About Gist
https://www.labnol.org/internet/github-gist-tutorial/28499/

(blog)SVMs   
http://blog.hackerearth.com/simple-tutorial-svm-parameter-tuning-python-r


Background subtraction  
https://github.com/stgstg27/Background-Subtraction


==Visualizaion==

Basic data visualization maps    
https://mubaris.com/2017/09/26/introduction-to-data-visualizations-using-python/

 
More visualisation    
https://github.com/ContextLab/storytelling-with-data/blob/master/data-stories/education/tutorial.ipynb


Visualisation with pandas    
https://www.kaggle.com/residentmario/univariate-plotting-with-pandas/notebook


Average Precision as AU-PR curve    
https://sanchom.wordpress.com/tag/average-precision/    

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173



==TSNE==

Misreading TSNE plots   
https://distill.pub/2016/misread-tsne/



==CNN/DL==



SGD >> Adam for Generalisation:    
https://arxiv.org/abs/1705.08292

https://shaoanlu.wordpress.com/2017/05/29/sgd-all-which-one-is-the-best-optimizer-dogs-vs-cats-toy-experiment/



CS231n Gradient check
http://cs231n.github.io/neural-networks-3/#gradcheck


Open Images dataset maker 
https://github.com/aferriss/openImageDownloader

DL Mistakes
http://ppwwyyxx.com/2017/Unawareness-Of-Deep-Learning-Mistakes/#more

Training classification network- kaggle10th
https://towardsdatascience.com/image-classification-challenge-using-transfer-learning-and-deep-learning-studio-2e89c3189fcf

Kaggle4th classification tips
https://www.kaggle.com/c/cdiscount-image-classification-challenge/discussion/45733

Kaggle #1 classification tips
https://medium.com/neuralspace/kaggle-1-winning-approach-for-image-classification-challenge-9c1188157a86

Warm restarts paper
https://arxiv.org/pdf/1608.03983.pdf


Optimal Learning rate 
https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0

Hyperparams
https://towardsdatascience.com/artificial-intelligence-hyperparameters-48fa29daa516


On Convolutional NN

(blog)About CNN developments through the years-
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html



Understanding Convolutional operation in CNN-
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/


VIsualising MNIST & understanding Dimensionality Reduction
http://colah.github.io/posts/2014-10-Visualizing-MNIST/


Lao ML notes
http://claoudml.strikingly.com



Tfrecords
https://planspace.org/20170323-tfrecords_for_humans/

https://planspace.org/20170403-images_and_tfrecords/



Google ML crash course
https://developers.google.com/machine-learning/crash-course/ml-intro



(blog)R-CNN to Mask R-CNN
https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4



(blog)Fast, Faster R-CNN
https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/

https://jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN/



(blog)RoI pooling
https://blog.deepsense.ai/region-of-interest-pooling-explained/


(blog)Receptive field arithmetic
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807



(SO answer) Anchors and faster-RCNN
https://stats.stackexchange.com/questions/265875/anchoring-faster-rcnn


(SO Answer) Cnn filter weights initialization
https://stats.stackexchange.com/questions/200513/how-to-initialize-the-elements-of-the-filter-matrix


(blog)cross entropy
http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/


(article)Cross Entropy losses - categorical, focal
https://gombru.github.io/2018/05/23/cross_entropy_loss/


(article)Transfer Learning/Fine tune CNN
http://cs231n.github.io/transfer-learning/

(coursera)CNN/NMS/Object Detection
https://www.coursera.org/learn/convolutional-neural-networks/lecture/dvrjH/non-max-suppression



(medium article)Image augmentation with tf
https://medium.com/ymedialabs-innovation/data-augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9

https://towardsdatascience.com/image-augmentation-for-deep-learning-using-keras-and-histogram-equalization-9329f6ae5085


Also an augmentor library
https://github.com/mdbloice/Augmentor

On Bounding Box Regression
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=4949&context=open_access_etds

Siamese Network Image similarity


Tensorflow series
https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3


==PYTHON==

Python Tutorial
https://www.python-course.eu/

Guide to import
https://chrisyeh96.github.io/2017/08/08/definitive-guide-python-imports.html

Amazing things about python
https://nedbatchelder.com/text/names.html
https://stackoverflow.com/questions/5131538/slicing-a-list-in-python-without-generating-a-copy

Why self is here to stay
http://neopythonic.blogspot.in/2008/10/why-explicit-self-has-to-stay.html

The init self confusion
https://stackoverflow.com/questions/625083/python-init-and-self-what-do-they-do



(website)Learn Python
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html




==KAGGLE==

kaggle ensemble guide
https://mlwave.com/kaggle-ensembling-guide/



(blog)Kaggle Zoo Solution
http://benanne.github.io/2014/04/05/galaxy-zoo.html



Setting up the computer
https://www.kaggle.com/c/allstate-claims-severity/discussion/26423#150025