Settings: (sigopt/evalset/auc-test-suites)
- Problems: 38
- Metrics: best
Solver | Borda | Firsts |
---|---|---|
(a) optuna#tpe-faster | 0 | 37 |
(b) optuna#tpe-latest | 1 | 38 |
#!/usr/bin/env python | |
import tweepy | |
import datetime | |
import time | |
# See http://blog.unfindable.net/archives/4257 | |
locationsL=[-180,-90,180,90] | |
class StreamListener(tweepy.StreamListener): | |
def __init__(self, api=None): |
mkdir tmp | |
for f in *b.zip | |
do | |
echo $f | |
pushd tmp | |
unzip ../$f | |
popd | |
done | |
mkdir utf8 |
#! /usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import argparse | |
def run(): | |
args = parse_args() | |
print("Input path: {0}".format(args.input_path)) | |
""" | |
Optuna example that optimizes a simple quadratic function. | |
In this example, we demonstrate how to import existing experimental results | |
and continue the optimization. | |
We have the following two ways to execute this example: | |
(1) Execute this code directly. | |
$ python quadratic_trial_import.py |
""" | |
Optuna example that optimizes a simple quadratic function. | |
In this example, we demonstrate how to import existing experimental results | |
and continue the optimization. | |
We have the following two ways to execute this example: | |
(1) Execute this code directly. | |
$ python quadratic_change_range.py |
Settings: (sigopt/evalset/auc-test-suites)
Solver | Borda | Firsts |
---|---|---|
(a) optuna#tpe-faster | 0 | 37 |
(b) optuna#tpe-latest | 1 | 38 |
import optuna | |
import sklearn | |
import sklearn.datasets | |
import sklearn.neural_network | |
def objective(trial): | |
# ネットワーク構造の決定 | |
n_layers = trial.suggest_int('n_layers', 1, 4) | |
layers = [] |
import ... | |
def objective(trial): | |
... | |
alpha = trial.suggest_loguniform('alpha', 1e-5, 1e-1) | |
clf = sklearn.linear_model.SGDClassifier(alpha=alpha) | |
for step in range(100): | |
clf.partial_fit(train_x, train_y, classes=classes) |