06d7H4XdtS9dG3rbmfOnLGUpeVTFQAAAGBFIjnuC9HR0frzzz81bdo0TZw4UR9++KG+//57bd261eVHfjrD9sviQw89pMKFC6d5vwAAAOmpSJEieuedd7Rs2TLLBfSff/45XWKw9yOS7azajoqNjbVcKK9UqZKyZ89uWTdbtmyqVq2aqWzz5s0ujzXtzRyc3k6dOmVa9vX1dXqWYcn1HwmzMndux5K0ZcsW07KHh0ea/2CcFdWpU8dS9scff2RAJP/NymSb4DF37lzFxMQkLh89elTr1q0zrdOnTx+HZ2E8e/as5RjXuHFjp2O9ePFipkwkl6z76unTp3XhwgWX2tq2bZvl87SXeAHH/Pzzz3Zn8n300UfTP5h0ZnssOn78uCVpJDO4l46p6al+/fqWsn/++SfN+rP9nGNiYrR69eo06y81fHx81Lt3b23btk3Vq1c3/duZM2fSdPxcpUoVS1lG71f2zrm253VHXLhwwTQBivTf+Sdnzpwux+aIZs2aWcpcne3S3vHeXoL2vSizj/vdtR3aq9OkSROXYnKUh4eH3T4y43bYokUL0/Kdm8I3b96sq1evJpY3adIkyRvqbGcZv9OGbSJ5rVq17CbgI200aNDAcn1tw4YNio+Pd7qtjNjP3HWMiI+Pt1xbyp8/v92by1Ly8ccfa/jw4ZbyF198Md0mwUiNbdu2uVTv0qVLlpsy+b6ZemXLltWXX36pmTNnWv4tLa+F3759Wz169NCmTZtM5Q0bNtTs2bNTdSNWlSpVLJPELF261OX23OXAgQOWsrS+8REAAABmJJIjU/vzzz/VokULBQUF6aGHHtLgwYM1YsQIvfzyy+rfv79q166t/Pnza+TIkWn2mNhr165p/vz5prKhQ4emSV8AAAD3gsaNG+uRRx4xlR09elQ3btxIso63t7dp2ZUfxaT/fmSz9dNPP7nU1uLFiy2PorbX/h22iT/nz5/XqlWrnO730KFDqUoecJdLly6Zll19JPq8efPcEU6WUqNGDcuPNr/88otL+8WFCxe0du1aU1m5cuXS7BH3WZm9x8TPnTs3TWdITc6gQYNMy1FRUVq4cGHi8vTp02UYhmmdwYMHO9y+7TFCcu04MXfuXKfr3GH746ir5w5XufOcY3vdIKn2kbKzZ8/queees5SXLl1a7du3z4CI0pe9Y9EPP/yQAZGkzv3yPpxVoUIFyyyAixcvdnmG3JRkxs/Zz89PY8aMsZSn5UyJtWrVsszYmZqnD7nDQw89ZCn79ddfnT4X2ktyste2u9k7HtubbdYR9urZ3mzgbrbfXyXXxiGZfdxvb1txJXHO3vgpM22HCQkJdm9mSevt8A7bJPCTJ0/q8OHDliRwe8f8pNr466+/FBsba9mmbNdLK+66RpTZ5c6d2zKL/LVr1+w+QS45V65csVyfKlasmCpUqJDqGJPTrFkzy43KK1eudPr32D///FPR0dGmsjZt2jg9m/Znn32ml156yVL+3HPP6aOPPnKqrYyyaNEilyatWLBggaXM3hMK4Jo+ffpYJhhJy7HpE088od9++81UVqFCBS1evNjyhCpn+fr6qlGjRqayc+fOacWKFalqN7V27dplWg4JCVGxYsUyKBoAAICsiURyZEqXLl1Sq1at9NBDD2nVqlWKi4tLdt333ntPZcqU0d9//+32WH788UdT0lT+/Pn18MMPu70fAACAe0n58uUtZcklwPj7+5uWbX8gclSdOnUUGBhoKlu8eLHOnj3rdFtffvmlpax169ZJrt+zZ09L2fvvv+90v67USQu5cuUyLUdERDj9Y9WaNWtcni0pK8uWLZtlNunz58/rl19+cbqtKVOmWBKZk9uO4brChQtbZvQ6fvy4pk+fniHxdO3a1TJb4J1YDMOwzJhVpUoVp2astD1GSPaTy5MTFxenzz//3Kk6d3PXucNVbdq0sZRNmTLF6WNlVFSUZs+ebSqzdxxAymJiYtS9e3e7M8NPnDhRnp73/6XODh06WMo+++wzXblyJQOicV3dunUtCdXr1q2zJMXdjzp16mRajo6OtjsudYc2bdpYkljnzJmT4bNtp8TZ7xqplTt3bkuftsks6a106dKWcceZM2e0ePFip9qZPHmypax3796pis0R5cqVs8S/detW7d+/36l2Ll26ZPdpBS1btkxVfCmxHYNIro1DMvu4v0uXLpYndi1cuFAXL150uI2LFy9a3m+hQoXUtGlTd4SYrO7du1vinzNnjtM3gv7222+W82zJkiVVvHjx1IboEHvJ3X/99ZflnJlcEnizZs1Ms5WvWLFC69ev1/Xr1x1uw50yepx/L+nVq5el7Ouvv3aqjRkzZlgmSkiPY72fn5/l99CbN29qxowZTrXjjnPVV199peeff95S/vTTT+vTTz91qq2MdObMGZee0mP75GxJatu2rTtCwv9nO1ZMq7Hp6NGj9d1335nKChcurD///FN58uRxSx8dO3a0lI0dO9YtbbvKNjG/bt26GRQJAABA1nX//7qC+86RI0dUt25dy0Uyf39/NWvWTD179lS3bt1Uq1Yt0w+Ily9fVqtWrfTnn3+6NR7bL+f9+/e3O2MJAADA/eTcuXOmZQ8PD+XLly/J9W0vdB8/ftwyU64jfHx8LE9/uXXrll544QWn2vnpp5+0cuVKU1loaKjd5Kw76tWrZ5lx7M8//3RqVseVK1fa/XEnIxQsWNC0HBMTY5mNLDk3btzQ448/7u6wsoynn37aUvbyyy8nO7O/rRMnTujdd981lXl4eNhtG+4xatQoS9nLL7+sQ4cOpXssOXLksNzgsmLFCp06dUorVqywPNbadgbzlNgeIyRp2bJlTrXx5ptv6vDhw07VuZvtuePYsWMut+WKOnXqqFatWqay3bt3O53YMWrUKEvyUY8ePRQSEpLqGLOSAwcOqG7dunZnEu3atas6d+6cAVGlv8qVK1vGK1evXtWjjz7q0uyFGcXb21sjRoywlA8ZMkTh4eEZEFH6efnlly1PXBg3blyazICdL18+y3gtPj5effr0UUxMjNv7cxfb7xqSFBwcnKZ92ibkbty4MdnJS9LDk08+aSl74403HI7rxx9/tCTlNGvWzG6iflp45plnLGX2ZptPzttvv61bt26ZyurUqaOiRYumKraU2EvUcnUckpnH/UFBQerRo4epLDY21qm/o71t9vHHH0+Xm7+CgoIsyahnzpzRlClTHG7j9u3bGjdunKW8W7duqY7PUUWLFlXZsmVNZb/++qtplvQCBQqoUqVKSbbh5+dnSsq7dOmSPvzwQ9M6OXPmTLcn5mT0OP9e0q9fP0ti/eLFix2ePT8iIsIyYYGXl5cee+wxt8WYHHvnqokTJzo8K/k///yjJUuWmMpKlSqV7Az7tr755hu7x8Nhw4al6sbmjPLyyy87NQb5/vvvtXnzZlNZjRo1LN9lkTq249O0GJt+9dVXevvtt01luXPn1tKlS9069hkyZIgKFChgKlu3bp3ee+89t/XhjOPHj+v06dOmMns39gMAACBtkUiOTOXGjRvq3Lmz6aJSuXLl9NNPPykiIkKrVq3Sjz/+qPnz52vLli06ffq06WJJbGys+vXrpzNnzrglnn379mnTpk2mMmceFQ4AAJBRxo4daxnHOOrUqVNauHChqaxChQqm2a1sVa5c2bQcFRXl8qPNn3nmGUtf8+fPd3im7x07dliS0SXp+eeftyT12HrjjTcsZUOGDLH7CFlbf//9tzp16uRSAn1aaNy4saVs1KhRDv1YdfPmTXXv3j1DkmfvF+3atbMk8YSFhalPnz4OzZAXERGhjh07WhJQHnnkEUuSAdync+fOlh9jo6Ki1LZtW+3du9elNq9du6b333/fqZtS7rBNDk9ISNCMGTM0bdo0U3m2bNnUr18/p9oOCQmxbEuzZs1yeIbWadOmacKECU71acv23LFmzRrLrIlpzd6j0V9++WWtWbPGofrfffedZaZhDw8Pvfjii26JLys4deqURo0apVq1atlNtK1cubJlxrb73bhx4yxjlt9//12DBg2yzEbpqL1796p///4OJ/24w5NPPqkiRYqYyk6ePKm2bdtaEgkcFR4ertGjR2v58uXuCDFNlC5dWn369DGV3bx5U+3atdOePXucbi8sLCzZf3/11VctT5nYvn27Onfu7PLf+8SJE3r22WeTjHfRokWaNm2aJQHYUZ999pmlrGrVqi615ah27dqZlq9fv64tW7akaZ8pefTRRxUaGmoq+/fff/Xaa6+lWDcsLMxuIvfo0aMd7n/69Ony8PAwvZo1a+Zw/X79+qlMmTKmsvnz5+urr75yqP6vv/5qdxZZe9/J3M12DCL9d5x1RWYf948cOdJyzpk8ebIl8dOexYsXW2Yazp07t5599lmH+x84cKBlO3Rm1tTRo0dbZiV/5ZVXtHXrVofqjxgxwrJuzpw59b///c/hGNzBdhb+P//80/Td3ZGZxG3Xsf0bNmrUyPJZpRXbfWzPnj06depUuvR9rwkMDLQkQSckJGjQoEEpnqcTEhL0xBNPWBJce/furVKlSjkcg+0+5uHhkeL44o6WLVuqXr16prJz587pySefTPEmxytXrmjQoEGW9V599dUUr8/dMWPGDD3xxBOWa22PPfaYvvzyS3l4eDjUzr3kwIEDGjJkiEPXD7dv3273fG9vdvas7n//+5/27dvnUt3t27dbJt9w99h0wYIFlr+lj4+Pfv3112RvFHJFjhw57E6U8Nprr2nSpEkut7t06VI99dRTTtdbtWqVpcx2bA4AAIC0RyI5MpXhw4ebfqBo27atduzYoa5du9q9qFCwYEFNmTLFNLPCpUuX9Prrr7slHtvZJBs1apRuM7oAAACkxi+//KJ69eqpXr16+vTTTy0z1yZl/fr1atGiha5evWoqTylB0d6sVoMHD9aqVaucnj0zNDRU48ePt5S/8sorevrppy2x3W3mzJlq2bKl5fGjderUcejH7E6dOtmdka1r167q2bOn1q5da3k/W7du1RNPPKHmzZvr2rVrkqT69eun2Fdaq1OnjiUx5Z9//lGXLl106dKlJOtt2bJFjRs3TkykCAgISNM471ceHh6aOnWq5XvMr7/+qtatW+vIkSNJ1t20aZMaNWpkSegNDAzMlLNtZTZz5sxRUFCQqezYsWOqW7eu3n77bYceb5yQkKBVq1Zp2LBhKlasmF555RWdP3/e6Vjq1aunChUqmMqmTp1qudnnkUceSfapEUmxPd7FxcXpoYce0urVq5OsExkZqeeff15DhgxJPB66epywPXdERUWpZ8+e2r9/v0vtuaJ3796WHzBjYmLUvn17TZo0Kclz2M2bN/Xqq6/qsccesyQAvPDCC6pZs2aaxZzZXb9+XWvXrtUHH3ygDh06qESJEnrnnXfs3kRQo0YNrVixIsudi6pWraqJEydaymfOnKl69epp8eLFDiWeRERE6LvvvlPr1q1VuXJlff/994qPj0+LkO3y9fXVvHnz5OPjYyrftm2batSooUmTJjk0a3ZsbKyWLFmi/v37KzQ01OFjcUb67LPPVLJkSVPZ6dOn1bBhQ7333nspzlR85zxiL1HXVoECBTRjxgxLItWff/6pmjVr6ocffnAomfX69euaO3euunTpotKlS2vSpElJ3rhw7NgxDR48WMWKFdNLL72kdevWOTTmv3TpkgYMGGA5j5UtW1a1a9dOsX5qNG3aVIGBgaYy2ydiprfs2bPrk08+sZR/8MEHevrpp5PcP9avX6/69evr8uXLpvJu3bpZklHTkre3t77++mvLtvfUU09p1KhRSW7nt2/f1kcffaRu3bpZjmWtW7dW+/bt0yzmOypVqmQ5t0yYMEHTp093ejb/zD7ur1ixoiWxzTAMdenSRVOnTrV7vjEMQ9988426du1q+be3337bMpZOS6VLl9bIkSNNZdevX1eLFi00a9asJM+Xly9f1qBBg/TRRx9Z/m3UqFHp/mSZlBLFXUkkd6UNd7Ed5yckJKh79+4OJ/jfb0aNGmW5ue7QoUNq0KCBDhw4YLdORESEunTpovnz55vKAwIC0n1W4UmTJlmOcXPnzlW3bt0UGRlpt87+/fvVoEEDyxOs6tSp4/DTtH788UcNHjzYsh8PGTJEkydPzpRJ5L6+vpL+m2W8U6dOdp/ScsesWbP04IMPWq6DNm/eXI8++miaxpkZTZ06VRUrVlSrVq30zTff6OLFiw7VW7Jkidq2bWsZyzp7s35yduzYob59+5r68PT01A8//KCmTZu6rZ+7Pf300+rYsaOpLCEhQc8++6w6d+7s8CQCx48f13vvvacqVaqobdu2+vvvv52OxXbMXblyZZUoUcLpdgAAAJA63hkdAOCos2fP6ttvv01cLl68uH766SflyJEjxbovvfSSVqxYkZjsMmvWLL3zzjuWxzY5Iy4uTt9//72pbMiQIS63BwAAkBE2bdqkTZs26YUXXlC5cuVUrVo1Va5cWcHBwYmJFJGRkTp06JBWrVql7du3W9ooU6ZMijPd1K1bVw888IBp5pdDhw6pRYsWypEjh4oUKaKcOXNa6v3+++8qVKiQpfzll1/W8uXLLReav/zyS82aNUsdOnRQ7dq1lT9/fl29elVHjhzRggULLD9QSf/NiDZr1ix5ezv29eirr77S/v37LbOizps3T/PmzVPOnDlVoEABeXl56dy5c4qOjjatV6NGDb3xxhtq27atqdzR2ZbcxcvLS2PGjLE8UWfJkiUqXry4unbtqnr16ilfvnyKjo7WyZMn9ccff2jz5s2mH+kmTZqk/v37p2vs94sGDRpozJgxllkVV61apQceeEAtW7ZUixYtVLhwYcXHx+vUqVP6/ffftX79essPpR4eHpo8ebKKFSuWnm/B7b7++mv98ssvbmkrqeNHapUuXVrz5s1Tu3btFBsbm1h+/fp1jR49WhMmTFCjRo3UsGFDFSxYUIGBgbpx44YiIyN16tQpbd++Xdu3b0/yB3VnDRo0SK+88krisr2Z4xz9Id7Wiy++qEmTJpliPX/+vJo3b64mTZqoTZs2Kl68uDw9PXX+/HmtX79ef/zxh+m417JlSxUuXFgzZ850uv/+/ftr9OjRpgTH3377Tb/99pvy5Mmj/PnzWxJQCxUq5PKMoUmZNm2aqlWrZvoR//r163r22Wf1/vvvq0uXLqpQoYICAwN16dIl7dy5UwsXLrR7U06NGjVSPVN7ZlatWjW75Tdv3lRUVJSioqIcStDz8PDQ448/rk8++SQx2SKreemll7Rv3z7LJAe7du1Shw4dVKxYMTVv3lzVqlVT3rx55evrq6ioKEVEROjAgQPatm2b9u7d61ACcVqqX7++pkyZooEDB5rObeHh4Xr22Wf1+uuvq2nTpqpXr55CQkIUEBCg6OhoRUZGKiwsTNu2bdOOHTvS/WkFqRUYGKiff/5ZTZo0SbzRUJKuXr2qkSNH6p133kmc4TMkJER+fn6KiorS2bNntWPHDv3zzz8OJ79IUteuXTVu3DjL5BrHjx/Xo48+qpdfflnNmjVTrVq1FBwcrFy5cunq1auKjIzUkSNHtHXrVu3evdvpGcYvXryojz/+WB9//LHy5s2rGjVqqFq1aipWrJgCAwOVI0cO3bhxQydOnNCWLVu0fPlyyzHAw8MjVTMjOsrHx0fdu3fXN998k1j2888/p8vs18np1KmTnnjiCcuszl9++aXmzp2rfv36qUKFCvL399fJkyf1559/2r3hKzQ01NJGemjRooVGjRpluRH4nXfe0dSpU9WxY0fVqFFDQUFBioyM1N69e7Vw4UK7NzoXL15cs2fPTpe47zzN5e6nily/fl2DBg3S0KFDVbRoUfn7+8vT0zxX07hx49ShQwdLe5l93P/uu+9qzZo12rlzZ2JZXFychg4dqvfff189e/ZUyZIlZRiGjh07ph9//NHud+9HHnnEpZlKU+v111/X33//bdo3rl27pn79+untt99Whw4dVLZsWfn5+Sk8PFwbNmzQkiVL7N6U1LFjR7366qvpGP1/WrRoIS8vryRv+HIkCbxu3bry9/c3nXecbcNdOnbsqKCgIF25ciWxbNOmTapdu7b8/f1VqFAhu2O8u7fB+4mfn59mz56tFi1amMZmBw4cUMWKFfXII4+ocePGKly4sC5duqRdu3Zpzpw5dsc/U6dOTZPvwcmpWbOmxo8fb9k3Fi5cqOXLl6tPnz6qUqWK8ubNq9OnT2vt2rVasmSJJTE3d+7cmj17tuXYmpRHH33U7o1qW7ZsUfXq1V1/Q0q76wkpGTduXOL3+0WLFmn58uVq166dGjVqpIIFC+r69es6cuSIFi5caPcmg8DAQH377beZMok+vfz111/666+/NGzYMFWsWFHVq1fXAw88oLx58yowMFDx8fG6cuWK9u/fr+XLl9v9nBs3bqyePXu6LaZdu3ZZbtD09fXV+PHj7U6m4qgOHTpo3Lhxdv/Nw8NDP/zwg90b1n755Rf98ssvqlq1qpo1a6YyZcoob968kv77neDSpUvavXu3tm3bZnqKvCtu3bql3377zVTGdWYAAIAMYgDpYNWqVYakxFdoaKjTbbz++uumNqZNm+ZU/RUrVqSqvq2ffvrJ1J6/v78RHR2dqjYBAMC97/jx46YxgCSjadOmbmnbdswkyRgwYIBDdZs2bepUTFWrVrX05cqrSJEixp49exyKccWKFYaXl5dT7R8/fjzJ9q5fv248/PDDqYq/UKFCxs6dOx2K/27h4eFGtWrVnO6vUqVKxtmzZ43ly5db/s2ROJz9Ozuid+/eLn9+o0aNMgzDsJSPGTMmxX7HjBljqecKd30mrrwHd3nzzTdTtR1ny5bN+OGHH5zqc9q0aU7tb2nBXgzufKX0fkJDQ03rO3q8vWPTpk1G0aJF3Rbv+++/79LneO7cOcPb2zvJdgsUKGDcvn3bpbYNwzB+++03p4/ddx/zrly5YgwYMMBU7sw1gbFjxzrVZ1Jt2zt/O3Nd4OjRo0aZMmVS9Tdu1KiRceXKFYf7dNfxLaP2d9t9zF2v5s2bGxs2bHA5rtScf1J73DAM++O9VatWOd2OYRhGQkKCMX78eMPT09Ntn294eHiyfabFWMQwDGPJkiVGnjx53PY+5s+fn2x/7hqHpPbYsnv3brfsK46aOnWq4evr67bPecuWLXb7+fjjj93SvoeHh/Hxxx87/P5Sa+3atZYYDh8+nG79JyUuLs7o2rWry59jwYIFjYMHDzrdr73zhyv7fEJCgvHMM8+kalsoW7asS+8hNc6dO2cUKFDAqThT2v8zYtzvLufOnTPKlSvncuyNGzd26fcT23Gk5Np3taioKKNBgwap+vwfeeQR49q1a0737S61a9e2G1eFChUcbiOpayj58uUzEhISnI4pNeOCGTNmOP03sMedYyt3jPVSY968ecl+t0vu5eHhYXz66acu9WuvPVe+Lzz//PMu71/+/v7GP//8k+q43fVKj+9LSX1PGz58uEsx586d29i8eXOq+09Jar7f382d+64jcufO7ZZto1KlSsaZM2dS7M+Z42NaXR9z5Bh29erVVI0zbV8VK1Z04q9iGIsXLzbV9/LyMs6ePetUGwAAAHAPx27pBe4By5cvT/x/Ly8vdevWzan6jRo1Ms0yuXbt2lTF891335mWe/XqpVy5cqWqTQAAgPSSmiez3PHII49o48aNqlixokPrt2jRQgsXLlT+/PlT3bck5cyZU7/88otGjx7t0FNqbD300EPasGGDqlat6nTdfPnyaePGjRozZoxlNlx7vLy89Pjjj+uff/5RwYIFFRERYVknd+7cTsfhDtOmTdPQoUOdquPr66vPPvssVbPi4P+88cYbmjNnjkuzXT3wwANavny5+vbtmwaRITl16tTR9u3bNWjQIGXLls3ldjw8PNSsWTM1btzYpfoFChSwPOHgbv3790/VEw/atWun+fPnKyAgwKl6Dz/8sNauXas8efK43Lf03wySb7/9trJnz56qdlKrZMmS+ueff9SjRw+nZ3fLli2bnn32WS1fvjzVn0dWVaJECb300kvasWOHVq5cqXr16mV0SPcEDw8PjRo1Sn/99Zdq1aqVqrYCAgI0dOhQ+fn5uSk657Rv317btm1T586dUzWDore3tx5++GFVqVLFjdGlncqVK2vz5s3q16+fw7Nv2goODnZ43cGDB2vDhg1q0aKFS33d4evrq169eiU5I3LevHkdftpPUkJDQ/Xrr7/qhRdeSFU7zmjUqJEqVapkKps1a1a69Z8Ub29vzZs3T2+88YbTY46mTZtqy5YtKlu2bBpFlzIPDw99/vnnmjx5stPjCQ8PD/Xo0UObN29O9/dQoEABrVy5UjVr1nRbm5l53F+gQAFt3LhRnTt3dqqeh4eHnnzySS1fvjxDfz8JCAjQypUr9cwzzzh9vM2RI4fGjh2rX3/9NcPOk1LSM4Y7M5N4Uuu2aNEi3Wcw7t+/v7799lv5+/una7/3su7du2vlypVOP3EgX758WrBggZ577rk0iswxn3zyib744gun9/XKlStr06ZNatCgQRpFlrlMnDhRb775plPf4ytWrKiVK1eqdu3aaRhZ5pbaa+EeHh4aMGCA1q1blyGz1acVf39//fTTT/rqq69UuHDhVLVVrFgxp5+IZ/u0mQ4dOqhgwYKpigMAAACuIZEcmcLNmze1bdu2xOWiRYvq0qVLCgsLc/h19uxZBQYGJrZx9OhRl+M5c+aM/vzzT1PZkCFDXG4PAAAgvS1dulT79+/XBx98oIcfflj58uVzqF7u3Lk1YMAArVmzRosWLXL6AvMjjzyisLAwzZs3T0OGDFGdOnVUoEAB5cqVy6UfLb28vPTWW2/p8OHDeu6551S8ePFk1/fz81PHjh21cuVK/fHHH6l6HLiPj4/Gjh2rsLAwTZo0Sa1bt1bp0qWVK1cuZc+eXQUKFFCzZs305ptv6vDhw6bEifPnz1vaCwoKcjmW1PDx8dE333yj3377TQ0bNkx23dy5c+uJJ57Q3r179eyzz6ZThFlDr169dOTIEU2cOFE1atRIdn/w9vZWo0aN9O2332r37t1q2rRpOkaKu+XLl0/fffedjhw5opdfflkVK1Z06Fjm7++v9u3b6+OPP9bx48e1atUq1a1b1+U4kvuhztkf8ezp3Lmzdu/erSeeeCLZG3c8PT3VrFkz/frrr1q8eLHpO7irPD099dprr+nMmTOaNGmSevbsqUqVKilfvnx2H3efloKDgzV37lxt3rxZPXv2TDEpvGDBgnrssce0f/9+ffbZZ+keb2bh4eEhHx8f5c6dW6Ghoapdu7Y6d+6skSNH6ocfftDx48d17Ngxffjhh6pWrVpGh3tPat68ubZs2aKlS5eqe/fuDicWlyhRQkOHDtX8+fN1/vx5ffPNNxm6nZYoUUILFizQ3r17NWzYMJUqVcqhekFBQeratau+/vprnT59WosXL87QpFlnhYSE6Pvvv9eePXv02GOPqWjRoinWyZ07t7p06aI5c+bo9OnTTvVXrVo1rVixQhs3blT//v1VpEgRh+oVLFhQ/fr104wZM3T+/HnNmTNHISEhdtd99NFHFR4erjlz5mjIkCGqUKGCQ+dHT09PNWnSRF9//bUOHDigRx55xKn35g4vvfSSaXnq1KmKj49P9zhseXp66s0339Tu3bs1cODAZJNZPTw81LBhQ82bN0+rV69OdVKQuzz++OM6fPiwRo4cmWICVmBgoHr16qVt27Zp7ty5GXbTbYUKFbRlyxatWbNGL7zwgpo3b64iRYooICDA5Rv1MvO4PzAwUAsWLNCyZcvUpk2bZD8DHx8fdevWTZs2bdKXX37p0A3Yac3Hx0eff/65duzYof79+6eYFF6sWDG9+OKLOnr0qMaMGZPuida23JFI3qpVq1S34U5DhgzRmTNnNG3aND366KOqXr26QkJCXJos4H7RuHFj7d+/X++//75Kly6d7LqFCxfW66+/rkOHDqlTp07pE2AKnnrqKR04cEDPPfdcite5qlatqilTpmj79u2qUKFCOkWYObzxxhvatGmTOnbsmOxNZOXKldPEiRO1Y8cO1ahRIx0jzHwOHDigbdu26a233lKrVq0cvrktJCRETz31lLZv367p06dn2JgkrQ0bNkzHjh3TN998owcffFA5c+ZMsY6np6eqV6+u4cOHa9WqVQoLC9P//vc/h/u8fPmyFixYYCqzHYsDAAAg/XgYhmFkdBC4/61evVrNmzdPXA4NDVVYWJjD9cPCwlSiRAm3xlS5cmXt3r3bpbpvv/22Ro8enbhcqVIl/fvvv+4KDQAAIEOcPHlSR48eVVhYmCIjI3X9+nVly5ZNAQEBCgkJUeXKlVW6dGmXZ0tMLwcPHtTevXsVHh6uy5cvK1euXAoODlaxYsVUp06dDJ/VVpL69u1rmnGlaNGiOnnyZAZG9H8uXLigf/75R2fPnlVkZKR8fHyUP39+VahQQdWrV0/17JJwzIULF7RlyxZdvHhR4eHh8vLyUnBwsAoUKKB69erdtz9c3Q/Cw8O1bdu2xGNQdHS0cuXKJX9/fxUpUkTly5dXaGhohieiuOrWrVvatGmTDh48qMuXLyshIUGBgYEqVaqUateunWE3xWSE+Ph4bd26VWFhYQoPD9fVq1cVGBiokJAQlS1bNtPMiIz7j2EY2rdvnw4dOqTLly8n7qv+/v6J+2v58uUzxQz5p0+f1q5du3Tp0iVdvnxZMTEx8vPzU0BAgIoVK6by5cvfM0my7nTgwAHt379fly5d0qVLl+Th4SF/f38VKlRI5cuXV9myZVP1tAlbR44c0b59+xK3l9jYWPn5+Sl37twqUaKEypcvn2TSuKOioqJ0+PBhHTt2TBcvXlR0dLTi4+MTt8uyZcuqcuXKGf7Ex9jYWIWGhppu/Fy8eLEefvjhDIzKKjY2Vlu2bEncTm7fvq2AgACVLFlSderUSfXfKz3s3btXu3fv1tmzZxUTE6OAgADly5dPZcqUUY0aNdy6jd/LMvO4PzIyUps2bdKRI0cUFRUl6b+be8qVK6e6des6lISWkeLi4rR161bt379f4eHhun37toKCghQcHKwqVapkqpuScP86fPiwduzYoVOnTunGjRvy9fVVoUKFVKVKFVWuXDmjw0tWfHy8duzYoT179ujChQuKi4tTrly5VLx4cdWqVcuhm+cgXb16VRs3btShQ4d09epV5ciRQ4UKFVLFihUtT1KB4xISEhQWFqajR4/qxIkTunr1qm7cuCEfHx8FBASoYMGCqlKlSoqTltyvYmNjtW3bNp0+fVqXLl1SRESEvL295e/vr3z58qls2bIqW7Zsqm78+fjjj02J47Vr19bmzZvdET4AAABcQCI50kVqE8m3bduW6kf02ipevLiOHz/udD3DMFSmTBnTjOYff/xxuj5mFQAAAJnXrVu3VKxYMV28eDGxrGvXrvrpp58yMCoAAAAAkvTpp5+arvW2aNFCK1asyLiAAAAAgPtIfHy8ypQpY8rVWLJkidq3b5+BUQEAAGRt9/ZUgsD/Fxsb6/Y2Xb2HYs2aNaYk8uzZs6tfv37uCgsAAAD3uRkzZpiSyCWpSZMmGRQNAAAAgLsNGzZMxYoVS1xeuXKlNm3alIERAQAAAPePH3/80ZRE3qBBA5LIAQAAMhiJ5MgU8uXLZ1pu3bq1DMNI1cuZGdHvNnXqVNNyx44dLfEBAAAA9hw9elSvvPKKqSxHjhzcmAgAAADcI3x8fDR27FhT2YQJEzImGAAAAOA+YhiG3nvvPVMZY20AAICMRyI5MoX8+fOblg8dOpQhcURFRennn382lQ0dOjRDYgEAAEDGGT16tE6ePOlUnQ0bNqhp06aKiooylfft21dBQUHuDA8AAABAKgwYMEC1a9dOXP7111+1cePGDIwIAAAAyPxmz56tf//9N3G5R48ePK0TAADgHkAiOTKFgIAAVaxYMXE5LCxMhw8fTvc45syZo5iYmMTlYsWK6cEHH0z3OAAAAJCxPvjgA5UsWVKtW7fWF198od27dysuLs6y3pUrV7R48WJ17txZjRo10pkzZ0z/XrBgQWZcAQAAAO4xnp6e+vLLL+Xp+X8/oQwfPjwDIwIAAAAyt9jYWL3++uuJy7ly5dKHH36YgREBAADgDu+MDgBwVJs2bbR3797E5W+++UYTJ05M1ximTp1qWh40aJDpxwQAAABkHfHx8Vq+fLmWL18uScqWLZtCQkKUO3du3b59WxEREbp06ZIMw7BbP3v27Pr++++VL1++9AwbAAAAgANq1aql7777TsePH08su3jxokJCQjIwKgAAACBzCgsLU//+/ROXq1evriJFimRgRAAAALjDw0gqqwFwo9WrV6t58+aJy6GhoQoLC3OqjSNHjqhChQq6ffu2JMnX11dbt241zVSelv79919VqVIlcdnDw0PHjx9XaGhouvQPAACAe4evr69u3brlcv2QkBAtXLhQDRo0cGNUAAAAAAAAAAAAAAAAjmMqZWQapUuX1qBBgxKXb968qXbt2mnfvn1OtXPr1i1Nnz7d6f5tZyN/8MEHSSIHAADIojp37qxcuXI5Xc/Pz08vvfSSdu/eTRI5AAAAAAAAAAAAAADIUMxIDrc6ffp04ozhd9u4caN69+6duFy4cGGtW7fObht+fn7Kly+f3X+Ljo5Ww4YNtXv37sSyHDly6MUXX9SwYcNUtGhRu/ViYmL0zz//aNGiRfrxxx8VHh4uZzb92NhYFSpUSJcvX04smzt3rnr06OFwGwAAALi/xMTEaO3atVq/fr127dql48eP6+zZs7p+/bpu3rwpPz8/BQUFKSQkRLVq1VKTJk3UunVr5cmTJ6NDBwAAAAAAAAAAAAAAIJEc7lW8eHGdOHEiVW0MGDAg2RnDT506pdatW+vAgQOWfytZsqTKly+vwMBA3b59W1FRUQoLC9ORI0cUHx9vWteZTX/+/PmmpPG8efPqzJkz8vHxcbgNAAAAAAAAAAAAAAAAAAAA4F7hndEBAM4qWrSotmzZomHDhmnWrFmmfzt27JiOHTuWYhuBgYFO9Tl16lTTcr9+/UgiBwAAAAAAAAAAAAAAAAAAQKblmdEBAK7w8/PTDz/8oF27dqlfv37KkydPinUKFSqkvn37av78+Tp//rzDfZ06dUrLly83lQ0ZMsTpmAEAAAAAAAAAAAAAAAAAAIB7hYdhGEZGBwGkVkJCgnbv3q19+/bpypUrioyMlK+vrwICAlS8eHFVqFBBRYsWzegwAQAAAAAAAAAAAAAAAAAAgHsCieQAAAAAAAAAAAAAAAAAAAAAkMV4ZnQAAAAAAAAAAAAAAAAAAAAAAID0RSI5AAAAAAAAAAAAAAAAAAAAAGQxJJIDAAAAAAAAAAAAAAAAAAAAQBZDIjkAAAAAAAAAAAAAAAAAAAAAZDEkkgMAAAAAAAAAAAAAAAAAAABAFkMiOQAAAAAAAAAAAAAAAAAAAABkMSSSAwAAAAAAAAAAAAAAAAAAAEAW453RASBziYyM1Jo1axKXixYtKh8fnwyMCAAAAAAAAAAAAAAAAAAAAMh8bt26pVOnTiUuN23aVIGBgenWP4nkcMqaNWvUqVOnjA4DAAAAAAAAAAAAAAAAAAAAuK/88ssv6tixY7r155luPQEAAAAAAAAAAAAAAAAAAAAA7gkkkgMAAAAAAAAAAAAAAAAAAABAFuOd0QEgcylatKhp+ZdfflHp0qUzKBoAAAAAAAAAAAAAAAAAAAAgczpy5Ig6deqUuGybp5vWSCSHU3x8fEzLpUuXVsWKFTMoGgAAAAAAAAAAAAAAAAAAAOD+YJunm9Y807U3AAAAAAAAAAAAAAAAAAAAAECGI5EcAAAAAAAAAAAAAAAAAAAAALIYEskBAAAAAAAAAAAAAAAAAAAAIIshkRwAAAAAAAAAAAAAAAAAAAAAshgSyQEAAAAAAAAAAAAAAAAAAAAgiyGRHAAAAAAAAAAAAAAAAAAAAACyGBLJAQAAAAAAAAAAAAAAAAAAACCLIZEcAAAAAAAAAAAAAAAAAAAAALIYEskBAAAAAAAAAAAAAAAAAAAAIIshkRwAAAAAAAAAAAAAAAAAAAAAshgSyQEAAAAAAAAAAAAAAAAAAAAgiyGRHAAAAAAAAAAAAAAAAAAAAACyGBLJAQAAAAAAAAAAAAAAAAAAACCLIZEcAAAAAAAAAAAAAAAAAAAAALIY74wOAAAAAAAAAAAAAAAAAAAA3BsMw1BCQoIMw8joUAAgQ3h4eMjT01MeHh4ZHUqaI5EcAAAAAAAAAAAAAAAAAIAsyjAM3bx5U9euXdO1a9cUGxub0SEBwD3By8tLuXLlkr+/v3LlyiUvL6+MDsntSCQHAAAAAAAAAAAAAAAAACALunHjhs6ePau4uLiMDgUA7jnx8fG6evWqrl69Kkny9/dXwYIF76uEcs+MDgAAAAAAAAAAAAAAAAAAAKSvGzdu6OTJkySRA4CDrl27phMnTtxXx00SyQEAAAAAAAAAAAAAAAAAyELuJJEbhpHRoQBApnLr1i2FhYXp1q1bGR2KW3hndAAAAAAAAAAAAAAAAAAAACB9GIahs2fPWpLIs2XLpoCAAPn5+Slbtmzy8PDIoAgBIGMZhqH4+HjFxMTo2rVrunHjhumYefv2bV24cEHFihXLwCjdg0RyAAAAAAAAAAAAAAAAAACyiJs3byouLs5U5u/vr8KFC5M8DgD/X7Zs2eTr66s8efIoNjZWp06dUmxsbOK/X79+XXFxccqWLVsGRpl6nhkdAAAAAAAAAAAAAAAAAAAASB/Xrl0zLWfLlo0kcgBIRvbs2RUaGipPT3PadVRUVAZF5D4kkgMAAAAAAAAAAAAAAAAAkEXYJpIHBASQRA4AKfD29lZAQICpjERyAAAAAAAAAAAAAAAAAACQKRiGodjYWFOZn59fBkUDAJmLbSJ5XFycDMPIoGjcg0RyAAAAAAAAAAAAAAAAAACygISEBEtZtmzZMiASAMh8bI+XhmGQSA4AAAAAAAAAAAAAAAAAAO599hIePTw8MiASAMh8PD2tadf2btDJTEgkBwAAAAAAAAAAAAAAAAAAAIAshkRyAAAAAAAAAAAAAAAAAAAAAMhiSCQHAAAAAAAAAAAAAAAAAAAAgCyGRHIAAAAAAAAAAAAAAAAAAAAAyGJIJAcAAAAAAAAAAAAAAAAAAACALIZEcgAAAAAAAAAAAAAAAAAAAADIYrwzOgAAAAAAAAAAAAAAAAAAAHDvS0hI0OXLlzM6jPta3rx55enJHMEA0geJ5AAAAAAAAAAAAAAAAAAAIEWXL19WSEhIRodxX7t48aKCg4MzOgwAWQS3rQAAAAAAAAAAAAAAAAAAAABAFkMiOQAAAAAAAAAAAAAAAAAAAJCC6dOny8PDI/E1ffr0NO1v7Nixpv5Wr16dpv0h6/HO6AAAAAAAAAAAAAAAAAAAAABwbylevLhOnDiR7Dqenp7KnTu3AgMDVaFCBdWuXVtdu3ZV5cqV0ylKAKlBIjkAAAAAAAAAAAAAAAAAAHDRPkn5MjqITOqSpAcyOohUSUhIUEREhCIiInT8+HH9/vvvevPNN9WkSRN9/fXXqlChQkaHmKHuTsYPDQ1VWFhYxgYE2CCRHAAAAAAAAAAAAAAAAAAAuCifpOCMDgL3mL///ls1atTQnDlz1KlTp4wOB0ASSCQHAAAAAAAAAAAAAAAAAABAsubMmaN69eqZyuLj43X58mVt375dM2bM0MaNGxP/7ebNm+rdu7fWrl2rWrVqpXe4ABzgmdEBAAAAAAAAAAAAAAAAAAAA4N5WoEABFS9e3PQqVaqU6tSpo2HDhmnDhg36/PPP5eHhkVjn5s2bevHFFzMwavcaOHCgDMNIfA0cODBN+xs7dqypv2bNmqVpf8h6SCQHAAAAAAAAAAAAAAAAAABAqj3zzDN66aWXTGXr1q3Tjh07MigiAMkhkRwAAAAAAAAAAAAAAAAAAABu8dprrylbtmymsmXLlmVQNACS453RAQAAAAAAAAAAAAAAAAAAAOD+EBQUpFq1amnDhg2JZfv27Uux3t69e7V7926Fh4fr+vXryps3rwoWLKiGDRsqKCgoVTFFRERo586dOnz4sKKionTr1i3lyJFDgYGBCg0NVYUKFVS4cOFU9ZGV3b59W5s3b9axY8cUHh6uW7duKTg4WMWLF1fDhg3l6+ub0SEiCSSSAwAAAAAAAAAAAAAAAAAAwG2KFi1qSiS/dOmS3fWio6P10Ucf6dtvv9WpU6fsruPp6akGDRpo1KhReuihh5yKY9WqVXr33Xe1YsUKxcfHJ7tu4cKF1bZtWz3zzDOqWrWq3XWmT5+uQYMGJS5PmzZNAwcONK0zcOBAzZgxw1L3xIkT8vDwSLL/AQMGaPr06aaysWPH6s033zS9n2bNmpnW+fDDD/Xyyy8nLo8aNUrjx49Psp+kDB48WNOmTUtcnj17tnr37p1snf3792v8+PFasmSJrl69anedHDlyqEOHDho3bpzKli3rdFxIW54ZHQAAAAAAAAAAAAAAAAAAAADuH4ZhpLjO+vXrVbp0aY0ZMybJJHJJSkhI0Lp169S2bVt17NhR0dHRDvX//PPPq0WLFlq2bFmKSeSSdObMGX377beaP39+iuveS/r3769s2bIlLk+fPt2h93u36Oho0/vOkyePOnfunOT68fHxevHFF1WpUiXNnj07ySRySYqJidHcuXNVsWJFffrpp07FhbTHjOQAAAAAAAAAAAAAAAAAAABwm9OnT5uW8+XLZ1peunSpOnfurJs3b5rKCxcurKpVqyogIEDnzp3Txo0bdevWrcR/X7RokZo2bapVq1YpICAgyf7feecdffbZZ6Yyb29vValSRaGhocqVK5diYmIUERGhAwcO6OzZs66+1QwXHBysDh066Oeff5b0X0L8n3/+qXbt2jncxty5c00J+n379pWvr6/ddWNiYtSpUyctW7bMVJ4tWzZVq1ZNRYoUkY+Pj86fP6/Nmzfrxo0bkqTbt2/rhRdeUEREhMaOHevku0RaIZEcAAAAAAAAAAAAAAAAAAAAbhEREaFt27aZyipUqJD4/6dPn1bfvn1NSeQlSpTQpEmT1LZtW3l4eCSWX716VRMnTtR7772n27dvS5K2b9+uJ598UrNmzbLbf1RUlMaPH5+47OXlpddff13PP/+8AgMD7dY5d+6cli5dqpkzZ5r6d8UHH3yQmCjdqFEjnTlzRtJ/SfLr1q1Lsp6fn5/LfQ4dOjQxkVySpk6d6lQi+dSpUy3tJeXpp582JZHnzp1bY8eO1ZAhQ+Tv729aNyYmRl9++aVGjx6d+PceN26c6tatq7Zt2zocH9IOieQAAAAAAAAAAAAAAAAAAABwi3fffVexsbGmslatWiX+/3PPPacrV64kLpcvX15r1qxRSEiIpa2AgACNHz9elStXVp8+fZSQkCBJmj17tvr06aP27dtb6vz555+mJPXRo0drzJgxycZcsGBBDRo0SIMGDVJMTIxjbzQJ+fLlS5yB3dv7/9J0vb29Vbx48VS1nZTWrVuraNGiOnXqlCRp8eLFCg8PV3BwcIp1Dxw4oA0bNiQu16xZU1WrVrW77vz58zVt2rTE5dDQUK1evTrJ95UjRw7973//U/369dWyZUvdvHlThmHoueee08GDB+Xp6enEu0Ra4C8AAAAAAAAAAAAAAAAAAACAVPv666/1/vvvm8oaNGigmjVrSpKOHj2qX3/9NfHfvLy8NGfOHLtJ5Hfr2bOnnnrqKVPZhx9+aHfdEydOmJa7devmcPzSf8nPmY2np6cGDRqUuBwXF6fvv//eobqOzkZuGIbGjRuXuOzt7a1FixY5lBzfoEEDU90jR47ol19+cSg+pC0SyQEAAAAAAAAAAAAAAAAAAJCs8+fPKywszPQ6evSotm7dqilTpqhRo0Z68sknZRhGYh0fHx999NFHicvff/994qziktSjRw9Vq1bNof7ffPNN+fj4JC6vWrXKkjRuz8WLFx1qP7MbNGiQPDw8EpdtE8TtiYuL08yZMxOXc+TIod69e9tdd9WqVdqzZ0/ict++fVWlShWH43v66afl6+ubuLxo0SKH6yLteKe8CgAAAAAAAAAAAAAAAAAAALKypBKMk+Lj46NZs2apbt26iWXr1q0zrdOvXz+H2wsKClL79u21YMGCxLJ//vlHoaGhpvXKly9vWh41apSWL18uPz8/Z8LPdIoXL64HH3xQy5cvlyTt27dPGzduVL169ZKss2TJElOifffu3ZU7d267695p946ePXs6FV/OnDlVp04d/f3335KktWvXOlUfaYMZyQEAAAAAAAAAAAAAAAAAAOA2DRo00NatW9W1a1dT+datW03L9evXd7rdu23ZssWyTsuWLRUSEpK4vHHjRpUpU0ajR4/Wtm3bTDOi32+GDBliWk5pVnLbf7etfzfbmwCCgoIsM9Sn9AoICEisHxYWdl//LTILZiQHAAAAAAAAAAAAAAAAAACA0zw9PeXv76/AwECVL19ederUUZcuXVStWjXLurGxsYqKikpcDg4OVp48eZzqz3a28btn074jZ86c+vrrr9WtW7fEROXz58/r7bff1ttvv63AwEDVr19f9evXV+PGjVWvXj35+vo6Fce9qnPnzsqbN68uX74sSZo7d64++eQT5cqVy7Lu2bNntXTp0sTlMmXKqEmTJkm2ferUKdNycjOdOyIhIUGRkZEKCgpKVTtIHWYkBwAAAAAAAAAAAAAAAAAAQLJWrVolwzBMr/j4eEVGRiosLExLly7VuHHj7CaRS1JERIRpOXfu3E7HYFvnypUrdtfr3Lmzli5dqtKlS1v+LTIyUn/88YfeeOMNNW/eXMHBwerbt6/d2c0zm+zZs6tfv36Jy9euXdP8+fPtrjtjxgzFx8cnLic3G7mkxOR0d7p27Zrb24RzSCQHAAAAAAAAAAAAAAAAAABAmjIMw7Ts4eGR6jaTa6NVq1bav3+/FixYoF69eil//vx214uOjtbs2bNVp04dDR48WDExMamOKyMNHTrUtDx16lS763333XeJ/+/t7a0BAwYk225sbGzqg7Nhu00g/ZFIDgAAAAAAAAAAAAAAAAAAgDQVFBRkWo6KinK6Dds6efLkSXZ9b29vde7cWXPmzNH58+d1+PBhzZw5U0888YRKlixpWX/atGnq27ev03HdSypVqqQ6deokLq9bt06HDh0yrbNmzRodOXIkcbl9+/YqUKBAsu3my5cv8f99fX2VkJBgmaHe2Vfx4sXd86bhMhLJAQAAAAAAAAAAAAAAAAAAkKayZ8+u3LlzJy5fvHhRkZGRTrVx8OBB03JISIhT9UuXLq1HH31UX3/9tY4ePaodO3aod+/epnUWLlyov/76y6l27zVDhgwxLd89+7i9Zdv17bl7RvebN2/q5MmTqYgQ9woSyQEAAAAAAAAAAAAAAAAAAJDmatWqZVresGGDU/XXr19vWq5du3aq4qlWrZpmz56tp556ylS+cOHCVLV7h4eHh1vacVbv3r2VK1euxOUZM2bo9u3bkqSrV6/qp59+Svy3ggULql27dim22aBBA9PysmXL3BQtMhKJ5AAAAAAAAAAAAAAAAAAAAEhzjRo1Mi3PmjXL4boRERFasmSJqaxhw4Zuict2Ru7jx4+7pV0fH5/E/79165Zb2nSEv7+/unfvnrh8/vx5/f7775KkOXPm6MaNG4n/NnDgQHl5eaXYZps2bUzL3377rZuiRUYikRwAAAAAAAAAAAAAAAAAAABprl+/fvL0/L/U1blz5+rff/91qO7YsWNNydjNmjVTaGioW+Ly9vY2Ld+dAJ4agYGBif9/6dIlxcXFuaVdRwwdOtS0PHXqVNN/pf9mTLdNok9K27ZtVapUqcTlzZs367vvvnNDpMhIJJIDAAAAAAAA+H/s3HuQVOWd+P9PNwMDwoA4MBpUBCKbKGzJGi1FTdSsQYNKXK8IKCKaLa+70ZivF4yiJqu7XuOVVZCsRPESsxo2rkqQxCResqKuKCIII1GMMwwi4AVmmP794c9em+s0DNPMPK9XVVfNc/qc53wmnKLK1JsDAAAAAABb3e677x7Dhg3LrxsaGmL48OGxZMmSjV73yCOPxG233VZw7MILL1zvub/4xS9izpw5Rc31H//xHwXrPfbYo6jrN+TL+zQ0NMQzzzzTLPs2xYEHHhhf//rX8+vf/OY3MX369Pjzn/+cP3bwwQcXxOEbU1ZWFldddVXBsbPOOiseffTRomebPn16LFiwoOjraH5CcgAAAAAAAAAAAGAzLYmIWp/N+mw8nm6rfvazn0X37t3z6zfeeCMGDx4cTz75ZORyuYJzV6xYEVdccUWMGDEiGhsb88dPOumkOOqoo9a7/8MPPxwDBgyIQw89NG6//faorq7e4Cy1tbXxwx/+MG688cb8sWw2G6NGjdrM367QoYceWrAeM2ZM3HHHHfHSSy/FggULorq6Ov/ZVEy/Ob78tvGGhoYYMWJEwfdrv7V8U0aMGBGnn356fr169eo47rjjYuTIkfHSSy9t8Lo1a9bEyy+/HOPHj48999wzvvOd78SiRYuKujdbR9mmTwEAAAAAAAAAAABYnz1LPQCtzK677hr33XdfHHfccbFq1aqIiJg/f34cccQRscsuu8SgQYOioqIi3n///Xj++efjs88+K7h+0KBBMWHChI3eI5fLxcyZM2PmzJlx7rnnRmVlZQwYMCAqKyujc+fO8cknn8SCBQvitddeizVr1hRce+mll8aeezbPc33CCSfEZZddFu+++25ERCxevDjOOeec9Z47evTomDx5crPc9wunnnpqXHrppVFfXx8Rn4fzX9h+++3j2GOPLXrPu+66Kz788MP41a9+lT92//33x/333x89e/aMvfbaKyorKyObzcby5ctj8eLFMWfOnHX+HNk2CMkBAAAAAAAAAAAAaDFHHnlkPP3003H88cdHTU1N/vi7776bj643dN0DDzwQFRUVRd2vrq4ufv/732/0nLKysrj88svjxz/+cVF7b0ynTp3iV7/6VRxzzDHx3nvvNdu+TVVVVRVHH310PProo+t8N3LkyOjUqVPRe7Zv3z5++ctfxr/927/FFVdcURCI19bWxvTp05u0R+fOnYu+N80vW+oBAAAAAAAAAAAAAEjLN7/5zZg/f35cccUVsfPOO2/wvGw2GwcccEBMmzYtpk2btsmI/JZbbomf/exnMXTo0Ojevfsm5+jatWuMHj06/vd//7dZI/Iv7LPPPvHGG2/EXXfdFcccc0zsvvvu0bVr12jXrl2z32t9xo4dW9TxpshkMvGjH/0oFi5cGBdffHHstttum7ymoqIihg4dGrfffnu8//77se+++272/Wk+mVwulyv1ELQer7/+egwcODC/nj17dgwYMKCEEwEAAAAAAAAAANAUDQ0NMW/evIJj/fv3j7KysiZdX1tbG1VVVVtjNP5/NTU10bNnz1KPURKzZ8+OV199NZYsWRIff/xxVFZWxle+8pU48MADo7KycrP2zOVyMX/+/Jg3b14sWrQoPvroo6ivr48uXbpEZWVlDBgwIAYOHBgdOnRo5t8mPQsXLoxZs2ZFbW1