Skip to content

Instantly share code, notes, and snippets.

View tolpp's full-sized avatar
😎

Tolga Okur tolpp

😎
View GitHub Profile
public class Eratosthenes {
static int[] Sieve(int n) {
int[] A = new int[n + 1];
int[] L = new int[n + 1];
for (int p = 2; p < n; p++) A[p] = p; // ilk veriler atanıyor
for (int p = 2; p < (int) Math.sqrt(n); p++) {
if (A[p] != 0) {
int j = p * p;
while (j < n) { // asal sayının katları eleniyor
A[j] = 0;
object run {
def main(args: Array[String]): Unit = {
var myList : List[Int] = List.range(1,10) // 1 to 9 liste yaratılır.
println("myList : " + myList)
println("Sum : " + sumList(myList) )
println("Odd Sum : " + sumList(myList, i => if (i%2 != 0) i else 0 ))
println("Odd Sum2 : " + sumList(myList, oddSumBlock ))
println("Even Sum : " + sumList(myList, i => if (i%2 == 0) i else 0 ))
println("Even Sum2 : " + sumList(myList, evenSumBlock ))
myList : List(1, 2, 3, 4, 5, 6, 7, 8, 9)
Sum : 45
Odd Sum : 25
Odd Sum2 : 25
Even Sum : 20
Even Sum2 : 20
Quicksort(A[l..r])
//Alt dizilerin quicksort ile sıralanması
//Input: Dizinin alt dizisi A[0..n − 1]eved
// indices l and r
//Output: Alt dizi A[l..r] artan şekilde sıralı
if l < r
s ← Partition(A[l..r]) //s : bölme pozisyonu
Quicksort(A[l..s − 1])
Quicksort(A[s + 1..r])
public class QuickSort {
public int[] sort(int[] numbers){
quickSort(numbers,0,numbers.length - 1);
return numbers;
}
private void quickSort(int numbers[], int left, int right) {
int index = partition(numbers, left, right);
/**
*@author : tolpp
*/
public class LCS {
public static void main(String[] args) {
String x = "ZTR123AAAAB";
String y = "KLMN12BAB";
int M = x.length();
int N = y.length();
t ← min{m, n}
while(t > 0) do
if(m mod t = 0 and n mod t = 0)
return t
t ← t - 1
public class ConsecutiveIntegerChecking {
static int GCD(int m, int n) {
int t = n;
if (m < n)
t = m;
while (t > 1) {
if (m % t == 0 && n % t == 0)
return t;
t--;
}
Euclid(m, n)
//Euclid algoritmasını kullanarak ebob(m, n) değerini hesaplar
//Input: m ve n isminde negatif olmayan, ikisi beraber sıfırdan farklı tam sayılar
//Output: m ve n'nin ebob değeri
while n != 0 do
r ← m mod n
m ← n
n ← r
return m
public class Euclid {
static int iterativeGCD(int m, int n){
while(n != 0){
int r = m % n;
m = n;
n = r;
}
return m;
}