Build started at 6:00...
------ Build started: Project: ZERO_CHECK, Configuration: Release ARM64 ------
Checking Build System
------ Build started: Project: zlib, Configuration: Release ARM64 ------
Building Custom Rule C:/opencv/3rdparty/zlib/CMakeLists.txt
adler32.c
compress.c
crc32.c
deflate.c
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
CTEST_FULL_OUTPUT | |
OpenCV version: 3.4.18-dev | |
OpenCV VCS version: 3.4.18-63-g546be0a952 | |
Build type: Release | |
Compiler: /usr/bin/c++ (ver 10.2.1) | |
Parallel framework: pthreads (nthreads=8) | |
CPU features: NEON FP16 *NEON_DOTPROD | |
OpenCV(OpenCL:0): clGetPlatformIDs(0, NULL, &numPlatforms) | |
OpenCV(OpenCL:0): clGetPlatformIDs(numPlatforms, &platforms[0], &numPlatforms) | |
arm_release_ver of this libmali is 'g6p0-01eac0', rk_so_ver is '5'. |
$ ./opencv_version --opencl
3.4.18-dev
arm_release_ver of this libmali is 'g6p0-01eac0', rk_so_ver is '5'.
OpenCL Platforms:
ARM Platform
iGPU: Mali-LODX r0p0 (OpenCL 2.1 v1.g6p0-01eac0.efb75e2978d783a80fe78be1bfb0efc1)
Current OpenCL device:
Type = iGPU
Name = Mali-LODX r0p0
$ ./opencv_version -v
General configuration for OpenCV 3.4.15-dev =====================================
Version control: 3.4.15-71-g77a5c43
Extra modules:
Location (extra): /opencv_contrib/modules
Version control (extra): 3.4.15
$ ls bin
opencv_annotation opencv_test_core
opencv_interactive-calibration opencv_test_dnn
opencv_perf_3d opencv_test_features2d
opencv_perf_calib opencv_test_flann
opencv_perf_core opencv_test_gapi
opencv_perf_dnn opencv_test_highgui
opencv_perf_features2d opencv_test_imgcodecs
opencv_perf_gapi opencv_test_imgproc
- エヌビディアの手島でございます
- この記事はOpenCVの画像処理をGPU(CUDA)で高速化する - Qiita(以降「元記事」)を読んで、最後に書かれているリクエストを検証したものです。
OpenCVでの処理(リサイズなど)を、簡単にマルチコア化する方法をどなたかご存知でしたら教えて頂けないでしょうか? TBBを使ってスレッドを作る方法は色々見つかったのですが、単にcv::resize()をマルチコア動作で高速化させたいです。
- Python バインディングが遅い
- OpenCV の
resize
はずっと昔からマルチコア対応している
NewerOlder