Settings: (sigopt/evalset/auc-test-suites)
- Problems: 38
- Metrics: best
| Solver | Borda | Firsts |
|---|---|---|
| (a) optuna#tpe-faster | 0 | 37 |
| (b) optuna#tpe-latest | 1 | 38 |
| #!/usr/bin/env python | |
| import tweepy | |
| import datetime | |
| import time | |
| # See http://blog.unfindable.net/archives/4257 | |
| locationsL=[-180,-90,180,90] | |
| class StreamListener(tweepy.StreamListener): | |
| def __init__(self, api=None): |
| mkdir tmp | |
| for f in *b.zip | |
| do | |
| echo $f | |
| pushd tmp | |
| unzip ../$f | |
| popd | |
| done | |
| mkdir utf8 |
| #! /usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| import argparse | |
| def run(): | |
| args = parse_args() | |
| print("Input path: {0}".format(args.input_path)) | |
| """ | |
| Optuna example that optimizes a simple quadratic function. | |
| In this example, we demonstrate how to import existing experimental results | |
| and continue the optimization. | |
| We have the following two ways to execute this example: | |
| (1) Execute this code directly. | |
| $ python quadratic_trial_import.py |
| """ | |
| Optuna example that optimizes a simple quadratic function. | |
| In this example, we demonstrate how to import existing experimental results | |
| and continue the optimization. | |
| We have the following two ways to execute this example: | |
| (1) Execute this code directly. | |
| $ python quadratic_change_range.py |
Settings: (sigopt/evalset/auc-test-suites)
| Solver | Borda | Firsts |
|---|---|---|
| (a) optuna#tpe-faster | 0 | 37 |
| (b) optuna#tpe-latest | 1 | 38 |
| import optuna | |
| import sklearn | |
| import sklearn.datasets | |
| import sklearn.neural_network | |
| def objective(trial): | |
| # ネットワーク構造の決定 | |
| n_layers = trial.suggest_int('n_layers', 1, 4) | |
| layers = [] |
| import ... | |
| def objective(trial): | |
| ... | |
| alpha = trial.suggest_loguniform('alpha', 1e-5, 1e-1) | |
| clf = sklearn.linear_model.SGDClassifier(alpha=alpha) | |
| for step in range(100): | |
| clf.partial_fit(train_x, train_y, classes=classes) |