tfPjhh5HNZqOioiJ69eoVX//616N///4tFs9vLVv6d+j6lLrL3fzJAQAAAAAAAAAAgGRUVlZGTU1Nqcdo0zY3mG4LBg4cWBDUNodMJhP9+/eP/v37N+u+rKtv377Rt2/fUo9BkYTkAAAAAAAAAAAAwCZls9lk35YN0BZlSz0AAAAAAAAAAAAAAAAtS0gOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiSkr9QAAAAAAAAAREY2NjVFXV9fs+1ZWVkY26906AAAAAABfJiQHAAAAAAC2CXV1dVFVVdXs+9bU1ETPnj2bfV8AAAAAgNbM6zcAAAAAAAAAAAAAABIjJAcAAAAAAAAAAAAASIyQHAAAAAAAAAAAAAAgMWWlHgAAAAAAAGDD3oiIHkWcvyQi9txKswAAAAAAtB1CcgAAAAAAYBvWIyJ6lnoIAAAAAIA2J1vqAQAAAAAAAAAAAAAAaFlCcgAAAAAAAAAAAACAxAjJAQAAAAAAAAAAAAASIyQHAAAAAAAAAAAAAEiMkBwAAAAAAAAAAAAAIDFlpR4AAAAAAAAAAAAA2PY1NjZGXV1dqcdo0yorKyOb9Y5goGUIyQEAAAAAAAAAAIBNqquri6qqqlKP0abV1NREz549Sz0GkAj/bAUAAAAAAAAAAAAAElVdXR2ZTCb/Oe2000o9Ei1ESA4AAAAAAAAAAABAgT59+hTExZlMJvr16xerV6/e4r2WLFmyFSYGiiUkBwAAAAAAAAAAAGCTFi5cGHfddVepx2AtV155ZUGoP3PmzFKPRCtRVuoBAAAAAAAAAAAAgNbpjYjoUeohWqklEbFnqYfYDNdcc02MGTMmKioqSj0KsIWE5AAAAAAAAAAAAMBm6RERPUs9BC2qtrY2rr/++hg/fnypRwG2ULbUAwAAAAAAAAAAAADQetx4443xwQcflHoMmkmfPn0il8vlP5MnTy71SLQQITkAAAAAAAAAAAAAG3XMMcfkf165cmVcddVVpRsGaBZCcgAAAAAAAAAAAAA2avz48dGpU6f8+u6774758+eXcCJgS5WVegAAAAAAAAAAAAAAtm29evWKf/qnf4prr702IiLq6+tj3LhxMXXq1Ba5/4IFC2LWrFlRW1sbH374YXTr1i122mmnGDx4cPTq1WuL9//oo4/id7/7Xbz77ruxfPny+MpXvhK9e/eOgw46KNq3b98Mv8Hn3n777XjzzTfjnXfeieXLl0cmk4nu3btHr169Yr/99ouePXs2273aoq39HKRGSA4AAAAAAAAAAADAJl188cXx7//+77F06dKIiHjooYfioosuim984xtb5X4ff/xx/OxnP4tJkyZt9O3ngwYNiksvvTSOP/74yGQyRd1jwYIFcdFFF8Wvf/3rqK+vX+f7Hj16xKmnnhpXXXVVdO7cOSZPnhxjxozJf3/vvffGaaedttHfYdq0afHoo4/GzJkzo6amZqPz7L333nHBBRfE8OHDo127dhs8b+bMmXHooYeu97sNHf9CLpcrWFdXV0ffvn3z69GjR8fkyZMLzvnggw9il112iYaGhoiI2HXXXaO6ujqy2exG77W23//+93HwwQfn10OGDIknn3xyo9e0xHOQquL+9AAAAAAAAAAAAABIUrdu3eKSSy7Jr3O5XPy///f/tsq9nnzyyejXr19ceumlG42HIyJeeeWVOPHEE2PIkCHx0UcfNfkeU6dOjQEDBsSjjz663og8ImLJkiVx4403xr777htvvfVWUb9DRMTJJ58cw4cPj4ceemiTEXlExKxZs2LUqFExZMiQqK2tLfp+W8uOO+4YRx11VH79l7/8JZ5++umi95k0aVLBeuzYsRs9vyWeg5QJyQEAAAAAAAAAAABokvPOOy969+6dX//2t7/drKB4Y+6+++448sgj1wmv+/TpE0ceeWSMGDEijjrqqNh1110Lvp8+fXocdNBBsWLFik3e46GHHopRo0bFZ599VnC8X79+cdRRR8VJJ50U3/zmN6O8vDwiIubMmRPDhg1r0t5f1tjYWLDu2rVr7L///jFs2LAYOXJkHHfccbHffvtFp06dCs6bMWNGHHHEEbFq1aqi7rc1rR19T5w4sajrV6xYEQ8//HB+XVlZGcccc8wGz2+J5yB1ZaUeAAAAAAAAAAAAAIDWoby8PMaPHx9jxozJH7v44ovjsMMOi0wms8X7z5gxI84666xYs2ZN/tjIkSPj0ksvjT333HOd82fOnBnnnXdezJ49OyIiZs+eHd///vfjgQce2OA9/vKXv8SZZ55ZcI+99tor7rjjjjjggAMKzl2xYkVcd911cd1118XcuXPjqquuKvp32muvvWLUqFExdOjQ9f4OERGffPJJ3H///XHZZZflw+lZs2bFFVdcEddee+065++///6xcOHCiIi4+eab45Zbbsl/98ADD8T+++9f9Jyb8t3vfjd23nnneO+99yIi4rHHHoslS5ZEjx49mnT9Aw88EJ988kl+fcopp0SHDh3We25LPAd4IzkAAAAAAAAAAAAARTj11FNj4MCB+fWsWbNi6tSpW7zvypUrY8SIEfl4OJPJxMSJE2PKlCkbDLAPOeSQeO6552Lw4MH5Y1OnTo3f//73G7zPRRddFMuXL8+vBw8eHH/4wx/WicgjIioqKuKaa66JKVOmRCaTiSVLlhT1O912223xyiuvxA9/+MMN/g4REdttt12cccYZ8ec//7ngDdt33nlnwaxf6NixY/Tp0yf69OkT22+/fcF3O+20U/679X02V7t27WL06NH59erVq2PKlClNvn7tN5iv/YbzL7TUc4CQHAAAAAAAAAAAAIAiZLPZ+OlPf1pwbNy4cVFfX79F+951113xwQcf5NcXXXRRnH766Zu8rkuXLvHggw9GeXl5/tj111+/3nMXL14cv/zlL/Pr7bbbLu6///7o0qXLRu9x0kknxRlnnLHJWdZWbLjdu3fvuOmmm/Lr5cuXx69//eui77u1jB07tuDN85MmTWrSda+//nq8+OKL+fV+++1X8I8RvqwlngM+JyQHAAAAAAAAAAAAoChHH310fPOb38yvFyxYEBMmTNiiPW+99db8z126dInLL7+8ydfuuuuuceKJJ+bXTz31VKxatWqd8x555JFoaGjIr0eOHNnk2HvcuHGRzW799Pboo4+ODh065Nd/+tOftvo9m6pfv35xyCGH5NevvfZa/PnPf97kdU19G3lEyzwHfE5IDgAAAAAAAAAAAEDRrrvuuoL11VdfHStXrtysvebOnRuLFi3Kr4cOHbrJt4Sv7dBDD83/vGrVqoI3YH9h7Sj7y9HxpvTu3Tv222+/ombakMbGxlixYkUsXrw4qqurCz6LFy+OHXbYIX/unDlzmuWezWXtN7OvHYmvbfXq1XHffffl1507d47hw4ev99yWeg74XFmpBwAAAAAAAAAAAACg9Rk8eHB873vfi8ceeywiImpqauL666+PK6+8sui9/vCHPxSse/fuHdXV1UXtsfbbwt9+++2Ct6ZHRLz66qsF63322aeoe+y7777x3HPPFXVNRMTHH38c06ZNi8ceeyxeeeWVmDdvXsGb0Tfmww8/LPp+W9Oxxx4b3bt3z8/1wAMPxE033RSdOnVa7/mPP/54LFmyJL8+8cQTo6KiYr3nttRzwOeE5AAAAAAAAAAAAABsln/5l3+JadOmxZo1ayIi4oYbboizzz47qqqqitrnL3/5S8H6+uuvj+uvv36LZlu6dOk6x74cNHft2jW23377ovbs3bt30XPcc889cemll0ZtbW3R10ZEfPTRR5t13dbSsWPHGDlyZNx2220REbF8+fJ45JFH4pRTTlnv+ZMmTSpYr/1G8y9rqeeAz2U3fQoAAAAAAAAAAAAArGuPPfaI0047Lb9euXJlXH311UXvU1dX14xTfW7FihXrHFu2bFn+5w29FXtjunbtWtT5P/jBD+LMM8/c7Ig8IqKxsXGzr91axo4dW7CeOHHies97991348knn8yv99hjjzjggAM2uG9LPQd8TkgOAAAAAAAAAAAAwGYbP358dOrUKb+eMGFCvP3220XtsXr16uYeK3K53DrHysvLt+iexVzz8MMPx80331xwbMCAAXH11VfHk08+GXPnzo1ly5bFZ599FrlcruCz2267FT1bSxo0aFDsvffe+fXvfve7mD9//jrnTZ48uSCEXztAX1tLPQd8TkgOAAAAAAAAAAAAwGbbeeed47zzzsuv6+vrY9y4cUXt0aNHj4L1/fffv05cXeznyiuvXOc+3bt3z//80UcfFf2276VLlzb53CuuuKJgffXVV8drr70W48aNiyFDhsTf/M3fRLdu3Qri9i8sX768qLlK4YwzzihYT5o0qWCdy+Xi3nvvza/bt28fp5xyykb3bKnngM8JyQEAAAAAAAAAAADYIpdccklBpP3ggw/GrFmzmnz9jjvuWLB+6623mm22L/vym75Xr15d9H1ee+21Jp03b968mDNnTn79rW99K8aNGxeZTGaT13766aexbNmyouYqhREjRhS8if7nP/95rFmzJr+eOXNmLFiwIL8++uijo6qqaqN7ttRzwOeE5AAAAAAAAAAAAABske233z4uueSS/DqXy8XFF1/c5OsPOOCAgvVTTz3VbLN92f7771+wfuaZZ5p87Zo1a+LZZ59t0rnz5s0rWB911FFNvs9zzz0XuVyuyec3JU7fGrp16xbHH398fr148eL47//+7/x64sSJBeev/Qbz9Wmp54DPCckBAAAAAAAAAAAA2GLnnXde7LLLLvn1008/HdOnT2/StXvvvXf06NEjv37uuedi9uzZzT7jYYcdVrC+5557mhxtP/744/HXv/61Seeu/Ubxbt26Nem6iIjJkyc3+dyIiPLy8oL1qlWrirp+S4wdO7Zg/UU8vmzZsnj00Ufzx3fZZZc4/PDDN7lfSz0HfE5IDgAAAAAAAAAAAMAW69ixY4wfP77g2MUXX9ykUDubzcbZZ5+dX+dyuTj//POjoaGhWWccMmRI9O3bN7+eNWtW3H333Zu8buXKlXHhhRc2+T7du3cvWL/55ptNuu5//ud/YurUqU2+T8Tnb4P/svfff7+o67fEwQcfHP3798+vp02bFjU1NXH//ffHp59+mj8+ZsyYyGY3nS231HPA54TkAAAAAAAAAAAAADSL0aNHx4ABA/Lrl156KRYtWtSkay+88MKCt1E/88wzMWbMmPjss8+KmmHRokXxxBNPrPe7bDYbl112WcGxc889d6Px9pIlS2Lo0KGxcOHCJs+w1157Fax//vOfb/Jt5gsWLIgTTjgh6uvrm3yfiIg99tijYP3UU08Vdf2WOv300/M/19fXx3333ReTJk3KH8tkMjFmzJgm79cSzwGfE5IDAAAAAAAAAAAAm2VJRNT6bNZnyWb8790atGvXLn76059u1rVdu3aNBx98MMrKyvLHpkyZEnvvvXf84he/2GhI/P7778e9994bw4YNi379+sWDDz64wXPHjh0bhx9+eH5dX18fJ598chx++OExZcqUePnll2Pu3Lkxc+bMuOyyy+JrX/taPPvss5HJZOLEE09s0u/Sq1evOOigg/LrpUuXxqGHHhrPP//8OueuWrUq7rnnnth///2juro6OnbsGF26dGnSfSIi9tlnn4Lzp06dGuedd17MmDEj3nrrraiuri74NLfTTjut4M/suuuui5deeim//vu///uCt8BvSks9B0SUbfoUAAAAAAAAAAAAgHXtWeoB2CYNGzYsDjzwwPjjH/9Y9LXf/va3Y/LkyTF27NhYtWpVRETMmTMnRo0aFaeffnoMGjQoevXqFV26dImVK1fG0qVL480334yampqi7jN16tQ44ogj4oUXXsgfe+qppzb6Nu/LL788+vbtGw899FD+WCaT2eD51113XRx88MHR0NAQERFvvvlmDB48OL72ta/FwIEDo0OHDvHBBx/Eiy++GCtXrsxfd+utt8Y111xTcGxjOnfuHP/4j/8YN9xwQ0RE5HK5uO222+K2225b7/m5XK5J+zbVTjvtFEOHDo3HH388IiJqa2sLvh87dmzRe7bUc5A6ITkAAAAAAAAAAAAAzeq6664reCN3MUaOHBlf+9rX4uSTT4758+fnj69evTpefPHFJu3RvXv3jX6//fbbx9NPPx0XXHBBTJw4caNxdadOneLWW2+NsWPHxp133lnwXUVFxQavO+CAA+Luu++O73//+1FfX58/Pnfu3Jg7d+4657dr1y5uvPHGOOOMM+Kaa67Z6Pxr+8lPfhLz5s3Lx9wt7YwzzljvvXfYYYf4h3/4h83asyWeg9RlSz0AAAAAAAAAAAAAAG3LgQceGMOGDdvs6/fZZ5948803Y8qUKTF48OAoK9v4u5Oz2Wz83d/9XfzoRz+KWbNmxU033bTJe1RUVMTdd98dL7/8cvzwhz+MvfbaKyorK6O8vDx22223+Na3vhU33HBDLFy4MP9W7WXLlhXs0a1bt43e47TTTotnn302DjnkkA2e07FjxzjuuOPixRdfjPPPP3+Tc69PeXl5PPbYYzF9+vT4/ve/H9/4xjeisrIyOnTosFn7FWvo0KHRq1evdY6PGjUqysvLN3vflngOUpbJNff76WnTXn/99Rg4cGB+PXv27BgwYEAJJwIAAAAAoK2ora2NqqqqtY7WRETPYnaJiMI9ampqomfPYvYAAACAtqmhoSHmzZtXcKx///6bDDO/sP7/dqc5+f8xNmzFihXx/PPPx7vvvhtLly6Nzz77LLp06RKVlZXRv3//2GOPPaJr165bfY5TTjklpkyZkl8X01EuWrQo/vjHP8bixYujvr4+qqqqolevXnHggQdu9M3m/J9SPgdb+nfo+pS6y938yQEAAAAAAAAAAIBkVFZWRk1NTanHaNMqKytLPcI2q6KiIr7zne+UdIZcLhfPPvtsft25c+f4+te/3uTre/fuHb17994aoyVjW3gO2hIhOQAAAAAAAAAAALBJ2WzW27JJ2hNPPBHvvPNOfr3vvvtGu3btSjgRbBkhOQAAAAAAtHGNjY1RV1fX7PtWVlZGNptt9n0BAAAAYFuzYsWKOP/88wuOnXrqqSWaBpqHkBwAAAAAANq4urq6qKqqavZ9a2pqvIUMAAAAgFbpueeei/vuuy8uvvji6N2790bPXbhwYRx//PHx9ttv54/tuOOOMXz48K09JmxVQnIAAAAAAAAAAAAAkrJq1aq48847Y8KECXHIIYfE4YcfHnvvvXfstNNO0bFjx/jwww9jzpw58eSTT8bDDz8c9fX1Bdffe++90alTpxJND81DSA4AAAAAAAAAAABAkhobG2PGjBkxY8aMJp3frl27uPHGG+O73/3uVp4Mtr5sqQcAAAAAAAAAAAAAgJbUpUuXKC8vL+qav/3bv40nnngizj///K00FbQsbyQHAAAAAIAkvRERPYo4f0lE7LmVZgEAAACAlrXPPvtEbW1tPP300/Hss8/Gq6++GtXV1VFbWxuffvpplJeXR/fu3WOXXXaJAw88MIYMGRJDhgyJTCZT6tGh2QjJAQAAAAAgST0iomephwAAAACAkqmoqIhjjz02jj322FKPAiWRLfUAAAAAAAAAAAAAAAC0LCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAEACMpnMOsdyuVwJJgFofRobG9c5ls227hS7dU8PAAAAAAAAAAAANMn6gsf6+voSTALQ+qz992Umk1nvP9BpTYTkAAAAAAAAAAAAkIBMJhMdOnQoOLZy5coSTQPQuixfvrxg3b59eyE5AAAAAAAAAAAA0DpUVFQUrJcvXx65XK5E0wC0Dg0NDeuE5N26dSvRNM1HSA4AAAAAAAAAAACJWDskr6+vj/fee09MDrABq1evjnfeeScaGxsLjreFkLys1AMAAAAAAAAAAAAALaNjx47Rvn37qK+vzx9bsWJFvP3229G1a9fo0qVLlJWVRTbrPbVAmnK5XKxZsyY++eSTWLlyZXzyySfr/GObzp07R/v27Us0YfMRkgMAAAAAAAAAAEAiMplM9OrVKxYtWlQQRtbX10ddXV3U1dWVcDqAbV/79u1jxx13LPUYzcI/GQIAAAAAAAAAAICEbLfddtG7d+/IZDKlHgWgVSkvL4/ddtstysvLSz1KsxCSAwAAAAAAAAAAQGK+iMnbt29f6lEAWoWKiorYbbfd2tTfm2WlHgAAAAAAAAAAAABoedttt1189atfjVWrVsXy5ctjxYoVsXr16lKPBbBNaNeuXXTp0iW6dOkSnTt3jnbt2pV6pGYnJAcAAAAAAAAAAIBEZTKZ6NixY3Ts2DGqqqoil8tFY2Nj5HK5Uo8GUBKZTCay2WxkMplSj7LVCckBAAAAAAAAAACAiPg8oGyLb90FYF3ZUg8AAAAAAAAAAAAAAEDLEpIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTk26Dhw4dHJpMp+PTp06fUYwEAAAAAAAAAAAAAbYSQfBvz+OOPx4MPPljqMQAAAAAAAAAAAACANkxIvg1ZtmxZnHXWWaUeAwAAAAAAAAAAAABo44Tk25ALL7wwFi9eHBERFRUVJZ4GAAAAAAAAAAAAAGirhOTbiOnTp8ekSZMiIqKsrCyuuuqqEk8EAAAAAAAAAAAAALRVQvJtwMcffxxnnnlmfn3BBRfEoEGDSjcQAAAAAAAAAAAAANCmCcm3AZdccklUV1dHRES/fv3iyiuvLOk8AAAAAAAAAAAAAEDbJiQvsT/96U9x++2359cTJkyITp06lXAiAAAAAAAAAAAAAKCtE5KX0KpVq+L000+PxsbGiIgYPXp0HHbYYSWeCgAAAAAAAAAAAABo64TkJXTllVfG3LlzIyKiZ8+eccMNN5R4IgAAAAAAAAAAAAAgBULyEpk1a1Zcf/31+fXNN98clZWVJZwIAAAAAAAAAAAAAEhFWakHSFFDQ0Ocfvrp0dDQEBERRxxxRIwYMaLF56ipqYna2tqirpk/f/5WmgYAAAAAAAAAAAAAaClC8hK49tpr49VXX42IiM6dO8edd95ZkjnuuOOOGD9+fEnuDQAAAAAAAAAAAACUTrbUA6TmjTfeiGuuuSa/vvrqq6NPnz6lGwgAAAAAAAAAAAAASI6QvAU1NjbG2LFjY9WqVRER8Y1vfCPOP//8Ek8FAAAAAAAAAAAAAKSmrNQDpOSWW26J559/PiIiysrK4p577ol27dqVbJ6zzz47TjjhhKKumT9/fhxzzDFbZyAAAAAAAAAAAAAAoEUIyVvIggULYty4cfn1BRdcEIMGDSrdQBFRVVUVVVVVJZ0BAAAAAAAAAAAAAGh52VIPkIJcLhdnnnlmfPLJJxER0a9fv7jyyitLOxQAAAAAAAAAAAAAkCwheQu4++67Y8aMGfn1hAkTolOnTiWcCAAAAAAAAAAAAABIWVmpB0jBFVdckf956NChsfvuu0d1dfVGr/nrX/9asG5oaFjnml69ekWHDh2aa0wAAAAAAAAAAAAAIBFC8hbw6aef5n/+zW9+E3379i16j/fee2+d615++eUYNGjQlo4HAAAAAAAAAAAAACQmW+oBAAAAAAAAAAAAAABoWUJyAAAAAAAAAAAAAIDECMlbwLJlyyKXyxX1eeaZZwr22G233dY5Z9CgQaX5hQAAAAAAAAAAAACAVk1IDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBiyko9AOt3yCGHRC6XK/UYAAAAAAAAAAAAAEAb5I3kAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJEZIDAAAAAAAAAAAAACRGSA4AAAAAAAAAAAAAkBghOQAAAAAAAAAAAABAYoTkAAAAAAAAAAAAAACJKSv1AAAAAAAAAK1JY2Nj1NXVNfu+lZWVkc16BxAAAAAA0DKE5AAAAAAAAEWoq6uLqqqqZt+3pqYmevbs2ez7AgAAAACsj9daAAAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGLKSj0AAAAAAABA6/dGRPQo4vwlEbHnVpoFAAAAAGDThOQAAAAAAABbrEdE9Cz1EAAAAAAATZYt9QAAAAAAAAAAAAAAALQsITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGKE5AAAAAAAAAAAAAAAiRGSAwAAAAAAAAAAAAAkRkgOAAAAAAAAAAAAAJAYITkAAAAAAAAAAAAAQGLKSj0AAAAAAACkqrGxMerq6pp938rKyshmvUsGAAAAAIANE5IDAAAAAECJ1NXVRVVVVbPvW1NTEz179mz2fQEAAAAAaDu8jgQAAAAAAAAAAAAAIDFCcgAAAAAAAAAAAACAxAjJAQAAAAAAAAAAAAASU1bqAQAAAAAAgP/zRkT0KOL8JRGx51aaBQAAAACAtktIDgAAAAAA25AeEdGz1EMAAAAAANDmZUs9AAAAAAAAAAAAAAAALUtIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJEZIDgAAAAAAAAAAAACQGCE5AAAAAAAAAAAAAEBihOQAAAAAAAAAAAAAAIkRkgMAAAAAAAAAAAAAJKas1AOk6tNPP40333wz3nnnnVi8eHGsWLEi6uvro2vXrlFZWRkDBw6MAQMGRFmZPyIAAAAAAAAAAAAAoHmplFvQvffeGzNmzIgXXngh3n777WhsbNzo+V26dIkTTzwxzjvvvBg0aFDLDAkAAAAAAAAAAAAAtHnZUg+QkssvvzymTJkS8+bN22REHhGxcuXKmDRpUuyzzz7xgx/8IBoaGlpgSgAAAAAAAAAAAACgrfNG8hLabrvt4qtf/Wr07t07unbtGo2NjbF06dJ47bXX4q9//Wv+vDVr1sTNN98c1dXV8cgjj0S7du1KODUAAAAAAAAAAAAA0NoJyVtQ586dY9iwYfHd7343DjjggBg4cGBks+t/Kfzzzz8f48aNi9/+9rf5Y//5n/8ZN954Y1x00UUtNTIAAAAAAAAAAAAA0AYJyVvQ7Nmzo3379k06d//994+nnnoqRo8eHVOmTMkf/8lPfhLnn39+lJeXb60xAQAAAAAAAAAAAIA2bv2vw2araGpE/oVsNhu33357dO7cOX/so48+imeeeaa5RwMAAAAAAAAAAAAAEiIk38Z17do1DjrooIJj8+fPL9E0AAAAAAAAAAAAAEBbICRvBXbYYYeC9YoVK0o0CQAAAAAAAAAAAADQFgjJW4F33nmnYN2rV68STQIAAAAAAAAAAAAAtAVC8m3cW2+9FS+88EJ+nclk4uCDDy7hRAAAAAAAAAAAAABAayck34a9//77ccIJJ8SaNWvyx44//vjo06dP6YYCAAAAAAAAAAAAAFq9slIPwP9paGiIDz/8MObMmRPTpk2LCRMmxPLly/Pf9+vXL2677bYSTggAAAAAAAAAAAAAtAVC8hL653/+57jllluadO6hhx4a9913X1RVVTXb/WtqaqK2traoa+bPn99s9wcAAAAAAAAAAAAASkNIvo0bNmxYnHPOOTFkyJBm3/uOO+6I8ePHN/u+AAAAAAAAAAAAAMC2TUi+jXviiSdizZo10bFjx/jWt75V6nEAAAAAAAAAAAAAgDYgW+oBUvbjH/84Fi5cmP+88cYb8eyzz8att94a3/72tyMior6+Pv7rv/4rDj744Dj33HNjzZo1JZ4aAAAAAAAAAAAAAGjtvJG8hHbYYYfYYYcd1jl+0EEHxbnnnht/+MMfYtSoUfHOO+9ERMTtt98en376aUycOLFZ7n/22WfHCSecUNQ18+fPj2OOOaZZ7g8AAAAAAAAAAAAAlIaQfBt20EEHxTPPPBP77rtv1NXVRUTEpEmTYtiwYfG9731vi/evqqqKqqqqLd4HAAAAAAAAAAAAAGhdsqUegI3r27dv/PjHPy449q//+q8lmgYAAAAAAAAAAAAAaAuE5K3A8OHDC9bPP/98LFu2rDTDAAAAAAAAAAAAAACtnpC8Faiqqoru3bvn142NjbFw4cISTgQAAAAAAAAAAAAAtGZC8laiffv2BetVq1aVaBIAAAAAAAAAAAAAoLUTkrcCn332WSxZsqTg2I477liiaQAAAAAAAAAAAACA1k5I3gr89re/jcbGxvx6u+22i5133rmEEwEAAAAAAAAAAAAArZmQfBvX2NgYV199dcGxI444Ijp06FCiiQAAAAAAAAAAAACA1k5I3kJuvfXWeP/994u6pr6+PsaOHRsvvPBCwfFzzjmnOUcDAAAAAAAAAAAAABIjJG8hEydOjK9+9f9j706D7SoLtA0/6+QkEBJi5gSBBEGm0A2izHwQZBKFBkFQQGicLcGhQUUFZRRKSqRaBEdiOVFIQEAEoQ0YJhEZtYPQhCkEwpCQgQQSIcP6flDZksaWDCdnn5X3uqpOsfbOXu9+dvn3ruUmOeqoo/Kb3/wm8+bN+z8/u2DBglxyySXZdttt85Of/GSZfzv66KOz5557rua1AAAAAAAAAAAAAMCarLPdA0qyYMGCXHzxxbn44otTVVXe+ta3ZqONNsrAgQPTp0+fzJs3L0888UQeeOCBLFy48HX3H3DAAfnRj37UhuUAAAAAAAAAAAAAwJpESN4mdV3n4YcfzsMPP/yGn+3bt2+++tWv5otf/GJ69+7dDesAAAAAAAAAAAAAgDWZkLyb/OhHP8rVV1+dG2+8Mffee29efvnlN7xniy22yAc/+MF86EMfygYbbNANKwEAAAAAAAAAAACAEgjJu8n222+f7bffPmeeeWYWLlyYBx98MI899limTZuWF198MQsXLkz//v0zYMCAbLTRRtl2220zaNCgds8GAAAAAAAAAAAAANZAQvI26N27d7beeutsvfXW7Z4CAAAAAAAAAAAAABSoo90DAAAAAAAAAAAAAADoXkJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCCMkBAAAAAAAAAAAAAAojJAcAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACgMEJyAAAAAAAAAAAAAIDCdLZ7AAAAAAAAAKvHkiVLMnPmzC4/d8iQIeno8LwiAAAAAGgyITkAAAAAAMAaaubMmRk+fHiXnzt9+vQMGzasy88FAAAAALqPR0UAAAAAAAAAAAAAABRGSA4AAAAAAAAAAAAAUBghOQAAAAAAAAAAAABAYTrbPQAAAAAAAIDu9ECSoSvw+eeTjFlNWwAAAACAdhGSAwAAAAAAFGVokmHtHgEAAAAAtFlHuwcAAAAAAAAAAAAAANC9hOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFEZIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFKYxIfkHPvCB3Hzzze2eAQAAAAAAAAAAAADQeI0JyS+77LLsueee2XLLLXP++ednzpw57Z4EAAAAAAAAAAAAANBIjQnJl3rooYdy/PHHZ/31189HP/rR3Hnnne2eBAAAAAAAAAAAAADQKI0LyauqSl3XWbBgQX7yk59k5513zjve8Y5cdNFFmT9/frvnAQAAAAAAAAAAAAD0eI0Jya+++uq8+93vTlVVSdL6b13Xue+++/LJT34yb37zm/OZz3wm999/fzunAgAAAAAAAAAAAAD0aI0JyQ844IBcc801efzxx3PSSSdl5MiRqes6yd+fUj537tx897vfzTbbbJPddtstl1xySRYuXNjm5QAAAAAAAAAAAAAAPUtjQvKlNtxww3z961/P1KlTM378+Oy1116tf3vtU8pvv/32HHXUUVl//fXz5S9/OY899li7JgMAAAAAAAAAAAAA9CiNC8mX6tWrVw499NBMmDAhkydPzgknnJDBgwe3nlKevBqUP//88/nmN7+ZzTbbLPvtt19+/etfZ8mSJW1cDgAAAAAAAAAAAADQXo0NyV9rk002ybnnnptp06blZz/7WXbddddWUL70KeVLlizJhAkTcsghh2T06NE544wz8vTTT7dzNgAAAAAAAAAAAABAW6wRIflSffr0yVFHHZVbb701999/f4499tgMGDCgFZXXdZ26rjNt2rScfvrp2WijjfK+970vN9xwQ5uXAwAAAAAAAAAAAAB0nzUqJH+tMWPG5IILLsjTTz+dH/7wh3nHO96R5NUnlFdVlbqus2jRolx11VV517velc022yznn39+5s2b1+blAAAAAAAAAAAAAACr1xobki/Vt2/fHHPMMTn++OMzevTo1tPJlwblyatPKn/kkUdy/PHHZ6ONNso555yThQsXtnM2AAAAAAAAAAAAAMBqs0aH5I8++mi+9KUvZYMNNsjRRx+dqVOnLhOPL/1L0npK+ezZs3PSSSdlu+22y5QpU9q4HgAAAAAAAAAAAABg9VjjQvLFixfniiuuyL777pvNN9885557bmbMmNEKxpfG43vssUcuu+yy/O53v8uhhx6azs7OJH8PyidNmpR3vvOdmTdvXjt/DgAAAAAAAAAAAABAl+ts94Cu8uSTT+aHP/xhfvzjH+fZZ59N8mo0XlVVKw7v379/jj766Bx33HHZcsstW/fuvffeee6553LeeeflggsuyN/+9rfUdZ2pU6fm29/+dr761a+262cBAAAAAAAAAAAAAHS5Rj+RvK7rXHPNNfm3f/u3bLzxxjn77LPzzDPPtJ4+vvQzY8aMyYUXXphp06blggsuWCYiX2rEiBE555xzcu+992bEiBGt+Pyqq67qxl8EAAAAAAAAAAAAALD6NfKJ5M8++2wuuuiiXHTRRXnyySeTvP7p47169crBBx+cY489NmPHjl3uszfffPN89atfzac//ekkyeTJk1fLbwAAAAAAAAAAAAAAaJdGheQTJkzI97///VxzzTVZtGhR68njVVUleTUmX2+99fKJT3win/jEJ7Leeuut1PfsvPPOreuXXnpp1YcDAAAAAAAAAAAAAPQgjQnJN9100zz22GNJXv/08bquM3bs2Bx77LE5+OCD09m5aj9r8ODBSf4eqAMAAAAAAAAAAAAArEkaE5I/+uijrbB7aUDev3//HH300TnuuOMyZsyYLv/OpcE6AAAAAAAAAAAAAMCapDEh+VJ1XWfMmDH51Kc+lWOOOSb9+/fv8u8YOXJkJk6c2OXnAgAAAAAAAAAAAAD0BI0JyTs7O3PQQQfluOOOyx577LFav2uttdbK2LFjV+t3AAAAAAAAAAAAAAC0S2NC8ilTpuTNb35zu2cAAAAAAAAAAAAAADReR7sHLC8ROQAAAAAAAAAAAABA12hMSA4AAAAAAAAAAAAAQNcQkgMAAAAAAAAAAAAAFKYxIfntt9+ejTfeOBtvvHE23XTTTJ8+fYXPeO6557LZZptl4403ziabbJJ77713NSwFAAAAAAAAAAAAAOjZGhOSX3TRRZkyZUqeeOKJbLvtthk+fPgKnzFixIhss802mTJlSqZMmZKLLrpoNSwFAAAAAAAAAAAAAOjZGhOSX3vtta3ro446aqXPOfroo1vXV1999SptAgAAAAAAAAAAAABookaE5A8++GBmzJiRJOndu3f222+/lT7rXe96V3r37p26rvPMM8/k4Ycf7qqZAAAAAAAAAAAAAACN0IiQ/IEHHkiSVFWVrbbaKn369Fnps9Zaa61stdVWrdd//etfV3kfAAAAAAAAAAAAAECTNCIknzZtWut61KhRq3ze6NGjW9dPPfXUKp8HAAAAAAAAAAAAANAkjQjJX3zxxdb1uuuuu8rn9e/f/x+eDQAAAAAAAAAAAABQgkaE5K8Nv2fPnr3K573wwgut6969e6/yeQAAAAAAAAAAAAAATdKIkHzo0KGt60cffXSVz3vtGa89GwAAAAAAAAAAAACgBI0IyTfeeOMkSV3Xeeihh/LUU0+t9FlPPfVUHnzwwdbr0aNHr/I+AAAAAAAAAAAAAIAmaURIvt1226Vfv36pqipJ8q1vfWulzzrvvPNa12uvvXZ23nnnVd4HAAAAAAAAAAAAANAkjQjJOzs7s88++6Su69R1ne9973u56aabVvicm266KRdeeGGqqkpVVdlrr72y1lprdf1gAAAAAAAAAAAAAIAerBEheZJ8+ctfTpJUVZVXXnkl733ve3PZZZct9/1XXHFFDj744CxatCh1XS9zJgAAAAAAAAAAAABASRoTku+www457LDDUtd1qqrK3Llzc/jhh2evvfbK+PHjM3369NfdM2PGjFx22WXZe++9c9hhh+WFF15I8mqMfvDBB2eXXXbp7p8BAAAAAAAAAAAAANB2ne0esCLGjRuX+++/Pw8++GCqqkpd17npppty0003JUkGDx6cQYMGpaqqzJo1K7NmzWrduzRAr+s6//Iv/5Kf/vSnbfoVAAAAAAAAAAAAAADt1ZgnkidJ//79M2HChOywww6tMDx5NRKv6zozZ87MI488kocffjgzZ85svZ+kFZHvvPPO+d3vfpd+/fq186cAAAAAAAAAAAAAALRNo0LyJHnzm9+cW265JV/+8pfTv3//ZULxf/SXvBqaDxgwIKecckpuvvnmjBw5sp0/AQAAAAAAAAAAAACgrTrbPWBl9OnTJ2effXZOPPHE/PznP8+NN96Y22+/Pc8///wynxs2bFh23XXX7L333jnqqKMyYMCANi0GAAAAAAAAAAAAAOg5GhmSLzVw4MB85jOfyWc+85kkyeLFizNz5swkyZAhQ9KrV692zgMAAAAAAAAAAAAA6JEaHZL/b7169crw4cPbPQMAAAAAAAAAAAAAoEfraPcAAAAAAAAAAAAAAAC6l5AcAAAAAAAAAAAAAKAwQnIAAAAAAAAAAAAAgMJ0tntAV5g/f35eeOGFLFy4cIXvHTVq1GpYBAAAAAAAAAAAAADQczUyJJ86dWrGjRuX3//+9/nzn/+c+fPnr9Q5VVVl0aJFXbwOAAAAAAAAAAAAAKBna1RIvmjRonzta1/Lt771rSxevDhJUtd1m1cBAAAAAAAAAAAAADRLY0Lyuq7zgQ98IFdddVUrHq+qKlVVickBAAAAAAAAAAAAAFZAY0LyCy+8MFdeeeUy8Xhd19loo42y5ZZbZtCgQendu3e7ZwIAAAAAAAAAAAAA9HiNCMnrus5ZZ521zNPHDzrooJx11lkZM2ZMm9cBAAAAAAAAAAAAADRLI0Lyu+++O88991zraeQf+tCHMm7cuHbPAgAAAAAAAAAAAABopI52D1gekyZNSvLqk8nXXnvtnHfeeW1eBAAAAAAAAAAAAADQXI0IyZ9//vkkSVVV2WmnnfKmN72pzYsAAAAAAAAAAAAAAJqrESF53759W9frrbdeG5cAAAAAAAAAAAAAADRfI0LyDTbYoHX90ksvtXEJAAAAAAAAAAAAAEDzNSIk33777dPR8erUhx56qM1rAAAAAAAAAAAAAACarREh+QYbbJB3vvOdqes6Dz30UCZPntzuSQAAAAAAAAAAAAAAjdWIkDxJTj/99PTq1StJctJJJ7V5DQAAAAAAAAAAAABAczUmJN9ll11y+umnp67rXHnllWJyAAAAAAAAAAAAAICV1JiQPHn1SeTf/OY3U1VVzjnnnOyxxx6ZMGFCFi1a1O5pAAAAAAAAAAAAAACN0dnuActrzz33bF0PHDgws2bNyq233pr99tsvffv2zSabbJJBgwalo2P52/iqqnLjjTeujrkAAAAAAAAAAAAAAD1WY0Lym266KVVVtV5XVZW6rpMk8+fPz6RJk5b59zdS1/UKfR4AAAAAAAAAAAAAYE3RmJD8HxGCAwAAAAAAAAAAAACsuEaF5EufQA4AAAAAAAAAAAAAwMprTEi+ZMmSdk8AAAAAAAAAAAAAAFgjdLR7AAAAAAAAAAAAAAAA3UtIDgAAAAAAAAAAAABQGCE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIURkgMAAAAAAAAAAAAAFKaz3QNWxZ///OdcffXVufXWW/Poo49m1qxZmTdvXqqqyqJFi173+Tlz5mTu3LlJkrXWWisjRozo7skAAAAAAAAAAAAAAG3XyJB80qRJOf744zNx4sTWe3Vdv+F9EydOzKGHHpok6devX5599tmss846q20nAAAAAAAAAAAAAEBP1NHuASvqJz/5SXbaaadMnDjxdfF4VVX/9N6DDjooo0aNSl3Xeemll/KrX/1qdU4FAAAAAAAAAAAAAOiRGhWS/+pXv8pHP/rRLFiwoPVeXdfZcMMN87a3ve0Nn0re0dGRD3zgA63XV1999WrbCgAAAAAAAAAAAADQUzUmJH/mmWdyzDHHJPn7k8ePPfbYPProo5kyZUquuOKK5TrnoIMOSvJqgH7zzTevnrEAAAAAAAAAAAAAAD1YZ7sHLK8zzjgj8+fPT5L06tUrv/zlL/O+972v9e9L4/I3sv3226d3795ZuHBhZs6cmccffzxvectbVstmAAAAAAAAAAAAAICeqBFPJF+8eHEuueSSVFWVqqrypS99aZmIfEV0dnZmiy22aL3+n//5n66aCQAAAAAAAAAAAADQCI0Iye+4447MnTs3dV2nd+/eOfHEE1fpvA022KB1/eSTT67qPAAAAAAAAAAAAACARmlESP7II48kSaqqyvbbb58BAwas0nmvvX/u3LmrdBYAAAAAAAAAAAAAQNM0IiSfMWNG63rDDTdc5fM6Ov7+sxctWrTK5wEAAAAAAAAAAAAANEkjQvKqqlrXixcvXuXzZs2a1boeOHDgKp8HAAAAAAAAAAAAANAkjQjJhw0b1rp++umnV/m8+++/v3U9ZMiQVT4PAAAAAAAAAAAAAKBJGhGSjxo1KklS13Xuu+++LFy4cKXPmjx5cqZNm9Z6vfXWW6/yPgAAAAAAAAAAAACAJmlESL7zzjunb9++qaoqCxYsyCWXXLLSZ51//vmt6xEjRmTzzTfviokAAAAAAAAAAAAAAI3RiJB8rbXWyl577ZW6rlPXdU4++eTMmTNnhc/5wx/+kB/84AepqipVVeWQQw7p+rEAAAAAAAAAAAAAAD1cI0LyJDn55JOTJFVVZdq0adl3330zffr05b5/4sSJOfDAA7NkyZLUdZ1evXrlC1/4wuqaCwAAAAAAAAAAAADQYzUmJN9xxx1z+OGHp67rVFWVu+++O1tssUXOPPPMPPTQQ1myZMnr7lm8eHFuvPHGHH744dl7770ze/bs1v2f+9znstFGG3X/DwEAAAAAAAAAAAAAaLPOdg9YEePGjctDDz2U++67L1VVZc6cOTnttNNy2mmnpU+fPst8dsstt8zjjz+ehQsXJkkrIK/rOrvssku+8Y1vtOMnAAAAAAAAAAAAAAC0XWOeSJ4kffv2zX/9139lzz33bIXhyauR+Msvv7zM64ceeiivvPJK6rpOklZEvu++++baa69Nr1692vY7AAAAAAAAAAAAAADaqVEheZIMHTo0EyZMyDnnnJOhQ4cuE4ov/e9r/5JXw/I3velNOeuss3LttddmwIABbdsPAAAAAAAAAAAAANBujQvJk1dj8S9+8Yt54oknMm7cuBx++OFZf/31W08dX/o3cODA7L///jn//PPz+OOP5ytf+YonkQMAAAAAAAAAAAAAxets94BVsfbaa+fDH/5wPvzhDyd59cnjs2fPziuvvJIhQ4akd+/ebV4IAAAAAAAAAAAAANDzNDok/9+qqsrgwYPbPQMAAAAAAAAAAAAAoEfraPcAAAAAAAAAAAAAAAC6l5AcAAAAAAAAAAAAAKAwQnIAAAAAAAAAAAAAgMIIyQEAAAAAAAAAAAAACtPZ7gHLa+ONN+7yM6uqyqOPPtrl5wIAAAAAAAAAAAAA9GSNCcmnTJmSqqpS13WXnVlVVZedBQAAAAAAAAAAAADQFI0JyZda1fi7rusuD9IBAAAAAAAAAAAAAJqkMSH5qFGjVigiX7x4cWbPnp2XXnopyd8D9H79+mXo0KGrZSMAAAAAAAAAAAAAQBM0JiSfMmXKSt335JNP5je/+U3OO++8PPbYY1m0aFFOPvnkfOxjH+vagQAAAAAAAAAAAAAADdHR7gGr24Ybbphjjz02kyZNyvvf//68/PLL+eQnP5nvf//77Z4GAAAAAAAAAAAAANAWa3xIvlTfvn1z8cUXZ9ddd01d1/nsZz+b++67r92zAAAAAAAAAAAAAAC6XTEheZL06tUr3/rWt5Ikixcvzumnn97mRQAAAAAAAAAAAAAA3a+okDxJdthhh4wePTp1Xee6667LjBkz2j0JAAAAAAAAAAAAAKBbFReSJ8nWW2+dJFm0aFH++Mc/tnkNAAAAAAAAAAAAAED3KjIkHzBgQOv6qaeeauMSAAAAAAAAAAAAAIDuV2RIPmPGjNb1vHnz2rgEAAAAAAAAAAAAAKD7FReS/+1vf8sf//jH1uvBgwe3cQ0AAAAAAAAAAAAAQPcrLiQ/88wzl3kK+ZgxY9q4BgAAAAAAAAAAAACg+xUTks+ZMycnnHBCvvGNb6SqqiTJwIEDs9NOO7V5GQAAAAAAAAAAAABA9+ps94DldcYZZ6zwPYsWLcqcOXPywAMP5A9/+ENeeeWV1HWdJKmqKscff3x69erV1VMBAAAAAAAAAAAAAHq0xoTkp512WutJ4ivjtQF5XdfZZZddcuKJJ3bVPAAAAAAAAAAAAACAxuho94DusjRCr+s6hx12WK655pr06dOnzasAAAAAAAAAAAAAALpfY55Invz9qeIrY7311stee+2Vj3/849ltt926cBUAAAAAAAAAAAAAQLM0JiSfOHHiCt/T2dmZAQMGZPjw4RkxYsRqWAUAAAAAAAAAAAAA0DyNCcnHjh3b7gkAAAAAAAAAAAAAAGuEjnYPAAAAAAAAAAAAAACgewnJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwnS2e8DyOuOMM9r23aecckrbvhsAAAAAAAAAAAAAoKs1JiQ/7bTTUlVVW75bSA4AAAAAAAAAAAAArEkaE5K/Vl3X//D9/x2aL+/n/tn3tCteBwAAAAAAAAAAAABYXRoVkr82DH9t4L30/eUJx+u6/j8/BwAAAADAmmHJkiWZOXNml587ZMiQdHR0dPm5AAAAAADQ3RoTkk+cODFJ8sgjj+TEE0/MnDlzUtd1evfunX333Tc77rhjNttss7zpTW9KkrzwwguZPHly/vSnP+V3v/tdFi5cmKqqMnjw4Jxzzjl561vf2s6fAwAAAADAajRz5swMHz68y8+dPn16hg0b1uXnAgAAAABAd2tMSD527NjcfvvtrYi8qqocd9xxOeWUUzJ06NB/eu/zzz+f008/Pd/73vcye/bsfPGLX8w111yTXXbZpZvWAwAAAAAAAAAAAAD0HI35/9985plncuCBB2b27Nnp3bt3xo8fn/PPP/8NI/IkGTp0aL7zne9k/Pjx6ezszJw5c3LggQdm2rRp3bAcAAAAAAAAAAAAAKBnaUxIfuqpp2bWrFmpqionn3xyDjnkkBU+45BDDsnJJ5+cJJk9e3ZOPfXUrp4JAAAAAAAAAAAAANDjNSIkX7BgQS699NIkSd++ffP5z39+pc/6whe+kL59+6au61x22WVZsGBBV80EAAAAAKAHeyDJ9BX4e6A9MwEAAAAAoFs0IiS/9dZbM2/evFRVlZ122inrrLPOSp+1zjrrZOedd06SvPjii7n11lu7aiYAAAAAAD3Y0CTDVuBvaHtmAgAAAABAt2hESP7UU0+1rkeMGLHK5732jNeeDQAAAAAAAAAAAABQgkaE5NOnT29dz5kzZ5XPe+GFF1rXM2bMWOXzAAAAAAAAAAAAAACapBEh+eDBg5MkdV3nvvvuW6Wz6rrOPffc03o9aNCgVToPAAAAAAAAAAAAAKBpGhGSv+Utb2ldP/fcc7niiitW+qwrrrgizz333D88GwAAAAAAAAAAAACgBI0IyceOHZsBAwakqqrUdZ3PfvazeeKJJ1b4nClTpuSzn/1sqqpKkqy77rrZY489ungtAAAAAAAAAAAAAEDP1oiQvE+fPjnmmGNS13WqqsrTTz+dXXfdNdddd91yn/Hb3/42u+22W5599tnWOR/60IfSu3fv1bgcAAAAAAAAAAAAAKDn6Wz3gOV15pln5vLLL8+zzz7biskPOOCAbL/99jniiCOy4447ZtNNN82AAQOSJHPnzs3DDz+cO+64I5dccknuvvvuVkCeJOutt17OPPPMdv4kAAAAAAAAAAAAAIC2aExIPmDAgPz2t7/N3nvvnVmzZqWqqtR1nTvvvDN33XXXP723ruskad0zZMiQ/Pa3v826667bHdMBAAAAAAAAAAAAAHqUjnYPWBHbbLNNbr755my99datp4svjcP/2d9rP/faMwAAAAAAAAAAAAAAStSokDxJxowZk7vuuivnnntuRo8e3Xra+FJLo/HXqus6o0ePzrnnnpu77rorY8aM6c7JAAAAAAAAAAAAAAA9Sme7B6yMzs7OnHDCCTn++ONzyy235Lbbbsvdd9+d5557LrNnz06SDBo0KCNGjMh2222X//f//l9233331wXmAAAAAAAAAAAAAAAlamRIvlRVVRk7dmzGjh3b7ikAAAAAAAAAAAAAAI3R0e4BAAAAAAAAAAAAAAB0LyE5AAAAAAAAAAAAAEBhhOQAAAAAAAAAAAAAAIXpbPeAVTV16tTceuutefTRRzNr1qzMmzcvSTJu3Lg2LwMAAAAAAAAAAAAA6JkaGZLXdZ2LL7445557biZNmvS6f6uq6h+G5FdeeWW+853vJEkGDx6cyy+/vFv2AgAAAAAAAAAAAAD0JI0LyZ9++ukcccQRue2225K8Go4nSVVVrev/y2677ZYjjzwyL7/8cqqqyu23355ddtlltW8GAAAAAAAAAAAAAOhJOto9YEU8/fTT2WmnnXLbbbe9Lhpf+iTyf2bo0KE5+OCDW6/Hjx+/WnYCAAAAAAAAAAAAAPRkjQnJFy9enAMOOCBPPfVU671hw4bla1/7Wn7/+99nwoQJb/hE8iR573vf27q+4YYbVsdUAAAAAAAAAAAAAIAerbPdA5bXj3/84/z5z39uPXX8kEMOyU9/+tP069cvSfLEE08s1zn77LNPklefYP7ggw9m9uzZGTRo0OoZDQAAAAAAAAAAAADQAzXmieTnnntu63q33XbL+PHjWxH5ihg0aFA22GCD1usHH3ywS/YBAAAAAAAAAAAAADRFI0Lyxx9/PA8//HDr9be//e10dKz89M0226x1/cgjj6zSNgAAAAAAAAAAAACApmlESH7XXXclSaqqyqabbpptttlmlc4bOHBg63r27NmrdBYAAAAAAAAAAAAAQNM0IiSfPn1663rMmDGrfN4666zTun7ppZdW+TwAAAAAAAAAAAAAgCZpREj+4osvtq779eu3yufNnTu3S88DAAAAAAAAAAAAAGiSRoTkQ4YMaV3PmjVrlc+bOnXqPzwbAAAAAAAAAAAAAKAEjQjJhw8fniSp6zp/+ctfVumsF198MZMmTWq9Hj169CqdBwAAAAAAAAAAAADQNI0IyXfcccfW9TPPPJN77rlnpc/6xS9+kcWLFydJ1lprrWXOBgAAAAAAAAAAAAAoQSNC8pEjR+Zf//VfW69PPfXUlTpnzpw5Ofvss1NVVaqqym677ZY+ffp01UwAAAAAAAAAAAAAgEZoREieJJ/61Kda19ddd12+/vWvr9D98+fPz/vf//489dRTqes6SfK5z32uSzcCAAAAAAAAAAAAADRBY0Lyj33sY3nLW96SJKnrOqeeemqOPPLIPPHEE2947/XXX58ddtghN954Y+tp5Nttt13e8573rO7ZAAAAAAAAAAAAAAA9Tme7Byyvzs7OjB8/PmPHjs2CBQtS13UuvfTSjB8/Pttvv3023njjZT5/zjnnZPLkyZkwYUKmTZuWuq5TVVXqus7AgQNzySWXtOmXAAAAAAAAAAAAAAC0V2NC8iR5xzvekV/+8pc54ogjMn/+/CTJkiVLcuedd+bOO+9sfa6u65x00kmt6yStiHzAgAG57LLLXheeAwAAAAAAAAAAAACUoqPdA1bUAQcckD/96U8ZM2ZMKxJfqqqq1t9rA/Lk1aB8iy22yO2335699tqr23cDAAAAAAAAAAAAAPQUjQvJk2TMmDH57//+74wfPz677bZbOjs7U9f1Mn/J359G/va3vz0//vGPc//992fMmDHtnA4AAAAAAAAAAAAA0Had7R6wsqqqyqGHHppDDz008+fPzx133JEnn3wyM2fOzCuvvJKhQ4dmxIgR2XnnnTN06NB2zwUAAAAAAAAAAAAA6DEaEZIvXrw4L730Uut1//7909Hx94epr7POOtlzzz3bMQ0AAAAAAAAAAAAAoHE63vgj7ffTn/40gwYNyqBBgzJ06NA888wz7Z4EAAAAAAAAAAAAANBYjXgi+XPPPZe6rpMkb3/727P++uu3eREAAAAAAAAAAAAAQHM14onk/fr1S5JUVZVRo0a1eQ0AAAAAAAAAAAAAQLM1IiQfOXJkuycAAAAAAAAAAAAAAKwxGhGSb7755q3rJ598so1LAAAAAAAAAAAAAACarxEh+TbbbJO3vvWtqes699xzT2bPnt3uSQAAAAAAAAAAAAAAjdWIkDxJPv7xjydJFi9enG984xttXgMAAAAAAAAAAAAA0FyNCck///nPZ6eddkpd1znvvPNy6aWXtnsSAAAAAAAAAAAAAEAjNSYk7+joyBVXXJEdd9wxixcvzpFHHplPfOITefTRR9s9DQAAAAAAAAAAAACgUTrbPWB5nXHGGUmSd77znXnggQcyb968jBs3LuPGjctWW22VbbfdNsOHD8+66667Queecsopq2MuAAAAAAAAAAAAAECP1ZiQ/LTTTktVVa3XVVWlruskyf3335+//vWvK3WukBwAAAAAAAAAAAAAKE1jQvJ/5LVh+Yqq63qV7gcAAAAAAAAAAAAAaKpGheRLn0AOAAAAAAAAAAAAAMDKa0xIPnHixHZPAAAAAAAAAAAAAABYIzQmJB87dmy7JwAAAAAAAAAAAAAArBF6TEh+wgkntK5POeWUDBw4sH1jAAAAAAAAAAAAAADWYD0mJP/P//zPVFWVJPmP//iPNwzJb7nlltb1TjvtlD59+qzOeQAAAAAAAAAAAAAAa4weE5InSV3XrZj8jeyxxx6tzz7++OMZNWrU6pwGAAAAAAAAAAAAALDG6Gj3gFVR13W7JwAAAAAAAAAAAAAANE6PeiL5ilrep5f3RIsXL84jjzySBx54IE8//XReeOGFrLXWWhk0aFA22WSTbLfddunXr1+7ZwIAAAAAAAAAAAAAa6BGh+R1XTcqJp86dWquuOKK3HDDDbn11lszd+7c//OzvXr1yj777JNPf/rT2X///btxJQAAAAAAAAAAAACwpmt0SN4kRx55ZC655JLl/vzixYtz/fXX5/rrr88BBxyQiy66KCNGjFiNCwEAAAAAAAAAAACAUgjJu8nkyZP/4fvrr79+Nt1004wYMSKLFi3KY489lr/85S9ZsmRJ6zPXXHNNdt9999x8880ZOXJkd00GAAAAAAAAAAAAANZQQvI22HbbbfORj3wk7373u7PJJpu87t+nTZuWM844Iz/84Q9b702ePDmHHXZYbrnlllRV1Z1zAQAAAAAAAAAAAIA1TEe7B5Siqqrsv//+ueuuu3Lvvffm05/+9D+MyJNXn1L+gx/8IBdeeOEy799222259NJLu2MuAAAAAAAAAAAAALAGE5J3k8suuyzXXHNNtttuu+W+59hjj8373ve+Zd77+c9/3tXTAAAAAAAAAAAAAIDCCMm7yUYbbbRS9x133HHLvJ44cWIXrAEAAAAAAAAAAAAASiYk7+G23XbbZV4vWLAgc+bMac8YAAAAAAAAAAAAAGCN0NnuAa9VVVWS5I477siUKVOW+74V/fxr7b777it1X3fp7Hz9/0SvvPJKG5YAAAAAAAAAAAAAAGuKHhWSJ0ld1zniiCNW2+dfq6qqLFq0aKXu7S6PPPLIMq87OzszdOjQNq0BAAAAAAAAAAAAANYEPS4kr6oqdV0v1+eWWp7PN9Xll1++zOvtttsuHR0dbVoDAAAAAAAAAAAAAKwJelxIniwbia+OzyfNiM9ffPHFjBs3bpn3Dj744C47f/r06ZkxY8YK3fO/n5AOAAAAAAAAAAAAADRPjwnJR40atVJB+JrsK1/5Sp599tnW64EDB+ZjH/tYl53/3e9+N6effnqXnQcAAAAAAAAAAAAANEOPCcmnTJnS7gk9ypVXXpkLLrhgmffOOuusDB48uE2LAAAAAAAAAAAAAIA1RUe7B/B6f/nLX/Lv//7vy7y377775lOf+lSbFgEAAAAAAAAAAAAAa5Ie80RyXjV16tTsv//+efHFF1vvjR49Or/4xS9SVVWXftexxx6bww47bIXueeSRR/Le9763S3cAAAAAAAAAAAAAAN1LSN6DTJ8+Pfvss0+mTZvWem/kyJGZMGFChg0b1uXfN3z48AwfPrzLzwUAAAAAAAAAAAAAeraOdg/gVbNmzcree++dyZMnt94bOnRobrjhhmy66aZtXAYAAAAAAAAAAAAArGmE5D3ACy+8kH333TeTJk1qvTdo0KBMmDAhW221VRuXAQAAAAAAAAAAAABrIiF5m82bNy/77bdf7rnnntZ7AwYMyPXXX5+3ve1t7RsGAAAAH9sfmwAAkiJJREFUAAAAAAAAAKyxhORt9NJLL+U973lP7rjjjtZ7/fv3z3XXXZcddtihjcsAAAAAAAAAAAAAgDWZkLxNFixYkAMOOCC33XZb67111lkn1157bXbZZZc2LgMAAAAAAAAAAAAA1nRC8jb429/+lgMPPDA33XRT67211147V199dXbffff2DQMAAAAAAAAAAAAAiiAk72avvPJKDjnkkNxwww2t99Zaa61cddVV2Wuvvdq4DAAAAAAAAAAAAAAohZC8Gy1atCjvf//7c91117Xe6927dy6//PK8613vauMyAAAAAAAAAAAAAKAkQvJusnjx4nzwgx/Mr3/969Z7nZ2dufTSS3PAAQe0cRkAAAAAAAAAAAAAUJrOdg8oxUc+8pGMHz9+mffOPvvsbLvttpkyZcoKnTVy5MisvfbaXbgOAAAAAAAAAAAAACiJkLyb/OxnP3vdeyeeeGJOPPHEFT5r4sSJ2WOPPbpgFQAAAAAAAAAAAABQoo52DwAAAAAAAAAAAAAAoHsJyQEAAAAAAAAAAAAACtPZ7gGlqOu63RMAAAAAAAAAAAAAAJJ4IjkAAAAAAAAAAAAAQHGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGGE5AAAAAAAAAAAAAAAhRGSAwAAAAAAAAAAAAAURkgOAAAAAAAAAAAAAFAYITkAAAAAAAAAAAAAQGE62z0AAAAAAACAsi1ZsiQzZ87s8nOHDBmSjg7PVQIAAACAf0RIDgAAAAAAQFvNnDkzw4cP7/Jzp0+fnmHDhnX5uQAAAACwJvAIBgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAAChMZ7sHAAAAAAAAwOs9kGToCnz++SRjVtMWAAAAAFjzCMkBAAAAAADogYYmGdbuEQAAAACwxupo9wAAAAAAAAAAAAAAALqXkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQHAAAAAAAAAAAAACiMkBwAAAAAAAAAAAAAoDBCcgAAAAAAAAAAAACAwgjJAQAAAAAAAAAAAAAKIyQH+P/s3UuMZAXdxuE/ZQ935VJdhSyUCGh0gBgILlCIFxa4YzQQEjdIRGNIDDt1YQKjC3UhicaoG5NhYxARiAtFowmJ0TGBAEFoiI4DeCFSzJl44SIw9nwL8zXpYWC6pk+f06ff59lVT9WpN9U5Rqp+fQoAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgzELfAwAAAAAAGIbl5eVqmqb1447H4xqNXPcEAAAAAAC6JCQHAAAAAGBNmqap6XTa+nFns1lNJpPWjwsAAAAAALw+l3gBAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIs9D3AAAAAAAAhmupqhbnuP++qtq+QVsAAAAAAIC1E5IDAAAAAHDUFqtq0vcIAAAAAABgbqO+BwAAAAAAAAAAAAAA0C0hOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQJiFvgcAAAAAAADAUCwvL1fTNK0fdzwe12jkGlAAAAAAdEdIDgAAAAAAAGvUNE1Np9PWjzubzWoymbR+XAAAAAB4PS5rAAAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEGah7wEAAAAAAAAwbEtVtTjH/fdV1fYN2gIAAAAAayMkBwAAAAAAgHVZrKpJ3yMAAAAAYC6jvgcAAAAAAAAAAAAAANAtITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQJiFvgek2rt3b9133311//3313333VcPPPBA/fvf/17597POOquefPLJ/gYCAAAAAAAAAAAAAFuWkLxD9957b331q1+t+++/v/bv39/3HAAAAAAAAAAAAAAglJC8Qw899FD94he/6HsGAAAAAAAAAAAAABBu1PcAqo477rg655xz+p4BAAAAAAAAAAAAAIRwRfKObdu2rc4777y6+OKL633ve19dfPHFdcEFF9RvfvOb+vCHP9z3PAAAAAAAAAAAAAAggJC8Q9dee2199rOfreOPP77vKQAAAAAAAAAAAABAMCF5h0477bS+JwAAAAAAAAAAAAAA1KjvAQAAAAAAAAAAAAAAdEtIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEGah7wH0Zzab1bPPPjvXY/bs2bNBawAAAAAAAAAAAACArgjJg33nO9+pnTt39j0DAAAAAAAAAAAAAOjYqO8BAAAAAAAAAAAAAAB0S0gOAAAAAAAAAAAAABBmoe8B9OeGG26oq6++eq7H7Nmzp3bs2LExgwAAAAAAAAAAAACATgjJg02n05pOp33PAAAAAAAAAAAAAAA6Nup7AAAAAAAAAAAAAAAA3RKSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIRZ6HtAmr/+9a914MCB1/z873//+6rbBw4cqCeffPKwxzj55JNrcXFxI+YBAAAAAAAAAAAAAAGE5B279NJL66mnnjri/f72t7/VO97xjsP+27XXXlu7du1qeRkAAAAAAAAAAAAAkGLU9wAAAAAAAAAAAAAAALolJAcAAAAAAAAAAAAACLPQ94A0Tz75ZN8TAAAAAAAAAAAAAIBwrkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBGSA4AAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQZqHvAQAAAAAA6ZaXl6tpmtaPOx6PazRyPREAAAAAAOC1hOQAAAAAAD1rmqam02nrx53NZjWZTFo/LgAAAAAAMHwuRQMAAAAAAAAAAAAAEEZIDgAAAAAAAAAAAAAQRkgOAAAAAAAAAAAAABBmoe8BAAAAAAC81lJVLc5x/31VtX2DtgAAAAAAAFuPkBwAAAAAYBNarKpJ3yMAAAAAAIAta9T3AAAAAAAAAAAAAAAAuiUkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAiz0PcAAAAAAAAAoF3Ly8vVNE3rxx2PxzUauVYVAAAAwFYgJAcAAAAAAIAtpmmamk6nrR93NpvVZDJp/bgAAAAAdM/lAgAAAAAAAAAAAAAAwgjJAQAAAAAAAAAAAADCCMkBAAAAAAAAAAAAAMIs9D0AAAAAAAAA6MJSVS3Ocf99VbV9g7YAAAAA0DchOQAAAAAAAERYrKpJ3yMAAAAA2CRGfQ8AAAAAAAAAAAAAAKBbQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwQnIAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMAt9DwAAAAAA2AjLy8vVNE3rxx2PxzUauUYHAAAAAAAwbEJyAAAAAGBLapqmptNp68edzWY1mUxaPy4AAAAAAECXXDYHAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgzELfAwAAAAAAurJUVYtz3H9fVW3foC0AAAAAAAB9EpIDAAAAADEWq2rS9wgAAAAAAIBNYNT3AAAAAAAAAAAAAAAAuiUkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAiz0PcAAAAAAGBYlpeXq2ma1o87Ho9rNHLtCwAAAAAAgC4IyQEAAACAuTRNU9PptPXjzmazmkwmrR8XAAAAAACA1xKSAwAAAAAAAL3wTScAAAAA/RGSAwAAAAAAAL3wTScAAAAA/fFn+AAAAAAAAAAAAAAAYVyRHAAAAABYt6WqWpzj/vuqavsGbQEAAAAAAODIhOQAAAAAwLotVtWk7xEAAAAAAACsmZAcAAAAAAAA2ER81wkAAABAF4TkAAAAAAAAwCbiu04AAAAAujDqewAAAAAAAAAAAAAAAN0SkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEEZIDAAAAAAAAAAAAAIQRkgMAAAAAAAAAAAAAhBGSAwAAAAAAAAAAAACEWeh7AAAAAADwP8vLy9U0TevHHY/HNRq5pgQAAAAAAACvEpIDAAAAwCbRNE1Np9PWjzubzWoymbR+XAAAAAAAAIbLZYgAAAAAAAAAAAAAAMIIyQEAAAAAAAAAAAAAwgjJAQAAAAAAAAAAAADCLPQ9AAAAAAB4fUtVtTjH/fdV1fYN2gIAAAAAAMDWISQHAAAAgE1ssaomfY8AAAAAAABgyxn1PQAAAAAAAAAAAAAAgG4JyQEAAAAAAAAAAAAAwgjJAQAAAAAAAAAAAADCCMkBAAAAAAAAAAAAAMIIyQEAAAAAAAAAAAAAwgjJAQAAAAAAAAAAAADCLPQ9AAAAAAAAAGCzW15erqZpWj/ueDyu0cj1vwAAAIDuCckBAAAAAAAAjqBpmppOp60fdzab1WQyaf24AAAAAEfiT9sBAAAAAAAAAAAAAMIIyQEAAAAAAAAAAAAAwgjJAQAAAAAAAAAAAADCLPQ9AAAAAAAAAGCYlqpqcY7776uq7Ru0BQAAAGA+QnIAAAAAAACAo7JYVZO+RwAAAAAclVHfAwAAAAAAAAAAAAAA6JaQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIMxC3wMAAAAAYCMtLy9X0zStH3c8Htdo5DoNAAAAAAAADJOQHAAAAIAtrWmamk6nrR93NpvVZDJp/bgAAAAAAADQBZdMAgAAAAAAAAAAAAAIIyQHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACLPQ9wAAAAAA6NpSVS3Ocf99VbV9g7YAAAAAAABAH4TkAAAAAMRZrKpJ3yMAAAAAAACgR6O+BwAAAAAAAAAAAAAA0C0hOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQJiFvgcAAAAAAAAA0I7l5eVqmqb1447H4xqNXKcMAAAAthIhOQAAAAAAAMAW0TRNTafT1o87m81qMpm0flwAAACgP/5kHAAAAAAAAAAAAAAgjJAcAAAAAAAAAAAAACCMkBwAAAAAAAAAAAAAIMxC3wMAAAAAAAAA2EhLVbU4x/33VdX2DdoCAAAAbBZCcgAAAACOyvLycjVN0/pxx+NxjUa+SA8AANqzWFWTvkcAAAAAm4yQHAAAAICj0jRNTafT1o87m81qMhG5AAAAAAAAwEZyaScAAAAAAAAAAAAAgDBCcgAAAAAAAAAAAACAMEJyAAAAAAAAAAAAAIAwC30PAAAAAGDrWKqqxTnuv6+qtm/QFgAAAAAAAOD1CckBAAAAaM1iVU36HgEAAAAAAAAckZAcAAAAAAAAgM4tLy9X0zStH3c8HtdoNGr9uAAAALDVCMkBAAAAAAAA6FzTNDWdTls/7mw2q8nEdyUBAADAkfgzbAAAAAAAAAAAAACAMK5IDgAAALCJ+Gp3AAAAAAAAoAtCcgAAAIBNxFe7AwAAAAAAAF0QkgMAAAAAAACwSSxV1eIc999XVds3aAsAAABsbUJyAAAAAAAAADaJxarybUoAAADQBSE5AAAAAAAAALyO5eXlapqm9eOOx+MajUatHxcAAADWSkgOAAAAsMn5YncAAID+NE1T0+m09ePOZrOaTFx9HQAAgP4IyQEAAAA2OV/sDgAAAAAAALRNSA4AAABE8FXkAAAAAAAAAK8SkgMAAAARfBU5AAAAAAAAwKuE5AAAAAAAAAAwl6WqWpzj/vuqavsGbXmVb+MCAABgHkJyAAAAYF18SA0AAECexarafN9O5du4AAAAmIeQfBN44okn6qGHHqqnn366nnvuuTrzzDPrrLPOqve///21bdu2vucBAADAG/IhNQAAAAAAAMDwCMl7dMcdd9Qtt9xSu3fvPuy/n3766XXNNdfUl7/85VpcnOdr0QAAAIC12JxfRA4AAABbm283AwAA2ByE5D147rnn6tOf/nTddtttb3i//fv313e/+926884769Zbb60rrriio4UAAAD0zQeq3dicX0QOAAAAW5tvNwMAANgchOQd++9//1vXXHNN/fSnP13188lkUhdeeGGdcsop9ac//akefPDBOnjwYFVVPfPMM3XllVfWL3/5y7r00kv7mA0AAEDHfKAKAAAAtMP3cR0tf+gPAABsdULyjn3xi19cFZFv27atbrnllvrMZz5Txx577MrPl5aW6vrrr6/du3dXVdVLL71UO3bsqN///vd15plndr4bAABgq/ABYDd8RA0AAACbhe/jOlr+0B8AANjqhOQd2rt3b33zm99c9bMf/ehHdeWVV77mvtu3b69f/epXdfnll6/E5E3T1M6dO+t73/teJ3sBAADWakhxtg8Au+EjagAAAIDuDOn9OQAAYPMQkndo586d9corr6zc/uQnP3nYiPz/nXDCCbVr16664IIL6uWXX66qqu9///v1+c9/vs4+++wN3wsAAPRvKB8AibMBAAAAWB/fb7YeQ3l/bijvdwIAQAoheUdefPHFuuOOO1b97Atf+MIRH/eud72rduzYUbfffntVVR04cKB+8IMf1Je+9KUN2QkAACk24gMLV89mo/k4FQAAANi6fL9ZgiG93yl6BwAggZC8Iz//+c/rhRdeWLl9ySWX1Lvf/e41Pfa6665bCcmrqu68804hOQCwqQ3lzdWh7Kwaztah7KzamA8sxNlsNB+nAgAAAPTNn/qnGEr0PqT35QEA2HyE5B255557Vt3+0Ic+tObHXnbZZbWwsFAHDhyoqqoHH3ywnnnmmTrjjDPanAgbakj/8TqUq5MO5TUdys6q4Wwdys6q4Wy1cxiBblX7b64OZWfVcLYOZSccysd/AAAAAKyNP/VncxnK+/JD+pxrSFsBANZLSN6RRx55ZNXtSy65ZM2PPemkk+qCCy6oBx98cOVnjz76qJCcQRnKf7xWDefqpEN5TYeys2o4W4eys2o4W+0U6AIbY0hxto//AAAAANh6hvQOHVvdkD7nGsrWIQXvQ9k6lJ1Vw7lIIgCbn5C8I4899tiq2+eee+5cjz/nnHNWheRLS0v1kY98pJVtAADAsAzl4x9xNgAAAAD0aSjv0A3lHU/YXIYSvFcNZ+tQdlYN5yKJQ4nzh7Kzajhbh7KzalhbYSMIyTuwf//+2r9//6qfvf3tb5/rGIfe/49//OO6d8HRePbZZ4/qcfv27Wt5yZENZaud7RvK1qHsrBrOVjvbN5StQ9lZNZytQ9lZ1e7WX1fV6Wt8/P6qumyO5xvKa9rmznmXz3v/oWwdys6q4Wy1cw3HmPP+Q9k6lJ1Vw9k6lJ1VR7d1KDur/O7fyFC2DmVn28+0nv+/uvYPp+1ci/k+7B/K1qHsPPxzz3t/r+kbP++89/e7P/Lzznt/r+mRn3fe+ye8pkPZWeV3/3r3727r+nS3c553kasO906y17RdQ9lZNZytQ9lZNZytyTs3Ks5fWlqqxcV5/gjpVYfbOpSdVcPZOpSdVcPaChtBSN6Bf/zjH6tun3jiiXXSSSfNdYxD/4fqn//853pn1Ww2m/vDjaWlpVW39+zZs+4dDMv555/f94RVHn/88ZrNZof9t820dSg7q15/61B2Vg1n61B2Vg1nq51Hx+++fV7T9nX1ms4Thh9OVzvbuNZOF7/7jdxZNZytQ9lZNZytdh4dv/vVvKb/M5SdVe1tHcrOKr/7/zeUrZt956EXO2nrmbZvP/pjPPLII6/5mZ3t7qwaztah7KwazlY7/e4PeZajfo6VI3hND32Wo36OlSMEvKZD2Vnld/96vKaHWu+7yF29puuXurNqOFuHsrNqOFuHsrNqY7YOZWeV3/1G8Jq2byO2sjUd2uG+9NJLnT7/MQcPHjzY6TMGevjhh+u9733vyu3xeDz3X3B961vfqhtvvHHl9sc//vH68Y9/vK5dN998c+3cuXNdxwAAAAAAAAAAAAAA1u/uu++uK6+8srPnG3X2TMGee+65VbePP/74uY9xwgknvOExAQAAAAAAAAAAAADWSkjeg2OOOaaTxwAAAAAAAAAAAAAAHM5C3wMSnHzyyatuv/jii3Mf49DHHHrMo3HDDTfU1VdfPddj/vWvf9X9999fb3nLW+rUU0+tt73tbXXcccetewubz549e2rHjh0rt+++++4699xz+xsEA+Z8gvY4n6A9zidoj/MJ2uN8gvY4n6A9zidoj/MJ2uWcgvY4n6A9zidoj/Mpw0svvVR/+ctfVm5/8IMf7PT5heQd2Kwh+XQ6rel0OvfjLrnkknU/N8Nz7rnn1nnnndf3DNgSnE/QHucTtMf5BO1xPkF7nE/QHucTtMf5BO1xPkG7nFPQHucTtMf5BO1xPm1dF110UW/PPertmYOccsopq26/8MIL9fzzz891jNlstur2qaeeut5ZAAAAAAAAAAAAAEAoIXkHxuNxnXbaaat+9uc//3muYzz11FOrbr/zne9c9y4AAAAAAAAAAAAAIJOQvCPvec97Vt3es2fPXI/fu3fvGx4PAAAAAAAAAAAAAGCthOQdOf/881fd3r1795of+/zzz9fDDz/8hscDAAAAAAAAAAAAAFgrIXlHPvrRj666fe+99675sb/+9a/rwIEDK7cvvPDCOuOMM9qaBgAAAAAAAAAAAACEEZJ35IorrqgTTjhh5fbu3bvr8ccfX9Njd+3ater2xz72sTanAQAAAAAAAAAAAABhhOQdOfHEE+uqq65a9bOvf/3rR3zcH/7wh7rrrrtWbi8sLNQnPvGJ1vcBAAAAAAAAAAAAADmE5B26+eaba9u2bSu3d+3aVT/5yU9e9/7/+c9/6rrrrquXX3555Wef+tSn6pxzztnQnQAAAAAAAAAAAADA1iYk79DZZ59dN95446qfXXXVVfXtb397VSxeVfXYY4/V5ZdfXr/97W9XfjYej+umm27qZCsAAAAAAAAAAAAAsHUt9D0gzde+9rV69NFH62c/+1lVVb3yyiv1uc99rr7yla/URRddVG9+85tr79699cADD9TBgwdXHnfsscfWXXfdVWeeeWZf0wEAAAAAAAAAAACALUJI3rE3velNdfvtt9f1119fP/zhD1d+PpvN6p577jnsY6bTad1666112WWXdTUTAAAAAAAAAAAAANjChOQ9OPnkk+u2226rq666qr7xjW/U7373u8Pe7/TTT69rrrmmdu7cWZPJpOOVpJtMJnXTTTetug0cHecTtMf5BO1xPkF7nE/QHucTtMf5BO1xPkF7nE/QLucUtMf5BO1xPkF7nE904ZiDBw8e7HtEuieeeKIeeOCBevrpp+v555+vt771rXXWWWfVBz7wgTr22GP7ngcAAAAAAAAAAAAAbDFCcgAAAAAAAAAAAACAMKO+BwAAAAAAAAAAAAAA0C0hOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAAAAAAAAAAQBghOQAAAAAAAAAAAABAGCE5AAAAAAAAAAAAAEAYITkAAAAA8H/t3Xd4VGX+/vE7lVDSKIEUDCT0DiogwoooIKggK6uCIE1FRUQsi2sDrGtbRdG1LAorgi6oiKiAIFjoUqWFltBCSQgJIQmp5/eHP+bLSZ0kM5kzmffrunJdPifnec5n4tyTYfKZZwAAAAAAAAAAAOBhaCQHAAAAAAAAAAAAAAAAAAAAAA9DIzkAAAAAAAAAAAAAAAAAAAAAeBhfVxcAwBr27NmjXbt26fjx48rJyVFERIRiYmLUrVs3eXtb4z0nFy5c0KZNm7R3716dOXNG+fn5CgwMVOPGjdWqVSu1bNnSMrXCs7lDngB3QZ4Ax7Fink6ePKl9+/bp6NGjSkpKUkZGhnx9fRUcHKzIyEh17txZUVFRLqkNKI0V85Senq7du3crLi5OZ86cUWZmpoKCglSvXj116tRJrVu3lpeXl0tqA0pjxTwBrhIfH69t27YpMTFR58+fV3h4uKKjo9WjRw/5+fm5tLYtW7Zo//79On78uCQpMjJSLVq0UOfOnV1aF1ASK+cJcDdWy1NWVpb27NmjvXv3KikpSefPn1edOnVUt25dtWvXTu3bt5evL38ChzVZLU8pKSnau3evjh49qlOnTikjI0OSFBwcrIYNG6pz586KiYmp8roAe1gtT4A7I0+A41g9T3l5edqyZYt27dqlpKQk5eTkqE6dOrbX+tq2bcu/pzyVAcBjFRQUGB988IHRoUMHQ1KxXxEREcYTTzxhnD9/3mV1/v7778Ydd9xhBAQElFinJCMoKMgYPHiwsXr1apfVCs9lxTxFR0eXmpmyvlatWlUldQKFWTFP9jhx4oQRGhpapNapU6e6ujR4MKvl6cSJE8a0adOM/v37G/Xr17fr91GLFi2Ml156yUhLS3N6fUBprJan/Px845dffjEee+wx4/LLLze8vb1LzVLdunWNhx9+2Dh48KDTawPKYrU8XerChQvGhg0bjHfffdcYPXq00bZt2yL54vkdHG3BggXGVVddVepj+P33328kJSVVaV05OTnGyy+/bMTGxpZYW7NmzYx//vOfRk5OTpXWBpTEinnKzc01tm3bZnz00UfG+PHjjS5duhh+fn6mukaNGlVl9QD2slKeNm/ebDzzzDPG1VdfXSQ/hb9q165tjB071ti+fbvT6wLsZZU8paenGy+//LIxaNAgIzw83K7X5qKioownn3zSOHnypFNrA+xllTzZKyMjw4iJiSlSJ8//YAVWytM111xTqd6GTz75xOk1AqWxUp6Ks2/fPuOee+4xgoKCSs1SzZo1jb59+xpfffWVS+qE69BIDniokydPGtdff73dT7piY2ONTZs2VWmNGRkZxvjx4w0vL69yPUGcMmVKldYJWDVPNJLDHVk1T/YYMmRIsTXSaARXsWKefvzxxwr/XoqIiDC+++47p9YHlMRqeUpISLD7D76FvwICAow33njDabUBZbFani6aNm2acfnll5fZmMTzOzhSenq6cccdd9idh4YNGxpLly6tktr27dtndOnSxe7aLr/8cmP//v1VUhtQHCvm6b333jOuuuoqo2bNmmXWQyMRrMRKecrKyiq2+c6eLx8fH2PKlCm82QkuZaU8GYZh7N+/v8KvzQUHB9OkB5eyWp7s9fDDD/P8D5ZjxTzRSA53ZcU8XSo3N9d45plnDF9f33Jl6vbbb6+yGmEN7EMPeKCMjAwNHDhQW7ZsMR2PiopShw4dFBAQoLi4OO3atcv2vYMHD6pfv35at26dWrZs6fQak5OTNXDgQG3atMl03MfHRx07dlRkZKQCAwOVlpam/fv368CBAyooKHB6XUBh7pAnwF24c57+97//6euvv3bZ9YHC3ClPYWFhat68ucLCwlS7dm1lZmbq+PHj2rFjh7KysmznJSYmavDgwZo7d65uv/32KqsPsGKe0tPTdeLEiSLHfXx81LZtW0VERKhu3bpKS0vT1q1blZiYaDvnwoULevTRR3X48GHNmDHD4bUBpbFini76+uuvtX37dqetDxSWn5+v22+/Xd9//73peIMGDdS5c2cFBwfr4MGD2rp1qwzDkCSdOnVKgwcP1ooVK9SzZ0+n1Xby5En17dtXhw8fNh1v1qyZ2rZtK8MwtGvXLh08eND2vc2bN6tfv35av369wsLCnFYbUByr5mnZsmVat26dU9YGnMVqecrLy9OhQ4eKHPfy8lLLli112WWXqX79+jp//rx27txpOjc/P1+vvPKK9u/fry+++IKPZ0eVs1qeSlK3bl01b95cjRo1Up06dZSdna2TJ09q+/btSk9Pt52XlpamMWPG6MyZM3r00UerpDbgInfJU2Hr16/X22+/7ZJrAyVx1zwBVmT1PGVlZWno0KFF6vPy8lLbtm112WWXKSQkROfPn9ehQ4e0d+9e5eXlObUmWJjretgBuMrQoUNN7yIKDAw05s2bZ+Tn55vOW79+vdGyZUvTubGxsUZmZqZT68vMzDSuvPJK03VDQkKMN99800hOTi52ztmzZ4358+cbN954o/Hkk086tT7gUlbO06U7kkdGRhrx8fHl+srKynJabUBxrJyn0iQnJxthYWGmui+tjR0r4QpWzdOPP/5oREdHGxMmTDC+/PLLUj8SNyMjw5g1a5bRsGFDU321a9c24uPjnVIfUBwr5umPP/6wXaNGjRrGbbfdZixevNhIS0sr9vyVK1ca7du3L7KjxEcffeTw2oDSWDFPF3Xs2LHYnVfCwsKMBg0a8PwODvfYY4+Z7ld+fn7GO++8Y2RnZ5vO27VrV5GPxa1Xr56RmJjolLry8/ONbt26ma4XHh5uLFu2rMi5P/zwg9GoUSPTuT169DAKCgqcUhtQEqvmafDgwcX+bgkJCTEiIyNNx9iRElZhtTylp6fb1vfx8TEGDBhgfP755yV+HPzvv/9u/OUvfymSu6eeesqhdQH2sFqeDOPPHcnDwsKMMWPGGPPmzTMSEhJKPDcnJ8dYuHChERsba6rN29vbWL9+vcNrA0pjxTyVJTs722jTpk2Jfzvi+R9cxap5KrwjeXl7G9LT051SF1Aaq+bJMAyjoKDAGDRokOmaAQEBxrPPPmscO3as2DkZGRnGokWLjDvuuMO46667nFYbrIlGcsDD/Prrr6ZfEv7+/qV+RHRycnKRFwhefvllp9ZY+BdtmzZtyvXLMzc314nVAf/H6nm6tJE8OjraadcBHMHqeSrNnXfeaauha9euxsiRI2k0gktZOU8VeZ6WkJBghIeHm+q77777nFAdUJRV8/THH38YgYGBxtNPP22cOXPGrjmZmZlFXoyvV68eL7Cjylg1Txd17NjRCA0NNa6//nrjiSeeMBYuXGgcPnzYMAzDGDVqFM/v4FAHDx40/Pz8TPerRYsWlXh+ZmZmkT82jR8/3im1/fe//zVdp27duqW+ie/QoUNGaGioac78+fOdUhtQHCvnafDgwUadOnWMXr16GZMnTzbmzZtn7Nu3zygoKDCmTp1KIxEsx4p5Sk9PN2rUqGFMmDDBOHr0qF1z8vLyjGHDhhV57llawyzgaFbMk2H8mY/Cb+QtS0pKitGuXTtTbTfccIPDawNKYtU8leWpp54y/Z22cA8Ez//gClbOU+HXrgGrs3KeDMMwZs6cabpWeHi4sXv3brvn03vneXjkBTxM4Z0Ypk2bVuacVatWmeaEhISUuNNdZW3cuNHw8fGxXatBgwal7lQJuJLV80QjOdyJ1fNUkiVLltiu7+vra2zfvp1GI7icu+apNLNmzTLV17BhQ1eXBA9h1TydO3fO7gbySyUmJhp16tQx1fe///3PobUBJbFqni4q7Q3sPL+Do911112m+9To0aPLnBMXF2f4+/ub/v1x8OBBh9aVl5dnNG3a1FTb7Nmzy5z3ySefmObExsaWu0EJqCir5skwDOPkyZMlZoFGcliRFfOUm5trdwP5pTIzM43GjRubbs+rr77qsLqAslgxT5WxcuVK0+3x9fU1zp075+qy4CHcMU/btm0zfH19bdf//vvvef4HS7Bynmgkh7uxcp4OHz5s+ltQQECAsWvXLodfB9WLtwB4jMOHD+uXX36xjWvWrKmHHnqozHm9e/dW165dbePU1FQtXrzYKTU+/fTTys/Pt43/9a9/qWHDhk65FlAZ7pAnwF24a57OnTun++67zzZ+/PHH1aFDhyq7PlAcd81TWQYOHGganzp1SufPn3dRNfAUVs5TYGCg6tatW+554eHh+utf/2o6tmrVKkeVBZTIynm6KDw83CnrAoVlZWVp4cKFpmNTpkwpc16LFi10yy232MZ5eXmaN2+eQ2v77bffFB8fbxtHRkZqxIgRZc4bOXKkIiMjbeODBw9q7dq1Dq0NKI6V8yRJDRs2lLc3f4aDe7Bqnnx9fRUVFVXueTVr1tSYMWNMx/i3D6qKVfNUGb1791bNmjVt47y8PB0+fNiFFcFTuGOe8vLyNHbsWOXl5UmShg0bpgEDBlTJtYHSuGOeAKuyep5efPFF099Rn3rqKbVp08bh10H1witYgAf5+uuvTeNbbrlFoaGhds0t/ILbV1995bC6LoqPj9ePP/5oG0dHR2v48OEOvw7gCFbPE+BO3DVPjz/+uI4dOyZJatasmZ599tkquzZQEnfNU1mKa5hNT093QSXwJNU1T507dzaNExMTXVQJPEl1zRNQEcuWLVNmZqZtfNVVV6lVq1Z2zXV2Hgpn9a677pKPj0+Z83x8fIo0nJNVVAUr5wlwN9UxT/zbB65SHfPk7e2tkJAQ0zFem0NVcMc8vfbaa9qyZYukP1/Xfuutt6rkukBZ3DFPgFVZOU/p6emm5vTatWtr0qRJDr0GqicayQEPsnTpUtO4d+/eds8tfO7y5ctVUFDggKr+z6xZs2QYhm08atQodmyBZVk9T4A7ccc8rVq1Sh999JFt/OGHHyogIMDp1wXK4o55skfhHY78/f1Vv359F1UDT1Fd8+Tr62sa5+TkuKgSeJLqmiegIiqTh169epkex7du3apTp045qjSHZvWHH35wQEVA6aycJ8DdVMc88W8fuEp1zFNmZqaSkpJMxyIiIlxUDTyJu+UpLi5O06dPt43feOMNhYWFOfWagL3cLU+AlVk5T1988YVpN/Jbb71VgYGBDlsf1RcdmoAH2blzp2l81VVX2T23VatWpp0gMzIylJCQ4KjSJBX9WMG+ffs6dH3AkayeJ8CduFueMjMzdc8999je/DR27Fhde+21Tr0mYC93y5O9/vvf/5rGV199tfz8/FxUDTxFdc3TgQMHTOPw8HAXVQJPUl3zBFREZfJQu3ZttW/f3nRs165dDqkrOzu7yO+I7t272z2/R48epvH+/ftp2IPTWTVPgDuqjnni3z5wleqYp/nz5ysvL882btq0qaKjo11YETyFO+WpoKBA48aNU3Z2tiSpT58+Gj16tNOuB5SXO+UJsDor54neO1QUjeSAhzh37pyOHz9uOhYbG1uuNWJiYkzj3bt3V7qui/Ly8rR161bb2M/PT1dccYUkKTU1VR9++KH69u2rJk2aKCAgQHXr1lWrVq00cuRIzZ071/YPMqAqWD1PxTl37pzuu+8+derUSfXr17ft5NqyZUv97W9/09tvv13kNgFVwR3z9PTTT+vgwYOSpLCwML3++utOvR5gL3fMkz2+/vprvfrqq6Zjjz32mIuqgaeornkqKCjQ119/bTrWtWtXF1UDT1Fd8wRU1J49e0zjZs2alWt+4fw4Kg9xcXHKz8+3jcPCwhQUFGT3/KCgINMnxuTn52vfvn0OqQ0oiVXzBLij6pinhQsXmsb82wdVpbrlac2aNUVei+O1OVQVd8rTzJkztWbNGklSzZo19cEHHzjtWkBFuFOeJGnSpEnq2rWrwsLC5O/vr7p166p58+a6+eab9eqrr/KaA1zKynnauHGjaXyxyT0rK0vz5s3ToEGDFBsbq5o1ayokJETNmjXT3/72N3344YdKT093WB1wPzSSAx6i8M4L9evXV61atcq1xmWXXWYa79+/v9J1XbRr1y5lZWXZxhcbxr/88ku1aNFC48eP14oVK3T48GFlZ2fr7NmziouL09y5czVy5Eg1b95cn3/+ucPqAUpj9TwV5+zZs/rggw+0fft2nTlzRrm5uTpz5oz27dunhQsXatKkSYqJidGYMWN0+vRpp9YCXMrd8rRhwwbNmDHDNn777bcVGhrqtOsB5eFueSpJVlaW4uPjtWDBAg0aNEh//etfTbtZTpgwQQMHDqzyuuBZqkueCvvyyy915MgR29jHx0c333yzCyuCJ6iueQIqIiUlRSkpKaZjhe/fZXFWHgpntbx1FTeHrMKZrJwnwN1Uxzxt2rTJ1sx30ZAhQ1xUDTxJdchTdna2jh07pm+//VYjRozQX/7yF6Wmptq+f/PNN+v++++v0prgmdwpTwkJCXryySdt46lTp5a7qRBwJnfK00Vvv/22Nm3apKSkJOXm5urs2bM6cOCAlixZoilTpqh169b661//atv8C6gqVs5Tamqq6TU+f39/xcTE6Oeff1bbtm1155136ttvv9WhQ4d04cIFpaWl6eDBg1q4cKHGjx+vpk2b6u2333ZILXA/NJIDHuLSf+BLf+4qVF6F56SlpVWmJJMTJ06YxpGRkXrrrbc0dOhQJSUllTn/6NGjGjZsmP7xj384rCagJFbPU0Xl5ORo9uzZ6tSpk3755RdXlwMP4U55ysnJ0dixY1VQUCBJuvHGG3X77bc75VpARbhTni4VEhIiLy8v21etWrUUExOj2267Td9++63tPD8/Pz333HN65513nF4T4K55Kk1aWpoeeeQR07E777xTERERLqoInqI65gmoqMJ5qFWrlmrXrl2uNZyVB7IKd2PlPAHuprrlKTc3V+PHjzcd69WrFzuSo0q4Y546depkem0uICBAjRs31qBBg/TZZ5/ZXg/38vLShAkTtHDhQnl5eTm1JkByrzzdc889ysjIkCR17NhRjz76qFOuA1SUO+XJXhc/fbNLly768ssvXVoLPIuV83Ty5EnTOCIiQl999ZX69Omj+Pj4MuefOXNGkyZN0siRI5WXl+eQmuA+fF1dAICqcf78edO4Zs2a5V6j8BxHfqRF4V+0+/btMzU5tGvXTvfee6+6d++u4OBgnTp1Sj/99JPeffddU6P5P//5T0VGRurBBx90WG1AYVbP06W8vb11xRVXqH///urYsaOaNm2qoKAgZWZmKjExUWvXrtWnn36qhIQE25wTJ05o4MCB+uWXX9SlSxen1AVc5E55ev75520fK1WnTh299957TrkOUFHulKfyCAwM1IMPPqj77ruvQjtjAhVR3fJkGIZGjx6tY8eO2Y4FBwfr5ZdfdllN8BzVLU9AZVg5D1auDSgO91nAcapbnh5//HFt3brVNvbz82NXPVSZ6pYn6c+dLO+55x498MADatOmjUtrgWdxlzzNmjVLK1askPTn32U/+ugj+frSigVrcZc8SVL79u01YMAAderUSc2aNVNISIiys7N1+vRprVu3Tl988YX++OMP2/nnzp3T7bffrsWLF/NptqgSVs5T4d678+fPa8SIEbY3BkZHR2vChAnq2bOn6tWrp5SUFP3222969913TT1Dc+fOVcOGDfX66687pC64B569AB6i8C+ygICAcq9R+BdZ4TUro/Avs8TERNt/P/zww3r99dfl4+NjO9aiRQv16tVLDz30kAYPHqxff/3V9r1HH31UAwcOVExMjMPqAy5l9TxdNGnSJA0ZMkRNmjQp9vsdOnTQDTfcoKlTp+rtt9/WlClTlJubK0nKyMjQoEGDtG/fvnJ/7DxQHu6Sp+3bt+uVV16xjV944QUaWmE57pKn8kpPT9d//vMf5ebm6rHHHlPDhg1dXRI8QHXL09SpU7Vo0SLTsffee4/dyFElqluegMqwch6sXBtQHO6zgONUpzx9/PHHmjFjhunYtGnT1KlTJ5fUA89TnfJ0UU5OjubOnaucnBxNmTJFsbGxLq0HnsMd8pSYmKjHHnvMNn7ooYd05ZVXOvQagCO4Q56GDx+ud999V23bti3xnD59+uipp57SZ599pvvvv9/WfJufn6/bb79de/fuVWRkpEPrAgqzcp4K994lJyfb/vtvf/ub5syZU+Ta3bt314MPPqi77rpLCxYssB1/4403NHjwYPXq1cshtcH6vF1dAOApHnzwQdPHgjnra9q0aXbVU5GPHHPmx5RdfPdTYUOGDNGbb75paiK/VGhoqL777jtFR0fbjuXk5Jia/VD9kCf7TJ48ucQm8kv5+Pho8uTJWrhwoby9/++pwfHjx/XWW285r0BYAnkqW35+vsaNG2d7o0XXrl01ceJEp14T7ok8VcyOHTsUHx+v+Ph4HTp0SNu2bdOSJUv01FNP2d6wkZSUpNdff11t2rTRDz/8UOU1ouqRJ8eZNWuWnn/+edOxBx54QMOHD3dRRahq5AmwLivnwcq1AcXhPgs4jrvmaenSpbrvvvtMx2666Sb94x//cFFFgHvk6fvvv7e9NhcfH68dO3Zo+fLleuGFF9S6dWtJUlpamj766CN16NBBs2fPrtL6gIusmKcHHnjA1rQXHR2tF154wanXAxzFinm69957S20iv9Sdd96plStXmjbEO3/+vKZPn+6s8oASWSlPJfXeXXnllZo3b16Ju6cHBARo3rx5Rd4Mxe81z0IjOeAh6tSpYxpnZWWVe43CcwqvWRnFreXt7a1//etfZc4NDAws8str/vz5ys/Pd1h9wKWsnqeKGjRokB588EHTsX//+98uqgaewh3y9Nprr2nz5s2SJF9fX3300UemN10AVuEOeSrOZZddpiZNmqhJkyZq2rSpOnbsqBtvvFEvvPCCDh48qBdeeMGWuZSUFA0ePFgrV650el3wbO6ap8K+/PJLjR8/3nTsb3/7Gx/rjipVXfIEOIKV82Dl2oDicJ8FHKc65GnNmjW69dZbbRtBSFLPnj31xRdfWKLJHZ7DHfMUERFhe22uSZMmat++vfr27aunnnpKu3fv1ocffmjbaTMzM1Njx47Vf//7X6fWBEjWz9Pnn3+ub775xjb+97//rdq1aztsfcCRrJ6nirjyyiuL9AnNmTNHGRkZLqoInsLKeSppnddff12+vr6lzvX19S3So7d8+XKdPn3aIbXB+uiAATyElX+RlbRWr1697NpNWfqzGeLSd06lp6dry5YtjioPMLF6nirjiSeeML2wfuzYMe3cudOFFaG6s3qe4uLiTO9ef/zxx9WhQweHrQ84ktXzVBG+vr566qmn9Oabb9qO5ebm6q677qrQ7QPsVR3y9N1332n48OGmN9jefPPN+uyzz0r8xCfAGapDngBHsXIerFwbUBzus4DjuHueNm/erBtvvFGZmZm2Y127dtV3331n2qUSqArunqfi3HPPPfriiy9sY8Mw9MADD+j48eMurAqewMp5Sk5O1kMPPWQbDxs2TAMGDHDI2oAzWDlPlfHAAw8oKCjINs7JydGqVatcWBE8gZXzVNw60dHR+stf/mLX/J49eyomJsZ07Oeff3ZIbbC+0t9qAMBhBg8erKioKKdfp2fPnsUeDw4ONo2TkpLKvXbhdxmFhISUe42SFLdW9+7d7Z5fo0YNderUSevWrbMd27NnT5GP3UD1QJ6cJzw8XB06dND27dttx3bs2KF27dq5sCo4E3kqmWEYuvvuu3XhwgVJUrNmzfTss886ZG1UT+TJeSZOnKg5c+bY3iiYmJiouXPn6p577nFxZXAW8lQ5K1as0NChQ5WTk2M71r9/fy1YsEB+fn5VVgesgTwB1lE4D5mZmcrIyCjXrnXOygNZhbuxcp4Ad+POedqxY4f69euntLQ027HOnTtr2bJlpqYioKq4c55KM2jQIA0ZMkRff/21JCkjI0PvvfeeXnzxRRdXhurMynl66KGHbP9mqlu3rt566y2HrAs4i5XzVBk1atTQtddea/p0gB07duimm25yYVWo7qycp8r23klSt27ddOjQIdt4z549lS0LboJGcqCK9O3bV3379nXZ9Zs3b24aJyUlKTMzs1y7MRw+fLjUNSujRYsWRY6Fh4eXa42IiAjT+MyZM5WqCdZFnpyrSZMmpkbyivzxGO6DPJVs+fLl+u2332zjJ598UidPnixz3vnz503j1NRUJSQk2Mb+/v5FfmeheiBPzuPl5aU77rjD9IkzS5cupZG8GiNPFffzzz9r8ODBtjdCSdK1116rr7/+WjVq1KiSGmAt5Amwjnr16ik0NFRnz561HTty5Ihat25t9xrOykPhdQpfxx5kFVXJynkC3I275mn37t26/vrrlZKSYjvWrl07LV++3BKNTfBM7ponewwbNszWSC79+docjeRwJqvmKS4uTvPnz7eNH374YWVmZpr+DlSc1NRU0/j8+fOmOd7e3rrssssqXR9QHKvmyRGaNGliGtPbAGezcp6io6NVo0YNZWdn247Rewd7ebu6AABVIygoqMiD/cGDB8u1Rnx8vGlcnl+CZYmKiiryrq3yNjkUPv/SxgnAkayep8qqWbOmaVyRj+IB7GXlPBW+748dO1ZNmzYt8+vLL780zZsxY4bp+wMHDnRIfUBhVs6TI7Rs2dI0PnDggIsqgSdw1zytWbNGN910k+kj3Xv27Klvv/22yHM8oKq4a54AZyl8/y3vc5pLdwQqbr2KatmypXx8fGzj06dPKz093e75586dU3Jysm3s4+NjmT8qo/qyap4Ad+RueYqLi9N1111nahRq1aqVVqxYofr16zv12kBZ3C1P9uK1ObiCFfNU+G9Hzz77rF1/O5oxY4Zp3pdffmn6focOHSpdG1AaK+bJEehtgCtYNU8+Pj5FnrPRewd70UgOeJB27dqZxuvWrbN77t69e03vMqpVq5aaNm3qsNokqX379qZx4XfllqXw+fXq1atkRUDJrJ6nyrj0D7+SeOEdTled8wRUteqcJz8/P9P40nfTA87gbnnasGGDBgwYYPpkjO7du+v7778v10cqAs7gbnkCnKkyecjIyNCOHTtKXa+iatSoodjY2ArXtnbtWtO4efPmfBIGnM6qeQLckTvl6cCBA+rTp4/pkwObN2+un376SQ0bNnTadQF7uVOeyoPX5uAK1TVPgCtU1zzR2wBXsHKeCr8xid472ItGcsCD3HDDDabx6tWr7Z5b+Nz+/fvL29uxDyGFd2jdtWtXuebv3LnTNI6Kiqp0TUBJrJ6nisrPz9fmzZtNxwrvHgg4WnXNE+AK1TlPx44dM4354zCczZ3ytHnzZvXv39+0c+wVV1yhpUuXKjAw0GnXBezlTnkCnK0yefj111+Vl5dnG3fu3Nmhz4kcmdUBAwY4oCKgdFbOE+Bu3CVP8fHx6tOnjxITE23HYmJi9NNPP5X7I9sBZ3GXPJUXr83BFaprngBXqK552rBhg2lMbwOqgpXzRO8dKoq/ugAeZMiQIabxokWL7H7n0ezZs0tdyxGGDh1qGq9cudL0y7M0e/bs0ZEjR2xjb29v9ejRw6H1AZeyep4q6ocfftDZs2dtY19fX/Xs2dOFFcETWDVPt9xyiwzDKPfXqFGjTOtMnTrV9P1t27Y5rEagMKvmyRGWL19uGjdv3txFlcBTuEuetm/frn79+iktLc12rFOnTlq+fLmCg4Oddl2gPNwlT0BV6N+/v+ljl9etW6e9e/faNdfZeSi83qeffqr8/Pwy5+Xn52vu3LlOrQ0ojpXzBLgbd8jTkSNH1KdPHx09etR2LDo6Wj/99BPNDbAUd8hTRfDaHFzBinnq1KlThf52NHXqVNM6o0aNMn2/vDvGAuVlxTxV1h9//KE//vjDdKx3796uKQYexcp5uummm0yfErhp0yalpKTYNffs2bPauHGj6VivXr0cWh+si0ZywIM0adLE9ACflZWlGTNmlDnv559/Nr2LLyQkRIMGDXJ4fc2bN9fVV19tG584cULz5s2za+7rr79uGvfs2VMhISGOLA8wsXqeKiIjI0NPPPGE6Vjv3r0VFBTkoorgKapjngBXqa552rFjh77++mvTscGDB7uoGngKd8jT7t271bdvX9OLgO3bt9eKFSsUGhrqlGsCFeEOeQKqSq1atYpspvDKK6+UOW/fvn2m50O+vr4aPny4Q2vr1auXmjZtahsfO3asSIN4cebOnavjx4/bxrGxsabX+ABnsXKeAHdj9TwlJibquuuuU0JCgu1YZGSkfvrpJ0VHRzv8ekBlWD1PFXHixAl9+OGHpmO8NoeqUB3zBLhKdctTfn6+Jk+ebDrWrFkztWnTxkUVwZNYOU+BgYGm2rKzszVz5ky75s6cOVMXLlywjaOjo9WuXTuH1gcLMwB4lF9//dWQZPvy9/c3Nm3aVOL5Z86cMWJjY01zXn755TKvEx8fb5ojyYiPjy9z3po1a0xz6tWrZ+zbt6/UOQsXLixyraVLl5Z5LaCyrJqnpKQk47///a+Rl5dn9205d+6cMWDAgCLX+fXXX+1eA6gMq+apIkaNGmVaf+rUqQ5dHyiLVfMUHx9vfPzxx+X6/WQYhnHgwAEjOjradJ1mzZoZ2dnZ5VoHqAir5skwDGPfvn1Go0aNTHNat25tnDp1qrw3E6gSVs5TWXh+B0c7ePCg4efnZ7pfffPNNyWen5WVZfTo0cN0/vjx48u8TuEsrFq1qsw5//3vf01z6tatW+ZzvNDQUNOc+fPnl3kdwFGsnKfSTJ061bTeqFGjKrUe4AhWzdOpU6eMVq1ameaEh4eX+bcjwJWsmKfz588bb7zxhpGZmVmu23L69Gmjc+fORZ4jJiUllWsdoKKsmKeK4PkfrMCqeXr77beNrKwsu29Hdna2MWbMmCLX+fTTT+1eA6gsq+bJMAzj0KFDhr+/v21OjRo1jLVr15Y6Z+3ataY5koz333+/zGuh+qCRHPBAQ4cONT3wBwUFGfPnzzfy8/NN561fv95o2bKl6dzY2FgjIyOjzGtU5g+3I0aMMM0LCwszvvjiiyL1ZWZmGi+++KLh6+trOv+WW26x+2cBVJYV83Tx/JiYGGPq1KnG9u3bi9RzUVZWljFnzhwjJiamyDXGjh1brp8FUFlWzFNF0GgEK7BinrZu3WpIMpo2bWo8/fTTxtatW0ttKo+PjzeeeeYZo1atWqZreHt7Gz/++KPdPwugsqyYp8OHDxuNGzc2nd+wYUNj3bp1Rnx8fLm+jh49WtkfEWA3K+bpoqysrBJzcuutt5rWmzRpUonnluePXvBsjz32mOl+5efnZ7zzzjtF3iy3e/fuIn9kqlevnpGYmFjmNSryh6b8/HyjW7dupnnh4eHGsmXLipy7dOnSIm9q6tGjh1FQUGD3zwFwBKvmKTc3t8TfF5MmTTKtd+utt5Z4bnp6ekV/NEC5WS1PZ8+eNTp06GA6v3bt2sb3339f7n/7OPo1QKAsVsyTJKNRo0bG5MmTjbVr15a6UcPJkyeN119/3ahXr16R68yaNcvunwPgCFbLU0XQSA6rsGKeLv5+euyxx4z169cbubm5xZ6Xm5trLFq0yOjUqVORa1x//fW8HoEqZ8U8XfT000+b5tWpU8d47733jJycHNN5ubm5xvvvv2/UqVPHdH7Xrl3Z1MvDeBmGYQiAR8nIyFCvXr20detW0/HGjRurY8eO8vf31759+7Rz507T90NDQ7Vu3Tq1bNmyzGskJCSYPgpXkuLj49WkSZMy5164cEHXX3+91qxZYzoeFhamK6+8UsHBwTp16pTWrVunzMxM0znt27fXmjVrFBgYWOZ1AEewYp6KO7927dpq166dwsLCFBQUpKysLJ04cUJbtmxRdnZ2kTVuvPFGLVq0SL6+vmXWBziKFfNUEaNHj9acOXNs46lTp2ratGkOWx+whxXztG3bNnXu3Nl0rGbNmrbfT8HBwcrLy1Nqaqr27Nmjo0ePFlnD29tbs2fP1siRI8usD3AUK+Zp9uzZGjNmTPluSAmio6NNHw8POJMV83TR6tWrde2119p3Q0qxatUq9e7du9LroPrLz8/XzTffrB9++MF0PCwsTF26dFFgYKAOHTqkLVu26NKX8P39/bVixQr16tWrzGt4eXmZxvbeP0+cOKHu3bvryJEjpuPNmzdX27ZtZRiGdu3apQMHDpi+36RJE61fv14NGzYs8xqAI1k1T8X9TqqITz75RKNHj670OoA9rJYnRz1Hu4g/i6MqWS1PqampCg0NNR3z9/dXmzZtFB4erpCQEBmGobS0NO3bt0+HDh0qNjMvvviinnzyyTJrAxzJanmqiGnTpmn69Om28ahRozR79myHrQ/Yy4p5Knx+jRo11LZtW4WHhys4OFi5ubk6ffq0Nm/erPPnzxeZf8UVV+inn36iTwhVzop5usgwDN1+++1asGCB6XhISIi6d++uunXrKiUlRevXr1dqaqrpnMjISK1fv15RUVFlXgfViCu61wG43okTJ4zrrruuyDuXSvqKjY01Nm7caPf6ld3xNSUlxRgyZIjd9UkybrzxRiMtLa0CPw2gcqyWp+LOt/fLz8/PeOGFF0rdIRZwJqvlqSLYkRxWYbU8XdyRvKJfrVu3Nn7++WcH/GSA8rNanj755JNK5enSr+jo6Mr/gIBysFqeLlq1apVDMuXoHctQvaWnpxu333673fevsLAw44cffrB7/crcP+Pi4ozOnTvbXVuXLl2M/fv3V+CnADiGFfNUmdfoLv365JNPKv6DASrASnly1HO0i19AVbNSni7uSF7Rr6ioKOOrr75ywE8FqBgr5aki2JEcVmK1PFX0d5OXl5fx0EMP8QmBcCmr5elSFy5cMMaPH1+uXHXt2tU4fvx4BX4ScHfeAuCRGjVqpB9//FHvv/++2rdvX+J54eHhmjJlirZv364rr7yyyuoLDQ3VV199pf/973/q0aNHkXdYXeTl5aVu3bpp0aJFWrJkiYKCgqqsRuAiq+WpQYMGeu6553TdddfZ/a7bxo0b64knntCBAwf01FNPycfHx2n1AaWxWp4Ad2a1PLVq1UpffPGFxo4dq9jYWLvm+Pv764YbbtC8efO0bds2/eUvf3FafUBprJYnwJ2RJ+D/1KlTR59//rkWLFig7t27l3he3bp1df/992vnzp264YYbqqS2Fi1aaMOGDXr55ZcVExNT4nmxsbF6+eWXtX79ejVr1qxKagOKY+U8Ae6GPAGOY6U8BQUFafHixXrggQfUpk0beXuX3Sri6+urXr166cMPP9SePXs0ZMgQp9QG2MNKeQLcndXy9Nprr2ngwIGqV6+eXec3aNBAEyZM0O7duzVjxgwFBAQ4rTagLFbL06Vq1Kih999/XytWrFDfvn1L7QNq166dZs+erbVr1yoiIqJK6oO1eBkGn+EFQNq9e7d27typxMRE5eTkKCIiQjExMerevbtdLyQ429GjR7V582YlJiYqNTVVISEhCg8PV8+ePdWgQQNXlweYWClPhmEoPj5e+/fv1/Hjx3X27FllZWXJ399foaGhCgsL0xVXXKHIyMgqrQuwl5XyBLg7q+UpJSVFu3fv1uHDh5WUlKSMjAx5e3srKChIoaGhatOmjdq2bSs/P78qrw0oi9XyBLgz8gT8n/j4eG3ZskWJiYnKyMhQo0aNFB0drauvvlr+/v4urW3z5s3at2+fEhMTJUkRERFq0aKFLr/8cpfWBZTEynkC3A15AhzHSnlKT0/X7t27lZCQoJMnTyojI0PSnw3nwcHBatmypTp06EBzHizLSnkC3J2V8nTs2DHFxcXp2LFjOnPmjLKysuTj46PQ0FDVr19fnTp1snuzIsAVrJSnwpKSkrR+/XqdOHFCycnJCgwMVMOGDdWjRw9FRUW5tDa4Ho3kAAAAAAAAAAAAAAAAAAAAAOBh2NYHAAAAAAAAAAAAAAAAAAAAADwMjeQAAAAAAAAAAAAAAAAAAAAA4GFoJAcAAAAAAAAAAAAAAAAAAAAAD0MjOQAAAAAAAAAAAAAAAAAAAAB4GBrJAQAAAAAAAAAAAAAAAAAAAMDD0EgOAAAAAAAAAAAAAAAAAAAAAB6GRnIAAAAAAAAAAAAAAAAAAAAA8DA0kgMAAAAAAAAAAAAAAAAAAACAh6GRHAAAAAAAAAAAAAAAAAAAAAA8DI3kAAAAAAAAAAAAAAAAAAAAAOBhaCQHAAAAAAAAAAAAAAAAAAAAAA9DIzkAAAAAAAAAAAAAAAAAAAAAeBgayQEAAAAAAAAAAAAAAAAAAADAw9BIDgAAAAAAAAAAAAAAAAAAAAAehkZyAAAAAAAAAAAAAAAAAAAAAPAwNJIDAAAAAAAAAAAAAAAAAAAAgIehkRwAAAAAAAAAAAAAAAAAAAAAPAyN5AAAAAAAAAAAAAAAAAAAAADgYWgkBwAAAAAAAAAAAAAAAAAAAAAPQyM5AAAAAAAAAAAAAAAAAAAAAHgYGskBAAAAAAAAAAAAAAAAAAAAwMPQSA4AAAAAAAAAAAAAAAAAAAAAHoZGcgAAAAAAAAAAAAAAAAAAAADwMDSSAwAAAAAAAAAAAAAAAAAAAICHoZEcAAAAAAAAAP6/3r17y8vLy/YF60hISDD9vxk9erSrS0IZpk2bZvp/tnr1arvnpqena+bMmbrxxhvVuHFj1apVy+7//0eOHNHTTz+tXr16qWHDhvL39zfNnT17dqVvGwAAAAAAAABUB76uLgAAAAAAAAAAytKkSRMdPnzYIWt9/fXXuuWWWxyyFmBls2fP1pgxY0o9x8fHRzVq1FCdOnUUFhamqKgotWzZUl26dFGvXr3UtGnTKqr2/6xbt05Dhw5VYmJiued+9NFHmjhxorKzs51QGQAAAAAAAABUL+xIDgAAAAAAAABwusrsTg3nyc/PV2Zmpk6fPq2dO3dq6dKlmjFjhkaNGqWYmBh16NBBr7/+utLS0qqknmPHjunmm2+uUBP5999/r/Hjx9NEDgAAAAAAAAB2YkdyAAAAAAAAAABQrD/++EOPP/64nn/+eU2bNk2TJk2St7fz9qh59dVXdebMGdu4a9eu+vvf/662bdsqICDAdrxOnTpF5v7jH/+QYRi28fDhwzVu3Dg1btxYfn5+tuP169d3UvUAAAAAAAAA4F5oJAcAAAAAAADgdubPn6/u3btXaG5YWJiDqwHcQ7du3fT5558XOZ6enq7U1FSlpKRo27Zt2rBhg3799VedP3/eds65c+f0yCOP6Pvvv9eCBQsUEhLilBoXLFhg+++wsDCtXLmy2KbxwuLi4rRjxw7beODAgfrss8+cUiMAAAAAAAAAVBc0kgMAAAAAAABwO40aNVKTJk1cXQaqUJMmTUy7TaP8AgICyszN4MGDJUlpaWmaNWuWXn/9dZ04ccL2/RUrVqhfv35atWqVateuXepa06ZN07Rp0+yu7/jx4zp58qRtfMMNN9jVRC5Jv//+u2k8dOhQu68LAAAAAAAAAJ7KeZ8/CQAAAAAAAAAA3FJwcLAeeeQRbd++Xf379zd9b9OmTbr//vsdfs1Tp06ZxlFRUVUyFwAAAAAAAAA8FY3kAAAAAAAAAACgWA0aNNB3332na6+91nT8008/1U8//eTQa50/f9409vPzq5K5AAAAAAAAAOCpfF1dAAAAAAAAAABUJ4ZhaOvWrYqLi1NSUpIyMjJUv359RUVFqWfPngoMDHR1iWU6ePCg9u7dq8OHD+vcuXPy8vJSaGioIiIi1K1bNzVo0MDVJVaIYRjasmWL9u7dq9OnTys7O1sNGjRQZGSkevbsqTp16jj8ehs3btT+/fuVmJgof39/NWrUSD179nSrHbN9fHz0+eefq127dkpKSrIdnz59uvr06eOw6xQUFLhkbnEuXLigdevW6ciRI0pKSpJhGGrQoIGaNWum7t27y9fXsX9eOXz4sLZu3aoTJ04oJSVFISEhGjJkiCIiIkqdd/78ea1Zs0aJiYlKSkqSj4+PwsLC1Lp1a3Xp0kXe3o7dT2jfvn3avn27jh07pry8PDVo0ECXX3652rdv75D1L1y4oPXr1+vIkSNKTk5WVlaWAgMDFR0drXbt2ik2NrbCa6ekpGjt2rU6efKkkpOTFRAQoAYNGqhTp05q27atQ+oHAAAAAAAA3A2N5AAAAAAAAADgAEePHtVLL72khQsXKjk5udhz/Pz8dP311+u5557TFVdcUeJap06dUlRUlPLy8iRJjRs3VkJCQrmbQn/55Rddc801tnG/fv20bNmyIudlZGRoyZIl+uqrr7R69WqdPn261HW7dOmiRx55RHfccYd8fHxKPG/16tVFdrK+qKTjFxmGYRonJCSoadOmtvGoUaM0e/bsUte4KDk5WS+99JLmzp1raoS+lL+/v/r06aNp06apW7dudq07e/ZsjRkzxjb+5JNPNHr0aBUUFOitt97SzJkzFR8fX+zcXr166bXXXrP7Wq4WFhamBx98UFOnTrUd++WXXxQXF6eWLVsWO2fatGmaPn26bbxq1Sr17t3bdE6TJk10+PDhYudPnz7dNP+iUaNGadq0aab7Q2El3b8u/j8qyYYNG/Tiiy9qxYoVysrKKvacoKAgDRs2TM8++2yZjd4XeXl52f77mmuu0erVqyVJixYt0quvvqr169cXuc9HRkbqlltuKXa9ZcuW6ZVXXtFvv/2m3NzcYs+pX7++xo0bpylTpig0NLTMGkvL2JIlS/Tiiy9q/fr1xc6NiYnRc889pzvvvLPM6xRn+fLlev311/XLL78oOzu7xPOioqI0ePBgjR8/3q7mdcMw9MUXX+itt97Spk2bSnzDQWRkpCZOnKiHHnpINWvWrNBtAAAAAAAAANyRY7eiAAAAAAAAAAAP9Morr6h58+Z6//33S2wil6Tc3Fz98MMP6tq1q/7+978XaRy9qGHDhrrpppts46NHj+rHH38sd10ff/yxaTxu3Lhizxs2bJjuuOMO/e9//yuziVyStmzZohEjRqhfv34lNmZbxaJFixQTE6M333yz1FpzcnK0dOlSde/eXePHj7c18ZfX6dOn1adPHz366KMlNpFL0q+//qpevXpp3rx5FbqOKzzwwAPy8/MzHVu8eLGLqnGszMxMDR8+XN27d9e3335bYhO5JJ07d04ffPCBmjdvroULF1boenl5ebr77rs1ZMgQrVu3rsTHgsKSk5PVt29f3XDDDVq1alWJTeQXz7342PTLL79UqM78/HxNnDhRN998c4lN5JJ06NAhjRgxQg8++KDdt0X6800zffr0Uf/+/fXjjz+W2kQuSceOHdO7776riRMnlrn2oUOHdPnll2vYsGHasGFDqbvWHz9+XE888YTatGmjXbt22V0/AAAAAAAA4O7YkRwAAAAAAAAAKqigoEBjx47VnDlzTMe9vb3Vvn17NWnSRLVr11ZSUpI2btyotLQ0SX/ukvvaa6/p9OnTJe6qPW7cOC1atMg2njVrlvr37293benp6VqwYIFtXK9evRJ3Ny7cYBkUFKQ2bdooLCxMgYGBunDhgo4dO6YdO3aYGmx/+ukn3XDDDVq7dq1q1Khhd21V5eOPP9Y999xT5PbFxsaqTZs2qlWrlo4cOaKNGzcqPz/f9v0PP/xQR44c0bfffitfX/tfRs/KytJNN92kTZs2SZJq1KihK664QpGRkcrPz9eePXu0e/du2/m5ubkaPXq02rVrpw4dOlTy1jpf/fr11alTJ9vtk6Q1a9bo8ccfd2FVlZeUlKQbbrhBW7ZsMR2vWbOmOnfurIiICPn4+Ojo0aPatGmTrXk7MzNTt912m/7zn/9o7Nix5brmY489plmzZtnGLVu2VIsWLVS7dm2dOHHC9DO+6MCBA+rfv78OHTpkOh4YGKjLL79cDRs2VH5+vhISErRlyxbb/f7MmTPq27evFi9eXK7HEEmaNGmS3n33XUl/7qreoUMHxcTEqEaNGjp8+LA2bdpketPFu+++q7Zt2+r+++8vc+2dO3fqhhtu0PHjx03Hvby81L59e0VHRysoKEhpaWk6ePCg4uLiSm0Gv9TGjRt14403FnljT7169dS5c2fVr19f2dnZ2r9/v3bu3Gn7fkJCgq6++mqtXr1anTp1sutaAAAAAAAAgDujkRwAAAAAAAAAKuj55583NZHXqFFDTzzxhCZMmKAGDRqYzs3Ly9Onn36qRx99VGfPnpUkzZkzR1dddZXGjx9fZO0BAwYoMjLS1mT5zTffKDk5WfXr17ertvnz5yszM9M2HjlypPz9/Us8v2PHjhoxYoQGDhyoNm3aFHtOZmam5s2bp6eeesq2c/mWLVs0depU/fOf/yxyfvfu3W27cr/11luaMWOGqb7u3bvbdVsqYtu2bbr//vtNjaedOnXSu+++qx49epjOTUpK0jPPPKMPPvjAdmzp0qV69tln9dJLL9l9zWeffVbJycmqWbOmpk+frgceeEC1a9c2nbNx40bdeeedOnDggKQ/m8knT56slStXVuRmVrmrrrrK1OS8ffv2Sq3322+/2RqR169fr2HDhtm+N2nSJD388MNF5tSpU0chISGmHd/tvX8Vzk9BQYGGDRtmaiKPiIjQCy+8oOHDhxd5g0RqaqpeffVVvfLKKyooKJBhGJowYYIuv/xydezY0a7bvGXLFv3888+SpBtvvFGvvfaaWrdubTonPT3dtDt3ZmamhgwZYmoib9mypV588UXdcsst8vHxMc0/ceKEpk6dqo8++kjSnzvujxgxQtu2bVNkZKRddX733Xe2Ruy7775bU6dOVVRUlOmc48eP695779X3339vO/bEE0/orrvuKnLfv1RKSooGDRpkaiKvXbu2Hn30UT344INFHj+lP3eCX7JkiebMmaOcnJwS1z558qRuueUWUxN5t27d9Pzzz+v666+Xl5eX6fwDBw7o8ccft71xJy0tTbfddps2b96swMDAEq8DAAAAAAAAVAc0kgMAAAAAAABwOydPnlRCQkK559WqVUthYWEOqWHDhg167rnnbOPQ0FCtXLlSnTt3LvZ8X19fjRkzRldffbV69OihM2fOSJKmTJmi4cOHF2lY9PHx0ahRo2yNzDk5OZo7d26xjbXFuXS3Y+nPHc5LMnPmTDVp0qTMNWvVqqW7775b/fr1U8+ePXX06FFJ0r///W89+eSTCgoKMp0fEBBgWzckJMT0vUaNGtl1zYoaN26cqdm0Z8+eWrZsmWrVqlXk3AYNGuj9999Xs2bNTLtrv/LKKxo2bJjat29v1zWTk5NVu3ZtrVq1SldeeWWx53Tt2lUrV65Uu3btlJ6eLklatWqVDhw4oGbNmpXnJrpEq1atTONjx46poKBA3t7eFVrv0sbkwpkOCQkp9T5y6fcqev964403TE38Xbp00fLly1WvXr1izw8JCdFLL72kLl266LbbbpNhGLpw4YImT56sn376qczrSbL9fx8/frz+/e9/F2lslv7cZfzSx4THH3/ctHP2gAED9OWXX6pmzZrFXiM8PFwffvihWrVqpUcffVTSn/fPZ555Rh9//LFddV5sxH7vvfdK3GE8MjJS33zzjbp3767NmzdL+rPh+/PPPy/1MefBBx80vREgPDxc33//fam7gAcFBWn48OEaPny4Tp48WeJ548aN04kTJ0zjDz74oEiz/UXNmjXT119/rUmTJuntt9+WJO3fv19vvvmmnn322RKvAwAAAAAAAFQHFXtlFwAAAAAAAABcaNiwYWratGm5v+69916H1fD888+bdrv+7LPPSmwiv1SLFi3073//2zZOS0uz7Rpc2Lhx40xNpvY2gO7atUsbN260jbt166Z27dqVeH55G7ovu+wyvfnmm7bxuXPn9O2335ZrDWdatWqVaYfpoKAgffHFF8U2kV/qscce00033WQbFxQUmG6nPd58880Sm8gvuuyyy0y70BuGoVWrVpXrOq4SGhpqGufl5Sk1NdU1xVRSVlaWXnvtNds4ODhYS5YsKbGJ/FJDhw41NVcXvs+VpXXr1nr77beLbSIvLDExUf/5z39s4yZNmmjhwoUlNpFf6pFHHtHAgQNt488++6zUJuzChg8fXmIT+UW+vr6aPn266VhpTfVxcXH64osvbGMfHx8tWLCg1Cbywho1alTs8d9//920O/pVV12lDz/8sMQm8kv961//UocOHWzjmTNnmnaFBwAAAAAAAKojGskBAAAAAAAAoJwOHjyo7777zja+5pprNGDAALvnDx06VNHR0bbx4sWLiz0vJiZGvXv3to3/+OMPbdq0qcz1y7MbeUXdfPPN8vf3t43Xrl3r8GtU1Jw5c0zjCRMmKCIiwq65//znP03j+fPn291MGhkZqTFjxth17qUN65K0detWu+a5WuFGcunPhmx3NH/+fCUlJdnGDz/8sMLDw+2ef3Gn74tKynFxHnnkEVN+SvP++++bdtefOnVqmW+KuNSldebk5Gjp0qV2z33mmWfsOq9fv36m21Pa/fmDDz4wvQlnxIgRuvrqq+2uqTQXdxS/6KWXXrJ7t3wfHx9NmjTJNk5KStK6descUhcAAAAAAABgVTSSAwAAAAAAAEA5rVixwjS+/fbbyzXfy8tL11xzjW28YcMGU6Pope6++27TuHCTeGE5OTn69NNPbePatWvrjjvuKFd9FxUUFCg9PV2JiYlKSEgwfSUmJqpu3bq2c/fs2VOhazjDb7/9ZhqPGDHC7rlt27ZVly5dbOMLFy5o8+bNds3t37+/fH197Tq3devWpvHp06ftrtGVLm0AvsieXbWt6McffzSNy5vjmJgYXXbZZbbxr7/+avfcwYMH233upXX6+Pho6NChds+VpJ49e5rul/bWGRMTo1atWtl1rp+fn2JjY23j0u7PK1euNI3vu+8+u65hj0sfmxs1amR6nLXHtddeaxqX5/8pAAAAAAAA4I7se0UbAAAAAAAAACxk1apVpp26q1rhRuWwsDAlJCSUa41LdxS+cOGCEhMT1aRJkyLn/fWvf1VoaKjOnj0r6c9dlN98803VrFmz2HUXL16s5ORk2/i2225TYGCgXTVlZGRoyZIl+uabb7Rt2zbt379feXl5ds29WJ+rnT17VgcPHrSNQ0JCijRtl6VHjx7asmWLbbxp0yb16NGjzHlt2rSx+xqFd/ZOS0uzv0AXSk1NLXKspPui1V2aY39/f9WoUaPcOa5bt66OHDkiSab7XWmioqLUoEEDu84t/EaGxo0bKzk52ZRxe4SEhNjm2Ftnee7Pkvk+XdL9OT09XX/88YdtXLt2bV155ZXluk5JDh48qBMnTtjGzZo10+HDh8u1RuE39Nj7swIAAAAAAADcFY3kAAAAAAAAAFBOR48eNY3Lu0NwcVJSUoptJA8ICNCdd96pmTNnSpLOnTunhQsXauTIkcWu8/HHH5vGhXc0L8l//vMfPfnkk0pKSipf4f+fVRqhC9ffvHnzcu+YXXgXZnt3Cy/cHF4aPz8/0zg3N9fuua5U+A0Dfn5+CgkJcU0xlVBQUKDExETbOCcnx7SjdkWkpKTYdV5YWJjda548edJ030hISFDTpk3LXdul7K2zPPdnyXyfLukNKKdOnZJhGLZxy5Yt5ePjU67rlKTw4/Jvv/1WZT8rAAAAAAAAwF15u7oAAAAAAAAAAHA3Z86ccfia6enpJX5v3LhxpvGsWbOKPe/YsWNatmyZbdy6dWu7dtKePHmy7rnnngo3kUt/NuZaQeFG5+Dg4HKvUXiOvc2k3t7V/yX33bt3m8aNGzcud6O+FZw9e9bh99nSMnwpez8hQKr6x5pLOeP+XPj2lLdZvTxrO4K9PysAAAAAAADAXVX/V7UBAAAAAAAAwMFycnIcvualu/QW1qlTJ3Xp0sU2/vnnn3XgwIEi582ePdvUHFu4Ab04CxYs0FtvvWU61rZtWz3//PNatmyZ4uLilJqaqgsXLsgwDNNXdHS0HbesahX+OTqiydkdG6WdZf369aZxx44dXVRJ5Tgjw85Q1Y81Vc2R2aruPysAAAAAAADAGWgkBwAAAAAAAIByql+/vmmcmJhYpMm6vF+9e/cu9Zp33323afzxxx+bxoZh6JNPPrGN/fz8NHLkyDJvy9SpU03j559/Xn/88Yeefvpp9evXTy1atFBwcLBq1KhRZO65c+fKXL+q1a1b1zROS0sr9xqF5zhy12R3dvr0ae3YscN0rGfPni6qpnLq1atnGrdo0aLSGXZG03Hhx5p+/fpVusaEhASH12mvwrfH3t3+K7L2vffeW+mf1erVqx1WHwAAAAAAAGBFNJIDAAAAAAAAQDk1bNjQNN63b5/Trzl8+HDVrFnTNp4zZ47y8/Nt49WrV+vQoUO28c0336ywsLBS19y/f7/27NljG//lL3/R008/bdcuwVlZWUpNTS3HLagaDRo0MI0r8v8mLi7ONC7r5+gp3nvvPeXm5pqODRo0yEXVVI6/v7/pDQLx8fFFbpsVuOKxxpkaNmxoenzZt2+f6XGssmtfyt1/VgAAAAAAAEBVoJEcAAAAAAAAAMqpR48epvHy5cudfs3g4GANHTrUNk5MTNTSpUtt41mzZpnOL7yDeXH2799vGt90001217Nu3bpy7cBsT3O6I4SGhio2NtY2Tk1NNTXL22Pt2rWm8ZVXXumQ2tzZ6dOn9d5775mOXXvttWrWrJmLKqq8S3Ocm5tryd2ng4KC1LZtW9s4ISGhSG7dSZ06ddSxY0fb+Pz58/r9998dsnbbtm0VHBxsG69bt07p6ekOWRsAAAAAAACormgkBwAAAAAAAIBy6t+/v2n86aef6sKFC06/7rhx40zji83jqamp+uqrr2zHo6KiitRYnMI7il/ahFmW2bNn232uJNWoUcM0zs7OLtf88ujZs6dp/Nlnn9k9d8+ePdq8ebNtHBAQoMsvv9xhtbmj/Px83XHHHUpKSjIdnzp1qosqcozCGfnoo49cVEnp3KVOe11//fWm8QcffOCQdX18fHTdddfZxtnZ2fr0008dsjYAAAAAAABQXdFIDgAAAAAAAADl1L59e11zzTW28dGjR/XSSy85/brXXHONmjdvbhsvWbJEp0+f1rx585SVlWU7PmbMGHl7l/3yb2hoqGm8d+9eu+r4/fff9fnnn9tZ9Z9CQkJM4xMnTpRrfnncddddpvHMmTN18uRJu+b+4x//MI3vuOOOIk3wniQ5OVk33XSTVq1aZTo+evRoUwbc0ciRI033ywULFmjlypWuK6gE999/v3x9fW3jd955R7t27XJhRZVz3333ycfHxzb+9NNPtX79eoesPXHiRNN4+vTpTn2sAQAAAAAAANwdjeQAAAAAAAAAUAEvvviivLy8bOPnn39eM2fOLPc6GzZs0NatW+0+f+zYsbb/zs3N1aeffqqPP/7YdszLy0tjxoyxa62OHTuaxnPmzCmz4frQoUP629/+ptzcXLtrlqTWrVubxsuXLy/X/PLo06ePOnXqZBunpaVp2LBhpmb74rz55pv65ptvbGMvLy9NnjzZWWVaWlpamt566y117NhRS5cuNX2vW7duevfdd11UmeOEhITo8ccfNx0bOnSofvvtt3Ktk5+fr6+++kopKSmOLM+mWbNmpkxfuHBBAwcO1O7du8u1TnZ2drk/ScAZYmNjdeedd9rGeXl5Gjp0qP744w+71yjpcap3797q27evbXz69GkNHDhQx44dK1eN6enpmjdvXrnmAAAAAAAAAO6IRnIAAAAAAAAAbufkyZNKSEio0Nfp06cdUsPVV1+tadOmmY5NnDhRAwYM0OrVq1VQUFDsPMMwtHfvXr322mvq2rWrunfvru3bt9t93dGjR5t2J37llVe0efNm2/i6665T06ZN7VorIiJCPXv2tI1TUlJ07bXXFrs7cHZ2tv7zn/+oe/fuSkhIUEBAgOrUqWN33VdccYXp/M8//1wTJ07UTz/9pH379hX5/1RZs2bNkr+/v228evVq9erVSxs2bChybnJysiZMmKBHHnnEdPzvf/+7OnToUOlarOLChQvFZmLnzp1as2aNFi9erOeee0433nijoqKiNHnyZCUmJprW6Nevn5YtW6ZatWq56FY41t///nf169fPNk5NTVXv3r01YcIExcXFlTgvNzdXa9eu1ZQpUxQbG6tbb71V586dc1qd//rXv0z3xSNHjuiKK67QU089paNHj5Y4LysrSytWrNBDDz2kxo0b2/0mE2ebMWOGmjVrZhsfP35cPXr00HPPPafk5ORi56Snp2v+/Pnq37+/hg0bVuLac+bMUVRUlG28bds2dejQQa+++mqJa19cf/HixRo3bpwiIyP15JNPVuCWAQAAAAAAAO7Ft+xTAAAAAAAAAMBaSmsiLMvgwYO1aNEih9Tx7LPPKikpybQT+dKlS7V06VIFBwerc+fOatCggfz8/HTu3DmdPn1au3fv1vnz5yt8zUaNGmngwIFavHixJCkpKcn0/XHjxpVrvVdeeUXXXHON8vLyJEl79+7VVVddpZYtW6pdu3by9/fXqVOntHHjRlPd77zzjl544QW7b0vt2rU1fvx4vfHGG5L+bKifOXNmibu4G4ZRrttRWJcuXTRz5kzdd999tqb+zZs3q3v37mrWrJnatm2rgIAAHT16VBs3brTd/ov69u2r559/vlI1WM2GDRvsfpNBYcHBwZo+fbomTpwob+/qs0eNr6+v/ve//2ngwIFau3atpD93GH/vvff03nvvKTIyUu3atVPdunVVUFCgc+fO6dixY9q7d2+5d+WvjDp16mjJkiXq16+f9u7dK+nPJvGXXnpJL730kmJiYtSqVSuFhIQoLy9PaWlpSkhI0IEDB5Sfn19lddorJCRE33zzjfr372/bLfz8+fOaOnWqpk+frg4dOuiyyy5TYGCgzp07p4MHDyouLs52W6655poS1w4PD9eSJUs0cOBA2xshzp49qylTpuiJJ55Q69atFRMTo+DgYGVnZys1NVUHDx5UQkKC6XGnbt26TvwJAAAAAAAAANZAIzkAAAAAAAAAVMI777yjK6+8UhMnTjTtSJyWlqbVq1eXOd/b21vBwcHluubdd99tayS/VN26dTVkyJByrdWjRw999NFHuvfee02NsXFxccXuyOzj46N//etfuvvuu/XCCy+U61ovvvii9u/fX2ztznDPPfcoNDRUY8aMMTW8HzhwQAcOHChx3tixY/X+++/Lz8+vKsq0tPbt2+uuu+7SPffcU+77qbsIDg7W6tWr9cQTT2jGjBmmxuvjx4/r+PHjZa5Rq1Yt1ahRw5llqnHjxtq0aZPuu+8+ffbZZ6bvHTp0SIcOHSpzjZCQECdVV35t2rTRpk2bdNttt+nXX3+1HS8oKNC2bdu0bdu2Cq/dsWNHbd26VSNHjtTy5cttxw3D0O7du7V79+4y1wgNDa3w9QEAAAAAAAB3UX22DQEAAAAAAAAAF7nrrrt05MgRvfTSS2rZsmWZ5wcEBKhPnz567bXXdOTIkXI3fw8cOFARERFFjo8YMaJCzayjR4/Wr7/+qt69e5d4TkBAgG699VZt3LhRDz30ULmvIUk1atTQN998oxUrVujee+/V5Zdfrnr16snf379C69lj6NChOnjwoCZNmqT69euXeJ6fn5/69eunNWvWaNasWR7TRO7t7a2AgAA1aNBAbdq0Uf/+/fXQQw9p9uzZOnTokHbs2KHHHnus2jaRX+Tn56c33nhD+/bt0/3336+GDRuWOadevXr661//qtmzZ+vUqVMKDw93ep116tTR3LlztX37do0YMcKuZueIiAjdeeedWrBggU6ePOn0GsujUaNG+uWXX/Ttt9/qmmuuka9v6fsfNW3aVJMnT9b7779f5tphYWFatmyZfvnlF91yyy2qXbt2mXOaNm2qu+++Wz/88IN+//13u28HAAAAAAAA4K68jMp+PigAAAAAAAAAwOTEiRPauHGjTp8+rZSUFBUUFCgwMFCNGjVSy5Yt1bJlS6c2T1fGkSNHtGbNGiUmJio3N1dhYWGKiIjQ1VdfrcDAQFeXVykFBQXavHmz9u7dq6SkJGVnZ6t+/fqKiopSz5493f72wbH27NmjHTt26MyZM0pNTZWvr6+CgoLUuHFjtWrVSjExMfLy8nJpjQUFBdqxY4d2796tlJQUpaamKiAgQEFBQWrSpIlat26txo0bu7TG8khPT9eaNWt0/PhxnTlzRvn5+QoKCtJll12m9u3bq0mTJhVeOy8vT7///rsOHDigM2fOKD09XbVq1VJwcLBiYmLUunVrNWrUyHE3BgAAAAAAAHADNJIDAAAAAAAAAAAAAAAAAAAAgIfxdnUBAAAAAAAAAAAAAAAAAAAAAICqRSM5AAAAAAAAAAAAAAAAAAAAAHgYGskBAAAAAAAAAAAAAAAAAAAAwMPQSA4AAAAAAAAAAAAAAAAAAAAAHoZGcgAAAAAAAAAAAAAAAAAAAADwMDSSAwAAAAAAAAAAAAAAAAAAAICHoZEcAAAAAAAAAAAAAAAAAAAAADwMjeQAAAAAAAAAAAAAAAAAAAAA4GFoJAcAAAAAAAAAAAAAAAAAAAAAD0MjOQAAAAAAAAAAAAAAAAAAAAB4GBrJAQAAAAAAAAAAAAAAAAAAAMDD0EgOAAAAAAAAAAAAAAAAAAAAAB6GRnIAAAAAAAAAAAAAAAAAAAAA8DA0kgMAAAAAAAAAAAAAAAAAAACAh6GRHAAAAAAAAAAAAAAAAAAAAAA8DI3kAAAAAAAAAAAAAAAAAAAAAOBhaCQHAAAAAAAAAAAAAAAAAAAAAA9DIzkAAAAAAAAAAAAAAAAAAAAAeBgayQEAAAAAAAAAAAAAAAAAAADAw9BIDgAAAAAAAAAAAAAAAAAAAAAehkZyAAAAAAAAAAAAAAAAAAAAAPAwNJIDAAAAAAAAAAAAAAAAAAAAgIehkRwAAAAAAAAAAAAAAAAAAAAAPAyN5AAAAAAAAAAAAAAAAAAAAADgYWgkBwAAAAAAAAAAAAAAAAAAAAAPQyM5AAAAAAAAAAAAAAAAAAAAAHgYGskBAAAAAAAAAAAAAAAAAAAAwMPQSA4AAAAAAAAAAAAAAAAAAAAAHoZGcgAAAAAAAAAAAAAAAAAAAADwMDSSAwAAAAAAAAAAAAAAAAAAAICHoZEcAAAAAAAAAAAAAAAAAAAAADwMjeQAAAAAAAAAAAAAAAAAAAAA4GFoJAcAAAAAAAAAAAAAAAAAAAAAD0MjOQAAAAAAAAAAAAAAAAAAAAB4GBrJAQAAAAAAAAAAAAAAAAAAAMDD0EgOAAAAAAAAAAAAAAAAAAAAAB7m/wF00FjPabMP6QAAAABJRU5ErkJggg==" | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"#Load the libraries\n", | |
"import rasterio as rio\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"\n", | |
"# Specify the path to the subtracted DEM file\n", | |
"subtracted_dem_path = r\"D:\\Bylot\\ravin_difference4.tif\"\n", | |
"\n", | |
"# Open the DEM with Rasterio\n", | |
"with rio.open(subtracted_dem_path) as src:\n", | |
" elevation_difference = src.read(1)\n", | |
" # Set masked or NoData values to np.nan\n", | |
" nodata_value = src.nodata\n", | |
" elevation_difference[elevation_difference == nodata_value] = np.nan\n", | |
"\n", | |
"# Flatten the array and remove NaN values for statistics\n", | |
"flattened_elevation = elevation_difference.flatten()\n", | |
"flattened_elevation = flattened_elevation[~np.isnan(flattened_elevation)]\n", | |
"\n", | |
"# Compute basic statistics\n", | |
"mean_difference = np.mean(flattened_elevation)\n", | |
"median_difference = np.median(flattened_elevation)\n", | |
"std_deviation = np.std(flattened_elevation)\n", | |
"min_difference = np.min(flattened_elevation)\n", | |
"max_difference = np.max(flattened_elevation)\n", | |
"\n", | |
"# Round the statistics to two decimal places\n", | |
"mean_difference = round(mean_difference, 2)\n", | |
"median_difference = round(median_difference, 2)\n", | |
"std_deviation = round(std_deviation, 2)\n", | |
"min_difference = round(min_difference, 2)\n", | |
"max_difference = round(max_difference, 2)\n", | |
"\n", | |
"# Define the bin range from -0.6 to 0.6 with a bin size of 0.02\n", | |
"bin_range = np.arange(-0.6, 0.62, 0.02)\n", | |
"\n", | |
"# Separate positive and negative elevation differences\n", | |
"positive_elevation = flattened_elevation[flattened_elevation > 0]\n", | |
"negative_elevation = flattened_elevation[flattened_elevation < 0]\n", | |
"\n", | |
"# Create histograms for positive and negative values\n", | |
"plt.figure(figsize=(12, 8), dpi=300)\n", | |
"plt.hist([positive_elevation, negative_elevation], bins=bin_range, color=['blue', 'red'], edgecolor='black', label=['Positive', 'Negative'])\n", | |
"plt.title('Histogram of Elevation Differences (-0.6 to 0.6 with 0.02 bin size)')\n", | |
"plt.xlabel('Elevation Difference')\n", | |
"plt.ylabel('Frequency')\n", | |
"plt.xticks(np.arange(-0.6, 0.62, 0.1))\n", | |
"plt.legend()\n", | |
"plt.show()\n" | |
], | |
"metadata": { | |
"collapsed": false, | |
"ExecuteTime": { | |
"end_time": "2023-12-20T21:49:58.393548400Z", | |
"start_time": "2023-12-20T21:49:38.224510900Z" | |
} | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [], | |
"metadata": { | |
"collapsed": false | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Mean Difference: 0.019999999552965164\n", | |
"Median Difference: 0.019999999552965164\n", | |
"Standard Deviation: 0.12999999523162842\n", | |
"Minimum Difference: -22.049999237060547\n", | |
"Maximum Difference: 1.4199999570846558\n" | |
] | |
} | |
], | |
"source": [ | |
"# Print computed statistics\n", | |
"print(f\"Mean Difference: {mean_difference}\")\n", | |
"print(f\"Median Difference: {median_difference}\")\n", | |
"print(f\"Standard Deviation: {std_deviation}\")\n", | |
"print(f\"Minimum Difference: {min_difference}\")\n", | |
"print(f\"Maximum Difference: {max_difference}\")" | |
], | |
"metadata": { | |
"collapsed": false, | |
"ExecuteTime": { | |
"end_time": "2023-12-20T21:49:58.397584200Z", | |
"start_time": "2023-12-20T21:49:58.394553700Z" | |
} | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [], | |
"metadata": { | |
"collapsed": false | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"outputs": [], | |
"source": [ | |
"import rasterio\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"#Load the subtracted DEM\n", | |
"subtracted_dem_path = r\"D:\\Bylot\\ravin_difference4.tif\"\n", | |
"\n", | |
"with rasterio.open(subtracted_dem_path) as dem:\n", | |
" dem_data = dem.read(1) # Read the first band\n", | |
" nodata = dem.nodata # Get the NoData value\n", | |
"\n", | |
"# Mask the NoData values\n", | |
"dem_data_masked = np.ma.masked_where(dem_data == nodata, dem_data)\n", | |
"\n", | |
"# Plotting\n", | |
"plt.figure(figsize=(20, 14))\n", | |
"plt.imshow(dem_data_masked, cmap=\"RdYlGn_r\", vmin=-0.6, vmax=0.6) # Using original \"coolwarm\" colormap\n", | |
"cbar = plt.colorbar(label=\"Delta z (m)\")\n", | |
"cbar.ax.tick_params(labelsize=10)\n", | |
"cbar.set_label(\"Elevation change (m)\", size=14)# Change font size of color bar ticks\n", | |
"plt.title(\"Delta Z from 2022-2017 DEM\", fontsize=22) # Change title font size\n", | |
"#plt.xlabel(fontsize=12)\n", | |
"#plt.ylabel(fontsize=12)\n", | |
"plt.xticks(fontsize=10)\n", | |
"plt.yticks(fontsize=10)\n", | |
"plt.savefig(r\"D:\\Bylot\\ravin_dem_difference.jpeg\", dpi=300)" | |
], | |
"metadata": { | |
"collapsed": false, | |
"is_executing": true, | |
"ExecuteTime": { | |
"start_time": "2023-12-20T21:51:56.149412Z" | |
} | |
} | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment