Created
October 14, 2014 18:48
-
-
Save tritemio/2f1796cbe615a23180ac to your computer and use it in GitHub Desktop.
2-Gaussian mixture fit Bayes vs NLS
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:fa416ca810bd563375d3878a48773d187246390f92792bae9f64e7d28adba414" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Generate the data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from __future__ import division\n", | |
"import numpy as np\n", | |
"from scipy.stats import distributions\n", | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline\n", | |
"import seaborn as sns\n", | |
"import pymc as pm" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"nsamples = 1000\n", | |
"mu1_true = 0.3\n", | |
"mu2_true = 0.55\n", | |
"sig1_true = 0.08\n", | |
"sig2_true = 0.12\n", | |
"a_true = 0.4" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"np.random.seed(3) # for repeatability\n", | |
"s1 = distributions.norm.rvs(mu1_true, sig1_true, size=round(a_true*nsamples))\n", | |
"s2 = distributions.norm.rvs(mu2_true, sig2_true, size=round((1-a_true)*nsamples))\n", | |
"samples = np.hstack([s1, s2])\n", | |
"bins = np.arange(-0.2, 1.2, 0.01)\n", | |
"data, _ = np.histogram(samples, bins=bins, density=True)\n", | |
"x_data = bins[:-1] + 0.5*(bins[1] - bins[0])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.plot(x_data, data, '-o');" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFVCAYAAADVDycqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2cJHdd7/upqn6e7pnpmZ3dmZBkY8Km3EAWJiDhJAqK\nCqhwFFavi+cgKgSuJIQD7PFwEDmvF1evepnlHD0GFYSLvryXUQ4gAh7wqvEgyQFOdCCETSpPbALZ\nmd3ZeZ5+7q66f1T9qqurq7qrZ/qhuvvzfr32tf1Q1fWrnu7+1vfp85UMwwAhhBBCwoM86AUQQggh\npBEaZ0IIISRk0DgTQgghIYPGmRBCCAkZNM6EEEJIyKBxJoQQQkJGpNWTqqoqAD4C4EYABoD/XdO0\nbzuefzWA3wBQBfAxTdP+pIdrJYQQQsaCdp7zqwDomqb9IID3Avgt8YSqqlEAHwTw4wBeCuDNqqoe\n7dVCCSGEkHGhpXHWNO2zAN5i3b0OwJbj6ZMAHtc0bUfTtAqArwB4SS8WSQghhIwTLcPaAKBpWk1V\n1Y8DeA2An3U8NQlgx3F/D8BUV1dHCCGEjCFtjTMAaJr2S6qq/gcAX1NV9aSmaQWYhjnj2CyDRs+6\nCcMwDEmSDrxYQsaRf332s/BS2Z2dSuDj73tF/xdECOmUjg1fu4Kw1wO4WtO03wZQAKDDLAwDgEcA\nnFBVNQsgBzOk/YGWq5MkrK/vdbrGkWFuLsPz5/l3vN/J41mcv9B43ZvNxHHXa24eqvdznP/+43zu\nAM9/bi7TfiMX7QrC/huA56uq+j8AfBHA2wG8RlXVO6w88zsBfAnA/QA+qmnaascrIIS05OyZRWQz\ncft+OhnFuTtvx/H5zr/whJDhoKXnbIWvf77F858H8PluL4oQ0sjdp0/h//zzf0alquNVtx0f9HII\nIT2GIiSEDAHH5zN4znUzAIDpdLzN1oSQYYfGmZAhoarrAIByRR/wSgghvYbGmZAhoVYzazHL1dqA\nV0II6TWBWqkIGWWWllfwsFUNffK6LM6eWRzwiryp1eg5EzIu0HMmY83S8grOX9iCAbNH8PyFLbzr\nnvvw1Fr42j6quuU5V+g5EzLq0DiTsebhC826OVt7Jfz+px4cwGpaU7U85xLD2oSMPDTOhAwJds6Z\nYW1CRh4aZzLWnLwu2/RYNhPH3adPDWA1rWFYm5DxgcaZjDVnzyxiciJm389m4qFV37ILwqr0nAkZ\ndWicydjzCz92AoCpTB9Gj1lQtau16TkTMurQOJOx58hUEgAgyxKuPZYe8Gr8qTGsTcjYQONMxh5h\n7Gq6Eepiq6pVEFZiWJuQkYfGmYw9TsWtfKk6wJW0psawNiFjA40zGXuc3nK+WBngSlpTD2vTcyZk\n1KFxJmNPqRJ+z1k3jLpxpggJISMPjTMZe5ytSfliOI2zECAB6DkTMg7QOJOxpzwEnrNoowKYcyZk\nHKBxJmNPg3EOq+esOzznqg7dMFpsTQgZdmicydjTENYOqedcqzWGsitspyJkpKFxJmOPsyCsEFLP\nuVpr9JQZ2iZktKFxJmNPQytVKZytVDW90VNmURghow2NMxl7GkRIhsVzZjsVISMNjTMZexo957Aa\nZ3rOhIwTNM5k7BH5W1mSQus5O6u1gcY8OSFk9KBxJmNPuVKDBCCTiobWcxYiJJJ1n2FtQkYbGmcy\n9pSqOmJRBalEJLSeswhrJ+IRAAxrEzLq0DiTsadcqSEWlZGKR1AoVWGEUOCjalVrp+IKALZSETLq\n0DiTsadc0RGLKEgmIqGd6SzC2knhOVOEhJCRhsaZjD3lat1zBsJZsS1aqcQaWRBGyGhD40zGnnJF\n5JyjAMI501mIkIg1MqxNyGhD40zGGsMwUK7UEI+E23NuCmuHMPROCOkeNM5krKnWdBiAXa0NAIUQ\nGmdRrZ2yc870nAkZZWicyVhTsjzQWFSpe84hbKeqWiIkyQQ9Z0LGARpnMtaI3G0sKtueczjD2i7P\nmTlnQkaayKAXQEg3WVpewcMXtgAAJ6/L4uyZxZbbi5akWCTknrOo1rYuIEpspSJkpKHnTEaGpeUV\nnL+wBQOAAeD8hS2865778NTanu8+Ts85GWbPWafnTMg4QeNMRgbhMTvZ2ivh9z/1oO8+IncbD3vO\nualam8aZkFGGxpmMNSWr6jkWket9ziH2nKMRGRFFokIYISMOjTMZGU5el216LJuJ4+7Tp3z3qYe1\nFVu3uhBCERLhOUcUGbGIwmptQkYcGmcyMpw9s4hsJm7fzySjOHfn7Tg+n/Hdp+xopYpGFEQjcig9\nZ9HnHFEkxKIy+5wJGXFonMlI4fSSX/6ia9pub3vOEfOrkIqHc2xkzepzVhQZsajCnDMhIw6NMxkp\njs9noMgSADME3A6Ru41HzZB2KhEJpecs+pwjssSwNiFjAI0zGSmqNd32Mrf3S223d7ZSAXXPOWwz\nnUXOWVEkxBnWJmTkaSlCoqpqFMDHABwHEAfwm5qmfc7x/DsAvBHAuvXQWzRNe7RHayWkLRVHFfPW\nXnvjXLLD2qbnbM90ruq2Nx0G6jlnM6xdrRmo6ToUmdfXhIwi7RTC/g2AdU3TXq+qahbANwB8zvH8\nLQBer2naSq8WSEgnOHOx2wGMs60QJsLajl7nMBlnO+csS3Z+vFzRkYwP3jh3qspGCGlPu2/2JwG8\nz7GtOxn3AgDvUVX1n1RVfXe3F0dIpzhlLbf3y223bwprh7TXueZspbIuGsLQ63wQVTZCSHtaGmdN\n03Kapu2rqpqBaah/3bXJJwC8BcDLAPygqqo/1ZtlEhIMp+e8tV9qmzt2tlIBdc+5ELKKbXcrFRAO\nlbCDqLIRQtrTdvCFqqrXAPg0gHs0TVt2Pf17mqbtWtt9AcAigC+0er25Of+e03GA59/b898q1I1q\npaojlU4gnYr5bi9ZFd1XHZtEdjKBudkJAEA0Ee3JWg/6mrK1zmPHpjCVSQAAJjKJwX+eJJguswtZ\nljzXNvD1DpBxPneA598p7QrCjgH4WwBv1TTtXtdzUwAeVFX1JgB5mN7zR9sdcH19fMNdc3MZnn+P\nz//S5cbXf+zCBq6eS/tuv2dVdO/tFlAtVWBYVdCrl3axfiTV1bUd5vwLxQokCdjc2IduhbMvXd5D\nSpG6ucSOOXk8i/Mu7zmbieOu19zcdK7j/Pkf53MHeP4HuTBpl3N+D4ApAO9TVfVe698vqKp6h6Zp\nOwDeDeBeAF8G8JCmaV/seAWEdBHRYpSImWHqdkVholo7KkRIQjqZqloz7L7tMIW1z55ZRDxa/xnJ\nZuJtVdkIIe1p6TlrmvZ2AG9v8fwnYOadCQkFIod8NJvE05f2sdWm17lcrUGRJdvwhXUyldk2ZXrJ\nIj9eCokQyfFjk3j0e9uIR+WWOuaEkOAMvg+DkC4iPOFjWTMk3c5zrlR02xMFENqZzjWn5xwJj+cM\n1Cd7vfD7j9JjJqRL0DiTkUK0Fx3NJgG0b6cqVXVbgAQIr+dcrelQlEbPOSwqYUKJLSyePCGjAI0z\nGSnKLs+5nUpYuVJr8Jxt4xwyz7laMxCR3TnnwRvDmq5jN2deAJXK4bhYIGQUoHEmI4UwztlMHNGI\n3D7nXKnZnigAfPhz3wYAPPDIZSwth0f4rqbXPee45emHIay9m6tAtJKXQrAeQkYFGmcyUjinTE2n\nY22HX5QdYe2l5RU8/NS2/VyY1K4aq7WtgrAQKIQ5IxP0nAnpHjTOZKQoOeQ4s+k4dnNl1HRvI6Yb\nBipV3W4FCrPaVU3XEbGrtcNTENZgnEOwHkJGBRpnMlI45TinM3EYBrDjUxRWcUl3hplazagXhNlh\n7cF7zs7IBI0zId2DxpmMFKKCORaRMZ2OA/Cv2C45tgXMiUpuspl4KHp3qzUDiluEJATV2g3GmWFt\nQroGjTMZKZyeczZjGme/iu36RCrTEz17ZtHeBwiP2pVuGNANww5ri1GWYQhriz7yyVSUnjMhXYTG\nmYwUwmDFo07P2c84N4e17z59ylbiCoPHDNTHRSqugrAwhLVFNfzRmRRqumFPzyKEHA4aZzJSlCs1\nSDDnHgsv2Nc4u8LaAHB8PoMTV08BAK455j8wo5/Y4yJFQZi13lIIwtpbeyVMJCLIJM052PSeCekO\nNM5kpChVdcSiCiRJwnTbsLZ3QZhoWaqGoFUJAGq66TmLdUUj4REh2d4vYzoTt0PtzDsT0h1onMlI\n4VT8mp4w5zj7h7XrIXAntnGueQwqHgDCcxbV2pIkIRaVB55zLpVrKJSqyKbjiMfEMA4aZ0K6AY0z\nGSnKlbqoSCyqYCIR8fWchRa0U1sbACKWEQxL/tTOOcv1r2ssotiCK4NCXPQ0eM40zoR0hZYjIwkZ\nNsrVGtJW/nNpeQW5YhW5YhVLyys4e2axaVsADdraABCJCM+5c+O3tLxii5mcvC7bdMyDULVEVMRF\nA2B6+4P2nMVFz3Q6DrEyhrUJ6Q70nMlIUa6YOeel5RWcdyh+eUlxulupBGLARKfGWRzTAGD4HPMg\niPC6CLeLNQ/cOFueczbDsDYh3YbGmYwMhmGgXKkhHpEDSXGW/cLaludc6TDn3Cv5z5rIOct1zzkW\nUQaurW2HtdMxR1g7HKkAQoYdGmcyMlRrOgwEl+MUYe2mgjDLCIa1WhuAXRBmGIMrWhNh7awj51ws\nh2vUJiHDCo0zGRlKjtaoIFKcJb9WKpFz9hmY4Uev5D/d1dqAuWbDGGxFuZBFnXZUa4ehvYuQUYDG\nmYwMZcdEKrcUZyoRaZLidG7v5KB9zmfPLCKTitr3uyX/Wa/Wdoa1B6+vvb1XgixJmEzF6DkT0mVo\nnMnIIFqLRA757tOnMGFVbt/23Pm22wvqrVSde6WveNG19u1uyX/Wq7XrX9d4CCQ8t/ZKmErHIMuS\nnRpgzpmQ7kDjTEYGtyd8fD6Dt/+saSCjSvNH3c9zjioHb6USBlSRpa4NzPCu1h7sTGfDMLC9X7L1\ny+thbVZrE9INaJzJyCC8yLgjhyw0n/cKFY/tfVqpDmGcRQVzTTeg693JB/tVawODa13aK1RQ0w07\ndVAPa9M4E9INaJzJyOCezwwAaSsHnPMyzlZYO+4T1q4cxDg71MgOsr8X9WrtxoIwAANTCdveq7dR\nAeEaY0nIKECFMDI0tFPf8vKEk/EIZElq6TlHfQrCao6cc1DlL6dUaLWmN3jxB6VerS3baxECK//P\n32r4T7/8orav0U3lMufxH3pyEwCQiHXfc+6F2hohwwI9ZzIUBFHf8poyJUsS0skI9vPNxrlU0RGN\nyJAlqeHxugiJHvjYAueQjW71SddzzlKT8tlTl/bbqpB1U7nMffzL2wW86577sLqZB9C9MHuv1NYI\nGRZonMlQEEzxqzmsDQDpVAz7nmHtWtO2QHMrVVDlL8MwbElLAKh0yTiLsLYiB1M+c9NN5TK/1/rQ\nZx6CIktdC2v3Sm2NkGGBxpmMDHZrlCuUnE5GkStUmgq0zPGSzWHng7ZSFUq1htambuWcRVjbmXMO\nI4mYgiJzzoR0BRpnMhQEUd/y85wzySgMALlio/cshmS4cbdSBVX+2nLNje6WepctQqLIB1Ih66Zy\nWavXikWVrk2l6pXaGiHDAo0zGQrOnlls0MD2Ut8q+bRGiYptd2i7XDWHZLhRXMbZrTaWiCmeyl/b\nTca5W2Fty3OWpcBrceLeJ52MHli5zP1aUxMx+7USMaVrOeezZxYxNRGz73dLbY2QYYHGmQwNNzxr\nCoDZtuPlQVXssLYr5yx6nfOdes51z9f0DM3Hb75h1nN9or1o0jIq3co5Vx2es1jLpHXB8dzrZwK9\nxt2nT9l90q+67fih1nP36VN2iP2tP/Nc+/FYtHvGGQDe8Eq14ZiEjBM0zmRoEAOYbr3pmKcHZYuQ\nuPqWhRCJ03Ou1nTUdKPJkANAJCLZ2wiOz2fwA+pRAGiq7haINqq56QSA3uWcj89n7PYpMXu6Hcfn\nM7jqyAQAYDIVa7N1+9e6bmESkgQ8++op+/FEVEG5okPv0qSso9kUAECSgGuPpbvymoQMCzTOZGgQ\nnq9fRbAtQuL2nD3C2n6znIG6wXOHpYWx3c+XPY8vwtpz00lz/25Va9fq1dqCVNyUKMiXgg+aEAVz\n3ehFLpZqSMQikBwXKt2W8BSRB8PgtCsyftA4k6Fhv2AaRb/QqZ8cZzppeop7DqNa9jHkgGNkpNs4\nW8bCS9AEcHjOU0nP/Q9KffCFUyFMhiJLyBeDG+eKdc5dMc7lqi08Ul+TkBTtznk7Iw+cdkXGDSqE\nkaHAMAzb8/UzLn7ecMbDc/7QZx4CAHz94cvYL6w0qE/Z8p3VxvCsMM5ePdOAOd84oki2pGXQnLNT\nCSuViNgGV6hi1Vw5ZwCQJAnJeKQzz9l6fwod7ONHsVxrGI8JmGFtACiVq8BErEnh63ff9pKOjuF8\n/wrlGqZabEvIqEHPmQwFxXLNLozyC5v6ecOiIEyohC0tr+DxZ3bs593qU7Z8p+7tOXupjQGwpzRF\nrYuDIDlntxJWrlhtUsUShWbuPudUPIJ80XstXlS6GdYuV5GMN17bxx2es5fC1y+9/0sdKXw5jTM9\nZzJu0DiTocDprfoJXZQrOhRZahitCDiqta3XaKc+JfZ3e77C2JarelNoXdcN7OyXMZ2JOwrK2hdG\nea3Fva5vXzD1q51TqQAgmQjuORuGYV+8HNbQVao6qjWjKawtcs6lSs3zvDZ2ih0pfDUY5xLFTch4\nQeNMhgKncfYTujAVv5o/0omYgogi+Yaj3fgphDmNhXvK1W6+DN0wTM/ZJf95WMQq3BcdqXgE5Yoe\nKLdd0w272r1wSM9ZGPdEzO05m+vrlhBJpVZ/nQI9ZzJm0DiToaCx0tqvWlv3rL6WJAnpZNQOR7dT\nn/Kb5+w0zu6eaVEMlk3H6553AKPptRb3up591WTDugSpRPCKbWe182E9ZxEWT7o952jdc/Y6r9mp\nREf9yo1hbXrOZLygcSZDgTPP6x/W9vacATO0LQz82TOLDRKfbvUpRZYgobVxdnvhoo0qm4kjGgnu\nOZ89s4iJRN0DdbZQi3WJKmh3WFu0UxUCVGw3Vj4fztCJgrImz1mEtcs1nD2z2FAwNp2O4ePve0VH\nCl9VGmcyxtA4k6Fgz9Wj7CV04TfIAjCNc75UtQ3u7JQpFJJNN+s1S5IERZF9+5zN9TT2Oouirel0\nrCPPGQBe9oKrAZie8B2vuskOq9/1mpsB1KdSNRWEdeA5VxwXNIfN3wpDmYj7e84A8MoXXWs/d+ZH\nT3R8nIojrcCCMDJu0DiToUD0OLcSuij7hLUBc2wkYFVDGwY290p41twEzt3lrdccjUgtc87uiu2t\nfXN9DZ5zQOM8YXnAv/KTJ/Hi58zj5utNedCjM4390orcnHMGEKjXudzFymfbOLcoCAPq/eLOtXaC\n6MsGzIlfhIwTNM5kKBDG8Ijl8bqFLnTDQKWqNwzHcGJLeObL2N4vo1SuYWEm5Xu8iIfn7LzfFNa2\nPee4b7W3H8LzFQbMbXSrugFJAmR3WDsRbdi/Fd3M3/oXhNXD2kDjIBD3xK4gsJWKjDMtL2dVVY0C\n+BiA4wDiAH5T07TPOZ5/NYDfAFAF8DFN0/6kh2slY4wIa89OJvDMeq6plakiBEhahLUB06ju5Ewv\nd352wvd4EUVuMA6GZfwnEhHkitUmlTBhiKbTcdsQBfWchREWYepkotE412pGUzEY4DTi7avQyw4v\ntGeesyusLS5Y3LeD0s08OSHDRjvP+d8AWNc07SUAXgngD8QTluH+IIAfB/BSAG9WVWsyACFdRnjO\nM5OW5+z6sbZ1tT1GQAJ1fe29fAVrm3kAwMJsK89ZsnO9QL2tKptJNKwHMIVEHvqO2Yv8Xz/9oK/C\nmB++nnNJGGe9Kd8MOIx4kGptx4VGtWYcamJWsU1BmCjY296v5+Wdt4PS2OdMz5mMF+2M8ycBvM+x\nrfMbchLA45qm7WiaVgHwFQCd6fMREpD9QgUTiYhtuNyes5+utsA5mWp1I4hxbvScxW0xy1iEtYUS\nluD8hS381p/9M4CDe852uNoR1nbnm4HOcs4VVxrgMN6z3UrlUxBWtp7f2ivZHv/WATxnVmuTcaZl\nWFvTtBwAqKqagWmof93x9CSAHcf9PYDyt6Q37BUqSCejvkIX5XZh7VRdJWxtIwcAmO8g5yxCrMm4\ngmRcsfucvZSwRNi8k5yzBCDR5Dmbx6jVdCgennNH1do1t3GuIeN/+i0p+OWcXQVhW/slzM+ksLaZ\n70LOmcaZjBdtSyhVVb0GwKcB3KNp2rLjqR0AzjLXDIDWWoQA5uaC9zmOIjz/zs9fDL246sgEZmfM\nPHE8GWt4rZ2i+eM9PZnwPMY1VrVvDcCl7SKOTCVwzbP8BUCSiQhqumG/lqGY3nZ6Io6pdBz5UtV8\nTkJdwsuFrMhNa/FaW6WmI5WI4NhRU2xk/ui+uX8kgrm5DAyYXql7Xylqfn11Q2r7viaeMr+aiZiC\nYrmG5ET84J9Fy4u/an6y4TUyltHWJQkTmQRK5RqOzaZQ1XV7Ilgnx5QdlfdVx99iWBn29R+WcT//\nTmlXEHYMwN8CeKumafe6nn4EwAlVVbMAcjBD2h9od8D19eDC96PG3FyG53+A888XK9B1A4mogorl\nTa5v7De81iXrdrVS8zxG1Sqa+u7qLq5sF3DyeLb1WnQzL3v58i4kSbK9bb1aQzIWwZXtPVy+vIuT\nx7MNYW3A7J3e2i8hXyg3HMPv/Hf3y0jEIvZz7nMsVWpIRJWmfUVoemu30PZ93bDy7OlkFMVyDRfX\ndpH2qWxvx/ZuEQBQyJWwvl5/3DAMSAD290t4/MIGAGAirmAyGcVjm3nUajo2N3OBj7OfM73tREzB\nXq481N8dfvd5/p3S7tv5Hpih6vepqnqv9e8XVFW9w8ozvxPAlwDcD+CjmqatdrwCQtogKqPNsHZj\nu45A5Jz9WqlEWPsJaxpVq3wzUB/PKIrCRIg1EpGRSUVRrRkoWkpYThnLbCaOc3fdDkWWOgprpxwq\nYe5ccq1mNIyLFMSjCmQp2ExnURCWsfq9DxMmriuENaYQJElCLKagWKk1tJZNZ+IwjMbWqiCI928y\nFWMrFRk72uWc3w7g7S2e/zyAz3d7UYQ4EZXR6VS0Ka8pKPnMchbEowpiERm71msttGijAtAgJBJR\nZDtnG43IDW1ZyXgEN14zjW8+sYHJiVhdnzsiB1II0w0DxVK1QaRDGGphBGu6jojcnHOWJMmc/xyo\nz9l8v6YmhHE+fEFYPNb8XsejCkoV3c4xT2fi9vYbO0Vkk8HFSIRxTqei2Ngtmp651Pw+EDKKUISE\nhB7hOWdaec4+s5ydpB1az/NtPOf68AvTcxaVw1Gl0TiL9SmyhHN33marjUUVOdDIyGLJnN+c9DDO\nwuhWfTxnIPhMZ1EwJ/SuD+M5F8tVxGOm1+4mEVVQrtTs6uzpdBzTabPCfWOn2NFxKtaFUTKmoKYb\ngavfCRkFaJxJ6LE956S/59yulUrsL2ilDgbA0ausN/wftcLagNkzbRgGVjfyOJpNNrQ7RRQp0OAL\ndxsVACRjLoUwn2ptIPhMZztELDznQ/QNF0u1ppC2IBY1C85EX3M2HbfbzzZ3Ch0dp1LVEY3IdhX7\nYUddEjJM0DiT0CM81HQq2qRCJSi3CWsD9V7neFSxDYYfwnOu1dzGWXF4zmXs5isolKpNYXJnKLwV\nbgESwJTpTMYV5EtV6NYcZq+wttgvyExnEVmY7ELOuViuNrVRCeIxGWVnzjkTx3TaPObGboeeszDO\nQtyExpmMEZ2r0RPSZ8QEqJYFYdXWBWFOsRBJQtvcpe05C+PckHM2jc1+vt4z7S4wi0ZkFPPtw81e\nnjMgwtVV1HSrEM0vrO0IgQvD64W4uMhMmBcWhQA556XlFbuP++R1WZw9swjANJJZS6nNTSJqhqDX\ndwpQZAmZVBSl8gHD2lUdUUW2LwSoEkbGCXrOJPQECWuXWoiQuFW8iuUa3nXPfXhqzb+1o+45N1Zr\nR5V6WHu/WFcbcwuaRD0GZ3jh5TkDQDIuRlyax3fPcq5v11g85oez8hlo74WK98yA2cZ9/sIW3nXP\nfXjy4g7KVb2hQt2JeP8vbRUwnY5BliQ757x5gJwzPWcyrtA4k9AjwtqZVMz2nIu+Oefmj7SXitfW\nXgm//6kHfY/pnsnszDnbYe28UwrUFdaOBDTOluecdHvOiQiKpap9fF/POaCEZ7lD4+z3nv3Bp78F\noFkdTCAMaalcs41yLKpgIhE5cFhbXICwnYqMEwxrk9CzX6hAkkxDJEmmKFe5KazdPufcCfVqbX/j\nvFeooFQxDY7bc45Y1dq6YXhWNQvqnnO04fFUPAID9aiBX0FYUAlPEfbPWAVh7TxtPwyrAD0R929Z\nE0w78vrTmfjBC8LoOZMxhJ4zCT3m0IsoZFmyhS7c85xbec4nr2uW6cxm4nZPshci5yzCys6c84TV\nq2vmnPOYSseacsaiT7rWxnsWbVBNOWfrvpC9bOc5F9p4zmLwRTopvNDWhs7vPXvdj50AUK8od+NM\nKwjPWdzOFatNtQJ+GIbZOmXmnM3XPOgFBSHDCI0zCT17+Yqd5wVM78w/rN3s0Z09s9hQnZ3NxHHu\nztvtnmQvnCIkQGPOWZFlO0y7sVP0bMuKirB4m7GRfjlncV+IpvjlnIN7zmbPsCLLiMeUtiHis2cW\nbcESAJhKx3DuztvtkZ1+rVQJl1qafdsy1EFVwqqOiyFxIUDPmYwTNM4k1Oi6gVyx0tCjLIQunNTD\n2t4f6btPn0I2E2/rMQtEz3LVo88ZMIvTruwUYcBbbazuebf2nAt+1dqBPefG8ZJ+VKo1+70Rwy/a\ncfqlN9i3z7zM9JiLZW/pToEzrJ1NN4a1geCjI53vN8PaZBxhzpmEmnypCsNoFBCJRRVbNUxge84+\nOefj8xmcu/P2wMe1PWeXtrZtnFNRXNoyc6heoycjEblhPz9sz9mjlQoAdq3xk+1zzq3btspVHdGo\nMM4RFAKoijnnNYvjFK3pXom4X5+zM6xd97yz1u2gnnODcQ5YkU7IKEHPmYQa4Tk2hLUtoQsnpYoZ\ntpV9wr88eHqyAAAgAElEQVSdYnu+1eY+ZwDIJOuGx2uIRtRVUOaHXa3tyuEmbc/ZNKIR+XDV2pWq\nbnvOyYCes9PLFbcLHXjO7oIwAIHnOjvTCPScyThC40xCja0O5jCGQujCafjK1ZqvAMlBaG6lMg2D\nMLpOT95Lp9v2nNsZ51IVybjSdFEhwtXi4uSw1dqmcTaNXCKmoFzVbYETP5yGVCh+CQPpVxAWb1EQ\nZr5OueUx7fXWnGFttlKR8YPGmYQapwCJQBR9OT2pcqXWUle7U/zlO+thbcDMcc94qGV14jm7i8GA\nutEVBWF+Oedk4D7nmn3BkAhYYOU0pCIcLfbx9Zxj9QsA5zCP7AE95whzzmRMYc6ZhBanstdXvrWK\nV956LYC6YShXakAyiqXlFaxvF+19hMzkYah7zs3znAHgXx5dN9dQ1fHBv/hG0zGjHeScZz2MuzDY\ntufsE65PxBRIUmvP2TAMVCr1sLboUS6WaphIRH33c+aHRVhbSGj65Zw/8+Unze3KtYa/xUc+dx4A\n8MAjl/G2//Jl+2LCKQvqxHkxFI8pkBzH9pMVJWSUoOdMQolbcvPilZwtuRl3eM7u7YTMZCtpziC4\nq63tMKsiY2l5BZe36oIaXse0RUxaGGd7lnPC33Pea+M5S5KEVDzSss+5WjNgAI6cc7Aw8fZ+Celk\nFLGobE+ZauU5Ly2v4ILjPRDvy2/+6QN4+Kn63yhXrDbJgrr/Xs6csyxJVvtXzVdW9LB/b0LCBo0z\nCSWtJDdjjslUB5HmDELE1edcdXjOQY5ZH5zh3+csZjm3CmuLnLtfzlls28pztvPljpwz0H4E49Ze\nCdPpOLLpuB2ObtVK5fe+PLm62/Y47r+XuwBPtH/16u9NSNigcSZDR0NYu0e4c8aVqo6IIrWU4my1\nvxd+E6mA5oIrv5GRgFk81irnbPeAR+uGDmjtORdKVRTLNUxnYphOx7GXK6Na01GwWqmSPmHtbuH0\nnM01RwJN0iJkVKBxJqGkleSmM6x9EGnOICh2K1U95yy8uCDHDJJz9lMHA+oznevr8f+qphIRlCo1\n3wuBsquYTeSLRc+yFyLfnE2bwi0GzJ7rVp6z3/ty/cKk73HENu6/l7sALxlXevr3JiRs0DiTUNJK\nctM5NvLsmcWGSu4g0pxBaPKcLZ3ndmsTuAdneNHKcwYavdNIq7B2G5GOiq2e1hjWblX9LFqnspl4\ng7pXsVxDNCLbCmpO/N6X977hhQ2PO4MPqXjE8+/lLsBLxCKoVHX8u597XoOsaNJnf0KGHRpnElre\n9tqbAZiVyk7PSHjOYojCjyw+C4Bp5LrlQSkeYe2oQxq0nRxokD7nQgvP2f24X0EYUBcs8cs713PO\njQVhrcLEogBsOh2v9yjvl1Ao13xnOQP+78vdp09hdiqBbCaOO151k31BdetNx7zX7JFzBswLite8\n5Hp7uxfceMR3LYQMM2ylIqHlaDYJAHjO9800eEZxR0EYUG8z+tWffm7XPKioXdBVN87O9qF2cqDR\nANXawpi6ZzkLnMbZr5XKuZ1f3rlccYe123vOogBsOhO3vVjTc676znIG/N+X4/MZfPx9r8D6ullV\nPT+bwvs//kDDBY+Tes5ZePv1CnPDqBfZ6a3nihAytNBzJqFly/LenCFRAA1hbXO7uiHpFnUREkfO\nuYX32rR/AM/ZDmvHvXuNU44e5HY5Z6CV59w4FCSI4pboa86m47ZG9ta+Gdb2EyDpBHsmdt5b49vt\n7TsvKFY38k3rJGTUoOdMQovIezplIIFmz7luSGLoFk3ynTXd18vzohPPuWs5Zz/P2aeVKkhB2HQm\njorjfS512TjvF/yMs39Ye20zbz8XdJAGIcMGPWcSWuyKYbfnbOecdXu7WFTuanuP03M2DKMp59x+\n//Z9znXP2SesnXCGtf2P/Y/fuAgA+NBfPYSl5ZWm5ysHaKXa3itBkSVkUlFMWRdHlyyj6KcO1gnx\nqIKIImO/4K217c4528IppSpWN3KYnIjhaDZJ40xGFhpnElq2bM+50SOuh7VN47K9V0I2HYcUsAc5\nCNFIPedctQxsR8Y5EsRzNr1GP885FcBzXlpewcUrOfu+l2KWO+csLmJaVmvvlzCVjkGWJEQjMtLJ\nqB1O7obnLEmm4fcPa7v7nM1j7uUruLJdxMJMCtl0HIVSjQMxyEhC40xCi51L9g1r66jWdOzmK03b\nHBbFEZZ2G4ogRJUOcs5+xjnRvlo7iGKWWIO7lcqv9Uo3DGzvl5FNN7ZF1aU7uxOhSCejvmHtalNY\n2zzmU5f2YMAc01mvIg826YqQYYLGmYQWZ6+tE2cr1Y5P0dhhkSUJiiyhqutNIdYgRF3yn14I4+g3\nfjFotXY7RM5YFIQpsoxoRPb1nPfyFdR0w3PkI4AGcZTDkE5GUSzXPIVavERIANhSoPOzE3YB4DaL\nwsgIQuNMQsv2fgkRRWoQGQGAeMz82JYqNV/vuhtEFBnVqtFUORx0X6BNWLtYRSLWPMtZ0JBz9vGc\ngyhmuRXCACBpaVV7YRfiNQiKOOZpd8lzzqT8i8Ka+5zNYz5thevnZ1J2AWDQMZSEDBM0ziS0bO+X\nMe2RS1ZkGRFFQqlS8zQk3SKiSKjW9CYvLti+AcLaPhOpBEFyzk2qXOlmtTIv45yIRXxztVsehXjO\ni59u5JyB1hXbftXa4lwWZlP0nMlIQ+NMQomuG9jZL/sa3XhUQalc8zQk3SKiyI3GuZOccxBt7WLV\nt1IbaOxzjrSo1r779Cn7eG/4CbXpeeH5i2legGns/KZSbXsU4jn/Dt2qireNc745Z+wc0SnWK4hG\nZMxOJuy/OT1nMorQOJNQspsvQzcM33B1PKY0es5d7HEW2Mb5IDlnW/7Tu5VKNwwUSq2Nc7IhrO2f\ncz4+n8ErX3SttV3zGj0953gEpXINutG8PufQC0EvPOdMyvyb7Xl4zlWXtrbzguBYNgVZluoFYfSc\nyQhC40xCiVOhyot41DLOHoakW0QUCZWa0VQ5HGhfqxXLryCsWKqZs5wT3upgQHBtbcAM8wLAmkM9\nS1CpNCqEAXUDW/Lwnre8cs4DCGs7R3Q6jynOdTJltnqxWpuMIjTOJJTUc8neHrEd1ra2m+qFcY7I\nqB0w56zIMiTJP6wtepxbhYgbRka2qdZemJ0AAKxu5JqecyuEAa0nUzmHXgicaYOutVKJgjCPXme3\n6EvcwzjLsoSpdIwSnmQkoXEmoaSdRxyPKihXdWzulZBORjsynEGJKDIqB8w5A6Yx9ysI+6PPfhsA\n8D+/veap6gUA//kvv2nf/oNPP+i5jeDYjDkkZNXLc3YphC0tr+DrD18GAHzor77VsO3S8gq+9eQG\nAOCez9Sf++O//rZ9+y/vfbzlWoKSaeU51xq1zJ3vxT9r6/bt6XQc2/slz/A8IcMMjTMJJe0KvYQn\ndWW72JNiMMCq1q4aB8o5A6Yx9wprLy2v4MmLu/Z9L1WvpeUVnHcIjDz81HbTNk4SsQhmJuO27rQT\n58WF+3WfeGbXfl33c2Jdv/mnD+Dhp+qPP3lxt+VagtIurC3eb/e6nrmSs4+fzcRR0w1fMRNChhUa\nZxJKtveaQ6tOhBBJq6KxwxJVZOiGYedlIx0aZ7NPutk4B1H1CrKNm4WZFLb2Sk3KX86CsFav6/ec\nEP7oZC1BsCdT+eWcrTB8qzVnWRRGRhQaZxJK2omLOHOQWZ+89GERRVgiL9ux59wirN0L5q2886Wt\nRu+5Uq0hGpG7qj3eDWJRBfGo4p9zDpBGEDUJHIBBRg0aZxJKtvdKSMYjDUbYSdzRs9srz1kYZ+GJ\nRpXOqpT9POcgql5BtnEzP2MWSrnzzuWqbldqt3pdv+euX5jseC1BMfW1vfucowHWLP72LAojowaN\nMwkl2/ullrnkBuPcw5wzABQsJa1OPWezoKy5UOnsmcWG1qBsplnVq0n5y2MbN6KK2W2cK5W6oXO/\nbjyq2K979swiJhy91eKY733DCzteS1DSqWhTWNs9orPVeyH+9jTOZNSgcSaho1ypIVes2trJXjSE\ntfvlOXcc1pZ8+5yfd8MRAKa+tJ8HevfpU8hm4oG9VNFOteZqpypXa/ZEKvG6UxPme3vi6qmGbW+/\neR4AMJGINByz07UEJZOMolzRUarUW7q8RnT6HT/LyVRkROnedHpCusR2gGEW/Qxr50sHzDkrMipV\nHYZhNOV7hUjJr//iC3F0Oum5//H5DM7deXvg402nY4jHFKxuunPOOiYcw0OOz2fwgbfehrd84B+b\n+rBlyTzHf/dzz2vwjDtdS1BEr3OuULH/pl6ta37HFx41c85k1KDnTEKHl0KVm3i0/tHtWSuVZYyL\nds65w7C2tX9Nbw5t27Ocu6RTDQCSJGFhJoVLm3nojmN6FVdFFBmZiViTLnUvp3x5YVdsO4rCOmld\nS8TMojJWa5NRg8aZhI4gwyxEWFuRJdv76jYRS5XroGFtezKVR1GYPcu5S7ORBQuzKVRrBq7sFACY\n+VtnQZiT6XQM2/slGA4Bj+29EiQAUz3QKvfCS4ikkxGdkiRhOhPn8AsycgT6tVFV9VZVVe/1ePwd\nqqo+pKrqvda/G7u/RDJOLC2v4MN/fR4A8D++cdF3u//+1acBmF7pB//iGz1Zi/B88wfNOdvDL5qN\nc75kznJWWkybOgiPP2P2JL/7j7+KpeUV+9jRaPNFQDYdR7miN/RFb+2XkJmItdXy7hZpe/hFPWfc\niVzq0vIKLm3msZev4AOf8FZaI2QYafvpV1X11wB8BICXG3MLgNdrmvYj1r9Hu71AMj64laC+e3nf\nU4lqaXkF3728b9/3UtjqBt3ocwa8Ped8sfUs54OwtLyC9e2Cff/8hS38hz/6nwDg7Tm7Kp0Nw8D2\nXqknE778qI+NdHrOweRSm1XUevM5IGQQBPm1eRzAawF4KRi8AMB7VFX9J1VV393VlZGxI6gq1kHU\nsw6CaKU6qOccaeE5txsXeRC83hdRxey1dnelc6FURbmq96z63QsvCc+gOed+fQ4IGQRtfx00Tfu0\nqqrX+Tz9CQD3ANgD8BlVVX9K07QvtHq9ubnD90YOMzz/FucvAfCYXyDLUuN+Qbc7JNOTZhW1kO9c\nmJ9qqBJvR8YycpnJpL2uubkMdN2c5XzdVVPd/Tz4vC8AMJlONB3rmqvMNqoqzPftqTUzJD4/l+7Z\n59T9urmqueCqUX9ubdeaNOZ43zzp0+egW4RxTf1k3M+/Uw576f57mqbtAoCqql8AsAigpXFeXx/f\nkNPcXIbn3+L8Tx7PNoQpAbMo7K7X3NywX9DtDkup2CiOsb2Vs+cLB6FSMT3uy+v7SCqSff6FUhW6\nAURlqavr9XpfJlNR7OYrqNVqTcdSrEKw767uYH19D9952tw3GZF78jn1+vtXiqbXvr6Zt5+7csVM\nWVTKla58XsIAv/s8/045cNWHqqpTAL6lquqEqqoSgJcBeOCgr0dIUFWsg6hnHQQR1ha3OzHMgCPn\n7AprizaqVrOcD4L7fZlKx/D2n3seAO+cs9hWVDoHaWHrNp5h7YA5Z/f5puKRnnwOCBkEnRhnAwBU\nVX2dqqp3aJq2A+DdAO4F8GUAD2ma9sUerJGMEXe99mYAgKJILZWoeqVY5cRZsXyQedF2tbarIEzk\nsLtdEAaY74sIvZ/+oRtaVj6Lwi/RI9zvHmfAfI+TceVAOWfAPF8hOfpDpxZ6s0hCBkCgXwdN0y4A\nuM26/QnH45+AmXcmpCsczZp53lPXz7b0gHqlWOXEOSKyUwESwL8gLG+Fy7tdEAaY78vrfuwEPv7f\nH4EBA2W7Z7g5V55ORhFRZFtdaztAf3kvMIdfNHvOQUZ0Hp/P4M3/+jn4z3/5zZ71uxMyCChCQkKF\naKlJJwf/Q3tYz9lPhKSXnjPgmE61mUelYh7bK6wtSRKm0zE7nC086H62UgFAOhnDXr5ii6F00ucM\n1M+tXOnfeE5Ceg2NMwkVYkJRGLyghpyzh+fZjnY55154zkB9OtXaRh7lqr9xBsz88k6uDF03sL1f\nQkSR+35hlElFUa3Vh1/Uc87B3vOYFcYXUQJCRgEaZxIqwuQ5O0PZBwlrC+PcFNbuseecScWQTkax\nupFrGdYGzF5nwwB2cmVsWQIk7iEdvcYtRNJJzhlwGGd6zmSEoHEmoULIOIbBOCsNYe3ODZbwvKuu\nmc6FHlVrO5mfTWF9u4iCNVErFvXxnK3ir83dInZy5b5WagOmytf9D60BAP7wsw8B6DysHbfD2vSc\nyehA40xChSgMyiT7m/f04vCec+MIREGvPWcAWJhJQTcMPLO+b63Fe/2i+OvpS3swjN7NxvbCLb/5\nndU9vOue++yhHUHfc+E5lzxkUgkZVmicSaiww9ohyDkrjpzzwQrCzP2bjHOPc84AsDA7AQB4+lJr\n4zydMS+CvrNqCkT0s43KT37zgUfWAXQS1qbnTEYPGmcSKvZsz3nwxrnBcz5IQZhfK5XtOffuHOet\norBnLLWtWIucMwB8x5Lu7HcblReGpckZpJUKqJ8bjTMZJWicSajIhala22EcghqKhv3b9Dl3e5az\nkwWrnUrku/09Z9MYX7ySs+73L51w8rps02PZTBwnj5uPB/WcZVlCRJHtynRCRgEaZxIq9goVyJLU\n02KpoERkR1j7ENXaXjnneA9mOTs5Mp2A4li/byuV5TlbLcZ9zTm75TdlWcK5O2+3Fc46ec/jUZme\nMxkpaJxJqNjPV5BORjrWse4FDQphhxEh8ehz7mW+GQAUWcYxy3sGgKjPNK14VGlYS7+rtYUMqyJL\nkGCgpusdV2sDZlEYW6nIKEHjTELFfqGCdGrwldpAFxTC7D5nVytVqdrTSm3BgsM4+3nOQGOeuZ8F\nYUBdhvXWm46hpgNXdood9zkD5vmVKEJCRggaZxIadN1ArlAJRY8z0KgQdrDBF1afsyOsrRsG8qXe\ne85AvSgMaG2chVxnKh7paF51NxGqZqsbefv96iSsTc+ZjBo0ziQ05IoVGAhHpTbg8pwP0+fsCGuX\nyjUYRm/bqAQLDuPc6uJChLIHWak9P2O2fq1t5FGp6lBkCbIcPLURY86ZjBg0ziQ07IeoUhuAlQc1\nOUyfs9Nztnuc+xDW/vt//p59+/c++aDvdtrT2wCAZ67ksLS80vN1eVH3nHOoVPWO3+9YREFNN5oq\n4wkZVmicSWjYC5GuNmBObRISnt0qCLN7nOO9Pcel5RVbWAQAzj+1hXfdcx+eWttr2u7KTrG+3QXv\n7XrN0WwSsiSZk7RqnRtnEY53V8YTMqzQOJPQsB8iARKB0NQ+UM7ZY/CF3ePcY8/ZT33r9z/14IG2\n6zURRcbcdMIOa3fsOVMljIwYNM4kNIQtrA3Uvd+D5JxFWNzpzdU958H3cYeNhdkJ7Bcq2MmVO36/\nhUoY9bXJqEDjTELDXl5MpApHKxXgMM4H8JwlSUIkIjd4zoU+DL0A/NW37j596kDb9QNRXU7PmRAa\nZxIi7LB2qDzng4e1zf1lVKr1Pud+DL0AmtW3spk4zt15O47PZw60XT9w9mV3bpw505mMFjTOJDTs\nh6wgDDic5wyYvc5Vr4KwPlRrC/Wtdp5w0O16jZikBXSeRhB93PScyajAxBcJDWIiVSiN8wFyzoBp\n1CsDaqUS6lvd2q7XzAfsy/ZCVGuXqRJGRgR6ziQ07BcqUGQJidhgVKq8qHvOB1tTRJG9PWcWhDWR\nTkbtlEan7zfD2mTUoHEmoWE/X0E6FYUUgqEXgkPnnN0FYcXez3IeZkTeudMRnSKsXWJYm4wINM5k\nICwtr+CNv/MPeOPv/IOtSrVXqISqx3lpeQWPfW8HAPDnf6sdaP9n1nPIFav2OQrPuZeznIeZy9sF\nAMADj1zuSK3M9px9Wqm8Pm+EhBkaZ9J3lpZXcP7CFgwABkxVqnf+wVdQKFVDk28WaxQ8cXG3I+Us\n9/7nL2zhl97/JWztlXo+y3lYWVpewfZ+2b7fiVpZq1Yqr8/bIFTQCOkE/kKQvuOlSiV+lMMyLvKw\nylle+2/sFHF5K898sw+Hec/rOedm4xwWFTRCOoHGmYSKMIW1e4Fh9KdSe9yIR1qHtQkZNmicSd/x\nUqUS4eywhLUPq5zltf/sVAIGWKntx2HecxHW9ioIC5MKGiFBoXEmfefsmcWGdqlkXMEvvkIFEB5d\n7cMqZ7n3l2UJH/q1lwGgcfbjMO95q1aqs2cWGy76ptOxgamgERIUGmcyEL5vof7DODedDOVEqsMq\nZ4n9oxEZum7g0afN3CfD2v4c9D23FcJ8REh+8OZ5+/a/fbl6uEUS0gf4K0EGwm6+gnhMwTVzaTxx\ncQerG3kA4fGcgcMrZ4n9v/LgKj72Nw/j7x/4LoDez3IeZg76nrcTIXFOq5qcCEfRISGtoOdM+o6u\nG7i0WcDCTAqLNx6BYQBfPb8GAMiEaCJVt3jes2chScD9D64CAJIJ9jh3m3ba2mvWxR9Q13AnJMzQ\nOJO+c2W3iGpNx/xsCrecmAMA7IVw6EW3yKRiuPHqadtw0HPuPlE7rO3tOa9u5Ozbe4Wy5zaEhAka\nZ9J31qwfyoWZFI7NpOxKWwD46BfOD2pZPWU7V7Jv/9ODFwe4ktFEkiTEorKn51woVbG9X4Yim1Ks\nor6BkDBD40z6jsgvL8xOYGl5pSFP+MjT2yOn3rS0vIJLmwX7/upGfuTOMQzEIoqn57y2aX7erj1m\nFiEyrE2GARpn0neEcZ6fTY2FetM4nGMYiPt4ziLffOLqKQD10aSEhBkaZ9J31jZykCTgWDY56KWQ\nESIWVTyN8+qmmUY5cfU0AHrOZDigcSZ9Z3Uzj7mpJKIRZSzUm8bhHMNALKI0tEwJRKTm+qsmIUsS\nc85kKKBxJn1lv1DBXr6C+Vlzbu9hlbiGgXE4xzAgCsIMw2h4fG0jj2RcwXQ6hnQqyrA2GQponElf\nEcU5C5ZxBg6vxDUM3H36FGanEiN9joMmFlVgGEC1VjfONV3Hpa085mcmIEkSMskocjTOZAigQhjp\nK6LfdGF2wn7ssEpcw8Dx+Qw+/r5XYH2dFdq9winhKfqer+wUUa0Z9sVgOhnFxSs56LoB2WqtIiSM\n0HMmfUVUzs7PpNpsSUhnxD0kPFddn7d0MgoDQK5I75mEGxpn0lfqPc40zqS7CDEbZ8X2muvzJrTb\nWRRGwk4g46yq6q2qqt7r8firVVX9uqqq96uq+qbuL4+MGqubeUwkIsikRk9DmwyWWMT0nJ0zndes\nNqp5K40i5GH32E5FQk5b46yq6q8B+AiAuOvxKIAPAvhxAC8F8GZVVY/2YpFkNPj1P7wPlzbzyBWr\nWFpeGfRyyIhhT6ay2qmWllfw5W+aw0b+3//vUQD1kaT0nEnYCeI5Pw7gtQDc1RMnATyuadqOpmkV\nAF8B8JIur4+MCEvLK3jw8Sv2/fMXtihhSbqKM6y9tLyC8w5ltoefMj9vxUoVAI0zCT9tjbOmaZ8G\nUPV4ahLAjuP+HoCpLq2LjBiUsCS9RoS1yxXd9/P2dw88AwDYy3MyFQk3h2ml2gHgVFHIAGj+RriY\nmxtv4YWxPX8JgNH8sCxLY/WejNO5etHL85+1KrITyZjv501RzABgDf3/3PFvP97n3ymHMc6PADih\nqmoWQA5mSPsD7XYa5z7PubnM2J7/91+bxcNPNV67ZTNx3PWam8fmPRnnvz/Q+/MvW+1R65v7OHk8\n2xDWBszP2+tffiN+/1PfwvpGrq9/C/7tef6d0kkrlQEAqqq+TlXVO6w88zsBfAnA/QA+qmnaascr\nIGPBK2+9tuE+JSxJt4k5+pzPnllEKl73PcTnTb3W1DmnhCcJO4E8Z03TLgC4zbr9Ccfjnwfw+Z6s\njIwUK4+uAzCrZSMRmRKWpOs4FcIA4NabjuLelYtIJ6P25y0RUxBROPyChB/Kd5KeoxsGVh67gsmJ\nGD545+2UTSQ9IeZSCDOsBpNf+4VFXD2XBgBIkoR0MsqxkST0UCGM9JzvXNzFTq6MF900T8NMeoZb\nIWx7rwQADRPBACCdjDGsTUIPjTPpOSuPmf3NL37u/IBXQkaZeKTRc97aLyEakRtyzwCQSUVRKFVR\nrTXPfiYkLDCsTXrG0vIKHr6wBQOAJAHPV49idzs/6GWREUV4zqVq3XPOpuOQpMZojZDwzBUqmEo3\netWEhAV6zqQnCIUm0WpqGMBbfvvvqAhGekY951xDTdexmytjOtNsfMXwC4a2SZihcSY9wUuhaWOn\nSEUw0jOcCmE7+2UYAKbTzQNWbH1tFoWREEPjTAgZCeyCsGoNW/vexWBAPazNdioSZmicSU84eV22\n6bHZqQT7m0nPiCgyFFlCuaJje8/Uzp72yCkzrE2GARpn0hPOnllE1vHDmM3E8fH3vYKKYKSnxKIy\nypUatlt4zpmkGere5/ALEmJonEnP+OWfOgkAiFIRjPSJWERBqapjy+px9vSck/ScSfihcSY9I2pN\nAHr5D1xDj5n0Bbfn7FmtzZwzGQJonEnPWN0we5rnrVF+hPSaWFRBuVKzPeesR7W2yDmzWpuEGRpn\n0jOEcV6YnRjwSsi4EIsoKFd1bO+XkE5GEbXaq5zEowpiEZmeMwk1VAgjPWN1MweAnjPpH/GojIqV\ncz4ylfDcZml5BeWqjgtre1haXsHZM4u+24l+/ZPXZX23I6QX0HMmPWNtI4+piRhSCV4Dkv4gVMKK\n5Zpnvlko1wnOX9jCu+65r0m5zqlwZ7TYjpBeQeNMekKpUsPGThELs/SaSf8QM50B70ptL+W6rb1S\nk3Jd0O0I6RU0zqQnXNrMwwAwz3wz6SPCcwbQ0GdPyLBB40x6wtqmVQzGfDPpI07P2UuAxEu5LpuJ\nN/XhB92OkF5B40x6wppdqU3jTPqH03P2CmufPbPYYLSTMQXn7ry9qQ//7JlFJGJK2+0I6RU0zqQn\nrFqe8zyNM+kjYvgF4O05A8Ddp09hcsLsf77xmmnf1zp+rG6IZ30qvwnpFTTOpCesbuQQi8iYmeSP\nGkpjGt0AABVgSURBVOkfsYjTc24WIAGA4/MZLL31Niiy1FLCczdfxkQighuvmcYz6znsWKpjhPQD\nGmfSdXTDwNpmHvMzKciSNOjlkDFChLUVWUJmwts4A+YEq6PZJNY28jAMo+n5ak3H5a0C5mdTuOXG\nORgAvvH4lV4tm5AmaJxJ19naLaFc0RnSJn1HhLWn0rG2F4YLsxPIl6rY9ZDxXN8uoKYbWJiZwOKJ\nIwCAlcdonEn/oHEmXWVpeQX//g/vBwA8eXF3wKsh48bfP/A9AMDmbglLyysttxXFimsbuabnnAWN\nc9NJxKMKHnxiA2/8nX9o+7qEdAMaZ9I13OpLV3aKVFUifWNpeQXPXKkb2naqXkJWVmjAO7ELGmdS\nWFpeQalSA0C1MNI/aJxJ16CqEhkknX7+xEAWT+NsedPzsyl+rslAoHEmhIwltue86R3WVmQJc9PJ\nfi+LEAA0zqSLUFWJDJJOP3+pRARTEzE7vywwrG6Do9kkIorMzzUZCDTOpGucPbPY0FuazcSpqkT6\nhlv9K8jnb2E2hY2dIspWThkA9vIV5IpV27N2v+50OsbPNek5NM6kq/zsD98AwBxoT8+C9Ju7T59C\nNhMP7NnOz07AAHBpq2A/JvLNC46hLXefPmW3ab3ux27s7qIJ8YCDdklP+N9e9mx6FqTvHJ/P4Nyd\ntwfefsGu2M7hmqNp8/Zmsy788fkMfvLW4/irr3wHqTh/NknvoedMuoqofOU0KjIM1Hud63lncdst\nojNthba39ijjSXoPjTPpKpxGRYYJYYCFtwz4X2CKKVfb1NgmfYDxGdJVVjfzSMYVe+oPIWHm//6b\nRwAAXzt/CXv5MgDYQjof+quHcPbMor2tKArbonEmfYCeM+kaNV3Hpc085mcmIHHgBQk5S8srePip\nusDI+QtbDQp3biUwYZy3GdYmfYDGmXSNK9tFc1gAQ9pkCPBS/nLjVAKbSEQQUWSGtUlfoHEmXcOr\nypWQUUGSJEynYywII32Bxpl0DbvKdWaizZaEDB4v5S837n7p6UwcO7kydL15BjQh3YTGmXSNungD\nPWcSfrwUxdopjGXTcRgGsJMr93WtZPygcSZdY3UzD1mScDTLYQFkOHArirVTGLOLwph3Jj2GrVSk\na6xt5DFnDQsgZBjwUhRrpTBm9zrvlYCFni6NjDn8FSVdYS9fxn6hQmUwMtJMZ8z+ffY6k15D40y6\nwqqP5CEho0SWKmGkT7QMa6uqKgP4EIBTAEoA3qRp2hOO598B4I0A1q2H3qJp2qM9WisJMWub1NQm\now/1tUm/aJdz/hkAMU3TblNV9VYA56zHBLcAeL2maSu9WiAJP0vLK7ay0r0rz+CHnnfVgFdESG9o\nyDkT0kPahbVvB/BFANA07WsAXuh6/gUA3qOq6j+pqvruHqyPhBynYQaAC2t7DZKHhIwS8aiCVDyC\n7X22UpHe0s44TwLYddyvWaFuwScAvAXAywD8oKqqP9Xl9ZGQ4yWB6JQ8JGTUyGbiDGuTntMurL0L\nIOO4L2uapjvu/56mabsAoKrqFwAsAvhCqxecm8u0enrkGbnzlwB4iCXJsuR5riN3/h3C8x/+85+b\nSeGZKzlkppJIxIJ3o47CuR+GcT//Tmn3yboPwKsBfFJV1RcDsN0hVVWnADyoqupNAPIwveePtjvg\n+vr4hjvn5jIjd/4nj2cbwtqA6Vnc9Zqbm851FM+/E3j+o3H+E3EFAPD4hQ0cywYrgByVcz8oPP/O\nL0zahbU/A6Coqup9MIvB3qGq6utUVb1D07QdAO8GcC+ALwN4SNO0L3a8AjLUnD2zCEWuj4f0kjwk\nZJTg6EjSD1p6zpqmGQB+1fXwo47nPwEz70zGlI0dc0xkRJGQScU8JQ8JGSVExTaFSEgvoXwnORQr\nj5kt7q/70RP4kVuuHvBqCOk9thDJHiu2Se+gQhg5FCuPXQEAPP/E3IBXQkh/oBAJ6Qc0zuTA7Bcq\n0J7exvctTDaM2iNklJmmhCfpAwxrk8AsLa/Yfc2pRAS5YhUAkCtUBrksQvrKn3z+PADgfz1yGef/\ny5eRt74HJ6/L4uyZxUEujYwQ9JxJIIQSmAGzrVkYZgC4vF2gKhgZC5aWV/DwU/XWwVyxan8nzl/Y\n4veAdA0aZxIILyUwJ1QFI+MAvwekX9A4E0IIISGDxpkE4uR12ZbPZzNx9jiTkYffA9IvaJxJIH7l\nJ0823JfqomBUBSNjw9kziw2dCc7vQSwq83tAugaNMwmE6GdOxSPIZuK441U3IZuJ01MgY8fdp0/Z\nn/07XnUTptMxAMDRgDrbhASBrVQkEEIJ7P1vfBFmJhMAgBc/Z36QSyJkIByfz+Dcnbfb91/8nHn8\nxw9/lVrbpKvQcyZtyRdNsZHr5jO2YSaE1FmYSWG/UMFenpKepDvQOJO2PPjEBmq6gcUbKdFJiBcL\ns2ZIe3UjP+CVkFGBYe0xxan25adsJLYxrPu3nDjSxxUSMjzMW8Z5bTOPG6+ZHvBqyChAz3kMcat9\neSkbObcRfPAvvkn1I0I8WJidAACsbuQGvBIyKtA4jyFeKkduZSPPbfapfkSIF/MzDGuT7kLjTAgh\nhySdjCKTimKNxpl0CRrnMcRL5cjdrxxkG0JInYWZFNZ3CqhUa4NeChkBaJzHkLNnFpGK12sB41Gl\nSdno7JlFZFJR+z5VwAhpzfzsBAwDuLRVGPRSyAhA4zymPM9ReT2RjHpuc/P1s/bz9JgJaY1op2Jo\nm3QDGucxpWDNY1avmcbmbtGzyvSJi7umXvBbb6PHTEgb7F7nTRpncnhonMeU1Y0c0skofuh5CwCA\nf3l0ven5S5t53Px9s4hFlUEskZChYt5qp1pjOxXpAjTOY0ilqmN9u4iF2RRO3XAEsiTZgy0Ewlgv\n3kjhEUKCcGQygYgis52KdAUqhA0pfgpfQZS/Lm8XoBsGFmZTSCejSMQVPHlxF2/8nX9AKhFBvli1\nxUdO3UDjTEgQZFmCIgMX1vYavksA8LwTc7j79M1N+wT5vpLxhJ7zEOKn8PWbf/pAW+UvoB52m5+Z\nwNLyiv0DYgDIOQwzAPynj32dqmCEBGBpeQWlig6g8btkAPjGY+stVfhafV/JeELjPIT4KXw9ubrr\n+bhb1UuE3eZnU56v1W5/QkgznX6Xgij1kfGFxnkMEcZZVJcSQggJFzTOQ4ifetf1C5Oej7t7lNc2\n84goEo5MJTxfq93+hJBmOv0uUYWPtILGeQg5e2YRaYdwyOREFOfuvB3vfcMLkc3E7ccTsWblL8Mw\nsLaZw7FsCoos4+yZxYZ9JKl+HKqCERKcVt+lTCrmqcI3kajX5Hp9X8n4QuM8pPyr5xyzb//Ei47b\nt9/0qpvs28ePNX/Jd3JlFEo1e/4sANx9+hSymTiymTjueNVN9m1ewRPSGe7vUsa6iH7uDTOe2zuj\nXSeunurLGslwwFaqIaVUqYvr14x6fXVUqV9v7ebLTft55ZuPz2dw7s7b7fsvfs58V9dKyLjg/i69\n6OQxvOMPvoKHL2xBNwzIDne6WtPx+MVdzEzGsZurYDdfGcSSSUih5zykOIUOnNKbztuXtwqo1vSG\n/UQb1cLMRI9XSAiRZQnPe/YRbO+V8OTFxm4K7bvbKJSqWDwxh/mZJNY28zAMw+eVyLhB4zykrG7k\nMTuZgCJLDUL7Qtf3aDaJmm5gfbvQtB+AhrA2IaR33HJiDgCw8lijRO6KpcJ3y4kjmJ9JoVSuYXu/\nOdpFxhMa5yFkL1/GfqGCq+cmMDedxOpG/YpbGGrxg+CekCOM9/wMjTMh/eCm67KIxxSsPFqXyDUM\nAyuPXcFEIoIT10zbutxeA2jIeMKc8xCytinyxhOQZQlrm3ns5SuYnIhhdTOPdDKKE1dP4YtfN42x\nEAQUikQAcM9nvkWpQEL6QCyqIBFTsLaZt2U9c5Yq39REDBFFrk+02sjjpuuai8cGIfN5mGO69/3d\nt72kJ2scZeg5DyFrjtD0vP2lzqFa07G+VWh4XGzrNMwApQIJ6RdLyyvYscLVQtZTsJMr41333Gc9\n4z0LehAyn4c5pte+v/T+L/G3pkNonIeQ1c16xbUo7FrdzOPyljXQYiaFuekkFFnC6qYZJqNUICGD\nIYis5yfvfQIA7O9ru/17/d09zDG99t3YKfK3pkMY1h5C1jYcYW2rNWNtI49MMmY/HlFkHM0msbbB\nClBCwo4kSchm4hw3SWzoOQ8hqxs5pJNRpJNRR1g7jzXrqls8Nj+TQq5YxV6+QqlAQgZEUFnPhdkU\ntvZKKJarDc8P4rurXjt94GN6rXdmMsHfmg6hcR4yKlUd69tF2wBPJKJmIdhGrklgZMFRAfpvX642\nvA6lOQnpD2fPLGJ2KmHf95PIFSmqS5uN7Y9ve22jUYtG5J5/d3/8B65puD+RiAQ+5tkzi0glGoOy\nd/7c8/hb0yE0zkPG5e16XlmwMJPCxk4RT1/aswdaAHUjvbqZt3ssU4kIPWZC+sx7f+XWthK5zuJO\nJw99ZxOAqb0tS4AE8yK9l4i2r1TcNLLXdmhYjx9NN+z/1W+tdnF14wFzzkOGrfA1W1f4WphNQfvu\nNr63nsOzjkxAkc1rLmfF9pMXdyFJwG+/+cXIpGL9XzghY8yzr55uK5HrbKdyIi6s//3rFvG185fw\nt//ru3jk6S3cfP1sT9aq6wa+8fgVTE3EcO6u2/GeD38VT17cRaVaQzSitN2/XKnhidVdHJtJ4bfe\ndCveec99+Pr5Nfz8D98AWZba7k9M6DkPGV4KX/MOQ+18XHjX2tPbeOKZHZy4epqGmZCQYqehNuvG\nuabr+ObjV5DNxHF8PoPFE0cAACuPXfF8jW7w+DM72C9UsHjiCGRJwi0n5lAq1/DwU62rzgXnn9pC\nuaLjlhNHIMsSnv/sI9jZL+OJizs9W/Mo0tI4q6oqq6r6R6qq3q+q6r2qqt7gev7Vqqp+3Xr+Tb1d\nKgG8B1c41b6ct1NWPvqpS3swYMoEEkLCyXQ6hnhMsaNjAPDYd3eQK1bx/GebhvLZV08hnYxi5bF1\n6D3qwvgXS1Z08UZTZfD51u/Gvzwa7IJgxbX/LTdaFxQB9ycm7cLaPwMgpmnabaqq3grgnPUYVFWN\nAvgggBcCyAO4T1XVv9Y07bLfi/3GH92Pbzpyn3mrGd95W1T6iV45v+16tX8v1zKRjCJXqBzq+ELA\n4M++qOHfv85U7Pn8/Rfs93jlsSs4/VLzGmppeQW7ubpW7/OtLwshJHyc+4tvoFSu4XvrOXzgEyuQ\nJNjCQcLrVGQZEUXC9n4Zb/rdezHRg98uA4AsAd9/rfkaz37WFBRZwpe/eRH/9M2LgfZXZAnXX2WO\nwzx5PAtZAr749afxpa8/PfDf4X7YhG6ouEmtemBVVT0H4Guapv2ldf97mqZdbd0+BeB3NU37Cev+\nBwHcr2naf/N7vVe/67NsuO0i2Uwc2XQcT67uBn787tOnBlY1OTeXwfr6+KoE8fzH9/zbnbtbwc8L\nv+91rxC/F5/8x8fbrq0X+w87zt/bublMx8n2djnnSQDOT0JNVVXZ8ZwzibAHgNPC+8jWXsnzi9rq\ncar0EBI+2qmIAf7f614hfi+CrK0X+w87h/29bRfW3gXgdLNkTdNEDf+O67kMgPH8KwwRW3ulZ+bm\nMlcP6vhzc+Pd68jzH9/zb3XuBqDD7JIKFVt7pWcAXIUDru2w+w87h/m9bWec7wPwagCfVFX1xQCc\nlwGPADihqmoWQA7ASwB8oNWLfe7cT4/lH4gQQlrxuXM/zc4Z0kC7nLME4EMARKf8LwN4AYC0pmkf\nUVX1VQDeBzM8/lFN0/6wx+slhBBCRp6WxpkQQggh/YehFEIIISRk0DgTQgghIYPGmRBCCAkZNM6E\nEEJIyOjpVCpVVZMA/hzAHEyRkjdomnbFtc07APy8dfdvNE17fy/X1A8soRZR5V4C8CZN055wPP9q\nAL8BoArgY5qm/clAFtoDApz76wC8Hea5fwvAWzVNG5mqxHbn79juwwA2NE37j31eYk8J8Pf/AZgy\nwBKAZwD8oqZpZa/XGkYCnP9rALwHgAHzu/9HA1loD7Gknn9H07QfcT0+sr97Tlqcf0e/fb32nH8V\nwDc1TXsJgD8D8F7nk6qqXg/gFwD8K03TXgzg5aqq3tzjNfUDW5McwLth/hgBaNAk/3EALwXwZlVV\njw5klb2h1bknAfwfAH5Y07QfhKko96qBrLJ3+J6/QFXVtwB4Lswf6FGj1d9fAvBhAL+kadoPAfh7\nAN83kFX2jnZ/f/Hdvx3Au1RVHSlVRVVVfw3ARwDEXY+P+u8egJbn3/FvX6+N8+0Avmjd/iKAH3M9\n/zSAVziuHqIACj1eUz+wz1vTtK/BHA4iOAngcU3TdjRNqwD4CkwBl1Gh1bkXYV6IFa37EYzG39tJ\nq/OHqqq3AXgRgD/GaKomtTr/GwFsAHinqqr/CGBa0zSt7yvsLS3//gAqAKYBJGH+/UftAu1xAK9F\n82d71H/3BH7n3/FvX9eMs6qqb1RV9VvOfzCvDoQYbJP2tqZpVU3TNlVVlVRVXQLwL5qmPd6tNQ2Q\ncdYk9z13TdMMTdPWAUBV1bcBmNA07e8GsMZe4nv+qqouwBTtuQujaZiB1p/9IwBuA/BfYV6o/6iq\nqj+C0aLV+QOmJ/3PAB4C8DlN0/onlt0HNE37NMywrZtR/90D4H/+B/nt61rOWdO0jwL4qPMxVVU/\nhbr+dgbAtns/VVUTAD4G8w/31m6tZ8CMsyZ5q3MXObn/C8CzAZzu89r6Qavz/1mYBupvAMwDSKmq\n+rCmaX/W5zX2klbnvwHTe9IAQFXVL8L0LO/t7xJ7iu/5q6p6LcwLs+Mwx+z+uaqqP9tqkt8IMeq/\ne23p9Lev12Ht+wD8pHX7JwB82fmklYP67P/fzh2jNBQEARj+RVALL2AnWOwFrAQPYWtjZWGZUk9g\nK57ARlsvIVpY2A6IB8gJtBAsdiOviM8ovOe6+T94RSDFDhtm9k2GBZ4i4qShwaDPuPvuJE8prZFb\nO/fjL3EwfbFDbueuAwedFk9Lvow/Ii4jYrcMipwD140VZujf/xdgM6W0Uz7vk98gW9IX/wbwDryV\ngj0lt7iXQet5bxE/yn2DXt9Z/gS/ArbIk4uHETEtE9rPwCpwQ96kWZvvNCIeBlvUCJb5TvK+2IHH\n8nQPaRcRcTvqIgf03d53vncEpIg4G3+Vw1ngtz87mKwAdxEx+ZuVDmOB+CfkIdhXcg48joh5beB/\nK6W0TT547pUJ5ebzXte8+PlF7vNubUmSKuMlJJIkVcbiLElSZSzOkiRVxuIsSVJlLM6SJFXG4ixJ\nUmUszpIkVeYDPAclB0QdBf0AAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x170e4a20>" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Least-squares histogram fit" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Model definition" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import lmfit\n", | |
"\n", | |
"peak1 = lmfit.models.GaussianModel(prefix='p1_')\n", | |
"peak2 = lmfit.models.GaussianModel(prefix='p2_')\n", | |
"model = peak1 + peak2\n", | |
"\n", | |
"model.set_param_hint('p1_center', value=0.2, min=-1, max=2)\n", | |
"model.set_param_hint('p2_center', value=0.5, min=-1, max=2)\n", | |
"model.set_param_hint('p1_sigma', value=0.1, min=0.01, max=0.3)\n", | |
"model.set_param_hint('p2_sigma', value=0.1, min=0.01, max=0.3)\n", | |
"model.set_param_hint('p1_amplitude', value=1, min=0.0, max=1)\n", | |
"model.set_param_hint('p2_amplitude', expr='1 - p1_amplitude')\n", | |
"name = '2-gaussians'" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Fit" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fit_res = model.fit(data, x=x_data, method='nelder')\n", | |
"print fit_res.fit_report()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" - Adding parameter \"p1_fwhm\"\n", | |
" - Adding parameter \"p2_fwhm\"\n", | |
"[[Model]]\n", | |
" Composite Model:\n", | |
" gaussian(prefix='p1_')\n", | |
" gaussian(prefix='p2_')\n", | |
"[[Fit Statistics]]\n", | |
" # function evals = 503\n", | |
" # data points = 139\n", | |
" # variables = 5\n", | |
" chi-square = 8.886\n", | |
" reduced chi-square = 0.066\n", | |
"[[Variables]]\n", | |
" p1_amplitude: 0.40397393 (init= 1)\n", | |
" p1_center: 0.30130651 (init= 0.2)\n", | |
" p1_fwhm: 0.19268109 == '2.3548200*p1_sigma'\n", | |
" p1_sigma: 0.08182412 (init= 0.1)\n", | |
" p2_amplitude: 0.59602606 == '1 - p1_amplitude'\n", | |
" p2_center: 0.55926808 (init= 0.5)\n", | |
" p2_fwhm: 0.28679204 == '2.3548200*p2_sigma'\n", | |
" p2_sigma: 0.12178937 (init= 0.1)\n", | |
"[[Correlations]] (unreported correlations are < 0.100)" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig, ax = plt.subplots()\n", | |
"x = x_data\n", | |
"ax.plot(x, model.eval(x=x, **fit_res.values), 'k', alpha=0.8)\n", | |
"plt.plot(x_data, data, 'o');\n", | |
"if fit_res.model.components is not None:\n", | |
" for component in fit_res.model.components:\n", | |
" ax.plot(x, component.eval(x=x, **fit_res.values), '--k',\n", | |
" alpha=0.8)\n", | |
"for param in ['p1_center', 'p2_center']:\n", | |
" ax.axvline(fit_res.params[param].value, ls='--', color='r')\n", | |
"ax.axvline(mu1_true, color='k', alpha=0.5)\n", | |
"ax.axvline(mu2_true, color='k', alpha=0.5)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": [ | |
"<matplotlib.lines.Line2D at 0x19d21128>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAFVCAYAAADVDycqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FHX+x/HXpm1IZQMhdEIdEkKootKLdBAQFfDk0B8q\nKoiKIOrZTz3xwLPe6XH248CKBZAO0kE6IcmEktBLICEhIXV3f3+ExJC+m92dLZ/n43GPh9mZnfl8\nh+x98p2deY/ObDYjhBBCCOfhpXUBQgghhLiRNGchhBDCyUhzFkIIIZyMNGchhBDCyUhzFkIIIZyM\nNGchhBDCyfhUtVBRFG9gIdAOMAMPq6p6uNTy0cALQCHwqaqq/7FjrUIIIYRHqG7mPAowqaraG3ge\neL14gaIovsDbwGCgH/CQoigN7FWoEEII4SmqbM6qqv4ETLv+YySQXmpxFHBUVdUMVVULgC1AX3sU\nKYQQQniSKk9rA6iqalQU5XNgHHBnqUUhQEapn68CoTatTgghhPBA1TZnAFVV71MUZS6wU1GUKFVV\ncyhqzMGlVgvmxpl1OWaz2azT6awuVghrvfPOOwA88cQTGldiudtn/0RFKbv1Qv35/MWhDqnBlY+f\nEE7A4sZX3QVhk4Gmqqr+DcgBTBRdGAaQCLRVFMUAZFN0SvvvVVan05GaetXSGt1GeHiwjF+j8Zte\neQWA1D9N1WT/YP34o1oYiE+58e9eQ7CeGeM6Oux4ZmXlApCaepWwbjEApO2Js2gbnvz778ljBxl/\neHhw9SuVUd0FYd8BnRVF+Q1YCTwOjFMU5cHr3zPPAlYB24BPVFU9Z3EFQogqzZ7YBUOwvuRnQ7Ce\nBdN70aKh5R94IYRrqHLmfP309YQqli8Dltm6KCHEjWaOj+W97w+W/LcQwr3V6DtnIYS2WjQMZsH0\nXlqXIYRwEEkIE0IIIZyMNGchhBDCychpbeERrj01t9Jl85fsI+H61dBRkQZmT+ziqLJckqVXaQsh\nLCczZ+HR5i/ZR3xKOmaK7hGMT0nnqQ+3cuK85972IYTQnjRn4dESUsrn5qRfzSu5MloIIbQgzVkI\nIYRwMtKchUeLijSUe80QrJd7iYUQmpLmLDyapG8JIZyRNGfhEQIWzCNgwbwKl80cH4shWC8z5hoK\n6xZTkq8thLAPuZVKeDxJ3xJCOBuZOQshhBBORpqzEEII4WSkOQshhBBORpqzEEII4WTkgjDhEarK\n1haWkWxtIexPZs5CCCGEk5HmLIQQQjgZac5CCCGEk5HmLIQQQjgZac5CCCGEk5GrtYVHKMnVnjZd\n20LcQHGutly1LYT9yMxZCCGEcDLSnIUQQggnI81ZCCGEcDLSnIUQQggnI81ZCCGEcDJytbbwCJKt\nbTtylbYQ9iczZyGEEMLJSHMWQgghnIw0ZyGEEMLJSHMWQgghnIw0ZyGEEMLJyNXawiNItrbtSLa2\nEPYnzVm4lflL9pGQkg5AVKSB2RO7aFyREEJYTk5rC7cxf8k+4lPSMQNmID4lnac+3MqJ81e1Lk0I\nISwizVm4jeIZc2npV/N47/uDGlQjhBDWk+YshBBCOBlpzsJtREUayr1mCNYzc3ysBtUIIYT15IIw\n4TZmT+zCUx9uJf1qHlDUmBdM7wVItrYtyVXaQtifzJyFW5k5PhZDsF5mzEIIlyYzZ+FWWjQMLpkt\nCyGEq5KZsxBCCOFkqpw5K4riC3wKtAD0wGuqqv5SavmTwFQg9fpL01RVTbJTrUIIIYRHqO609p+A\nVFVVJyuKYgD2A7+UWt4VmKyq6j57FSiEcG6SyiaE7VV3Wvtb4MVS6xaWWd4NeE5RlM2Kojxj6+KE\nsJWABfP+yNcWtRLWLaYkX1tS2YSwjyqbs6qq2aqqZimKEkxRo/5LmVUWA9OAgUBvRVFG2qdMIYQz\nklQ2Ieyj2qu1FUVpBvwAfKiq6pIyi99VVTXz+nrLgS7A8qq2Fx4ebGWp7kHGr834vXQ6TfdfTOv9\nWysoyB+4Xr9XqWOpo2jKXIaXl67Csbrq+G3Bk8cOMn5LVXdBWASwGnhUVdUNZZaFAgcVRYkGrlE0\ne/6kuh2mpnru6a7w8GAZv0bjN5mLOoiWx9+V//2zsnKBouMXZio6lmmpV4lqYSC+zOzZEKxnxriO\n5cbqyuOvLU8eO8j4rfnDpLqZ83NAKPCioijF3z0vBAJVVV14/XvmDUAesFZV1ZUWVyCEcFlVpbIJ\nIaxXZXNWVfVx4PEqli+m6HtnIYSHmjk+tuQ7ZkllE8I2JCFMeATJ1radstnaksomhO1JQpgQQgjh\nZKQ5CyGEEE5GTmsLUYqkXQkhnIHMnIW4TtKuhBDOQpqzENdJ2pUQwlnIaW3hEUpytadN17YQN1Cc\nq132qm0hhO3IzFmI66IiDeVeMwTr5d5dIYTDSXMW4rrZE7tgCNaX/FycdtWioWQCCyEcS5qzEKXM\nHB+LIVgvM2YhhKbkO2chSpG0KyGEM5CZsxBCCOFkZOYsPIJka9uOXKUthP3JzFkIIYRwMjJzFm6r\ndBRndvIZBnRt4tB9SvynEMJaMnMWbqlsFOf59Gv8tCXZrlGcEv8phLAVac7CLVUUxXktr9CuUZwS\n/ymEsBVpzkIIIYSTkeYs3FLZKM6J279m0o5v7Bos4inxn2HdYkrytYUQ9iHNWbilslGcOp2OAH8f\nu0ZxSvynEMJWpDkLt1U6itPfz9vh+3S3GbMQwnHkVirhtkpHcX71rs7h+xRCCGvJzFkIIYRwMtKc\nhRBCCCcjp7WFy6hN+lZts7WdKfnLmlpsWf9zc74q2tab6+16LJzpmAvhaDJzFi7B1ulbV66k8/PP\nS9m2bQtXr2Y6dN+1YU0ttqzfUcfCmY65EFqQ5ixcgq3Sty5dusRHH33AvfdO4P333+Gll/7C+PGj\nefjhqaxa9atd920L1tRiy/oddSyc6ZgLoQU5rS08xvHjx5k8eQKFhYWEh4czbtyd5OTkcODAfhIS\nDjN//pucO3eWKVP+D53OMVd3CyFERaQ5C5cQFWkgvsxsypJ7iS9fvsy6dWto1KgRjz32JIMHD8XX\n17dk+Zkzp3n22TksWvQlly9f4oknZuPt7W2TfduSNbXYsn5HHQtnOuZCaEFOawuXUJv0raysq6xc\nuYLCwgKefvo5RowYdUNjBmjSpCnvvPMBbdu2Y+XKFbz++iuYzeZa79vWrKnFlvU76lg40zEXQgvS\nnIXLsCZ9y2Qy8be//ZWJSSoz0tLo06dfpeuGhdXj739/h9jYTmze/Bs//7y0Vvu2F2tqsWX9Cxc+\nyKefPGT3Y+FMx1wIR9MVzw4cxJya6rlXW4aHByPjd+z4v/76f/znPx9zZ8JhAuoEMPnIyWrfc+nS\nJaZNu5/c3Fz+9a//0Lx5C5vU4sr//h9//CEA06ZNL3noRdqeOIu24crjry1PHjvI+MPDgy2+iEVm\nzsJtZWdns2TJIkJCQqlTpw7U8ONRv359nnhiNvn5+fztb3+loKDAvoUKIUQZ0pyF2/r556VkZWUx\nfvxdFl993adPP4YMGcbRo0f46qvP7VOgEEJUQq7WFm7p2rVrfPfdNwQFBTFmzB388PJfblhek/Sp\nRx+dycGD+/n660X07z+QVq1a26XW0rUE+PtwLbewyrpcRdljPO+xvhpXJITrkJmzcEvLlv1EZmYG\n48bdSWBg4A3Lapo+FRgYyIwZT2Iymfnkk4/tUmfZWrJzC90iFauiY3zfq6tccixCaEGas3A7ubm5\nfPfd1wQEBDBu3HigKFu7OF/bkvSpHj1upnPnruzatZO9e3fbvNaKaqlJXVpK2xNX7cVgFY3rckau\n041FCGclzVm4nRUrfiE9PZ0xY+4gODikVtvS6XQ8+ODDACxc+BEmk8kWJQohRJWkOQu3Yjab+fHH\nH9Dr9Ywff1eF60RFGsq9VtW9tO3aKQwcOIijR4+wYcNam9ZbUS01rcuZVTSueqH+LjkWIbQgzVm4\nlcOH4zh37ix9+vQjNLRuhetYkz51330P4OPjw2ef/Ye8vDyb1Vu2ltIXlbtyKlZFx/jzF4e65FiE\n0II0Z+FW1q9fA8CgQYOrXM/S9KlGjRozZsw4Lly4wMqVy21Sa0W1PDgq2m1SsSThSwjrya1Uwm0U\nFBTw228bMRgMdOnSrcp1WzQMZsH0XhZtf8KEe1i27Ge++WYxI0aMLpfPba2ytdzSoaFNtqs1a46x\nEKKIzJyF29i9exeZmRkMGHBbyROligUsmEfAgnm12r7BEMaIEaO5ePEi69atqdW2XFlYt5iSCE8h\nhH1U2ZwVRfFVFOUrRVE2KYqyU1GU0WWWj1YUZZeiKNsURXnAvqUKUbXihlndKe3auPPOCfj4eLN4\n8X8xGo12248QwrNVN3P+E5CqqmpfYBjwQfECRVF8gbeBwUA/4CFFURrYq1AhqpKdnc327Vtp1qw5\nbdu2s9t+GjRowNChIzh79gy//bYeKArcmPrmeqa+uZ75S/bZbd9CCM9RXXP+Fnix1LqFpZZFAUdV\nVc1QVbUA2AJIPp/QxJYtm8jPz2fQoMEW52hbasKEe/D29mLx4kX8fXHN0saEEMISVTZnVVWzVVXN\nUhQlmKJGXTqgOATIKPXzVSDU9iUKUb1161YDMHDgbXbfV6NGjRkw4DZSUpJJOFHztDEhhKipaq/W\nVhSlGfAD8KGqqktKLcoASt+0GAxUnUVI0XM9PZmM3/bjv3LlCocPH6RLl07ExioVruN1fTZtq/1P\nnz6NjRvXgtl8483Jxfvz0lW4L1f99w8K8geu1+9l/bF01fHbgiePHWT8lqqyOSuKEgGsBh5VVXVD\nmcWJQFtFUQxANkWntP9e3Q49/IHbMn47jH/9+vXk5xfSpUuPSrefNetpwHa/f0FB9enRoydH0o7j\nX+/Gp1UZgvXMGNex3L5c+d8/KysXuH78fj9U9KKFY3Hl8deWJ48dZPzW/GFS3XfOz1F0qvpFRVE2\nXP/fPYqiPHj9e+ZZwCpgG/CJqqrnLK5AiFratWsHUPSQioqYTCYyMzM5c+Y0O3fuoLCwsML1LDVh\nwj2k7v8vXqacktdcOdWrKjk5OZw7d5bdu3eRnp6mdTlCuL0qZ86qqj4OPF7F8mXAMlsXJURNGY1G\nfv/9d+rVq0erVm0qXOfatWwWLfoSgO3btxEb25kXXniZunWrzrWuTnR0B2JjO5Ow+0va9nsUHx8f\nt0rCSkxM4Ouv/8fBgwc4duwIAFu3bgGgfv36REV1YOLEP9GuXcVfJQghrCchJMKlJSWpZGZm0KPH\nLZVepR0UFExUVDRdu3bn1lt7cfDgfmbMmFbScGpj4sR7KLh6ngZZG91mxnzo0EHmzp3FY489zJYt\nmwgMDKRx46bUr18fg8GAt7cXx48f46effmDGjId46603uHTpktZlC+FWpDkLl/bHKe1bqlyvf/+B\n3HzzLbz88mtMmfJ/XLx4geTk47Xef/fuPWjdug2bNm3gzJnTtd6eloxGI//5z0fMmvUYe/fuoUuX\nrsyf/w733z+Vc+fOcOnSJdLT0zEaTYSEhDJ69BhatmzFmjWruO++e9i4cb3WQxDCbUi2tnBpu3bt\nwMfHu9os7WJeXl7ce+8UevXqQ8uWrWq9f51Ox4QJ9/DGG6/y3Xdf8/jjT9V6m1q4fPkyb7zxCgcP\nHqBx4ybMmfMsMTEdS5ZFRDREUdrzwguvYjKZKCjIp25dA/7+/qxcuYJ///ufvPHGK+Tk5DB8+EiN\nRyOE65PmLFxWWtplkpJUOnfuSmBgIAAZGVeIjz/MLbf0vOE0t9ff3sBoNDE1PYqoSAOzJ3axWR19\n+/bns8/+w6pVvzJ58n2EhdWz2bYd4ejRIzz33BzS09Pp06cfs2Y9TVBQEPOX7CMhpejuyLotbiE6\nugn169cvydVO2xMHwMiRo2nTpi3PPfc0b7/9FlevZnD33fdoNh4h3IGc1hYua8+e3wG46aYeJa99\n881iXnzxuZJQEiiK1zQaTYB9Ury8vb25666JFBQUsHTpdzbZpqMkJak8/fSTXLmSzrRpj/LCC6+U\nNObSyWfn06/x05bkSo+ZorRnwYJ3MZlMPP/8M3zyyb8dOg4h3I00Z+Gydu3aCfzxffPly5f56ael\nhIeH06dP/5L1imd/pdk6xWvIkGEYDAZ++eUnsrKybLZde1LVRObOnUVW1lVmz36GMWPu4IsvPiU7\nO7vCY3Ytr7DKYxYZ2ZJhw0ZgNBqZN+81du7cbs/yhXBr0pyFSzIajezevYuIiAhatIgEYPHi/5KX\nl8c99/wZvV5f422ZzWa2bt1MYmKC1fXo9XruuOMusrOzWbbsJ6u34yhHjiTxzDNPce1aNk8//RyD\nBw/jgw/eYdGiL1m06AurtztnzrNMmjSZ/Px8pk9/iMuX5SpuIawhzVm4JFVNJCsri5tuuhmdTseF\nCxdYvvxnGjVqzLBhI25YNyqy/P3MhmB9yT3JycnHePnl52t9KnbUqDEEBgbyww/fkpeXV6tt2dOF\nC+d5/vm5ZGdn8fTTz3HbbUNZuvQ7VqxYRps2bZk8+f4Kj1mAvmb3cb/88mt07tyV1NSLTJ36Z3m0\nphBWkOYsXNLBg/sB6NSp6MKun376nsLCQiZPnoKPz43XOc6e2OWGi8PKpni1atWG2NjO7N+/t1a3\nQwUFBTFq1O2kp6ezZs0qq7djT1lZV3n++WdIS0vjkUceY9CgIRw6dJCPP/6QsLAwXnnlDerUqcPs\niV0wBP9x9iFA78OY3i1rdB+3j48Pn3zyFeHhDTh4cD8LF/7LnkMSwi1JcxYuqbg5x8Z2AuC++x5g\n9uxnGDhwcIXrpz02m5/7/+mGGXNpI0YU3f7z66+1C7wbN+4ufH19+eab/9ksJtRWCgoKeOWVF0lJ\nSWbcuDsZN+5O8vPz+cc//o7ZbOaFF16lQYM/Hsk+c3wshmA9hmA9fWIbl7yetieu5ErtytSrV49P\nPvmSrl278+OP39vknnIhPIk0Z+FyjEYjcXGHaNasecltS35+fgwdOhxvb+8K3xMWomdM75aVpnj1\n7t2P4OBgVq9eWaumWq9ePUaMGM25c+dYuXKF1duxNbPZzHvvvc3+/Xvp2bM306Y9ChQdy86duzJm\nzPiS+5qLtWgYzILpvVgwvRdhITX/Dr9Yp05dmD37WYxGEx988C5ms9kmYxHCE0hzFi7nyJEkcnJy\n6NSps822qdfrGTRoCOnp6ezYsa1W27rnnnvR6/UsWvSF03z3/PPPS1m5cgVt2rTl2WdfKPkjpk6d\nOsyc+SSPPvqYXfZ7yy23lkSmrlrlnKf6hXBG0pyFyzlwYB8AHTt2sul2b799LE8//Szdu/eofuUq\nhIXVY+zYO7h06ZJTXLl94MA+/vWv96lbty6vvPIG/v7+5dapLJfcFh55ZAZ+fn688847ZGdn220/\nQrgTac7C5Rw6dACA2FjbzZwBmjVrzuDBwypsXpa6++5JBAYGsnjxIq5du2aD6qxz4cJ5Xn31JXQ6\nHS++eON3yo7SqFFjJk26l9TUVN5//22H718IVyTxncJplY6PLI7cLP6+uUmTpoSFhbFhwzp2nArg\n6NmcG9bTorbSQkJCueOOu/jqq8/58cfvueeeyXavqazc3FxeeukvZGZmMHPmLJufaahIZcflrFcM\nV3TN+fybFRw3dcXoVafcOrXdhxDuRGbOwimVjY8sjtzcujue7OxsYmM7cejQAWbOfoYVP3xRbr2y\nMZMBC+YRsGCeXWsru8/x4+8mJCSUb75ZTHp6mk32XVNms5kFC+Zx7NhRRowYxahRt5cs27z5t5Kz\nD9YI6xZTkq9dWmXH5bUvdpN4MoOQBi0xFuRy9OCGao9dZWp67IVwddKchVOqLHJzyabzQNEtVGvX\nriY3v5DwyK7l1rNlNGdNayu7z8DAQCZPnkJ2djYLF35kt3oq8vXX/2PjxvV06BDDjBlPlHynnJ2d\nzTvvLOCFF561+fe/lR2X4+cyAWjUtid+/iGcVTeTn5t1wzo1/fdyRBSrEM5AmrNwKfkFBQC0bx/N\n5s2/oQ8wEBpR+0c/lpWbm8upUydrvZ3Ro8fSpk1b1qxZxd69e21QWfV27drJp5/+m/r16/Pii6/i\n6+tbsuzHH78nMzOD8ePvLnmSl6N4+/jSLGYQxsJ8zsRvdOi+hXA10pyFU6ooPrJukB9XDn9Lo0aN\nOXXqJNnZ2XTs2hOd7sZf48qCRmoqLy+PiRPv4I03Xq1xbZXt09vbm5kzZ6HTwbx58+weTJKSkswb\nb7yCj48vL7302g2Pr8zMzODbb5eUfB9ua5Udl1aNQkp+jmh9M/qAupxN2kp+TmbJOjX997Lk2Avh\nyqQ5C6dUNj7SEKzn0WERZFw8TmxsJ3bt2gHAc4/eXW69yoJGakqv16Mo7Tl69AgXL16sUW1V7TMq\nKpqRI2/n2LFjfP/9N1bXVZ20tMvXM7OzmTVrDu3bR92w/NtvvyY7O5tJk/5kl1lzZcfl+SndS173\n9vElsvMIIjuPwNu3jsX/XpYeeyFclTRn4bRKx0fOHB9LXFzR94odO3aiZ8/ejBp1O9HRHcqtZws9\ne/YGYMeOrTWqrTr33/8ABoOBr776vFb53ZXJycnhhRee5cKFC0yZ8n/cdtvQG5YbjUY2blxH3bp1\nGT16rM33X6yy4zJzfCz1Qv0xBOt5bsa9NGnTFQpzmNS3oc32IYQ70Tk4Us+cmuq5V1WGhwcj47d+\n/G+88SobNqzj00+/olmz5ha99+OPPwRg2rTpNVr/woUL3Hvv3XTr1p0331xgca0V2bt3G3PnPkvL\nli15991/UadOHZts12g08sorL7B9+1aGDh3OU0/NrTBUJDs7m1OnTpabUdeEpcevIqX//devX8vf\n/vZXxo4dz/TpM63epquQz77Hj9/ilB+ZOQuXkZBwmJCQUJo2bWb3fUVERNCmTVsOHNhns6uahw4d\nyujRY0lOTuadd/5uk6zpwsJC/va3v7J9+1a6du3GE0/MrjTtKzAw0KrGbA99+/anfv36rFq1gqys\nrOrfIISHkeYsXEJa2mXOnz9PVFSUXaMmSxswYBA9e/axafN45JEZREd3YP36dSxd+l2ttlVQUMBr\nr73Mb79tICamIy+++Ndyj8t0Vj4+PowZcwc5OTmsXLlc63KEcDrSnIVLiI8/DEB0dPnwC3u5++5J\nvPDCK0RERNhsm76+vjz//CsYDAb+/e9/sn17xd9pVycvL49XX32BrVs307LPo2RG3MHM93cyf8k+\nm9VqbyNGjMLPz49PP11IwfVb5IQQRaQ5C5eQkFDUnKOiojWupPbCw8N54YXi252e4/vvv7HoFHdy\n8nEee2waO3Zsp1XfRyn0C3fJxKyQkFCCg4M5fPgQn3/+idblCOFUpDkLlxAffxgvLx2rV6/k2Wdn\nk5mZoXVJtdKxYycWLHgPgyGMjz76kPfffwej0Vjle8xmM7/88iMzZkwjOTmZUaNup9A3vNx6pROz\nPv10IRs2rHPaZyk/8kjRoyq/+EKasxClSXMWTq+goABVTSQyshW7du3k+PFjBAeHVP/GUmyZrW0r\nitKe99//mFatWvHLLz9y//338u23S8r94ZGVdZWff17KI488wHvv/QN/f39efvk1Hn/8qSq3f/Hi\nRb7+ehHffrvEpnVXlq1tjX79BtC8eQtOnTrJ+vVrbbJNIdyBa1w9IjzasWNHKSgoIDw8nOPHjzFs\n2AiHXRRmbw0aNODttz9g4cJ/sWbNKv7973/x+eef0LJlK8xmMyaTiZMnT5Cfn4+3txd9+vTj4Ydn\nlDz6MSrSQHyZvOni+39XrvwOk8nMqFFjnPp4TZkylb/+9UU++ugDBg68TetyhHAKMnMWTi8+Pg6g\n5NRsjx63OHT/W7Zs4o03XiUvL88u2w8MDOSJJ2azePF3PPTQIzRoEEFKSjInTqRw6tRJIiIaMnXq\nQ/zvf9+VeyZzZYlZTcMD+PXXZQQEBNC//0C71G0rkyffR0BAIHv27CYt7bLW5QjhFGTmLJxeQkI8\nAOnpRTPE2Fj7P5e4tPj4ODZsWMewYSPo2rW73fYTEhLKXXdN5K67Jlr0vpnjY0u+Yy5OzNq1aweX\nLl1i9OgxBAQE2LxWW9Lr9YwdO54NG9ayefMmxowZp3VJQmhOZs7C6cXHxxEcHEJq6kVatWpFaGhd\nh+6/c+duAOzb55inSlmqRcNgFkzvdUPG9G+/bQBg5MjRWpZWY08+OYfQ0FBWr/5V61KEcAoycxZO\n7dKlS1y8eJFbbunJyy+/xuXLjj/tGRPTER8fb/bvd87mXJE5c55lyJBhtG7dVutSaqRBgwb06HEL\nO3Zs5+jRI7Rp4xp1C2EvMnMWTq34/ubo6A54e3vf8H2rJa49NZdrT8216r0BAQG0bx9NUlKiy0RN\nent72+0UfNqeONL2xNl8uyNGFM3yV6xYZvNtC+FqZOYsnFrp5qylTp26EBd3iEOHDnDrrb1qvb35\nS/aRcP0q66hIA7MndrFqHVvvu7JlG/ae4UL6NXalr7dpLaX16HEL9erVY/36NTz00CP4+/vXqGYh\n3JHMnIVTU1UVnQ7atGmnaR2DBw/l9dffonPnrrXe1vwl+4hPSa8y1asm69h635Ute+2L3ZxPv2b3\nFDJvb2+GDh1BZmYmP/zwbY1qFsJdSXMWTstkMnHkiErz5pEEBgZqWkuTJk3p0eNmmzzmMaHMfclw\nY6pXTdex9b4rW3b8XKZdaqlIr159SE4+xj//+X7Ja/Y6FkI4M2nOwmmdOnWSnJwc6tcPJzU1Vety\nnF5WVhY//fSDS0ebtmun0LBhY06dOlnysBMhPJE0Z+G0jhxRATh6NIk//elOl7kYqzpRkYZyrxWn\nelmyTlmbNm3kgw/eZdmyn63ad2XLWjUqH5VaXS21MWzYSMDMv//9L8C6YyGEq5PmLJxWYmIiJpOJ\nS5cu0bp1W4KCgqzeljNla1eW6lV8j3JN1ylrzZqV6HRw221Drdp3Zcuen9KdAP0f145++slDfPbp\ntCprqY0HH5yGl5cXGzeuw2QyWXUshHB10pyF0zpyRKWgIB9vb286deqsdTklbBHjOXN8LIZgfZUz\nwJqsU+x28n8MAAAgAElEQVTs2TPExR2ic+eu1d5uVtV2K1vWJ7YxAXofDMF6QgL9ajhK6zRu3ARF\niSI9PY21a1dXW7MQ7khupRJOqbCwkKNHj+DvXwez2UynTs5x68zbb7/FmjWr+O67n2t1kVpxqldt\n1ylW3MQGD6581lyT7Va2LCxEz5jeLZk2rRc+n9r/b/q7757E22+/xY4d2xkyZJhFx0IIdyAzZ+GU\nTpxIJj8/n+KHKcXEdNS2oOtCQ0MpLCwkMTFe61JKmEwm1q5dhb+/P7169dW6HJv485/vp337aA4c\n2EdhYaHW5QjhcNKchVNS1aKLwRQlml69+lj8/GZ76dCh6JRqXNwhjSv5g06nY86cZ5k+/XGnf8hF\nTfn4+DBgwCAyMzP4/fedWpcjhMPV6LS2oig3A2+qqjqgzOtPAlOB4vtcpqmqmmTbEoUnKU6CMlOH\n8M738thD/WjbtnwAiVaJUdHR0YDzNeeOHTvRsWMnt0rSuu22Ifz44/esXbu60lQ2dxqvEKVVO3NW\nFOVpYCGgr2BxV2CyqqoDrv9PGrOwWukkKNDhX681/1p1sVwSlDWJUbXJ1i4tJCSUyMiWJCQcdrrT\nrY5K0rJXtnZZ7dopNGvWnJ07t5OdnV1uuSSHCXdWk9PaR4E7AF0Fy7oBzymKsllRlGdsWpnwOBUl\nQV3Jyi+XBKV1YlRMTEcCAwNJTb3okP3VlNbHxdZ0Oh39+w8kLy+P7du3lFvubuMVorRqT2urqvqD\noiiRlSxeDHwIXAWWKooyUlXV5VVtLzzcs+9NlPFXMX4dXJ8238DLS3fj+2q6XilBQf7V77+GXnjh\nWfz8/NDpKvp7tWp2/fe34rjUlK2On6XvHzlyCG+99Tpvvz2PSZPuvHGhHcdrD85YkyN5+vgtVdtb\nqd5VVTUTQFGU5UAXoMrmnJrquaecwsODZfxVjD+qhYH4MrMhQ7CeGeM63vC+mq5XWlZWLmDL3798\ni99h63///Px8rly5UnJfszXHpaZscfysGX+9ek3w89OTkJDAgQOJNG7cpGSZPcdra/LZl/Fbyuqr\ntRVFCQUOKYoSqCiKDhgI7LZ2e0KUToK6cuEoFxPXMmd8q3JJUJIYVWTnzu3ce+9d/PLLj4D7Hpe+\nfftjMpn47LP/3PC6u45XCLCsOZsBFEWZpCjKg6qqZgDPABuATUCcqqor7VCj8CAzx8dCYTapx3eT\nmfIbly5dqnQ9T0+M2rBhHWYzREX98axrdzwu99//IACrVv1abpk7jlcIAJ3ZXMGXNvZj9vRTGzL+\nqsefk5PD2LHDSU+/Qr169fjxxxXo9RXdKGCZr9o1B2By0slab8tatvz3z87O5u67xxIR0ZBPPvnS\nqu+/LfHxxx8CMG3adMK6xQBYfMV2bcbfo0dnLl48z/r1W2nVqrVV29CSfPY9fvwWf0AlhEQ4laNH\nj1BYaKSgIB9FaW+TxmwPJpOJ48ePcujQAU32v337FvLz8+nff6DdG7MzGDhwEDqdFz//vFTrUoRw\nCGnOwqkkJSWSm5uDXq+nQ4cYrcuplMlkYubMR/ngg3c02f+mTb8B0L//QE3272gzZjxJ69atOXEi\nRetShHAIac7CqSQlJZKTk4Ne7090tPM2Zx8fH9q2bUdKSjLXrl1z+P6bN29O9+430bx5C4fvWwtN\nmzalU6euxMUdIjU1tfo3COHi5KlUwqkkJSXRoEEEDzzwMB07OvcFPu3bRxEXd4gjR1SHPzXrgQce\nduj+7MWS+M2+fftx8OB+tm3bzJgxdziqRCE0ITNn4TSysq5y+vQpYmM7ceeddxMSEqp1SVUqvko6\nIcF5nlDlSiyN3yx+4lbxKX0h3JnMnIXTOHKkKJpdUdrbfNu2yNUuq337oodgJCYm2HzbzsxWudpV\nxW9W9Ozm+vXrExPTkUOH9pOWdpmwsHo2qUMIZyQzZ+E0VDURgHbtbN+c7SE8PJzevfsSFRWtdSke\n46abbubKlQy++OJTrUsRwq6kOQunkZRU9AxnV2nOOp2Ol176KxMm3KN1KS4pKtJQ7rXqwkQ6derC\nhQvnWLr0O3uWJoTmpDkLp5GUlEhoaN2SrGhxo+zsbGbNeox161ZrXYpNWBO/2aFDDBERDTl58gSn\nT2sXKCOEvUlzFk7hypV0zp07x6lTJ/jqq8+1Lscp7dixlUOHDnL27FmtS7EZa+I3e/fuh9ls5osv\nPrNzdUJoR5qzcApJSUnk5eVSUFBAVlaW1uU4peKrlPv27a9tITbUomEwC6b3suiBFX/+830ArF27\nyo6VCaEtac7CKRQlg+Xi7+9P+/ZRNt9+wIJ5BCyYZ/PtOsq1a9fYvXsXzZu3oEWLSE1rCesWU5Kv\nrYXOnbtSv344KSnJnDvnPmcRhChNmrNwCqpa1Jz1en+Xu/o5KUnlo48+sGu05O7du8jPz6d37752\n24crGTduPI0aNeHAgX1alyKEXch9zsIpJCUlYjQaCQurR8OGjbQuxyLJycf5/vtvadSosd1mtfv3\n7wWgT59+NX5PTdO3LEnpchZTpkzlt982snXrFoYNG6l1OULYnMycheYuXbrExYsX8fLyIjo62uWe\nslR8Gt6eYSSPPfYkH374b1q3blOj9WuavmVpSpezaNasOS1btmTPnt/Jzs7WuhwhbE6as9DckSMq\nPj4+zJr1NI8+OlPrcizWrFlzAgMD7RrjqdPpaNdOqfEfLlWlb1mznjPq3bsfBQUF7Ny5XetShLA5\nac5Cc8XJYLGxnWjUqLHG1VjOy8sLRWnPmTOnyczM0Locj1F8in/zZsnaFu5HmrPQ3JEjxclgit32\nce2puXbJ1y72R852ot32YYmapm9Zk9KVtifOZvnatREZ2ZJmzZqzfftWrly5onU5QtiUNGehKbPZ\njKqqNGzYkNDQulqXY7V+/fozZ84ztGlTs++E7a2m6VvWpHQ5C51OR1hYPRIT41m06AutyxHCpqQ5\nC01dvHiRjIwrtG1rv1mzI7Rq1YYhQ4bb/ElJe/b8ztmzZ6x6b03Tt6xJ6XIWw4ePxGw2s2LFMq1L\nEcKm5FYqoamkpEQKCwtp2bKV1qU4HZPJxFtvvUFhoZFvvlmKt7e3Re8vTt+y1XrOaMCAQQQHh5CY\nGE9mZiYhISFalySETcjMWWgqKUnl8uVLLFz4L06ePKF1OU4lPv4waWlp9OzZy+LG7Cm8vLzo0eMW\nCgsLWbz4v1qXI4TNSHMWmiqK7cwhMDCIJk2aal2OU9mypegq5N69ax484onuumsiAMuX/6xxJULY\njpzWFpooTqUqCLwNs+8aoqKi7To7LMnVnja9xu+pbXJW2ffPe6zm0Ztms5ktWzYRGBhIly5dLdqv\nvRXnatvjim1rjvnQocOpW9fA+fPnKCgowNfX1ybbFUJLMnMWDlc6lSor/TR4+ZB4qY5TpVJZk5xl\nNpt55ZUXmDt3VoXvv+/VVTUe45EjSVy4cIGbb74FPz8/WwzJ6VmbVubl5cW0adMJDa3Lvn17bbZd\nIbQkzVk4XOlUqquXTgLgE9TYqVKprEnO0ul0pKVd5sCBfcQdvVBu+eWM3BqPMTQ0lIkT72HIkOE1\nL9rF1SatrE+forMSxV8F2Gq7QmhFmrPQltmMr38QwfWaa12JTbRvH43RaCIr7XStthMR0ZCpU6fR\nrdtNNqrMvUVHx2AwGNi6dQtGo1HrcoSoNWnOwuFKp1I1ixnEzXe8TMOGEU51j601yVnwx0MwgrlU\nblm9UH+nGqOzsfaYA3h7e9OrVx8yMzM4dOiAzbYrhFakOQuHmz2xC4agP75HDQvxd7pUKmuTs4qf\nRd2y7rVy7//8xaFONUZnU9u0sj+ytjfZdLtCaEGas9DE3X0aUJibiQ95DpnBWJOtbU1yVkREQwwG\nA0ePJrl08lZV7JmtXZtjFhvbmYKCAr744hMKCwtttl0htCC3UglNZF1K4dzWf/DIIzOcdgZjTXKW\nTqdjwYL3aNAgAr1eb/H7TSYTXl6e+zdzbdLKfHx8qFu3LsnJx1i+/BfGjBlnk+0KoQXP/X8Boamk\npCQA2rVrr3ElttesWXP0en31K1bgu+++Ztq0+zl69IiNq/IMo0ePBeCHH77RuBIhakeas9BEURZy\nBv7+/lqX4lS2bNlESkoy4eHhWpfikiZMuAcfH1927/4dk8mkdTlCWE1OawuHMxqNxMUdIj09jWXL\nfqKw4SC3T2+av2QfCSfSwVz5GFNTU0lIiKdTpy4u/fhMLQUFBdG+fRRxcQdZv34tt902ROuShLCK\nzJyFw508eYLMzAz0en8SUv3dPr2pJKHKXPUYt23bDPwRqCGsM3LkaKDoKwIhXJU0Z+FwR46o5Obm\n4u/vT4YxrNxye6Q3BSyY90e+toNcuZJOVtbVGidUFd8C1LNnH4fUZ62wbjEl+drOaNKkybRq1Ya8\nvDzMZrPW5QhhFWnOwuGSkpLIzc3FYAgjILSB1uXYxcaN67nrrrGsW7emRusXFBRw5Uo60dEd5Pvm\nWjIYDPTvP5DTp0+RkpKsdTlCWEWas3C4w4cPUVCQT8eOnYhuWa/ccne4F7VVq9YAJCTE1yihytfX\nl4ULP+f11x07u3dXf2Rtb6pmTSGckzRn4VCFhYUcP36Mtm3bcdttQ9w2valp02YEBQWRkBBf4zHq\ndDqCglx73M6iR49b8fHxrvBBGEK4AmnOwqFOnEjGZDIxYsRohg8fCbhnepOXlxft20dx9uwZMjKu\nMHN8LPVC/d1qjM4sKCiIrl27c/z4cc6cqd1DSITQgjRn4VDF4SNt2yolrxWnN7nDjLm0qKgOACQk\nJNCiYTCfvzjU7cbozPr06U9BQQHffSeBJML1yH3OwqGSkhIBUBTHJoNZmqttC1FR0TRt2oyCgnyH\n79ue7JWrbWudOnUmJSWZRYu+4PHHZ2ldjhAWkZmzcKikJBUfHx8iI1tqXYrd3XTTzXz22X9LnpZU\nkezsbL788jNOnTrpwMo8Q6NGjWnWrBkXLpwnPj5e63KEsEiNmrOiKDcrirKhgtdHK4qyS1GUbYqi\nPGD78oQ7yc/P5/jxo7Ru3QZfX1+ty3EKO3Zs5auvPmfjxvVal+KWBg68DYCvvvpU40qEsEy1zVlR\nlKeBhYC+zOu+wNvAYKAf8JCiKO5506qwibnvb8QU0Y+4i3V4/bMtWpfjFH77bSMAffv217QOdzR/\nyT6O0wO/kCas3S4zZ+FaajJzPgrcAejKvB4FHFVVNUNV1QJgCyC5g6JC85fs4+jZHFJT9nI2cQtJ\nZ7LdLqbTUtnZ2ezevYvIyJa0aBGpdTlupTgy1bdOCCHhkVy5fJ5H5y336N834Vqqbc6qqv4AFFaw\nKATIKPXzVSDURnUJN5OQko7JWEBW+lmCwprg7eNrl5hOV7Jz5zYKCgqq/E5aWKd0ZGrDNrfQpH0f\nMrLzPfr3TbiW2lytnQGUvickGCgfIlxGeLhn30bisePXQVbaGcymQoLrNS952ctL55BjEvT2WwCE\nP/+M3fdVVlxcHMePH+f222+/Yay//74NHx8vxo0b5fS/F0FBRY/2DA8PhsjIohdTUizejsPGqaPo\nKSNARKvuQHfAcb9vFXH2f2N78/TxW6o2zTkRaKsoigHIpuiU9t+re1NqqueeVgoPD/bY8bdtEsyG\n+BMABNcvas6GYD0zxnV0yDExXX8AghbH/6233ubQof0MGjSIa9f+eMbwpEn3oSgxBAeHO/3vRVZW\nLlB0/MJMRccyzcKaHfn7H9XCQHyZB44Y8zK5b0iUJsfakz/7IOO35g8TS26lMgMoijJJUZQHr3/P\nPAtYBWwDPlFV9ZzFFQiPMEgxkXGhKIAkuH6k28R01kRUVBRmMxw+fPiG15s3b8HYseM1qsq9lY1M\n1XsbObvlH5w+ul/DqoSouRrNnFVVTQF6Xv/vxaVeXwYss0tlwq0kJiYQ4nuNJn0m0qhRI4+KsCxO\nCouLi6NlyyiNq/EcM8fHlnzHPKF3A/6yGrZs+Y2hQ4drXJkQ1ZOEMOEQiYnxeBdmsvC1BwgLK/8k\nKnfWvn00UNScR4++S+NqPEdxLGyxVq1asXv371y9mklwcIiGlQlRPUkIE3ZnNptJTEykcePGHteY\nAerVq0dERASHDh3CfP27b+F4bdsqHD9+jH/+832tSxGiWtKchd2dPXuGzMwMYmJiNKvh2lNzNcnX\nLnb77eO45557KCws5MKF8y7dpNP2xLlMvnZp/foNIDc3h5Url2tdihDVktPawm7mL9lHQko6ZsyE\nd76XmJiGWpekmbvvnkR4eDAnT15k6tQ/06lTZ15//S2ty/IoN910M/Xrh5OSksyZM6dp0qSp1iUJ\nUSmZOQu7KE5oMlN0Wlsf1orlCSEen9C0c+d28vLyaNOmndaleKS+fftjMpn44gvJ2hbOTZqzsIvS\nCU2ZqSns/P5lkg5u8/iEpk2bNgLQr19/TevwVFOmTAVg1aoVGlciRNWkOQu7y0xNoSAvCx8/f61L\n0VROTg67du2gadNmtGzZWutyPFLnzl1o0CCCs2fPculSqtblCFEpac7CLqIiDSX/ffVSCgAtWike\ndX9zWVu3biUvL4++ffuj05V9joxwlOnTZ9KiRSQ7dmzXuhQhKiXNWdhFcUKT2WwmMzWFgKC6LJk3\nQbNEsIAF8whYME+TfRfLzMykoCBf0xpsIaxbDGHdtLvyvraGDx+FTqdj06Zyj6gXwmlIcxZ2M3N8\nLAVXz5Kfk0mfmztpXY7m+vbti6+vH8eOHdG6FI8WEdGQqKhoDhzYR1raZa3LEaJC0pyF3TSPCOLS\n3k8x56YxqF9vrcvRXP369WnUqDGHD8dhMpmqf4OwmwEDBmEymUsu0BPC2UhzFnZz4cJ5jEYTf/rT\nZIYOHaF1OU4hJqYjWVlZpKQka12KR+vXbwBeXjrWr1+rdSlCVEias7CbuLii26Y6depCQECAxtU4\nh44di07vHz58SONKPFtYWD3at49i69bN7N+/T+tyhChHmrOwm8OHiyIeO3ToqHElziMmpuhYHDrk\n2fd7a2n+kn1MfXM9R3NacOWaiU8//XeV6019cz3zl0gDF44l8Z3Cbg4fPoRer6dNm7Zal6Jprvbr\nr79Cw4aNmDt3Fk2bNuOll/5KdHQHzeqpLVfM1S5WnFwHUK9ZLD5+gfy2+wjJZzNo2Ti0wvUA4lPS\neerDrcwcH+sRzyAX2pOZs7CLrKyrpKQkoyhR+Ph47t+A58+fY+PG9ahqAjqdDp1OR+/efT3y6VzO\noHRynY+vP2FNorl29TKvfrSs0vWKpV/N8/iEO+E40pyFXcTHx5Odfc0pZs1a2rhxPQADBw7WuBJR\nkfDIrgCcStqlcSVC3Eias7CLvXt3c/r0KbZu3ax1KZoxm82sX78GHx8fevfuo3U5ghuT6wAMjdvj\n7e3L2bhVFBYWVroegCFY79EJd8KxpDkLuyhqymZ69fLc+5uPHTtKcnIyt97ai6Ag+Z7SGRQn1xWr\nbwhicJ+u1A8LLbm7oKL1DMF6FkzvJd83C4eR5ixsrrCwkMTEePR6Pd2799C6HM0cOFB0he/gwUMr\nXF5QUHDDbE04xszxsRiC9SUz4alTH0Kv92ft2tVVrieEI3nulTrCbo4ePcLVq1epUyeA6GjnyGAu\nydWeNt1h+xw//m5uvbUXDRpElFu2cuUKPvjgHf7yl5e49dZeDqvJFopztV31qu0WDYNZMP2PY96s\nQWciIiLYtGkj06c/Tp06dSpcTwhHkpmzsLn9+/eSm5tD69ZtCAwM1LocTTVu3KTCq9UbNGhAXl4e\nBw/u16AqUZqXlxeDBg0hJyeHbds89xoJ4VykOQubO3BgH8HBIQwZMkzrUpxWhw4d8fHxkXQqJ1H8\n1cPq1Ss1rkSIInJaW9jU3xfv43zIcLrfM5ys0DCty3Faer2e6OgYDh3aT2ZmBiEhodW/SVRr/pJ9\nJfcoR0UamD2xS43e17RpMzp0iGHHjm0cOXKEtm1vvAXQ2u0KYS2ZOQubmb9kHwkn0kvCNuJPFKUq\nnTh/VevSnFKnTp0xmyXK01aKU73MgJk/Ur1q+vvXqFETUlKS+ec/37XpdoWwhjRnYTOSqlTkm28W\nk5iYUO16Xbp0JTAwkPT08sdNWK62v39TptyPl5c369atueGRnvJ7LbQgp7WFR3BUtvbJkydYuPAj\nunbtxrx5b1e5bnR0DN9//wve3t4Oqc1WXPUq7eo0bNiIqKhoDh8+xKpVvzJ8+EitSxIeTGbOwmba\nt6hb7jVPu0d05crlAAwfPqradb29vV2uMTszW6R6TZhwDwCffbbQptsVwlLSnIXNjOkWyNGd33I2\naRvgealKBQUFrF69ipCQUHr29NxkNK3YItVr0qR7CQwMZM+e3Vy+fMlm2xXCUtKchc3s3LmNkweW\nkXZij0fOLHbs2EZGxhUGDx6Cn5+f1uV4pNqmevn5+TFs2ChCQ0PZvHmTzbYrhKXkO2dhMxs2rMNs\nzOfP4/ozwwOTlVatWgHA0KEjNK7Ec9ki1Wvu3L8QF3eA9evXMHbsHTbbrhCWkJmzsAmj0cjBgwfw\n9fWjT5++WpejiVmznmbOnGdo2bKVRe+7fPkya9asJD09zU6VCUtERERw0003k5AQT3Lyca3LER5K\nmrOwiaQklYyMDEJCQoiK6qB1OeUELJj3R762nYSF1WPIkOEWv2/9+jW89dbf2LPndztUZXth3WJK\n8rXdVfEFfb/+ulzjSoSnktPawia2bt1Mfn4eHTr0lO9bLdSlSzcA9u7dw223VfwEK2EfZZO/4I/7\nmhvddD/r1n1//alV+kq3IYQ9yMxZ2ERSUiJNmzbn4Ycd99Qnd9GqVWvq1q3Lnj2/3xB+IeyrouSv\n0j/7hDQnIOb/+PrHX7UtVHgkac6i1vLy8oiPP0xUVDS9evXRuhyX4+XlRffuPUhLS+P48WNal+Mx\nKkr+Ks1YkMeBtR/x3kefOagiIf4gzVnU2qFDB8jLy6N795u0LsXhLlw4z65dO2s9473pph4A/P77\nTluUJWzA21ePf2AYVy4ms2HDWq3LER5GmrOotd9/3wVAjx63aFyJ4y1d+h1/+cvTbN1au+cAd+t2\nE6NHj6Vjx042qkxUp6Lkr7JadehFYU4aH3zwbrXrCmFL0pxFrf3++078/f2JiXHecIZrT821eb52\nbm4uq1b9isFg4JZbetZqW6GhdZk580liYjraqDr7SdsT5xb52hUlf5X9+ct5DxEUUId9+/Zy5swp\nLcoUHkqas6iVc+fOkpKSTOfOXT3uKu0NG9aRlZXF8OGj8PX11bocYYWyyV9lf/bz82P48FEYjYX8\n4x/ztS5XeBC5lUrUyubNv3H8+FFat26jdSkOZTab+emnH/D29mLkyNu1LkdYqaLkr7I/P/HEUyxf\n/hPx8XEYjUZ5WIlwCJk5i1pZsWIZZrO55F5dT3H4cBzHjh3l1lt706BBA63LEXbUpElTHnzwEQoK\nCuWCPeEw0pyF1fLz8zlwYC9+fn4MGTJM63Icqm3bdjz55BzuvnuS1qUIB7j99rFA0QWAQjhClae1\nFUXxAv4JxAJ5wAOqqh4rtfxJYCqQev2laaqqJtmpVuFkDhzYR0ZGBg0bNva409p6vZ4RI6p/ZrOl\nkpOP88EH79KzZy/Gj7/b5tsX1mndui2xsZ3Zu3cPx44doXXrtlqXJNxcdTPnsYCfqqo9gWeABWWW\ndwUmq6o64Pr/pDF7kBUrfsFoNGJocRMPzNvA1DfXM3/JPq3LqpAjsrVtITQ0lIMH97Nt21atS6mU\nJ2RrV6T4LMm3336tcSXCE1TXnHsBKwFUVd0JdC+zvBvwnKIomxVFecYO9Qkntn//PoLqt8I7rP0N\nEYhPfbiVE+eval2eSwoLq0dUVDSHDx8kI+OK1uWIUnr0uJnIyJasX7+G48ePal2OcHPVNecQILPU\nz8brp7qLLQamAQOB3oqijLRxfcJJnTt3lqysLHqM/yv1mt74FKr0q3m89/1BjSpzfb169cFoNLF9\n+zatSxGl6HQ6+vbtx9GjR3nppee1Lke4uepupcoEgkv97KWqaumcwndVVc0EUBRlOdAFqPIZa+Hh\nwVUtdnvuMv6VK3fh4+OFzksH6Mot9/LSVThWrcbvpdPVev95eXmsWbOGIUOGWH1Pd032P2bMCD7/\nfCG7d29j8uQJVu3H1oKC/IHr9XtZfyxd/ff/4Ycf4M03X2P79i3k5WXQtGnTGr/X1cdeW54+fktV\n15y3AqOBbxVFuQUomQ4pihIKHFQUJRq4RtHs+ZPqdpia6rmnO8PDg91m/CtWrMJkMtOuSQhJZ24c\nkyFYz4xxHcuNVcvxm8xmoHa/f8uW/cy77y5AVY/z5z/fb/H7azp+f/+6NG8eSWJiEufOpePjo30c\nQVZWLlB0/MJMRccyzcJj6S6//8OHj+Lbb5cwZ84zvPfev2r0HncZu7Vk/Jb/YVLdae2lQK6iKFsp\nuhjsSUVRJimK8qCqqhkUXSS2AdgExKmqutLiCoTLuXjxIgkJ8XTs2JlnJt9ULvJwwfRetGjoXn8l\nFxQUsGTJf/Hz83NI6Mhrr73Fl18ucYrGLG40d+7z+Pr6smrVr2RmZlb/BiGsUOUnX1VVM/BImZeT\nSi1fTNH3zsKDbNtW9JCHPn36AkURiMXfMc8c75z52rXN1V67djUXLlxg7Njx1KtXz0ZVVS48PNzu\n+7CWO+Rq10Z4eDgDBtzG6tW/8vrrrzBvXtmbWISoPfmzXFjs668Xk55+mdjYzkDFEYjupLCwkMWL\nv8LHx0dCRwQAL7/8V3bs2MbBg/vIzc3F399f65KEm5GEMGGR9PQ09u3bTXZ2NnXr1tW6HIfYtm0L\n586dY8SI0U49oxWO06RJM558cg6FhUaWL/9Z63KEG5LmLCyyYsUycnJyiI6OwWAI07och+jTpx+v\nvPI6Eybco3UpwonceefdBAQE8PXX/yM3N1frcoSbkdPaosbmL9nH6lVH8QtuTGH9W5n65nqg6KH1\nszvw6CwAABjJSURBVCd20bg6+9HpdPTs2VuTfV++fJkNG9YyevRY9Hp99W8Qdjd/yT4SUtIBiOg5\niwKTF4++s5XoyDC3/hwIx5KZs6iR+Uv2EZ+SzqVTB0HnRXDDDpIK5gBLl37Lxx//kx07JJDEGRR/\nDop/9wvN3uh0Rff6y+dA2JI0Z1EjCSnp5F3L4OqlE9SNaI1fnRtvlXL2VDBXydYua9CgIQCsWeM8\ndyl6arY2UDJjLqsgN4v0s4lO/zkQrkOas6gxfUAoXYbPokWnoVqX4jFatmxF27bt2L17F2lpl7Uu\nR1TAbDZxYPUHJGz+gvwcue9Z2IY0Z1EjLSPqABAU1oSQ8JbllhuC9U57j7M1Fi36kkWLviQvL0/r\nUhgyZBhGo4n169dqXYrHi4o0lHtNp/Oicfu+GAvzOX3oV7f6HAjtSHMWNdLQeIDC3D9mBbpScdru\nlgp28eJFFi36khUrftG6FAAGDBiEj4+3U53a9lSzJ3a5IRGv+HPQsM3N1AkKI2XvT5w+tl+j6oQ7\nkeYsqmU0GlmzZhU5R3+mbpAfhmA9D46KxhCsd7sZM8Dnn/+HgoICpkz5P6e4Qjo0tC4zZjzJrFlz\nMV/PCBfamTk+tuR3v/hzUC80gCmT7sRsNvPCC/L0XFF7ciuVqNbvv+8iLS2N0aP7MnPGH7cU3dKh\noYZV2cfhw3GsWbOK1q1bl1yM5QxGjhytdQniurKJeMWfA5PpVn74+lOOHTvGihXLGDFilFYlCjcg\nM2dRrf/970vy8/MZOnS41qVY7dpTc6vN1zYajbz//tsAzJjxJN7e3o4ozeWk7Ynz+Hztinh5efH6\n6/No0aIF33yz2CmuVxCuS5qzqFJmZgarV//K+fNnadjQ/WbKpWVnZxEWVo+hQ4cTE9NR63KEC+rf\nfyATJvyJM2dO88038kwgYT05re2hSqccVZbwNX/JPnbtPYTRx0CTllGEhrp3lnZISCivv/4WBQUF\nWpciXNh9901l06YNLF78XwYMGETTps20Lkm4IJk5e6CyKUcVJRsVr3NW3Qo6CG1xq0ekH+l0Ovz8\n/LQuo0onT57g9OlTWpchKhEYGMijj86koKCA99//h1zEJ6wizdkDVZRyVDbZqDgR7GLyHuqENCCs\nSZSkHzmBI0eSmDr1z3z55WdalyKq0Ldvf3r0uJm9e/fwyy9LtS5HuCBpzqJSZ9XNmM1GmrTvh04n\nvyrOoE2btrRs2ZLNmzdy8eJFrcsRldDpdMyY8QTp6Wk89dQTHD58WOuShIuR/8f1QBWlHJW9X7lZ\nfV8aK71pHjOYBi27VbiOK6ksW/t///uKc+fOalCRdXQ6HePG3UVhoZFffvlRkxo8OVvbEo0aNWbk\nyNHk5+cxadIkTCaT1iUJFyLN2QOVTTmqMOHr9Cq8vbxo0WkY3j6+bpcCBrBhwzo+++w/vPfe21qX\nYpGBA28jJCSUFSt+kecIO7mXXnqNli1bc+zYMV566TmtyxEuRJqzhyqdclR2NnzmzGm2bdtMUMYO\nDEHumQJ28eJF3n//H+j1embMeELrciyi1+sZNep2MjMz+fXXZVqXI6rg5eXFwoWfo9frWbToK3bt\n2qF1ScJFyK1UHqpsylFp3333NWYz3HX7YAYMqHgdV1ZQUMDrr7/M1atXmTnzSZo0aap1SRa74447\nKSjIZ8CAQVqXIqrRtm07nn32WV566SVmzZrJunWbnSIWVjg3mTmLG5w6dZJff11G06bN6Nu3v9bl\n2MXChR8RH3+YAQMGMWrUGK3LsUpoaF0eeuhR6tYtf/2AcD5z5sxhyJDh+Pn5ye1VokakOYsbvPrq\ni1y9msX//d+DbhtfGRERQevWrXniidnoSj9eSwg7+uCDj4mKimbVql9Zvtw5nngmnJec1nZRlSV8\n1ST5q7Jt5eddY/ceFTM+/GdjNjvP7KvR+11B6Vzt8ePvZsyYO/DxkV9/a0iuduVKf/4C/H24llsI\nQKe24cwc35EXX3yVRx99iA8/fIdWrVqz4mC+xZ9X4Rlk5uyCKkv4eu2L3dUmf1W1rVOH11FYkEvz\nmNvw9vWv0ftdlTRmYWtlP5fZuYUl/73/SCpPfbiVXHMgf/nLi5hMJub993eLP6/Cc0hzdkGVJXwd\nP5dZ4etVpXoVbys3K42z6hb0AQYatfvjsZCSCuYa4uIOSWqYxir6XJZW/Fnq2rU7Dz74CAQ0JHnv\nMgryssutI4Q0ZwFA8r7lmE2FRHYegbePr9bl2ExhYaHb51CbzWb++c/3+Oqrz9m7d7fW5YgauPPO\nCVw8vpvTCRuI3/gpxkJ52Iq4kTRnF1RZwlerRiEVvl7VPcpRkQbyc7PITE0muH4LwiM7W/R+Z2Y0\nGpk//01mzJjm1lGXOp2OJ5+cg7e3F++8M5+cnBytS/JIFX0uSyv7WRowaDjhLbqQeSkFdetXmExG\nl/68CduS5uyCKkv4en5K9+qTv8oYEeuHNya6jpxN+1734uXlZdH7nZXRaOStt15n3bo1NGvW3O1v\nOWrbth133jmBc+fO8cUXn2hdjkcq+7ksfSNAvVD/cp+lp//UjR6D/0zdhu24fPow6uZPeWVKJ5f8\nvAnbk+bsoipL+Koq+ausvLw85s9/k0sHF2MIDaJRo0Y8OCq6xu93VkajkXnzXmf9+nV06BDDm28u\noO77b1eYre1OJk++n8aNm7B06XckJibYbT+SrV250p+/0p+l5//v5grXf3JCN24d8RB1G7TknLqZ\nKVMmkpeX5+CqhTOSS1ZdVGUJX1Ulf5X1xf+3d+bxUVTZHv9Wd2dPB4EECLIKeMMmmxCWJ4LgxhBx\nfYqjonEBAdGAzDN8hrggDoj41HFBBQR0GB2eCzLPZZ4LQoCArA9crgsgEMlCAtm3XuaP7oROekkC\n6fR2v59PPumqOlV9zqe6zql769bvrl3F8ePHuP76m5g1a1zd+pH9O7WUmz5h6dLFfP31lwwYMJCn\nn15KTEyMr11qFSIiIkhLe5RFi56gqkppbvuChtdf7bWUkGAkP995FHb3TkZeSptA8b3DmTZtKmfO\nFLFw4WM88cRioqOjW81vhf+hWs4hSmbmFjZseI/ExM6kpt7va3dalJEjRzN48FAWL342ZApzLYMH\nD2XNmncYNEi9LxtIxMXF8d57HzJmzGXs27eXtLRZ5Obm+NothQ9RxTkE2bt3D2lpswkPDycj4ymi\noqJ87VKLcsUVE1m6dHnItjyMRueBgQr/p/Z6TEm5nsOHDzN79nQOHTroa7cUPkIV5xAjJ+d3UlPv\nIC8vl4kTr6J37z6+dskrOA5sUygCBYPBwJw5acye/TAlJcXMnfsQixZlqLmgQxD1zDmEWPL2t2z6\nxwrKTJH0HnINjzzyqK9dOi9KS0v54YfvGD7c9WAbxVny8/NJSEjwtRshy8IV2znwcz5QX9bTnWTn\nlCk30qVLV2bMuJeVK1/n08zv6DVqGuGRsa0m83kuUsDu9l360Fiv+BjMqOZFiPDM2iw2bXiDvKN7\niUvoQZdLb+fRV7cHrFTg7t27mDnzPjIyFnD06JFG7cvn/Vc9fe1QYtOmj7jnnj+ye/euFjle4Z5D\nSl+7GTz37j72/5zvUtbTk2TnsGHDWbv2XTr2GkH+74fZ+7/LOXXiu1aR+XQnEdyU73S1791PfR6w\nucZXqOIcAhQWFvDl5x+Sd2Q3xvbd6DcuFb0hLCClAgsKCli8+EnS0+eTm5vDLbfcRpcuXX3tll/T\nsWMiFouFjIwF7Nq109fuhBxNlfV0Rb9+/Rhw5cP0HDKZmqoyvv9mNd9vWUNhcYVXr113EsFN+U5X\n+xYUVQZcrvE1qjgHOSdOHGfu3Dl0ThrLhUmXM3DCDMIiAnME886dWdx7751s3vwVSUl9eeWVN0lN\nvV9NYtEII0Yks2jRX9A0jccfT2fjxg/UfMIBhKbp6NJvPEMmpdGmw0WER8WhaTrKysooKytr/ACK\ngEQV5yDFarXyr399yoMP3kd29gniYyxcNOw69GH1FcQCSWikR48eREREMGfOXF544ZWgHczmDYYN\nG84zzzxLdHQsL7/8ImvWKBWx1qK5sp7u9o+5IJGBE2fSc0gKlupSjmWt4q67bmP9+rdbvEi7kwhu\nSr5wtW/7NpEBlWv8AVWcg5DS0hKWLFnEsmVL0Ov1LFiQwX/PS2m2tKe/0bFjJ/72tw2kpExBr9f7\n2p2AY9CgIaxYsYoRI5KZOPEqX7sTMjx62xDat4msW3aU9WzKdegoC6ppGvFtY3ll3gTuvCUFq9XK\nW2+t5M47b2XOnBkcOLCvxXw+13zhat81GVcHVK7xB1RxDiKqqqp4+unHGTVqGF988X/07duP115b\nyfjxE4DmSXv6gurqarZt28pTT2W4fb9TdWGfHwkJCSxe/Cxdu3bztSshxZ9Tk13Kejb1Omx47cbE\nxDB16h2sW/cu06alUllZxcaNH3LdddcyYcJlvPzyixQXO08h2xzOJ1/4e64JBLRWfvZkdSVhFyq4\nk/A7X8rLy1m5cgWrV7/J6dOF6PUG7r9/BvPnp/tVMXMVf0VFBfv27SErazuZmVsoKbFtv/nm/2T6\n9Fkt9t1vX2wrRnf+dKzFjtlcvHX+W4rjx4+h0+m48MIuTttef/0VAKZPn1Wnq93cEdv+Hr838Xbs\nJSUlrFjxMhs2vFunLGYwhJGcPJKZM+cwZMgwn6rlhfK5B0hIMGqNW9XHfzK3otn89ttRXn31JTZu\n/ICKigo0TbM/W1xGUlJfX7vXJLZu3cyyZUsAaNeuHTfddAsTJ15Nr169fexZ6PHWWyvJzPyG5OTR\nTJo0maFDLyUiIqLxHRU+x2g0Mn9+OvPnp7N581e8/fYaduzYxo8//siTTy7EYNDTv/8lDB06jP79\nB5CU1E+dWz/HY3EWQuiAV4FLgCrgPinlrw7bU4CFgAlYLaVc6UVfQ56ysjKk/IFdu7LIytpBdvYJ\nysvLMJnMjB07jtmzHyE5eZSv3ayjuLiIY8eOcfToEcrLy5g16wEnmxEjRjJ16h0kJ48iKamvepbs\nQy6/fDynTuWTlbWdrKztREZGMmLESGbPftjXrimawbhxVzBu3BWYzWYOHTrI/v17+fbbnRw4sK/u\nmXRBwSl0Oh3du/egf/8BDB48lIEDB9GrV2+lrucneOzWFkLcCEyWUqYKIZKBdCnl9fZtYcD3wKVA\nObDNbut2VvuFK7ZbXankNFTMgbPvyrmz89b+3vQlJiqMsoqaRvcvK6+iqryIGAo4nZ9Nbn4BpuoK\n+iTfiM5g08GuKfqNPlFHGDPmMrKOx3Akt6ruO2uVfM5H4ccTVquVyspKl5rcpaUlpKfP5+TJkxQV\nnalbHx0dTWbmFgoKfPPqh+rWbjpS/sjWrZvZunULeXm5fPTRJ6xZY7vvduzW3vXeh3To0AGjMQ5N\na7zXLlDi9wZNib3h9Qq4vH4d7Zqbu6yAXjPx/bYN5P+2D4upBk2zFWOr1UK/canEdxlAhKWQQe1z\nSUzsTLt27flgRy45ZyyERxoxGmOpqDI3+v2O+eal9w+6VEjzRR5ujZrQMP5z6dZurDgvB3ZKKf9h\nXz4hpexi/3wJsFRKea19+Xlgu5Tyf9wdL2XeRitAeXE+WG1asY5fHxWX4PKurfR0tsvjRbdJdGlf\nUnDMJk0D9d7njG3f1aV9Ud4RandwtI9L6OnS/nTOzzh8Qd36Nh17o9M5t/xO/rQDi8WE1WLGajVj\nrqnGYq6m59CUugujFrOpmsz1fwLsWrr2w2t6A6Nv/QuGBq9CtY2N4OAPss4OIC42nLgoA4U19ZNm\n7eCME7/up6amBrPZhMlkxmQyYTabmDx5ilO8VquVjIx0SktLKS4upqTE9me1Wvn006+ckrLZbGbK\nlGtp16493bp1o1u37nTt2p0+fS4mOXmwKs4BVJysVis5OSdJTOzs9MzZYrEwPN4mBxoZGUlCQgfa\ntGlDx46deOyxPzsdq6KiAikPUF5uwmAIIyzMgMEQRnR0FL16Ob8SZzKZyMvLrft9aZqGpmno9Qbi\n4+Od7M1mM0VFZ+rsHPeLi2vj0r601PlceMs+Pt7IqVMlbu2fXb+bgz/97rQeTavTJai93g+fLMZq\nMWOqrvBo74gre4vFTEXJKarKTlNelENlSQE9Bk8iKi4Bq8VMZUkeBd+9T5ue4/h57+eUFp4AQKcP\nIywyFkN4FElj7iCmbaLT8fOO7MFaU0av9jUUmttTUhOOTmegbWdBWESMzb7m7LSmZWdOYjHXoKHH\nEBFly4uaRpQxAb0hzMm+urIEq8UCaISFn20khEUZ0en0LuxL7TVHwxAeVff7METEuLSvqSrHajU7\nHN9mHxYRjebC3lRdbq8dGlHGeDRNq8u33TsZvfLMOQ5wHPJnFkLopJQW+7Yih20lgPOvzgXfrH2o\nflW2c+WMt9CFO88ktPWdec2yz1z/p2bZb38vvVn2WRsWNst+/+cvurTvOuBKwiLq2+sN4VSXnwE0\ndHoDmt5g+4/zZA6nS6o4XVLFvk9fwGoxOR1/zG1L0fSGevYvvf//fP/PxzGZzE7211zzB8LDw+ut\n0zSNPXt2YzabiI2NIy4ujk6dEjEajVRXVzs9t9Lr9Xz88Wcub2pUd1lgoWkaiYmdXW6zWq1cd90N\n5OfnkZeXS35+PtnZxzl92rUaVmFhAenp6ZhM9SdwSEzszLp1f3eyz8k5yT333OG03p39yZO/N8s+\nJ+ckd9/9x1azNxh0mEwWt/b7v/uVbz9e4rQ+MrY9w6csAM5e7wCVZYXsbsTekXOy/+dz6DSwHDlC\ndUUJFrMJvSGcdl16UlNZSnVFcW3Ncjp++ZlcLOYaDun0xFyQWGc3ZNJcwiJi3Nprers9Z+1j217Y\nDPt5xLbt7FP7iQ+sxhAWWZdvHef3bg5NaTlnSSk32JePSym72j8PBJZIKf9gX34eyJRSfuDueLUt\nZ4VPyd60fIrzcFyFQuEzUuZttDXr/I9soDPn7tv57h/onHO+bazlvA1IATYIIUYCjuKoPwJ9hBBt\ngTJgLLDM08E2LZ8SqidIoVAo3LJp+RTVraSoR2MtZ42zo7UB7gGGAbFSyjeFEJOBDGxiJquklK95\n2V+FQqFQKIKe1hYhUSgUCoVC0QiqK0WhUCgUCj9DFWeFQqFQKPwMVZwVCoVCofAzVHFWKBQKhcLP\n8OrEF0KIKOAdIAGbSMk0KeWpBjZpwK32xU+klE9506fWIJQ1yZsQ+1TgYWyxHwRmSimDZlRiY/E7\n2L0BFEgp01vZRa/ShPM/HFiO7b3XbOAuKWW1L3z1Bk2I/wZgATZNv9VSyhU+cdSL2KWel0gpxzdY\nH7R5zxEP8Tcr93m75fwgcEBKORZYB9TT9RNCXATcDoySUo4ErrKLmwQ61wPhUsrRwGPYkhFQp0n+\nPHAlcDnwgBCig0+89A6eYo8CFgHjpJT/gU1RbrJPvPQebuOvRQgxHRhAPdHVoMHT+deAN4C7pZSX\nAV8CPX3ipfdo7PzXXvtjgHlCiCapKgYKQog/AW8CEQ3WB3veAzzG3+zc5+3iPAb4zP75M2Big+3H\ngKsd7h7CABeCsQFHXdxSyp3YJgeppS/wi5SySEpZA2RiE3AJFjzFXontRqxWlNZAcJxvRzzFjxBi\nNDACeJ3gVE3yFP/FQAEwVwixGbhASilb3UPv4vH8AzXABUCtYHOw3aD9AtyI82872PNeLe7ib3bu\na7HiLIS4Vwhx0PEP291BrTa3k/a2lNIkpSwUQmhCiOeAvVLKX1rKJx/iUpPcYds5aZIHCG5jl1Ja\npZT5AEKIh4AYKeUXPvDRm7iNXwiRiE20ZzbBWZjB828/HhgN/BXbjfoEIcR4ggtP8YOtJb0HOARs\nklI62gY8dvlmZ6H/4M97gPv4zyX3tdgzZynlKmCV4zohxPuA0b5oBM403E8IEQmsxnbiZraUPz6m\nmLNxA9ROFgK2OB23GQHXswUEJp5ir30m9yzQG7iplX1rDTzFfzO2AvUJ0AmIFkL8IKVc18o+ehNP\n8Rdgaz1JACHEZ9hall+3rotexW38Qohu2G7MumObZvcdIcTNnmbyCyKCPe81SnNzn7e7tbcBk+yf\nrwW2OG60P4PaCOyXUj4YRAOD6uL2pEkuhAjH1rWzo/Vd9BqeYgdbd24EcINDF08w4TZ+KeVfpZSX\n2geKLAHWB1lhBs/n/zAQK4ToZV++DFsLMpjwFH8kYAaq7AU7D1sXdygQ7HmvKTQr93lVvtP+EHwt\nkIht5OLtUso8+wjtXwA98HdsJ6m2my9dSpnlNadagVDWJPcUO7Db/ud4k/ailPKjVnXSizR27h3s\npgFCSuk8X18A04Tffu2NiQZsk1Km+cZT79CE+NOwDYKtxJYD75dSuuoGDliEED2w3XiOto9QDvq8\n54ir+DmH3Ke0tRUKhUKh8DOUCIlCoVAoFH6GKs4KhUKhUPgZqjgrFAqFQuFnqOKsUCgUCoWfoYqz\nQqFQKBR+hirOCoVCoVD4Gao4KxQKhULhZ/wbRMWacRBi39YAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x17360780>" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Bayesian Inference: MCMC" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"samples.size, nsamples" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": [ | |
"(1000, 1000)" | |
] | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"sigmas = pm.Normal('sigmas', mu=0.1, tau=1000, size=2)\n", | |
"centers = pm.Normal('centers', [0.3, 0.7], [1/(0.1)**2, 1/(0.1)**2], size=2)\n", | |
"#centers = pm.Uniform('centers', 0, 1, size=2)\n", | |
"\n", | |
"alpha = pm.Beta('alpha', alpha=2, beta=3)\n", | |
"category = pm.Categorical(\"category\", [alpha, 1 - alpha], size=nsamples)\n", | |
"\n", | |
"@pm.deterministic\n", | |
"def mu(category=category, centers=centers):\n", | |
" return centers[category]\n", | |
"\n", | |
"@pm.deterministic\n", | |
"def tau(category=category, sigmas=sigmas):\n", | |
" return 1/(sigmas[category]**2)\n", | |
"\n", | |
"observations = pm.Normal('samples_model', mu=mu, tau=tau, value=samples, observed=True)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"gen_model = pm.Normal('gen_model', mu=mu, tau=tau) # generative model" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Some debug plots:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"t3 = pm.rbeta(alpha=6, beta=2, size=1e5)\n", | |
"t4 = pm.rbeta(alpha=2, beta=3, size=1e5)\n", | |
"plt.hist(t3, bins=bins, alpha=0.5);\n", | |
"plt.hist(t4, bins=bins, alpha=0.5);" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFVCAYAAADG2GfeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmQa1l92PFvt1rqVqvV/abf6wHiBYyXE6oypAzGOMNe\nGZsMRYKXKVzGccaumDFLCDhOueJnwBVnCNgxpAyFic1AgJA4VUzAjv08w2bCDC+xAS9jMPiYGTzF\nMOt7vXdLvUmdPyT1u0/T3epF25W+nyqKq6t7pXNG/fTTufd3fmdkd3cXSZKUHqO9boAkSToeg7ck\nSSlj8JYkKWUM3pIkpYzBW5KklDF4S5KUMmOHPRlCyADvBb4H2AVeBWwCHwCqwJeB18YYd0MIrwRu\nAXaAW2OMF0IIeeDDwBywCtwcY7zcob5IkjQUWo28XwpUY4zPBd4I/Efg7cD5GOPzgRHgZSGEJwKv\nA64HXgy8NYSQA14N3FM/9kP115AkSadwaPCOMf4+8HP1h08BFoFnxhjvqu+7A7gBeBZwMca4HWNc\nAe4Fng48B7izfuyd9WMlSdIptLznHWOshBA+APwm8N+pjbYbVoEZYBpYPmD/StM+SZJ0Cofe826I\nMf50COEJwOeBicRT08AStQBdTOwv7rO/se9Qu7u7uyMjI60OkyRpUBw76LVKWPsp4FtjjG8FykAF\n+GII4QUxxs8CNwKfphbU3xJCGKcW3J9GLZntIvAS4Av1Y+96/Ls09WBkhEuXVo/bj4ExN1cc2v4P\nc9/B/tv/4e3/MPcdav0/rlYj79uBD4QQPgtkgdcDfwO8t56Q9hXg9nq2+TuBu6ldij8fY9wMIbwH\n+GAI4W5qWeqvOHYLJUnSVUb6cFWx3WH/BTas/R/mvoP9t//D2/9h7jvA3Fzx2JfNLdIiSVLKGLwl\nSUoZg7ckSSlj8JYkKWUM3pIkpYzBW5KklDF4S5KUMgZvSZJSxuAtSVLKGLwlSUoZg7ckSSlj8JYk\nKWWOtJ63JKm3KpUKy8tLe49nZs6QyWR62CL1ksFbkvpUMmAvLi7yqS8+QKE4Q2lthZtuuI7Z2bM9\nbqF6xeAtSX1qeXmJ2z/1JSanprn8yDeZmjnHVPFMr5ulPmDwlqQ+0jzazheKTBXPsL623OOWqZ8Y\nvCWpj+w32i5O97pV6jdmm0tSn5mcmmaqeIb8VLHXTVGfcuQtSQPErPThYPCWpAGSvOxuVvrgMnhL\n0oBpXHbX4DJ4S1LKNWeo7+7u9rhF6jSDtySlTLVaYXFxce9xsoCLGerDweAtSSlTLq1x4eI8s+eu\nBbiqgIvzwYeDwVuSuqw5IxxgdnbyWK8xWbhyX9uAPXwM3pLUZcmMcIDS2gqvOlcEcr1tmFLD4C1J\nPWBGuE7D4C1JA6o5sc2CLYPD4C1JPVatVlhYWKBazbZ1qlcysc2CLYPF4C1JPVYurfGRT36FfOFM\n26d6NRLbHIUPFoO3JHVBq0Iqk1NFClOdm+rlKHywGLwlqUOaA3avC6kkp5cp3QzektQh+63NbSEV\ntYPreUtSB7k2tzrB4C1JUsoYvCVJShmDtyRJKWPwliQpZQzekiSljFPFJGnINFdbAyuupY3BW5KG\nTLLaGmDFtRQyeEtSG7Uqg9ovrLaWbgZvSWqj/aqqdbsMqgbfocE7hJAF3g88GRgHbgW+Cfwh8Lf1\nw34rxviREMIrgVuAHeDWGOOFEEIe+DAwB6wCN8cYL3ekJ5LUJxpV1SyDqk5pNfL+SeBSjPGnQgjX\nAPcA/x54e4zxHY2DQghPBF4HPBPIA58LIXwSeDVwT4zxV0MIPw68EXhDB/ohSdLQaBW8PwLcXt8e\nBbapBegQQngZ8DVqwfj7gYsxxm1gO4RwL/B04DnAr9XPvxN4U3ubL0nS8Dl0nneMcT3GuBZCKFIL\n5L8MfB74tzHGFwBfB34FKALJ60OrwAwwDaw07ZMkSafQMmEthPBtwEeBd8cY/2cIYSbG2AjUHwPe\nBdxFLYA3FIElaoG72LSvpbm54V59Z5j7P8x9B/ufpv5XKhWWlpb2tgEymQyjo9tMTGQpFMbJ53Nk\nxg7fBsjncwBHPme/849zTvP51UqOc+eKnD3bu//+afrs+0GrhLUnAJ8AXhNj/Ex9950hhH8dY/wC\ncAPwRWqj8beEEMaBCeBpwJeBi8BLgC8AN1IL8i1durR6gq4Mhrm54tD2f5j7DvY/bf1fWJi/Kqt8\ndCzH7Llr9zLMx7IFyuUtMpkR1tc3D9wGKJe3mCrmDj2u1fnHOaf5/FJpi8uXV6lWcz35b5m2z77d\nTvLDpdXI+zy1S91vDiG8ub7vDcB/DiFsAw8Dt9Qvrb8TuJvapfjzMcbNEMJ7gA+GEO4GNoFXHLuF\nktSnklnlmcy4GebqmkODd4zx9cDr93nqufscextwW9O+MvDy0zRQkiRdzYVJJElKGYO3JEkpY/CW\nJCllDN6SJKWMwVuSpJQxeEuSlDIGb0mSUsbgLUlSyrSsbS5JqtUvX16+sjzD4uIiu7u7PWyRhpnB\nW5KOYHl5aa+WObBXw7w43eOGtUG1WmFxcXHv8czMGTKZTA9bpFYM3pJ0RI1a5sBA1TAvl9a4cHGe\n2XPXUlpb4aYbrmN29myvm6VDGLwlSUwWrvwwUf8zYU2SpJQxeEuSlDJeNpekhOas8mFL3jJ5LR0M\n3pKUkMwqH8bkLZPX0sHgLUlNGlnlyVHoMM3rNnmt/xm8JekAyVHoIM3rVvqZsCZJh2iMQvNTxV43\nRdpj8JYkKWUM3pIkpYzBW5KklDF4S5KUMgZvSZJSxuAtSVLKOM9bkrQvS6X2L4O3JGlflkrtXwZv\nSUMvuRjJMJVBPQpLpfYng7ekoZdcjMQyqEoDE9YkiSuLkVgGVWlg8JYkKWUM3pIkpYzBW5KklDF4\nS5KUMgZvSZJSxuAtSVLKGLwlSUoZg7ckSSljhTVJQ8mSqEozg7ekoWRJVKWZl80lDS1LoiqtDN6S\nJKWMwVuSpJQ59J53CCELvB94MjAO3Ap8FfgAUAW+DLw2xrgbQnglcAuwA9waY7wQQsgDHwbmgFXg\n5hjj5Q71RZKkodBq5P2TwKUY4/OBfwK8G3g7cL6+bwR4WQjhicDrgOuBFwNvDSHkgFcD99SP/RDw\nxs50Q5IOV6lUWFiY3/ufGeZKs1bZ5h8Bbq9vjwLbwDNijHfV990B/BBQAS7GGLeB7RDCvcDTgecA\nv1Y/9k7gTW1suyQdWTK7HDDDXKl2aPCOMa4DhBCK1AL5G4HfSByyCswA08DyAftXmvZJUk80sssB\n1teWWxytpGq1wuLi4t7jmZkzZDKZHrZouLWc5x1C+Dbgo8C7Y4y/G0L49cTT08AStQCdnGtR3Gd/\nY19Lc3PDPW1jmPs/zH0H+9/J/o+ObjE5maNQGAcgn8+RGctSKIwfe/u05+/3WkBP2nLU81eWtvjj\nP/8GZ+c2WF9b4eZ/9n2cPXumbZ/PsP/tH1erhLUnAJ8AXhNj/Ex991+EEF4QY/wscCPwaeDzwFtC\nCOPABPA0aslsF4GXAF+oH3sXR3Dp0uoJujIY5uaKQ9v/Ye472P9O939hYZVSaYvRzCYA5fIWmcwI\n6+ubx94+7fn7vdZUMdeTthzv/AlGM5OMjG5x+fIq1WquLZ+Nf/vH/+HSauR9ntql7jeHEN5c3/d6\n4J31hLSvALfXs83fCdxN7d74+RjjZgjhPcAHQwh3A5vAK47dQkmSdJVW97xfTy1YN3vhPsfeBtzW\ntK8MvPwU7ZMkSU0s0iJJUsoYvCVJShmDtyRJKeOSoJIGlmt2a1AZvCUNLNfs1qDysrmkgeaa3RpE\nBm9JklLG4C1JUsoYvCVJShmDtyRJKWPwliQpZQzekiSljPO8pTZIFgMBmJk5QyaT6WGLJA0yg7fU\nBsvLS/zel/6QwvQU6ytr/PB1L2V29myvmyVpQBm8pTYpTE8xNWMhEEmdZ/DWUPHytqRBYPDWUOnG\n5e1qpcri4uJV+/yRIKmdDN4aOp2+vF1eL/HxhT/m7FztR4H3wCW1m8Fb6oDJqUnvf0vqGIO3pIHi\nGt4aBgZvicMT2UxySxfX8NYwMHhrIJw2wB6WyNapJLfmNs/OTp76NVXTWMN7fW25102ROsLgrVQ5\nKEgfFmCbL6NWD7iMelgiW+O55kzy04zCm9v8s+d+Asid6LUkDReDt1LlsCB9UPBNnvPYg49SnJ0G\npq8KxMmg3hygk88lM8nbMQq3sEt7eJ+7u6rVStt+xOpkDN5KnVYBb7/gmy8WmJopsr6ytrc/GYiT\nQb15qlfyObiSSX5Q8G/VHr/o2s/73N1VLq1x4eI8s+eupbS2wk03XOdUyC4zeGvgtAq+SY1AnAzq\nyf3A457b730Oe4/kcauLK7zoyc/jmmuuOTTg6/i8z91dk4Xaf2/1hsFbA+kowbed79PqPZLHffy+\n1gFfkg5j8Ja6bL+AX61UWVhYoFrNAgdfWnfa2hXe59YwM3hLfaC8XuJjf3UHk8XpQxPhXHr0Cu9z\na5gZvKU+UZguUJhunXluhvoV3ufWsDJ4K7WOmu2ddkedp77f8TDcl9alQWXwVmodNds7bfab6vaZ\nBz5HcaZ4pH56aV0afAZvpdpRs73T5KCpbsfpp5fWpcFm8FZfqFQqzM/Ps7CwurdvmC/3HmWqm8Vf\npOFl8FZfWF5e4uP3fYLRsVptby/3ttbuUq2S0sPgrb5RmJ4ikx3vdTNS5bilWiUNBoO3NAAGNXkv\nqTmL3sIsGmYGb/W9406VGlaDmLyXlCzKAliYRUPN4K2+d9CSnho+jaIsgIVZNNQM3upLzfdw91vS\nU5KGlcFbfWkY7uFK0kkZvNW3Bv0ebjc0zwUH54OrvarVin9jPWDwlgZYc7U254Or3cqlNS5cnGf2\n3LUAlNZWuOmG6/wb6zCDtzTgktXapE6YLFxJJFR3HCl4hxCeDbwtxviiEML3An8AfK3+9G/FGD8S\nQnglcAuwA9waY7wQQsgDHwbmgFXg5hjj5bb3QqnhileSdHotg3cI4ReBfw40bjw+E3hHjPEdiWOe\nCLyu/lwe+FwI4ZPAq4F7Yoy/GkL4ceCNwBva2wWliSteSdLpHWXkfS/wo8B/qz9+JvA9IYSXURt9\nvwH4fuBijHEb2A4h3As8HXgO8Gv18+4E3tTGtiulXPGqd5IJbJVKBRghkxkFvAoipUnL4B1j/GgI\n4SmJXX8K/E6M8S9CCOeBXwH+EkhWTFgFZqjN7Vlp2tfS3Nxwf7EPcv9HR7fIX8oxWRinsr3JuXNF\nzp4tMjq6BZdgslCrbT6RzzKWG2OyMH6q7dO+VjfPB9r+/s2vtXx5m7sevJuzO+d47JuPkMmOcfYJ\n51hfWeMnn/1jnD3b2/uWh/3tj45uMTmZo1DvSz6fIzOWpVAYP/Z2r8/f77WAgehLtZLb+3fdrs9e\nj3eShLWPxRgbgfpjwLuAu4Dkf/kisEQtcBeb9rV06dJq64MG1NxccaD7v7CwSrm0RSa7Sbm0xeXL\nq1Srub2lQEvrmwBslLcZ3alSWt881fZpX6ub50/lxtr+/vu+VjZLJjvO6FiOkbFMffvKZ9Errf72\nFxZWKZW2GM3U+lIub5HJjLC+vnns7V6fv99rTRVzA9GXUun4f0uD/r3Xykl+uIye4H3uDCE8q759\nA/BF4PPA80II4yGEGeBpwJeBi8BL6sfeSC3IS9KRVCoVFhbmWViYdyESKeE4I+/Gv5pXAe8OIWwD\nDwO3xBjXQgjvBO6m9oPgfIxxM4TwHuCDIYS7gU3gFW1su1LChUV0UsnFSFyIRLriSME7xng/cH19\n+x7gufsccxtwW9O+MvDyU7dSqebCIv2vuRJbL5PXmn/s5QtFpopnXIhESrBIi7qikWGeLHXavPjI\nbrXaq+YNvWQlttXFFV705OdxzTXXAN0P5I62pdYM3uqZ5sVHnvCt5xgbz/e6WUMrWUv+4/fVPpde\nzcVvLP3paFvan8FbPeXiI/3JkqpSfzN4qyNMUpOkzjF4qyNMUpOkzjnJPG/pSBpJaoVioddNkaSB\n4shb0oGap5BZD13qDwZvSQdKzggAeOzBR8nkxnqaiS7J4C2phWTm+frKGqPZjJnoUo95z1uSpJRx\n5C3pRPqppKo0bAzeaovkvG5wbvcwSN4P9/631F0Gb7VFcl434NzuIdGuSmyVSoX5+XkWFlZd+lM6\nAoO32qYxrxuw3KmOZXl5iQv/NzIyOuFiJNIRGLwl9YXC1DSjmUkXI5GOwOAtqa2a8x9MZJPaz+At\n6dSa12b/zAOfo1hfLc5ENqn9DN6STq15bfbi7LSFXIZUtVpxCmEXGLx1Yi77qSTXZhdAubTGhYvz\nzJ67ltLaCjfdcJ1XXjrA4K0Tc9lPncbjfvxVdxl1gDYQJgvTTBXP9LoZA83grVNpTA9ztKXjWl5e\n4vZPfYnJqWkuP/JN5p70JMayLh8rHYW1zSX1zORUbYSWn/L+uHQcBm9JklLG4C1JUsp4z1vHYoa5\njqN55TFw6pDUDgZvHYsZ5jqO5PxvwKItUpsYvNVS82g7XyyYYa4jO2jlsUqlslfHvLS2wmQh3+2m\nSall8FZLjrbVCSsrK3x9488o5q9hfvdRCqUCxelre90sKRUM3joS53OrHZL3wJeXl8hN5skXp5hY\nX+lxy6R0MXhrXyamqROS98Af+LtvsLNT21+tVimVV1lbXaK0tkKhONvbhkp9zuCtfXmpXO1Q3d1l\na3ODcrkMwHqpxNj4GJncGKPZUdiqALBV3uAb/DVrlQXmdx/lO0rP6GWzpb5n8NaBvFSu09rc2OD+\nx5ZZ3M4C8ND9jzA2Ps7STo6HHlwgPzW1d+x4oXYJPbe6RGnJUbh0GIO3pI4ay+XI5Sb2trPZLLnc\nBGO53L7Hb5U3eDjzVXYqK47CpQNYYU1S3xlvJLI5fUzal8FbkqSUMXhLkpQyBm9JklLG4C1JUsoY\nvCX1rWq1Smn9yrSxarXS6yZJfcGpYpLaKlmYZXNrE05Rnc9pY9L+DN6S2ipZmKW5EMtJjCfrn2+2\nqZFSynnZXFLbNQqzHFSIRdLpOPKWlArJ+9+ApVM11I4UvEMIzwbeFmN8UQjhu4APAFXgy8BrY4y7\nIYRXArcAO8CtMcYLIYQ88GFgDlgFbo4xXu5APyQNuOT9b8B74BpqLS+bhxB+EXgvMF7f9Q7gfIzx\n+cAI8LIQwhOB1wHXAy8G3hpCyAGvBu6pH/sh4I3t74KkYdG4/23pVA27o9zzvhf4UWqBGuAZMca7\n6tt3ADcAzwIuxhi3Y4wr9XOeDjwHuLN+7J31YyVJ0im0DN4xxo9SuxTeMJLYXgVmqC30vHzA/pWm\nfZIk6RROkrBWTWxPA0vUAnQxsb+4z/7Gvpbm5oqtDxpgveh/pVJhaenKxzM6us3ExBiThXEm8lnG\nckffBo59zkS+tt7zac5vZ1t6cX6j/+18/170JT+ZY2x1i2x2jLHRDJnsKNls7asm+bh5G9h3/37b\nAGOZDBOTYxQK4+TzOTJj2SNvA8c+p53n7/dawMD0pfG4Wslx7lyRs2dbf6cN+/f+cZ0keP9FCOEF\nMcbPAjcCnwY+D7wlhDAOTABPo5bMdhF4CfCF+rF37f+SV7t0afUEzRoMc3PFnvR/YWGe3/vSH1KY\nrs3JfezBRynOTjM2nmejvM3oTpXS+uaRtoFjn7NR3mYqN3aq89vZll6c3+h/O9+/W30plbbYWS8x\nmh1naWmVnZ0K29s77FQrjGxn2N6uXbxLPm7eHiO77/79tgF2KhU2NndYX9+kXN4ikxk58jZw7HPa\nef5+rzVVzA1MXxqPS6UtLl9epVo9fMpgr773+sVJfrgcJ3g3yiT9AvDeekLaV4Db69nm7wTupnYp\n/nyMcTOE8B7ggyGEu6mVV3jFsVuorilMTzE1U/sjWl9Z63Fr1O+SldRWVpZ5aGmjbYVZJB3uSME7\nxng/tUxyYoxfA164zzG3Abc17SsDLz9tIyX1n/0qqVmYReoOK6xJOjErqUm9YYU1SVJHVKsVFhcX\n9x7PzJwhk8n0sEWDw+A9xCqVCsvLtQzzxcVFqqdY/UmSmpVLa1y4OM/suWspra1w0w3XMTt7ttfN\nGggG7yG2vLy0l2HeyC6vzf6T+l/zWt/WOe9Pk4Vppopnet2MgWPwHnKNDHOzy5U2B631Xa1W2Cyv\nsJafMKhrYBm8JaXWfmt9b5TW+SZfZaUy5+IlGlhmm0tKvasuoa+vkmsEdRcv0YBy5D1kTFLTIEpe\nQn9o936mts3d0GAzeA8Zk9Q0qBqX0McLE71uitRxXjYfQo0ktUKx0OumKGWqu7ts1Euibm5tgldu\npJ5w5C3pyPYriSqp+xx5SzoWS6JKvWfwljSwmgu5VKuVXjdJagsvm0saWAcVcpHSzpG3pIE27pxv\nDSBH3pKGQvISOmDpVKWawVvSUEheQge8jK5UM3hLOlB1d5et+rxuIPVzuxuX0IGr6qFLaWPwHgKW\nRNVJJed1A87tlvqEwXsIWBJVp9GY193YHkQuI6q0MXgPCdftlg7mMqJKG6eKSbrKsNQvdxlRpZkj\nb0lXGZb65S4jqjRz5C3pcYalfrnLiCqtDN6SJKWMwVuSElzMRGngPW9JSnAxE6WBI29JauJiJup3\njrwHlFXV1Eqy9Ol6qcTY+NjATw+TBoXBe0BZVU2tXDUl7P5HGBsfZ2knN9DTw46r+f63ldfULwze\nA8yqamolOSUsm80OxfSw4/D+t/qV97wl6RDe/1Y/MnhLkpQyXjaXpCNI3v8GvAeunjJ4S9IRJO9/\nA94DV08ZvCXpiBr3vwEm1ldgs8cN0tDynrckSSnjyHuAWJhF6h7ngKuXDN4DxMIsUvc4B1y9ZPAe\nMBZmkbpnbw64979bqlYrLC4u7j2emTlDJpPpYYvSzeAtDZFkPXNrmKubyqU1LlycZ/bctZTWVrjp\nhuuYnT3b62allsFbGiJX1TO3hrm6bLIwzVTxTK+bMRDMNpeGTLKeuaR0OvHIO4Tw58By/eHXgbcC\nHwCqwJeB18YYd0MIrwRuAXaAW2OMF07VYknqY9Vqhc3yCmv5CbPQ1TEnCt4hhAmAGOOLEvv+N3A+\nxnhXCOE9wMtCCH8CvA54JpAHPhdC+GSMcev0TZek/pCcNrZw6RHmJx9gpXKtWejqmJOOvP8hMBlC\n+Hj9NX4ZeEaM8a7683cAPwRUgIsxxm1gO4RwL/B04Iuna7ako0gmqAEmqXVIctrYQ7v3M5WbNgtd\nHXXS4L0O/KcY4/tCCN8N3Nn0/CowQ22S8fI++yV1QTJBDTBJrYMa08bGCxO9boqGwEmD998C9wLE\nGL8WQpgHvjfx/DSwBKwAxcT+IrBIC3NzxVaHDLST9n90dIv8pRyThXEm8lnGcmMn2gZ6cj7Qlvfv\nh76c5PxG/9v5/vnJHBP5PIVCvR73RJ5MdpRsdoyx0cyxtoFjn3Oc84G+aUvbzs9kmJgco1AYJ5/P\nkRnLPm4bIJ+vJQ8edlyr849zTjvPP8lrVSs5zp0rcvbsle+6Yf/eP66TBu+foXb5+7UhhL9HLSh/\nIoTwghjjZ4EbgU8DnwfeEkIYByaAp1FLZjvUpUurJ2xW+s3NFY/c/2Q5VKiVRF1f3yST3WSjvM3o\nTpXS+vG3gZ6cP5Uba8v790NfTnJ+o//tfP9yaYudSoXt7R0AdqoVRrYzbG/vHHu70+ePke2btrTt\n/EqFjc0d1tc3KZe3yGRGHrcNUC5vMVXMHXpcq/OPc047zz/Ja5VKW1y+vEq1mjv2994gOskPl5MG\n7/cB/zWE0LjH/TPAPPDeEEIO+Apwez3b/J3A3dSmpZ03Wa19kuVQAUuiSn3G+ufqlBMF7xjjDvBT\n+zz1wn2OvQ247STvo9Ya5VABS6IKsIpaP7H+uTrFCmvSAEgG7JWVZR5a2rCKWp+w/rk6weAtDYD9\nyp5aRa2/eAld7WTwlgaEZU/7m5fQ1U7WNpekLtm7hF7I97opSjmDtyRJKWPwliQpZbznLaWUU8Kk\n4WXwTplkVbXFxUWqfmEPrf0yzCUNB4N3yiSrqllRbTgkR9jlcpn8WGHvOTPM0yk5bQygtLbCpEls\nOgaDdwo1qqpZUW04JEfYjz04T3iq/2zTLjltDGB+91EKpQLF6WupVitslldYy084H1wH8ltASoHG\nCDs75gh7UDSmjQHkVpcordVG4guXHmF+8gFWKtc6H1wHMnhLKbK7u8vWxqZJagNmq7zBN/hr1ioL\nPLR7P1O5aUuq6lAGbylFdirb/N3Dy6xnpkxSGzDjhdpIfLww0eumKAWc5y2lTDabNUltSDTXQ69W\nK71ukvqEI29J6lPJxLZLlYd50qXAZKFgIpsM3pLUzxqJbaOPjbiwifYYvKU+k5zXDZiYpj2uDa4G\ng7fUB6q7u5TLG4xmy6ysLPPQ0gaL21kAE9MkPY7BOwUsiTr4Njc2uO/hVabP7u4F61yulnVsYpqk\nZgbvFLAk6nAYGxs3i1zSkRi8U8KSqIOneVUwr6foqParjW72+XAxeEs90rwq2NQ1Xk3R0exXG93s\n8+FikRaph1wVTCfVyDzPF6fI5cct5jJkHHlLUsolR+KOwoeDI2+pi6q7u2wk7nM7f1vtsjcH3HXB\nh4Ijb6mLmu9zO39b7dZcD70fE9mq1QqLi4t7j2dnJ3vYmnQyePcp53YPjuas8jEXFlEHpeESerm0\nxoWL88yeu5bS2gqvOlcE/PdwHAbvPuXc7sHhaFvdloYyqpOFaaaKZ3rdjNTynncfa8ztLhQLvW6K\nTsmsckntZPCW2iCZiFYul73Nob7geuCDy8vm0gkl72UnFxN57MF5wlP9p6Xecz3wweU3jHRC+93L\nzuUmyI55aVz9w/XAB5PBWzqF/e5l7+7usrWx6Xrc6jtpSGTT0Ri8pTbbqWzzdw8vs56pZZWbYa5+\n48Im6WfwljogW5/LDa7Hrf7jwibpZ/CWjqG54IqXw5VWjUvogJfRU8jgLbVwUFa5l8M1KJKX0ddW\nlshkckzkJ7yc3scM3lKTZLAG9g3YFlzRIEleRn+odD/Z8SxrlW/xcnofM3hLTZJTwAADtoZC4zL6\neGGCbC4GI7k+AAAGuElEQVRnVnqfM3j3kUqlwvz8PAsLqy5G0gXJEfZ6qcTY+NjjFg8BE840vNKw\nQtmwMnj3keXlJT5+3ycYHcu5GEkbJYN0uVwmP1arFX9VkZX7H2FsfJylnZz3sqW6NKxQNqwM3n2m\nMD1FJjvO+spar5syMJJB+rFvXuY7vqXC9Jnpxy3PmXWpTulxGpfTc6tLlJYchfcLg7cGwkGj64ZG\nJTRGRvYKqDjClo7OUXh/6XjwDiGMAr8FPJ1a6sPPxhjv6/T7avAduDBIYnQNjy9P6ghbOhlH4f2j\nGyPvHwZyMcbrQwjPBt5e3yftqe7uUi5vMJqtTc9KJpAdtH3QFK7k6BosTyq120GrlQHOE++SbgTv\n5wB3AsQY/zSE8H1deE91yEEZ2s2Xqg867rBA/NjaJjPnaiPkqxLIDto+ZAqX5UmlztpvtTLgqnni\nLkPaOd0I3tPASuJxJYQwGmOs7nfwHXfcwfJybfT1lKd8Rxea1z+Wl5eYX7vMyFiWhcsLZHIZgCNt\nH/W4077Wow8/woPzq8w8sspjDzzA2HiO2UfXWHj4UZ767WcZHRk59LjDtgvTRXLj60Dtl321WqW8\nut5ye3l+ntLyCmPjucdtAwc+d5Ttbp5f2d4im23v+6fpv8V+/U9rX07yWsfpfz/2ZWurNiG8srPF\nSAa2tjbZWF3l3srnWbh0PyvLl3nC4t9nd3eH+UcfYnQsR6WySXltlfvuy1OtZo/2RTkgvvM7v+tU\n53cjeK8AxcTjAwM3wI033jjS+Sb1rxfzol43QZLU50a78B4XgZcAhBB+APirLrynJEkDqxsj748B\nPxhCuFh//DNdeE9JkgbWyK4lOCVJSpVuXDaXJEltZPCWJCllDN6SJKWMwVuSpJTp6cIkIYQ88GFg\nDlgFbo4xXm465ueBH68//KMY4692t5Xt16reewjhnwJvAnaA98cYb+tJQzvkCP3/CeD11Pr/JeA1\nMcaByaw8ar3/EMLvAPMxxl/qchM75gif/bOolVAeAR4E/kWMcasXbe2EI/T/R4DzwC61f/v/pScN\n7aB6mey3xRhf1LR/oL/3Gg7p/7G+93o98n41cE+M8fnAh4A3Jp8MITwVeAXwj2KMPwD8UAjhuu43\ns+326r0D/47alxUAIYQs8A7gB4EXALeEEK7tSSs757D+54H/ALwwxvhcYAZ4aU9a2TkH9r8hhPBz\nwD+g9iU+SA777EeA3wF+Osb4PODTwKCVWWz12Tf+7T8H+IUQwkyX29dRIYRfBN4LjDftH4bvvcP6\nf+zvvV4H77265/X/v6Hp+W8AL078+sgC5S61rZOuqvcOJOu9Pw24N8a4HGPcBj4HPL/7Teyow/q/\nQe3H2kb98RiD8ZknHdZ/QgjXA98P/Da1EeggOazv3wPMA/8mhPB/gDMxxtj1FnbWoZ89sA2cAfLU\nPvtB+/F2L/CjPP7vehi+9+Dg/h/7e69rwTuE8C9DCF9K/o/ar4tG3fPV+uM9McadGONCCGEkhPAb\nwJ/HGO/tVps7aN9674nnlhPPPe6/ywA4sP8xxt0Y4yWAEMLrgEKM8VM9aGMnHdj/EMKTgDcD/4rB\nC9xw+N/+OeB64F3Ufsj/4xDCoNULPqz/UBuJ/xnwZeAPYozJY1MvxvhRapeFmw3D996B/T/J917X\n7nnHGN8HvC+5L4Twv7hS97wILDWfF0KYAN5P7YN9TYeb2S2H1XtfbnquCCx2q2Fdcmi9+/qX2a8D\n3wX8WJfb1g2H9f8makHsj4AnApMhhK/GGD/U5TZ2ymF9n6c2+ooAIYQ7qY1MP9PdJnbUgf0PIXw7\ntR9tTwZKwIdDCDfFGG/vfjO7bhi+9w513O+9Xl8236t7DtwI3JV8sn4P7PeBv4wxvnqAkpYOq/f+\nN8B3hxCuCSHkqF06+n/db2JHtap3/9vU7gn9SOIy0iA5sP8xxnfFGL+vnszyNuB/DFDghsM/+68D\nUyGE76w/fh61EeggOaz/E0AF2KwH9MeoXUIfBsPwvdfKsb73eloetX6T/oPAk6hlXr4ixvhYPcP8\nXiAD/C61D7FxCfGXYox/0ov2tkv9R0kj4xRq9d6fCUzFGN8bQngptUuno8D7Yozv6U1LO+Ow/gNf\nrP8v+UPuN2OMv9fVRnZQq88/cdzNQIgxnu9+KzvjCH/7jR8tI8DFGOPP96alnXGE/v88tSTdDWrf\nga+MMe53mTm1QghPofaj9Pp6hvVQfO817Nd/TvC9Z21zSZJSpteXzSVJ0jEZvCVJShmDtyRJKWPw\nliQpZQzekiSljMFbkqSUMXhLkpQy/x/M6EvFzSgBTAAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x174e0ac8>" | |
] | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"t1 = pm.rnormal(0.3, 1/(0.1)**2, size=1e4)\n", | |
"t2 = pm.rnormal(0.55, 1/(0.1)**2, size=1e4)\n", | |
"plt.hist(t1, bins=bins, alpha=0.5)\n", | |
"plt.hist(t2, bins=bins, alpha=0.5);" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFVCAYAAAAg8ayaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuQZOdZ3/Hv9G2mr7M7l5UUY2Qb4xdVZQVIlk2ELlax\nxjillASIooA42AUSBkfIBMoVFmJXEjl2YSwqctkEtHbEpUISbSw5aJElyzKWtASEwIYVll9rbS9o\nV3uZme7p+0z39On8cbpXZ2Zn+jLTl9Pdv0/V1p7uc5nnnZ7up9/z3qbq9ToiIiLiT4FhByAiIiI7\nU6IWERHxMSVqERERH1OiFhER8TElahERER9TohYREfGxUCcHGWMOAH8D/BAQBx4FvtHY/Slr7UPG\nmDuBu4AN4F5r7bE+xCsiIjJRptqNozbGhIH/DVwF3AbcCKSstfd5jrkceAK4FogCzwJvttZW+hS3\niIjIROikRv0x4HeBX288vgYwxpjbgJeA9wNvAY5ba6tA1RhzErgaeL73IYuIiEyOlm3Uxph3A0vW\n2ic8Tz8H/Jq19mbgW8CHgCSQ9RyTB2Z7G6qIiMjkaVejfg9QN8YcAr4P+APgNmvt+cb+h4FPAE/j\nJuumJJBpdeF6vV6fmpraVdAiIiIjquvE17aNuskY8yXgvcCDwC9ba//aGHM38Brgd4AvANcBM8Bf\nAt/bpo26vrSU7zbesbG4mETlV/kn0SSXHVR+lT/ZdaLuqNe3Rx03WX/SGFMFzgJ3WWsLxpj7gWdw\nb6cfVkcyERGRves4UVtrb/E8vGGb/UeAI70ISkRERFya8ERERMTHlKhFRER8TIlaRETEx5SoRURE\nfEyJWkRExMeUqEVERHxMiVpERMTHlKhFRER8TIlaRETEx5SoRUREfEyJWkRExMeUqEVERHxMiVpE\nRMTHlKhFRER8TIlaRETEx5SoRUREfEyJWkRExMeUqEVERHxMiVpERMTHlKhFRER8TIlaRETEx5So\nRUREfEyJWkRExMeUqEVERHxMiVpERMTHlKhFRER8LNTJQcaYA8DfAD8EOMCDjf9fAN5nra0bY+4E\n7gI2gHuttcf6ErGIiMgEaVujNsaEgd8DisAUcB9w2Fp7U+PxbcaYy4G7geuBdwAfMcZE+ha1iAxM\nrVYjnV65+K9Wqw07JJGJ0smt748BvwucbTy+xlr7dGP7MeAQcB1w3FpbtdbmgJPA1b0OVkQGL5td\n5ZETj/KFf/xzHjnxKNns6rBDEpkoLRO1MebdwJK19onGU1ONf015YBZIAdltnheRMRBPJUjMJomn\nEsMORWTitGujfg9QN8YcAr4P+ANg0bM/BawCOSDpeT4JZNr98MXFZLtDxprKr/KPgkCgQnQpQiw+\nTa26zsJCkvn5vcU+KmXvF5V/ssvfrZaJ2lp7c3PbGPMl4L3Ax4wxN1trvwy8E/gi8BzwYWPMNDAD\nXIXb0aylpaX8HkIfbYuLSZVf5R92GB1Jp/OUSxWC4XXKpQrLy3kcp3UXlFqttukW+ezsPoLBIDBa\nZe8HlV/l71ZHvb496sCvAg80Oot9DTja6PV9P/AM7u30w9baStfRiMjQtEqu3Z7TbNeOpxIUcwVu\nP3grc3PzfYtdZJx1nKittbd4Hr5tm/1HgCM9iElEhsCbXPOZHLdceSP79+8nk8ng1Ottz9makJvt\n2iKyN93WqEVkxLWqOTeTazFX4PFvPsX84jwXzpwnOZfC7ZJyKSVkkf5SohaZMJ3elo4lYheTtogM\njxK1yARSLVhkdChRy8TZTacpac+pOWQy7qjMVu3aItIdJWqZONnsKkefPEEskaJUyHHHoYPqkdwD\n5WKJx9OdtWuLSOeUqGUixRIpEsl9OE7tYi0QVLveK7Vri/SeErVMtHKpwLHjK8wtHFDtWkR8SYla\nJl4s7tauRUT8qJPVs0RERGRIlKhFRER8TIlaRETEx9RGLWOj1fho775MJkNdY3xFZEQoUcvYaDU+\n2rtv+dxpErMLJDXEV0RGgBK1jJXm+OhW+4qFbNvrbK2dg8ZYi8hwKFGLbMNbAwc0xlpEhkaJWmQH\nrWrn40Lzc4v4nxK1yAQbxPzc3i8DAHNzsZ5eX2TcKVGLTLh+z8/t/TJQzBX4+YWfAiJ9+Vki40iJ\nWsbS1sU2NCRruJpfBkSke0rUMpa8i20AGpIlIiNLiVpGTquJTby8i210MiSrn7GMi63tzeqAJtJ/\nStQyclpNbDLJsQyCt70Z6FsHNBF5lRK1jKR+DJ3ytmt306Y9CcO4vLztzf3qgCYir1KiFmnwtmur\nTVtE/EKrZ4l4NNu1own1UBYRf1CiFhER8bG2t76NMUHgAeBNQB14L+5sBY8C32gc9ilr7UPGmDuB\nu4AN4F5r7bG+RC3SsNt2ZRGRUdFJG/WtgGOtvcEYczPwYeBPgY9ba+9rHmSMuRy4G7gWiALPGmO+\nYK2t9CFuEUDtyp3YOoRMQ6pERkvbRG2t/Zwx5tHGw9cBq7jJ2BhjbgNeAt4PvAU4bq2tAlVjzEng\nauD5fgQuk8WbbLbWnJvtyv0aKz3qstlVHjnxKPFUAtCQKpFR01Gvb2ttzRjzIHA78BPAa4AHrLVf\nMcYcBj4EfBXwflLmgdnehiuTyjteWTXn7sVTCQ2pEhlRHQ/Psta+2xhzGfBXwPXW2lcaux4GPgE8\nDXi7yiaBDC0sLk52z1qVv/PyBwIVFg4skEztx6mVCYbCxOPTRKORtttAR8e1On+jGiQQqBIIuC05\n+/a5M5AFAhVisQjx+DROLcLCQpL5+c7KNajXPxCoEF2KEGuUZSYaJhQJEYtP72l7N9eqVdcHWna/\nUvknu/zd6qQz2buA77DWfgQoAw7wWWPM3dbavwYO4d7efg74sDFmGpgBrgJeaHXtpaX8HsMfXYuL\nSZW/i/Kn03lKpQqB4DrlcoVgcIpisbNtoOtztp6/spzmD//vWeYWDmyagcwbV6lUYXk5j+O0Xxlq\nkK9/Op2nXKoQDLtlWStXCWw4lIrre9rezbXKJfeLjv72Vf5JtZsvKZ3UqI8CDxpjvgyEgXuAfwI+\naYypAmeBu6y1BWPM/cAzuMO+DqsjmYwT79zhIiKD0klnsjLwk9vsumGbY48AR3oQl4iIiKAJT0RE\nRHxNc32LdEmTrIjIIClRi3RJk6yIyCDp1rfILmjxDhEZFNWoRcbQ1pncNGWoyOhSohYZQ95pQzVl\nqMhoU6IWX9puIQl12upOc9pQTRkqMtqUqMWXvHN7A+q0JSITS4lafCuWeHUmMK2MJSKTSr2+RURE\nfEyJWkRExMd061tEfGFrB8LZWXcpUZFJp0QtIr7gHVJWzBW4/eCtzM3NDzsskaFTohYR32gOKROR\nV6mNWkRExMeUqEVERHxMiVpERMTHlKhFRER8TIlaRETEx9TrW0QGxqk5pNNpHCd88TmNlxZpTYla\nRAamXCzx8N8/RqyxuorGS4u0p0QtIgMVT8WJpzRWWqRTStQiMjROzSGTyQDumuOO1hwXuYQStYgM\nTblY4vH0U8wvznPhzHmScylAi46LeKnXt4gMVSwRIzGbJJ6MDzsUEV9SohYREfGxtre+jTFB4AHg\nTUAdeC+wDjwIOMALwPustXVjzJ3AXcAGcK+19lif4hYREZkIndSobwUca+0NwG8C/wX4OHDYWnsT\nMAXcZoy5HLgbuB54B/ARY0ykP2GLiIhMhraJ2lr7OeAXGg9fB2SAa621Tzeeeww4BFwHHLfWVq21\nOeAkcHXPI5axVavVSKdXSKdXyGQy1NUDWESks17f1tqaMeZB4HbgJ4C3e3bngVncrprZbZ4X6Ug2\nu8rRJ08QS6RYPneaxOwCSXUA7litViObXQU01ElknHQ8PMta+25jzGXAc8CMZ1cKWAVygHcWgyRu\n7XtHi4uTPemByr+5/IFAhYUDCyRT+3FqZYKhMPH4NADRaOTi4263B3W+U4uwsJBkfr6z17XXr//K\nygqPf/MJ4qkEF06fIzU/Syw+zUw0TCgSItYoi/fxXrZ3ey2g7fm16npXv8tRo/f+ZJe/W510JnsX\n8B3W2o8AZaAGPG+Mudla+2XgncAXcRP4h40x07iJ/CrcjmY7WlrK7zH80bW4mFT5t5Q/nc5TKlUI\nBNcplysEg1MUi+sAmx53uz2o80ulCsvLeRwnsql2C5fOZ92P1z+dzhMIRQiGpwmEIpRKFUrFddbK\nVQIbDqVGWbyP97K922slIqG255c9v8txo/e+yt+tTmrUR4EHjTFfBsLAPcDXgQcancW+Bhxt9Pq+\nH3gGt+37sLW20nVEImPAexu/VMhxx6GDms9aRHalbaK21paBn9xm19u2OfYIcGTvYYmMHsepbZoO\nMxpPkkjuG3JUIjLqNIWoSI+USwWOHV9hbuGAOsOJSM9oZjKRHorFUySS+4gm1FlGRHpDiVpERMTH\ndOtbZIRp7LTI+FOiFhlh2ewqj5x41B07rWUiRcaSbn2LjLh4KqFlIkXGmGrUMlRbb91qfm8Rkc2U\nqGWoNL+3iEhruvUtQxdLaEiTiMhOVKMW6TPvjGVNc3OxIUUjIqNGiVqkz7wzlgGUCjneu5AExm/B\nCRHpPSVqkQFozlgmItIttVGLiIj4mBK1iIiIjylRi4iI+JgStYiIiI8pUYuIiPiYen2LiK95p5kF\nmJ3dRzAYHGJEIoOlRC0ivuZdIayYK3D7wVuZm5sfdlgiA6NELSK+11whTGQSqY1aRETEx5SoRURE\nfEyJWkRExMeUqEVERHxMiVpERMTHlKhFRER8TIlaRETEx1qOozbGhIHPAFcC08C9wGngUeAbjcM+\nZa19yBhzJ3AXsAHca6091reoRWSsOTWHTCYDQCaTwanXhxyRyPC0m/DkZ4Ala+27jDH7gb8D/iPw\ncWvtfc2DjDGXA3cD1wJR4FljzBestZU+xS0jrFarsbKyQjqdJ5PJUJ+wD2HHqZFOp3GcMND9lJje\nKTXHNYmViyUeTz/F/OI8F86cJzmXAlLDDktkKNol6oeAo43tAFDFTcbGGHMb8BLwfuAtwHFrbRWo\nGmNOAlcDz/clahlp2ewqx/7CMhWYYfncaRKzCyQn6DO4XCrw0Be+RjS+j1Ihxx2HDnY1JaZ3Ss1x\nTmKxRIzEbJJirjDsUESGqmWittYWAYwxSdyk/RvADPCAtfYrxpjDwIeArwJZz6l5YLbdD19cnOwp\nASe1/IFAhXgiRTK1H6dWJhgKE49PE41Gtt0GdtzXyfawz9/+WhEOXHYZ+VyEhYUk8/Od/y0EAhUW\nLp8juS9FrbpOKBIiFp9mJhpuuw10dFw/rwXs+vxadb3r35cfTep7v2nSy9+ttnN9G2NeC3wW+KS1\n9n8aY2attc2k/DDwCeBpwPubTwKZdtdeWsp3H/GYWFxMTmz502m33MXiOuVyhWBwquU20NFxfj1/\nu2slkhGKxXVKpQrLy3kcJ9LV769cqhAMr7NWrhLYcCgVO9sGuj6n19dKREK7Pr+8i9+X30zyex9U\n/t18SWnZ69sYcxnwBPABa+2Djac/b4y5rrF9CPf29nPAjcaYaWPMLHAV8ELX0YiIiMgm7WrUh3Fv\nYX/QGPPBxnPvB37HGFMFzgJ3WWsLxpj7gWdwk/9hdSQTERHZu3Zt1PcA92yz64Ztjj0CHOlRXCIi\nIoImPBEREfE1JWoREREfU6IWERHxMSVqERERH1OiFhER8TElahERER9TohYREfExJWoREREfU6IW\nERHxMSVqERERH1OiFhER8bG2y1yKyHDVajWy2dWLjzOZDE69PsSIRGSQlKhFfC6bXeWRE48STyUA\nuHDmPMm5FJAabmAiMhBK1CIjIJ5KkJh1F5wv5gpDjkZEBklt1CIiIj6mGrWIjAyn5pDJZDY9Nzu7\nj2AwOKSIRPpPiVpERka5WOLx9FPML84DbjPA7QdvZW5ufsiRifSPErUMhLfnciaTwXHqBFQJkl2I\nJWIX2+u31rBVu5ZxpEQtA5HNrnL0yRPEEimWz51m8YorCIXjww5LRpy3hq3atYwrJWoZmFgiRSK5\nj2IhO+xQZIx4a9gi40i9vkVERHxMNWrpm63t0nXNpiUi0jUlaumbre3SidkFkppMS0SkK7r1LX3V\nbJeOJtSGKCKyG0rUIiIiPqZELSIi4mMt26iNMWHgM8CVwDRwL/Ai8CDgAC8A77PW1o0xdwJ3ARvA\nvdbaY32MW0REZCK0q1H/DLBkrb0J+BHgk8DHgcON56aA24wxlwN3A9cD7wA+YoyJ9C9sERGRydCu\n1/dDwNHGdgCoAtdYa59uPPcY8MNADThura0CVWPMSeBq4PnehywiIjI5WiZqa20RwBiTxE3avwn8\ntueQPDCLu4J9dpvnW1pcnOyewONe/kCgQiwWIR6fJhqNEAyFL24D2z6/3TbQ0XF+PX+7azXL79Qi\nLCwkmZ/f+W8hEKgQXYoQa5w/Ew0TioSIxae73t7r+b24FtCXstSq621/l34x7u/9dia9/N1qO47a\nGPNa4LPAJ621f2KM+S3P7hSwCuQA728+CWxei24bS0v57qIdI4uLybEvfzqdp1SqEAiuUy5XCAan\nKBbd7UQycnHb+/x220BHx/n1/O2u1Sx/qVRheTmP4+zcUpRO5ymXKgTD7vlr5SqBDYdScb3r7b2e\n34trJSKhnsSy9fxyB79LP5iE934rKn/3X1JatlEbYy4DngA+YK19sPH0V4wxNze23wk8DTwH3GiM\nmTbGzAJX4XY0ExERkT1oV6M+jHsL+4PGmA82nrsHuL/RWexrwNFGr+/7gWdwk/9ha22lX0GLiIhM\ninZt1PfgJuat3rbNsUeAI70JS0REREBzfYv40tYFTRwtaCIysZSoRXwom13lkROPEk8luHDmPMm5\nFG7fTRGZNJpCVMSn4qkEidkk8WR82KGIyBApUYuIiPiYbn2LDJHj1MhkXp1yYHZ2H8FgcIgRiYjf\nKFGLDFG5VODY8RXmFg5QKuS449BB5ubmhx2WiPiIErXIkMXiKRLJfZtq1+rpLSJNStQiPuGtXS+f\nO82+71lDPb1FRJ3JRHykWbuOJrRogYi4lKhFRER8TIlaRETEx5SoRXzIcWqsra9RLpcpl8vqWCYy\nwdSZTPbEOyc1aBxwr6yVipw9kyFTDXPhzArmDXqrikwqvftlT7LZVY4+eYJYIkUhl+Ht113J/v37\nAXeIUV01wV0LhaeJRGYIhyLDDkVEhkiJWvYslnB7KhcLWY4dP8ncwgEAls+dJjG7QFIjjEREdk2J\nWnqqObwIoFjIDjkaEZHRp85kIiIiPqZELSIi4mNK1CIiIj6mNmoRn3CcGuvlHIXoDKVinnpMPeZF\nRIlaxDfWSkVO8yK52iKv1E+RqKq7/G5pfL+MEyVq6Zr3Q1BjpXtrOh4jmkwwHZ8ZdigjLZtd5ZET\njxJPJSjmCtx+8Fat8y0jS4lauuad5ERjpcUvnJqzaT3vaDJOYlarkMnoU6KWXfFOciLiB+ViicfT\nTzG/OM+FM+dJzqXQet4yDtTrW0TGRiwRIzGbJJ6MDzsUkZ5RohYREfGxjm59G2PeCnzUWnuLMeb7\ngT8FXmrs/pS19iFjzJ3AXcAGcK+19lhfIhYREZkgbRO1MeYDwL8GCo2nrgXus9be5znmcuDuxr4o\n8Kwx5gvW2krvQxYREZkcndSoTwI/BvxR4/G1wJuMMbfh1qrfD7wFOG6trQJVY8xJ4Grg+d6HLCIi\nMjnatlFbaz+Lezu76a+AX7PW3gx8C/gQkAS83X/zwGwP4xQREZlIuxme9bC1tpmUHwY+ATyNm6yb\nkkCm3YUWFyd7jOOolj8QqBCLRYjHp4lGIwRD4Uu2gR33RaMRgJbnd3Mtv5+/3bW2K/9MNEIoFCQc\nDhEKBAmGA+52KEB0JkKscf5MNEwoEiIWn+56e6/n9+JawEDLUquus7CQZH7eP++3UX3v98qkl79b\nu0nUnzfG/LK19q+BQ7i3t58DPmyMmQZmgKuAF9pdaGkpv4sfPx4WF5MjW/50Ok+pVCEQXKdcrhAM\nTlEsbt4GdtxXLldIJCPbPr+ba/n9/O2u1Sx/sVimup6nXg+SXl6hurhBtbrBhlNjqhp0tzccymsV\nSo3z18pVAhsOpeJ619t7Pb8X10pEQgMtS7lUYXk5j+NEBvH2aGuU3/u9oPJ3/yWlm0TdnCfyvcAn\njTFV4Cxwl7W2YIy5H3gG93b6YXUkE2lP83uLSDsdJWpr7Sng+sb23wE3bHPMEeBIL4MTmQTt5veu\n1+tU1tYpl8sAlMtloiFN6CEyKTSFqIjPbdSqfPtslmIwAcCFMyuYN+itKzIp9G4XGQHhcJhIxK1x\nh0P+aGsVkcHQFKIiIiI+pkQtIiLiY0rUIiIiPqY2apEBc5waxUKWej1IqZinHqu3P0l2zak5ZDKv\nzr80O7uPYDA4xIhEuqNELTJga6Ui50LfIDkzp7HTA1Aulng8/RTzi/MUcwVuP3grc3Pzww5LpGNK\n1CJD0G7stPRWLBEjMatpK2U0qY1aRETEx5SoRUREfEyJWkRExMeUqEVERHxMiVqkDxynRqmQo5Bf\npVTI4Ti1YYckIiNKvb5F+sC7fOVK/TyvL10z7JBEZEQpUYv0SXMIViS/Smk1TyG/CuBOcpJyhhyd\niIwKJWqRPquU1zgbfJGNWg6AV+qnmN3YN+SoRGRUKFGLDMB0LEo06a4nvddJTur1OpW1dcrlMuVy\nmWgo3osQRcSnlKhFRsxGrcq3z2YpBhNcOLOCeYPexiLjTL2+RUZQOBwmEpkhHIoMOxQR6TMlahER\nER/TPTPpSK1WI5t1ey1nMhnqdS3NKCIyCErU0pFsdpWjT54glkixfO40idkFklqdUUSk75SoZUdb\na9HReJJEch/FQnbIkYnsjlNzyGQym56bnd1HMBgcUkQi7SlRy45Ui5ZxUy6WeDz9FPOL8wAUcwVu\nP3grc3PzQ45MZGdK1NJSLJFSLVrGSiwRIzGbHHYYIh1TopaLvLe6QZ3GRET8oKNEbYx5K/BRa+0t\nxpg3Ag8CDvAC8D5rbd0YcydwF7AB3GutPdanmKVPvLe6Ad3uFhHxgbbjqI0xHwAeAKYbT90HHLbW\n3gRMAbcZYy4H7gauB94BfMQYo5kYRlDzVnciuY9oQrcHRUSGrZMJT04CP4ablAGusdY+3dh+DDgE\nXAcct9ZWrbW5xjlX9zpYERGRSdM2UVtrP4t7O7tpyrOdB2aBFJDd5nkRERHZg910JvMupJsCVoEc\n4L1PmgQ2D1bcxuLiZN9a9Vv5A4EKsViEeNxt5YhGIwRDYeLx6a63250P9Oxafjx/JhohFAoSDocI\nBYIEwwHCYfftFgq4Y3a37utku3n+xX2hANGZCLH4NDPRMKFIqOU20NFx/bwW0JNYenF+rbrOwkKS\n+fnBvhf99t4ftEkvf7d2k6i/Yoy52Vr7ZeCdwBeB54APG2OmgRngKtyOZi0tLeV38ePHw+Ji0nfl\nT6fzlEoVAsF1AMrlCsHgFMXietfb7c5PJCM9u5Yfz18rV9gI1KhWN9hwakxVg1Sr7o2pDadGiPAl\n+zrZbp7ffFyt1siu5llZXiWTzhFNxokX11krVwlsOJS2bAM77ut2e7fXSkRCPYmlF+eXSxWWl/M4\nzuC61PjxvT9IKn/3X1K6SdTNcTq/CjzQ6Cz2NeBoo9f3/cAzuLfTD1trK11HIyJd0ZKXIuOvo3e1\ntfYUbo9urLUvAW/b5pgjwJEexiYiHdCSlyLjTctcioiI+Jjuk4mIcOnMfFqsQ/xCiVqkRxynxno5\nRyE6Q6mYpx7T9Kt+511NK5PJ8KWXnyU5m9RiHeIrStQiPbJWKnKaF8nVFnmlfopEVXOv+p13Na0L\nZ86TnEtpwQ7xHbVRi/TQdDxGNJlgOj4z7FCkQ83VtOLJ+LBDEdmWErWIiIiPKVGLiIj4mBK1iIiI\nj6kz2YTzDknJZDLU6+qp3A319BaRflOinnDZ7CpHnzxBLJFi+dxpErMLJNVZuWPq6S0i/aZELcQS\nKRLJfRQL2fYHyyXU03v8eMdXgyY/keFSohYR2cI7vlqTn8iwKVGLjCGnXqeyvka5XKZcLhMNaYxw\nt5rjq0WGTYlaZAytr61x6kKWTDWs5S9FRpyGZ4mMiXq9TmVtnXK5zHplnZCWvxQZC/qaLTImNmpV\nvn02SzGY4JUzaaKJxLBDEpEeUI1aZIyEG7XoUES1aJFxoRq1iEgLGqolw6ZELSLSgoZqybApUYuI\ntKGhWjJMaqMWERHxMdWoRbqkhThEZJCUqEW6pIU4RGSQdOtbZBe0EIeIDIpq1BNIa1CLiIwOJeoJ\npDWoRURGx64TtTHmb4HmAsbfAj4CPAg4wAvA+6y1qqr5lNagFhEZDbtqozbGzABYa29p/Ps54D7g\nsLX2JmAKuK13YYpIrzj1OmueJTAdNX2I+Npua9TfC8SMMY83rvEbwDXW2qcb+x8Dfhh4ZO8hikgv\naQlMkdGy23doEfiYtfbTxpjvBj6/ZX8BmN1TZCJD5B0rDVAq5Ign54Yc1e54l78EtATmHmjebxmG\n3SbqbwAnAay1LxljVoDv9+xPAqvtLrK4ONlT8g2r/IFAhVgsQjw+TTQaIRgKX7IN7Livk+125wM9\nu1Y/zqde5czUC5SmDgCQDp7ljbyZeHyamWiEUChIOBwiFAgSDAc63gYIBdwP9r2c39U5dYeXl/JU\npvMAnLmwykwi4R4XChCdiRCLTzMTDROKhDreBro+ZyYaBtjT+Xv9+Xs5P7tc5ekzzzC/sUAxV+Bn\n3vrjzM/v6/o9qM++yS5/t3abqN8DXA28zxjzz3AT8xPGmJuttV8G3gl8sd1Flpbyu/zxo29xMTm0\n8qfTeUqlCoHgOuVyhWBwimJx8zaw475Ottudn0hGenatfpy/Vq4QjE8TbtSog9PTrJU2Lu7bCNSo\nVjfYcGpMVYMdbwNsODVChPd0fjfnbDg1wqEIUwE3STIVolZ13H0bDuW1CqXiOmvlKoENp+NtoOtz\n1spVEpHQns7f68/f8/nhMMHwNIFQheXlPI7T3V2JYb73/UDl7/5Lym4T9aeB/26MabZJvwdYAR4w\nxkSArwHAAGw7AAALP0lEQVRHd3lt6RHveGnQbToRkVG0q0Rtrd0A3rXNrrftKRrpKe946VIhxx2H\nDmp5PhGREaPunmOuOV5a9sZxHErFPIX8qhbiEJGBUqIW6UClvMbZ4Its1HJaiENEBkqLcoh0aDoW\n1UIcIjJwqlGLiOzC1jHVoA6b0h9K1CIN3klOJqUd2jsZSrFUIjQduji1aDQUH3Z4vlYulng8/RTz\ni24HzWKuwO0Hb1WHTek5JWqRhrVSkdO8SK62ODHt0Bu1Kt8+m6UYTPDKqXOEpqdZ3YhoatEOxRIx\nErOavEP6S+/EMbJ13LTWmu7edDw2ce3Q4cZ0oqFI5OK2phYV8Q8l6jHiHTcNbFpr2nFqF9vTlMBF\nREaHEvWI89aiM5kM0Xjy4rhp71rT5VKBY8dXmFs4sCmBi4iIvylRjzhvLbpdAo7F3clPvAlcRHpD\nK2tJvyhRj4Hm7GNKwCLD4+0Fns/kuOXKG9m/fz+gpC17o0QtItIjzV7gxVyBx7/pJm0N25K9UqIW\nEemDZtLeekt8bi42xKhkFClRy0TYNJlJIUc8OTfskGRCeG+JF3MFfn7hpwANf5POKVHLRPBOZrJS\nP8/rS9cMOyRf885YplnK9k4To8heaFEOmRjNyUxm4tFhh+J7zRnLXjqzyskzK1Qq68MOSWRiKVGL\nyLY0S5mIP+jWt4wlb5s0sOMiG5O4EMdeOPU6lfU1yuUygG6LiwyAErWPbZ27uzkWc+tsZJoO9FLe\nNmlg0yIbjuNQKuYp5FdJL51jJfYyudqBiVmIYy/W19Y4dSFLphoG0OIdIgOgd5jPbE3CTz7/MvHk\nLKVCjjsOHWRubr6r2cgmydbacWQxSjSZANi0yEalvMbZ4Its1HJuco6kJm4hjm54O5atV9YJNW6J\nA7ot3iWn5pBOp3Ec94uOJkKRTihR+8x2Sbg5d7eXZiO7VDfLVE7HokrOHdq0FOaZNNFEYtghjaxy\nscTDf/8YsWTqktnLQIlbtqdE7UNKwrs3ictUDoJ3KcydeNuv1Xa9s3gqTjy1efYyQDOYyY6UqEeE\nlqkUv/O2X6vtujMaXy2d0DtpRGiZShkFoUjkkiFdW2vasZTudoh0Q4l6CGq1GisrK6TTeaDzdikt\nUymjaGtNOzEbIzk77Kj8R8tkyk6UqAdka2/u4/9wjkAotqk3t3TG27u7kFslGIwwo3HQQ7G1RziN\nJpmdeoqrl/jOts4J3myv3mmYpkyOniZqY0wA+BRwNbAO/Ly19pu9/Bmjamtv7sUrriCe2Lep7RnU\n/tyJTb27S6cIT4cp1F6jcdBDsFOP8L32FJ/UjmnbrbiVyWT40svPkmwsn6kOZ5On1zXq24GItfZ6\nY8xbgY83nhsr3m+4tVoNmCIYDGz72Pvtd7ve3N62Z2Di2p93WtXqkpnFtqx45e3dHY5E1NN7iHbq\nEb7d8/V6nTXPzGbFUonQdIhyubxpO5fL8srqmnu7/PQyr39NjdS+1MQkbW/t+sKZ8yTnUpd0Otta\n097ps6fV55Vq56Oh14n6B4HPA1hr/8oY8+YeX/8SW/9YYfs/UO/zuznf+wfunYhk+dxpAqHIpkTb\nfFzIZXj7dVeyf//+ljXlZtszMNLtz+2Sq/e4YiFLvR7cNDPYUu0sVywZYvH4pueBTft0i3t0bdSq\nnPynNOnKNACvnDpHaHqa1Y3I5u1GLTwSmYGpqYu1c2/Shu6nMB2lKVCbtetirnDxuZ1q2gAXzpwn\nGAldcus8m13lkROPEk8ldjymFd16H75eJ+oUkPM8rhljAtZaZ+uBX/3qV/n6178FwGtf+527fuGz\n2VU+/xffIBpz32zlUpEfuf5NzM7u27TP+/xuzk8vnycYijC7bz/p5fPEk/thyp1DOhCKMD3jfvB4\nH6eXzvFHn3t50zn75xdYOf8Ka8U4hXiBlfOvEAhFqNXc1Ym8j/eyvddr7eb8V/7xmyxN/yMp3Akc\nctllLst8D/X6xiXHpWMvE0/NspQ7TSyQolJZZy2f52TtOdJLpzY9D2y7LxwOU8rmCE1HyK6s7LgN\ndHRcv87f7lq1aoVwePCx9KMs3Z4/HZuhnC8C7ixxjuNQzhe33faeX84XKeXy/EOxwNnVCgDps+d5\nw3fOE5iaIr2cJhhxP0d22j5/9hxnVvLMnsvv6vydtrs5Z319hlKpsqvzl88u8b9e+iaz+/eRubBC\nfH+SUMT9GF9fXydY36BcLrO2vs6pU98mk8mQza6ytr5OoBzc8ZhWstlVvnTqGWZiUdZKZW553Y2X\nfI52Y3U1wcpKof2BY+S7vuuNezp/qpftocaYjwN/aa19qPH4ZWvta3v2A0RERCZMr5e5PA78SwBj\nzA8Af9/j64uIiEyUXt/6fhh4uzHmeOPxe3p8fRERkYnS01vfIiIi0lu9vvUtIiIiPaRELSIi4mNK\n1CIiIj6mRC0iIuJjA1uUwxgTBf4YWATywM9aa5e3HPMrwE82Hv6ZtfY/DSq+fmk3/7kx5l8B/wHY\nAD5jrT0ylED7oIOy/xRwD27ZTwC/ZK0dm96Nnc59b4z5fWDFWvvrAw6xrzp4/a/DnWZ4CjgD/Btr\nbWUYsfZDB+X/UeAwUMd97/+3oQTaR42ppD9qrb1ly/Nj+7nn1aL8XX32DbJG/YvA31lrbwL+EPhN\n705jzBuAnwb+hbX2B4AfNsYcHGB8/XJx/nPg3+N+MAFgjAkD9wFvB24G7jLGHBhKlP3RquxR4D8D\nb7PW3gDMArcOJcr+2bH8TcaYXwD+Oe6H9bhp9fpPAb8PvNtaeyPwReD1Q4myf9q9/s33/g8Cv2qM\nGavFP40xHwAeAKa3PD/un3tAy/J3/dk3yER9cR7wxv+Htuz/J+Adnm8VYaA8oNj6adP854B3/vOr\ngJPW2qy1tgo8C9w0+BD7plXZ13C/lK01HocYj9fbq1X5McZcD7wF+D3cWuW4aVX+NwErwL8zxvw5\nsM9aawceYX+1fP2BKrAPiOK+/uP2Ze0k8GNc+rc97p97TTuVv+vPvr4kamPMzxljTnj/4X5raM4D\nnm88vshau2GtTRtjpowxvw38rbX2ZD/iG7Bt5z/37POuwnHJ72XE7Vh2a23dWrsEYIy5G4hba58c\nQoz9tGP5jTFXAB8E/i3jmaSh9d/+AnA98AncL+0/ZIy5hfHSqvzg1rD/BngB+FNrrffYkWet/Szu\nrd2txv1zD9i5/Lv57OtLG7W19tPAp73PGWP+D9Bcpy0JrG49zxgzA3wG90X8pX7ENgQ5Xi03gHeR\nkuyWfUmg9Qz5o6VV2ZtteL8FvBH48QHHNgityn8HbrL6M+ByIGaMedFa+4cDjrGfWpV/BbdWZQGM\nMZ/HrXF+abAh9tWO5TfGfCful7QrgRLwx8aYO6y1Rwcf5sCN++deW91+9g3y1vfFecCBdwJPe3c2\n2qw+B3zVWvuLY9SpqNX8518HvtsYs98YE8G9/fP/Bh9i37Sb+/33cNtvftRzG2ic7Fh+a+0nrLVv\nbnQy+SjwP8YsSUPr1/9bQMIY812Nxzfi1izHSavyzwA1YL2RvC/g3gafBOP+udeJrj77BjaFaKMB\n/Q+AK3B7QP60tfZCo6f3SSAI/AnuC9a8Ffjr1tq/HEiAfdL4AtLs+Qnu/OfXAglr7QPGmFtxb4EG\ngE9ba393OJH2XquyA883/nm/sP1Xa+0jAw2yj9q99p7jfhYw1trDg4+yfzr4229+SZkCjltrf2U4\nkfZHB+X/FdwOtGu4n4F3Wmu3u1U8sowxr8P9Enp9o6fz2H/ueW1Xfnbx2ae5vkVERHxME56IiIj4\nmBK1iIiIjylRi4iI+JgStYiIiI8pUYuIiPiYErWIiIiPKVGLiIj42P8HPsemJ3oMJUMAAAAASUVO\nRK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x174d5c88>" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"model = pm.Model([observations, mu, tau, category, alpha, sigmas, centers])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"mcmc = pm.MCMC(model)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"mcmc.sample(100000, 30000)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [ 0% ] 861 of 100000 complete in 0.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [ 1% ] 1767 of 100000 complete in 1.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [- 2% ] 2668 of 100000 complete in 1.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [- 3% ] 3555 of 100000 complete in 2.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [- 4% ] 4444 of 100000 complete in 2.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-- 5% ] 5331 of 100000 complete in 3.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-- 6% ] 6220 of 100000 complete in 3.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-- 7% ] 7105 of 100000 complete in 4.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--- 7% ] 7986 of 100000 complete in 4.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--- 8% ] 8865 of 100000 complete in 5.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--- 9% ] 9736 of 100000 complete in 5.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---- 10% ] 10606 of 100000 complete in 6.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---- 11% ] 11460 of 100000 complete in 6.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---- 12% ] 12324 of 100000 complete in 7.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----- 13% ] 13186 of 100000 complete in 7.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----- 14% ] 14051 of 100000 complete in 8.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----- 14% ] 14907 of 100000 complete in 8.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----- 15% ] 15763 of 100000 complete in 9.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------ 16% ] 16619 of 100000 complete in 9.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------ 17% ] 17487 of 100000 complete in 10.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------ 18% ] 18352 of 100000 complete in 10.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------- 19% ] 19204 of 100000 complete in 11.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------- 20% ] 20067 of 100000 complete in 11.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------- 20% ] 20920 of 100000 complete in 12.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------- 21% ] 21781 of 100000 complete in 12.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------- 22% ] 22650 of 100000 complete in 13.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------- 23% ] 23504 of 100000 complete in 13.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--------- 24% ] 24356 of 100000 complete in 14.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--------- 25% ] 25197 of 100000 complete in 14.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--------- 26% ] 26039 of 100000 complete in 15.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---------- 26% ] 26883 of 100000 complete in 15.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---------- 27% ] 27723 of 100000 complete in 16.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---------- 28% ] 28548 of 100000 complete in 16.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----------- 29% ] 29390 of 100000 complete in 17.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----------- 30% ] 30210 of 100000 complete in 17.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [----------- 30% ] 30975 of 100000 complete in 18.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------ 31% ] 31748 of 100000 complete in 18.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------ 32% ] 32509 of 100000 complete in 19.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------ 33% ] 33276 of 100000 complete in 19.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------ 34% ] 34053 of 100000 complete in 20.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------- 34% ] 34825 of 100000 complete in 20.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------- 35% ] 35607 of 100000 complete in 21.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [------------- 36% ] 36382 of 100000 complete in 21.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------------- 37% ] 37158 of 100000 complete in 22.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------------- 37% ] 37924 of 100000 complete in 22.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------------- 38% ] 38692 of 100000 complete in 23.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-------------- 39% ] 39465 of 100000 complete in 23.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--------------- 40% ] 40241 of 100000 complete in 24.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--------------- 41% ] 41018 of 100000 complete in 24.5 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [--------------- 41% ] 41791 of 100000 complete in 25.0 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---------------- 42% ] 42563 of 100000 complete in 25.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---------------- 43% ] 43344 of 100000 complete in 26.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [---------------- 44% ] 44123 of 100000 complete in 26.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------44% ] 44907 of 100000 complete in 27.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------45% ] 45677 of 100000 complete in 27.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------46% ] 46451 of 100000 complete in 28.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------47% ] 47227 of 100000 complete in 28.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------47% ] 47997 of 100000 complete in 29.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------48% ] 48777 of 100000 complete in 29.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------49% ] 49545 of 100000 complete in 30.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------50% ] 50323 of 100000 complete in 30.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------51% ] 51091 of 100000 complete in 31.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------51% ] 51868 of 100000 complete in 31.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------52% ] 52644 of 100000 complete in 32.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------53% ] 53412 of 100000 complete in 32.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------54% ] 54184 of 100000 complete in 33.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------54% ] 54961 of 100000 complete in 33.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------55%- ] 55732 of 100000 complete in 34.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------56%- ] 56506 of 100000 complete in 34.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------57%- ] 57280 of 100000 complete in 35.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------58%-- ] 58055 of 100000 complete in 35.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------58%-- ] 58827 of 100000 complete in 36.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------59%-- ] 59599 of 100000 complete in 36.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------60%-- ] 60376 of 100000 complete in 37.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------61%--- ] 61149 of 100000 complete in 37.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------61%--- ] 61922 of 100000 complete in 38.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------62%--- ] 62706 of 100000 complete in 38.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------63%---- ] 63485 of 100000 complete in 39.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------64%---- ] 64260 of 100000 complete in 39.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------65%---- ] 65035 of 100000 complete in 40.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------65%----- ] 65807 of 100000 complete in 40.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------66%----- ] 66575 of 100000 complete in 41.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------67%----- ] 67349 of 100000 complete in 41.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------68%----- ] 68126 of 100000 complete in 42.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------68%------ ] 68901 of 100000 complete in 42.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------69%------ ] 69676 of 100000 complete in 43.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------70%------ ] 70450 of 100000 complete in 43.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------71%------- ] 71222 of 100000 complete in 44.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------72%------- ] 72003 of 100000 complete in 44.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------72%------- ] 72777 of 100000 complete in 45.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------73%------- ] 73543 of 100000 complete in 45.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------74%-------- ] 74311 of 100000 complete in 46.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------75%-------- ] 75077 of 100000 complete in 46.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------75%-------- ] 75845 of 100000 complete in 47.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------76%--------- ] 76611 of 100000 complete in 47.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------77%--------- ] 77379 of 100000 complete in 48.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------78%--------- ] 78145 of 100000 complete in 48.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------78%--------- ] 78899 of 100000 complete in 49.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------79%---------- ] 79656 of 100000 complete in 49.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------80%---------- ] 80420 of 100000 complete in 50.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------81%---------- ] 81185 of 100000 complete in 50.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------81%----------- ] 81954 of 100000 complete in 51.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------82%----------- ] 82721 of 100000 complete in 51.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------83%----------- ] 83484 of 100000 complete in 52.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------84%------------ ] 84249 of 100000 complete in 52.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------85%------------ ] 85018 of 100000 complete in 53.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------85%------------ ] 85790 of 100000 complete in 53.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------86%------------ ] 86559 of 100000 complete in 54.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------87%------------- ] 87318 of 100000 complete in 54.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------88%------------- ] 88078 of 100000 complete in 55.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------88%------------- ] 88846 of 100000 complete in 55.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------89%-------------- ] 89611 of 100000 complete in 56.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------90%-------------- ] 90380 of 100000 complete in 56.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------91%-------------- ] 91148 of 100000 complete in 57.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------91%-------------- ] 91917 of 100000 complete in 57.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------92%--------------- ] 92690 of 100000 complete in 58.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------93%--------------- ] 93456 of 100000 complete in 58.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------94%--------------- ] 94221 of 100000 complete in 59.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------94%---------------- ] 94983 of 100000 complete in 59.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------95%---------------- ] 95754 of 100000 complete in 60.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------96%---------------- ] 96517 of 100000 complete in 60.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------97%---------------- ] 97269 of 100000 complete in 61.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------98%----------------- ] 98031 of 100000 complete in 61.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------98%----------------- ] 98804 of 100000 complete in 62.1 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------99%----------------- ] 99576 of 100000 complete in 62.6 sec" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r", | |
" [-----------------100%-----------------] 100000 of 100000 complete in 62.9 sec" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"pm.Matplot.plot(mcmc)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Plotting alpha\n", | |
"Plotting" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" centers_0\n", | |
"Plotting" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" centers_1\n", | |
"Plotting" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" sigmas_0\n", | |
"Plotting" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" sigmas_1\n" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAFyCAYAAACwQX2kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8lNX1x/FPwr6ERY3irigccUFU6oIKWPdaqt1rW6vW\npUrrrtXy0yqtbbUWam1FK4hatdWixSpWsVplE9kFUTzs+xYwJCGQkO33xzPJTJJJJhNmMpPk+369\nWmae+yznSWJy5t7z3JtRUVGBiIiIiKSHzFQHICIiIiJhSs5ERERE0oiSMxEREZE0ouRMREREJI0o\nORMRERFJI0rORERERNKIkjMRERGRNNK2vkYzywTGAP2BYuBad18R0T4MuA8oBca7+7iItv2BecC5\n7r7UzI4GngXKgcXAT91dk6yJSEKZWTtgPHA40AF4EFgPTAKWhnYb4+4TzOw64HqC32EPuvubZtYJ\neAHIBgqAK919m5mdDjwa2vcdd/9VU96XiLQesXrOLgPau/sg4B5gVGVD6BfgaOB8YAhwfSghq2z7\nK1AYca7RwAh3HwxkAJcm6iZERCL8AMgJ/a65CHgcOBkY5e7nhP43wcx6ATcBg4ALgd+ZWXvgRmBh\n6Pi/AfeGzvskcLm7nwWcZmYDmva2RKS1iJWcnQm8DeDus4CBEW39gOXunufuJcB0YHCo7RHgCWBT\nxP4nu/vU0Ou3gPP2MnYRkWgmAL8Mvc4ESoBTgEvMbIqZjTOzrsCpwAx3L3H3fGA5wShB1e+90L/n\nmVkWwQfVVaHtk9HvMBFJkljJWTcgP+J9WWios7ItL6KtAOhuZlcRfGp9J7Q9o8a/ADuB7o2KWESk\nHu5e6O47QwnVBOD/gNnAne4+BFgJ3A9kEeV3GNV/70XbFrldRCTh6q05I/hllBXxPtPdy0Ov82q0\nZQE7gJuBCjM7DxgAPGdmlxLUmtXct14VFRUVGRkZsXYTkZYjIf/Bm9mhwL+Ax939JTPr7u6VidhE\n4M/AVKL/Dov8vRdtGwTJWr2/w5rq91flNbROskhaSMh/9LGSsxnAMGBCqBh2UUTb50AfM+tJUFs2\nGHjE3V+t3MHM3gd+4u5bzGyBmQ1x9ynAxcB7sYLLyMggJ6cgvjtKouzsLMVTj3SLB9IvJsVTv+zs\nrNg7xWBmBwDvAMPd/f3Q5rfN7GZ3n0MwHDmXoDftN2bWAehIUKqxmOD33leAOQS/q6a6e4GZ7TGz\n3sAq4ALggfriaOrfXzWvlcrvbap/rlrz9VvzvafL9RMhVnI2ETjfzGaE3l9tZpcDXd19rJndTlB7\nkQk87e6b6joRcAcwNlRw+xnwyl7GLiISzQiCIcdfmlll7dmtwB/NrISgFvb60NDnY8A0gt9hI9y9\n2MyeIOjxn0bwlPr3Q+e4AXgRaANMDiV6dRo5ciTDh9+e6HtrscaMGQ2gr5kIkJHmXeEV6fapXvHU\nLd3igfSLSfHULzs7qyXVMTTJ76/99+8GwNat+dW2q/emdV6/Nd97mlw/Ib/DNAmtiIiISBpJ6+Rs\n3Zb0+UQvIiIi0hTSOjkb/vv/pToEEZFGGTlyZKpDaFbGjBldVXcm0trFeiBAREQa4f7770+rer50\npwcBRMLSuudMREREpLVRchbF7t27yc/Pj72jiIiISIK1qOTsppt+EnX7/PlzGT/+qQaf5x//eJ4V\nK5YlKiwRaYVUcxYf1ZyJhDXbmrN169by/PPPkJWVxcaNG/n1rx+qarvxxms4/fRB5OZ+wdlnDyUz\nM5NZs2aSm5vL5s0bGTnyt8ybN4dZs2YC0LlzF4YPvxmA0tJS5s+fy4YN69m8eRPvvPMWffoYJ5zQ\nn4UL51JUVFK1/4QJL7Fx4wa2bNnMj370YzZt2sCCBfMoLy/nyCN7881vfjclXxsRST3VnMVHNWci\nYc2256xTp85ccsnX6N9/AFu2bGbbtm1VbVlZWVx55TXccsudvPzy3wHo1+847rjjbvr0MZYtW8aB\nBx7MhRd+hRNOOJHZsz+qOrZt27acfPJAhg27DIAzzjiL4cNv5sADD+bSSy+t2r+4uJh582Zzyy13\n8Itf/JKuXbvy7LNP06VLV7p2zWLu3HonDxcRERGJqtkmZ++++zZz587mwAMPYv/99wfCKx2UlQVr\nrO/Zs6dqe7duwSzabdu2pby8jGefHcvWrVs55phjadu2egdiRkZG1SLCWVnBOlnPPPMUmzdvrtq/\nrKyM8vJgn4qKcjZvDlauuuaan3DDDT/jtNNOT9q9i4iISMvVbIc1s7P3Z/HidykrK2P37t3s2LGD\njIxg1YQdO3L5059GkZv7BT/60TWUlOypaqt0wAG9+Pjj+bgvqUrGKvc59NDD+Mc/nmfQoLPp0KED\nAL16HcicOXOABWRkZNCxY0dOOOFERo9+mNzcXK644iquuOIqfv3r++jQoSMDBpzcpF8PEUkvWlsz\nPlpbUySs3rU1zSwTGAP0J1gA+Fp3XxHRPgy4DygFxrv7ODNrA4wF+hJ0W93g7p+a2UnAG0Blpf0T\n7v7P+oIbdse/K8bf8+W4b+ruu2/j4Yf/GPdxsaR6za6aFE9s6RaT4qmf1taMn9bW1PXT5dq6ftOt\nrXkZ0N7dBwH3AKMqG8ysHTAaOB8YAlxvZvsDw4Bydz8LuBf4TeiQU4DR7n5O6H/1JmZ7IxmJmYhI\nU3j66b/y2muv1tn+s59dz9q1a+I+77e+NYySkpJq22bNmsnrr0+s85gpU96vVs8rIk0j1rDmmcDb\nAO4+y8wGRrT1A5a7ex6AmU0HBrv7K2b2RmifI4Dc0OtTgL5mdilB79mt7r4zMbchItIy1CzBiN5e\n94hHfcfVHCk57bQz6j3mlVde4sgjjwT2i/t6ItJ4sZKzbkBkX3mZmWW6e3moLS+irQDoDuDuZWb2\nLPB14Juh9lnAU+6+wMxGAPcDd+39LYiIpJ+G1Jw9+eRfcF9CXl4eRx/dhxEj7q9qW7BgHi+99AJ7\n9uzhiy++4Otf/yaXXfYtAMaPH0tu7hfs3r2btm3bUlpaykMP/ZqtW7eyffs2zjprMCNG/LzW9f7w\nh9+xadNGAH772z8wbdoHrF27hh//+Hruu+9uCgsLKS4u4vrrh1NaWsqyZUt58MEHGDNmXK0HpxJN\nNWciYbH+a8sHsiLeVyZmECRmkW1ZhHvJcPerzOxuYJaZ9QMmVvayAa8BjzUkwOzsrNg7NSHFU790\niwfSLybF0zrEmuds165CunXrxh//+Djl5eX86EffZdu2nGr75OXl8fjjYykpKeHKK7/HkCHnAjBo\n0NlccMFFjB//FFOmvE9BQQHHH38CX/3qZRQXF/PNb14SNTkbNuwyTjjhRH7725HMmTOrqpduw4b1\n5OfnMWrUn8nNzWXt2jWcccZZ9OnTl7vuGpH0xAyUlIlEivVf3AyCGrIJZnY6sCii7XOgj5n1BAqB\nwcAjZnYFcIi7/w7YDZQR9MG/bWY3u/sc4FxgbkMCTLNiZcVTj3SLB9IvJsVTv9aUKLZv34Hc3Fwe\neOD/6NSpM7t27aK0tLTaPgMGnEybNm1o06YNvXsfxcaNGwA45phjANhnn33JyMigrKyMJUs+Y/78\neXTu3IU9e0pqXQ8g+JwcHFdcXFS1/cgje/O1r32DBx74P0pLS/nWt76XjFsWkQaKlZxNBM43sxmh\n91eb2eVAV3cfa2a3A5MJHix42t03mdkrwLNmNgVoR1BbVmRmNwCPm1kJsAm4Pil3JCLSDHz00Qy2\nbt3MyJG/Izc3l2nT3q9VE/b5558BUFRUxOrVqzj00ENDLdXr0rp3707XrlncddcI1q9fxxtvRC/y\nr6uebeXK5ezatYvf//5Rtm3bxo03XsOgQWeRmZlJeXl51GNEJHnqTc7cvQK4scbmpRHtk4BJNY7Z\nDdRat8jdFwJnxRtgeXkFmZkt6el6EWkNYtWcHXvs8Tz33NPcfPMN7LPPvhx77PFVw5qVSVRhYSG3\n3jqcgoICrr76erp16x71XLt27WLWrJm4L6FXrwMx68fWrVvJyOgUsVf036MZGRkccshhjB8/lvff\nf5fy8nKuu+4GAI4/vj8PPng/f/zj41UTcieLas5Ewuqd5yzVht3x74pHbz6Lbp3bpzoUID2HgBRP\n/dItJsVTP81zFjZ//lymTPkft91Wu3YskuY50/XT5dq6ftPNcyYiIimQkZERc1oNEWmZmu3yTSIi\nLdlJJ53CSSedkuowRCQF1HMmIpIEI0eOTHUIzcqYMaOr6s5EWjv1nImIJEGsec6kOj0IIBKmnjMR\nERGRNKLkTERERCSNKDkTEUkC1ZzFRzVnImGqORMRSQLVnMVHNWciYeo5ExEREUkjSs5ERERE0ki9\nw5pmlgmMAfoDxcC17r4ion0YcB9QCox393Fm1gYYC/QFKoAb3P1TMzsaeBYoBxYDPw2t3Vm/9F1d\nSkSkTrHW1pTqtLamSFisnrPLgPbuPgi4BxhV2WBm7YDRwPnAEOB6M9sfGAaUu/tZwL3Ab0KHjAZG\nuPtgghV4L03kjYiIpJP7778/1SE0K8OH367ETCQkVnJ2JvA2gLvPAgZGtPUDlrt7nruXANOBwe7+\nGvCT0D5HALmh1ye7+9TQ67eA8/Y+fBEREZGWJVZy1g3Ij3hfFhrqrGzLi2grALoDuHuZmT0LPAa8\nGGqPXMF3Z+W+IiIiIhIWayqNfCAr4n2mu5eHXufVaMsi3EuGu19lZncDs8zsWIJas8h9dzQkwH33\n7UqPrA4N2bVJZGdnxd6pCSme2NItJsXTOqjmLD6qORMJi5WczSCoIZtgZqcDiyLaPgf6mFlPoBAY\nDDxiZlcAh7j774DdQBlBYrbAzIa4+xTgYuC9hgS4fftOSor2xHNPSZOdnZVW8xYpntjSLSbFU7+W\nlChqnrP4KCkTCYs1rDkRKDKzGQQPA9xmZpeb2XWhOrPbgcnAh8DT7r4JeAUYYGZTCOrVbnX3IuAO\nYKSZfUiQFL6SnFsSERERab7q7TkLTXVxY43NSyPaJwGTahyzG/hulHMtA4Y2NlARERGR1iDtJ6HN\nLShOdQgiInHT2prx0dqaImFpn5z95V+LYu8kIpJmNM9ZfDTPmUhY2idn2/PVcyYiIiKtR9onZyIi\nIiKtiZIzEZEkUM1ZfFRzJhIWa54zERFpBM1zFh/Vm4mEqedMREREJI00i+Ts/fnro26vqKho4khE\nREREkqtZJGfPv7OU16atZNP2wqptY9/4jGsefp+y8vJ6jhQRSQ3VnMVHNWciYc2m5uz1Gat5e9Za\nnrxzKAAzP90MwK6iUrI6t09hZCIitanmLD6qORMJaxY9Z5X2lNbuJdPApoiIiLQk9facmVkmMAbo\nDxQD17r7ioj2YcB9QCkw3t3HmVk7YDxwONABeNDd3zCzk4A3gGWhw59w93/u9R0oOxMREZEWJFbP\n2WVAe3cfBNwDjKpsCCVho4HzgSHA9Wa2P/ADIMfdBwMXAX8JHXIKMNrdzwn9b+8TMxGRNKWas/io\n5kwkLFbN2ZnA2wDuPsvMBka09QOWu3segJlNBwYDE4BXQvtkAiWh16cAfc3sUoLes1vdfefe3oA6\nzkQkHanmLD6qORMJi9Vz1g3Ij3hfFhrqrGzLi2grALq7e6G77zSzLIIk7d5Q+yzgTncfAqwEErMq\nsKbTEBERkRYkVs9ZPpAV8T7T3Sur8vNqtGUBuQBmdijwL+Bxd38p1D6xspcNeA14rDEBZ2dnVXu/\nz75d2adbx8acqlFqXj/VFE9s6RaT4hERkfrESs5mAMOACWZ2OrAoou1zoI+Z9QQKCYY0HzGzA4B3\ngOHu/n7E/m+b2c3uPgc4F5jbmIBrDhNs27aTsuKSOvZOrOzsrLQaplA8saVbTIqnfi0pURw5cqSG\n6uJQWW+mr5lI7ORsInC+mc0Ivb/azC4Hurr7WDO7HZhMMDz6tLtvMrM/Ad2BX5rZL0PHXQzcADxu\nZiXAJuD6RN+MiEi6UM1ZfJSUiYTVm5y5ewVwY43NSyPaJwGTahxzC3BLlNMtBM5qXJgiIiIirUOz\nmoQ2moyMVEcgIiIikjjNPjkTEUlHmucsPprnTCSs2aytKSLSENFWKQGWAM8C5cBi4KfuXmFm1xHU\nv5YSrGbyppl1Al4AsgmmCLrS3beFHop6NLTvO+7+q/riaGzN2Uuv/puiovgfcpr87gdceN7QuI9L\nF6o5EwlrlsnZ9ryiVIcgIumrcpWSK0JPky8EFgAj3H2qmT0BXGpmHwE3EUyQ3QmYbmb/JaizXeju\nvzKz7xLM1Xgr8CTwdXdfZWZvmtkAd/840cF/sGA9e7r2i/u4qfNXNOvkTETCmt2w5sZthdz1xIdV\n71VyJpKedheXcsfjM3h/wYamvvQEoPJJ8cpVSk5296mhbW8B5wFfAma4e4m75wPLCdYRrloZJfTv\neaFJtdu7+6rQ9smhc4iIJFyzS87uHTcr1SGISAN8viaX3IJinp/sTXrdGquUTCDo+Yr8XVdAMN1P\n1FVOqL4ySrRtkdvrpJqz+KjmTCSsWQ5riojUp8YqJf8ws99HNHcDdlB7BZSsKNujbYs8R53uv79x\nK9S1a9uGPY04rkOHtrUm8U3lpL7xXruxX69EXT/RmtPXXtdPP80/OUvCXBoVFRVkaI4OkWapjlVK\nFpjZEHefQjAp9nvAbOA3ZtYB6Aj0I3hYYAbwFWBOaN+p7l5gZnvMrDewCrgAeCBWLI15IKCktCzu\nYwCKi0urXS+Vqz+keuWJ1nz91nzv6XL9RGh2w5rJVrSnlGsefp8JHyyv1VZWVh7lCBFJMyMIr1Ly\nvpm9TzC0OdLMPiT4UPqKu28hWON3GkGyNsLdi4EngOPMbBpwLVA5PnkD8CIwC5gfWopORCThmn/P\nWYKtzykE4K2P1vLtoUdXbS8pLeOyn7/BwGP2Z/hlx6cqPBGJoZ5VSoZG2XccMK7Gtt3Ad6LsOws4\no6FxaG3N+GhtTZGwZp+cJXPwMXJ4M68wqAKZ+/nWJF5RRFoKra0ZHyVlImH1JmdmlgmMIXi8vBi4\n1t1XRLQPA+4jmJRxvLuPizYBpLu/YWZHE2USyMTfUuP52lwe/vuCqvcrN+Zz1MH1PpAlIiIiklCx\nas4uI5jbZxBwDzCqsiGUhI0GzgeGANeb2f6EJ4AcDFwE/CV0yGiCmo7BBB1elybyRhLh1akrq73/\n4OMmn59JREREWrlYyVnVZIyheouBEW39gOXunufuJcB0YDDRJ4CE6JNAppXMGk9ozvhkM8+/U3uO\npk3bCxn98sdaqUBE6qR5zuKjec5EwmIlZzUnXiwLDXVWttWawLHGBJCvEDwlBdXLw3YSYwLHBgud\ndcnqLxj9z48p3tO4x9ABMqMUsL0/v3bv2dg3PmPxqi946X/LGn0tEWnZEj1vV0s3fPjtqjsTCYn1\nQEDNiRcz3b1yPok8ak/gmAu1JoB8KdReXmPfeidwbKj99u1K964d+PFD/wNg8dodXHTGEY061+rN\n0Yt399mnCxVt2lS9zwhlcW3btkn5ZHepvn5N6RYPpF9MrSWeblt2Jv0aIiItUazkbAYwDJhgZqcD\niyLaPgf6hBYWLiQY0nykjgkgIfokkHtt2/ad7Nkdnk+7oKCoUU9IvTdvPUV19Lr96aX5XHzaYVXv\nS0uDPHPPntKUT3aXTk+DpVs8kH4xtaZ48vN2V71u6DWUxImIxB7WnAgUmdkMgocBbjOzy83sulCd\n2e0ECwB/CDzt7puIMgGkmXUE7qDGJJCJuIFETKWxc3cJL/53aZ3tH326Oer2irR61lRE0olqzuKj\nmjORsHp7zkJTXdxYY/PSiPZJwKQax9Q1AeQyokwCubc+Wbmd04/rFfdxqzbl8/L/lvOTrx0XcwWo\nmklYoudWKysvZ8maXOzQnrRrq0UbRFoCzXMWH9WbiYQ1+0xg3KQldfZs1eexVxaxdN0OJn24OuU9\nYP+ds57RLy/kn+/XXjJKREREWpdmn5wBrN9aGPcxFaGMrDF52dqtO2PvFIcVG4KHXj9fm5vQ84qI\niEjz0yKSs71SUUGpFjSXRli0YhtjXltMWXn456dg1x7Wbd1ZlfxL66Was/io5kwkrNmvrQlQ0aj+\nr8C2vCLufnJmvfsU7SljT4kSOKnu0QnBw8tDBxzEsUfsA8BdYz5kT+hp3p994wRO7pu9V9eIXN9V\nmhfVnMVHNWciYS2i52xvOikWr/qiQftNUD2Y1CHy568yMQN4ffqqvTpveXkF1/7+fZ789+K9Oo+I\niDQvLSI5i/S3yc7y9UENVyKHllZuyq+1zdepRkwSx9fmMnXhxqr3xSVlVFTA7CVbUxiViIg0tRaR\nnL0zZ1219799YR5L1+3gmoffZ0qCFi+PluftLm78UlEiNT389wU8+9bnlJe3zHq1eZ7Dyo21P+S0\nVKo5i49qzkTCWkRyFs1DL84H4Lm3ay9c3hgq8JbGWLO5gF8/N5etO3bH3rmFe3ziJzz4t7mpDqPJ\naG3N+GhtTZGwFpuc1WXT9kJ+8ocPyN9VEtdxys2kMZ5641NWbcrn1Q9WpDqUlPrb5MR8SBIRaQ1a\nXXL2/vwNlJTG/+RlY3OzL/KL2F1c2sijpamVl1fw7FtLWLpuR6pDaVFDgB8sSEx5gYhIa9DqkrPG\nJllldcyFll+4h+I6FkyvqKjgzjEfctufpzfyqtLUFq/6gqkLN/HQi/PZmruLf76/nD0l9dcWlpSV\n89q0leTUGLrM3VnMpu27gPh/7srLKxj18sdxHpUa2/J2M+Kpj3BNolyNas7io5ozkbB65zkzs0xg\nDNAfKAaudfcVEe3DgPuAUmC8u4+LaDsNeMjdzwm9Pwl4g2CNTYAn3P2fCbyXhmlkdranjt62W0OJ\nV++DuvGNwb2r5rtqyLGSfiKT8NEvL2Trjt3k7NjNT79+Qp3HTF+0iflLc/hwcfVlxAriHDqPVN6M\nxtHfmrWWzV/s4vGJi3nslrNZuTGfOZ9v4eiDu6c6tJTSPGfxUb2ZSFisSWgvA9q7+6BQsjUqtA0z\naweMBgYCu4AZZva6u281s58DPwQi1zk6BRjt7i3yo9HKjfn84aWPGX/Pl1MdiiRIZRH/PM+pd7+d\nu/YAwYTGQlXR/2TWxdhTRESiiTWseSbwNoC7zyJIxCr1A5a7e567lwDTgcGhtuXAN4DIqc1PBi4x\nsylmNs7MuibiBuKV7Kfm6qtne336KmY2YpF2SW8N6uNKUk/Yp6u+YPMXu5JybhERSY1YyVk3ILIq\nuSw01FnZlhfRVgB0B3D3fxEMdUaaDdzp7kOAlUBKnjP/ZOX2pJ7/rjEzql7X/Hv82vRVjH3js1rH\nNJ8BrOT6Ir+IqQs3pv20JRU11mNdtj6vnr2Tp6S0nFEvf8yIpz5KyfWlfqo5i49qzkTCYg1r5gNZ\nEe8z3b3yr1JejbYsoL6K4InuXvlX7DXgsXgC3RvZ2Vmxd0qQ/F0lVdd7+vXwsjuRMdSMp0OH4NvQ\nrm2buGNtyntriL2J5+6/ziQndzeHH9yDgf0OSElM3bbsjLo98hy/GDOdxSviS/I7dGhXdY5Y8eyX\nnVUrQY12zKZthfW2N9Te/gx17NgOgMzMjAadK91+ZpNFNWfxUc2ZSFis5GwGMAyYYGanA4si2j4H\n+phZT6CQYEjzkXrO9baZ3ezuc4BzgSabjTInp4A9JWWU1PHEZTKuB/DalBW1ttV8DVAcmmqjtLQs\nrl/m2dlZjf7lX15RQWaCF9Tem3gAcnKDIec1G3Zw+H6dUxJTfl70Ye/Ic8SbmAHMWLSRnJyCBsWT\nk5Nfq9c12jFf5O6qt70h9vZ7BlC0O3jwoaKiokHnqm+f1pK4iYjUJ1ZyNhE438wqx+quNrPLga7u\nPtbMbgcmEwyPPu3um2ocH/kn5gbgcTMrATYB1+99+A0zbdFGnvnP5011ubT34n+X8t689Tx+22A6\ndYj1IyCpUDNvvufJmTx0wxl17rR2SwH/eHcZ1w07ln26dWyCCEVEJFnq/cvs7hXAjTU2L41onwRM\nquPY1cCgiPcLgbMaG+jeSLfEbFveblZuzOfUBA7dxeO9eesB2Li9kKMOSr/pDtK55mxjxFBiMtX8\nEkR7kCUyf/vzq5+wPb+IV6es5LphxyY3OGmQkSNHaqguDpX1ZvqaicTuOZNGmr1kS51tI56aRWlZ\nOQft24VD9q/7odWdu0tYtGIbpx/bi8zM+IYgF6/czrvz1vPTrx9Pu7Zt4jo21dI3NYOxk2o/0BGP\niooKnvnPEgb02Y+T+mTXs1/sc0X+RGzPr5zGo+m/ejl1DAW3dqo5i4+SMpGwVrdCQFNYsSGPJ//9\naZ3tlU/6FYTmx6rLX15dxLhJS5ixuOZocWyj/7mQRSu2s2DZtriPTbk0zs7Kyhof3K6iEtZv3cm0\nRZv486uf1Llf8Z4yfvKHD2Ker13b1P/nu3jldhav/AIIksXSJqrrFBFpydRzlgQ7dtZOunYV1V5f\nM9af+WUbgodbc3a0/MlNYy2RlC7W50R/mrMhyisq/69+mxo4b1nbKMlZ6V4kj42xZE34Ae0K4JdP\nz27S64uItESp/+jdStz2l9rra36RX5z069Y3PJZBYp/W3Bsv/LeqlLFJO85Wbszn18/NYVsTDM2N\nfGZO0u9tzudbk3yFuhXsKtGEuBE0z1l8NM+ZSJiSsyYSbeWA8f9Z0iTXrqiooKQ0vXumPl31RUqu\n+/jET1i1qYDXZ6wONiQxX92eX8R/PlyVvAtIWrn//pTMs91sDR9+u+rOREKUnLVwFVTw19c/5Sd/\nmEJhUe2FuAuLSrjtL9OZtnBjCqJLIxU1/o0iEYuRv/Xh6vAl6zhf5XxvIiLSOik5S4KVG5t+OZ8N\n2wp5Y8aqqAnE7CXBUFe0IadFK7aTt3MPz7yVRtONNOFUGpVThVXEGHCsqKjg4wQ/XPHc2x51+1NR\nlviqlFe4hx8/9D9uHDUl7mHxRCSXtSSwp3Hn7tofHkREWiMlZ0nw1qy1CT9nzo7d5BfW/XTnL8fN\nYuK0VVVPzlWq7+nCv739OZ+laDixPk1Zc1aVW1TU3FDdh4s3s2NnYmsEpy7cGPcDBv+ZuQaA4pIy\nnnq97ifjpYQdAAAgAElEQVSCa9pdXMq1D7/PC+9ETwgba0dB/U8cx+OWP01L2LnSgWrO4qOaM5Ew\nJWfNxN1PzuTWP9d+qKBSZW5RtKf6U6FPv7mk2k6RvRNrt+5kxuLNiQwzIZp2DtogG6u6ZB3XXrRi\ne1LiKtjV8N6iktLyaj18XxQ0PFncuD2YPPd/8zc0PLgGmPlp/D8/a7dEn/srjWdQaRTVnMVHNWci\nYZpKo4VZs7mg3pUHbm4GvRNvfLiaU/vtT5dO7RK+/mdNST597OvHsW/tuc/q7xU9YJ/OXHjqYXHH\nVLSnlHfmrGPIgIPp3qV93MfH8sAzcxh/z5cTft50c+537qRj5x5xH1fWcX/aJSEeEWk+lJyl2MZt\nhVELw8srKhrVU/PWrLV8+5yj62xrDvIL93DLY9Ppf9S+3PrtE5vkmhUxhjW37thN30Pj/0ObTPX9\nfHzwcfCAR1VyFsfP0hszVvPWrLUsX5/H7d8dsBcRxlYYmph3T5SnmZu7iq5Hk9nzwLiP03CGiNSb\nnJlZJjAG6A8UA9e6+4qI9mHAfUApMN7dx0W0nQY85O7nhN4fDTwLlAOLgZ+G1u5s1T76LDwslF+4\nhxffWcqwM4/A1+2o2p6ozp35S3MSdKamsWjF9mrvyysq2PLFLnrt05mMvezyKisvZ+LUVWzLCyb4\nnfnpZr419Kg6E541mwtYsznxS/FU3sakiKc4GypZw7+5oeHSaOt5JtrvXpjfZOuVNrUhh29hbn78\nyVlrpbU1RcJifUi7DGjv7oOAe4BRlQ1m1g4YDZwPDAGuN7P9Q20/B8YCHSLONRoY4e6DCfKNSxN1\nE83ZpA/XVL3O31XCe/PX8/d3l5JTxx/GWEs+QXovHF6X+nKt3IJiZi/ZwqQZq/m/sbOYtihYzipn\nx25Ky8rZkruL5yc7u4trr8JQl3mew38+WlNt239mrmFriqax+NfUlXEfU9xMVlWI5sV3ljLh/eUt\nNjEDmLKm7vICqU01ZyJhsYY1zwTeBnD3WWY2MKKtH7Dc3fMAzGw6MBh4BVgOfAN4PmL/k919auj1\nW8AFwGt7fQctQH6NhKtgV0mdvWULlm1j8IkH1Xu+e/46s1FxvD5jFRedehjt2zXtQum7i0vrnBai\ntKycOx6fUW3bJyu2Y4f14Bd//aja9i6d2vGNwb2BIEGd8clmBg+M/iOeF2WJrVjTaSTD9vwilm9o\n+qlXUu29+etTHYKISNqK1XPWDciPeF8WGuqsbIv8q1IAdAdw938RDHVGisw3dlbuK8FC15Ei1yuE\n+J9ia+xanK9NW8Xf310ae8cYKioqKG/AGpKVfvrHqXW2rdtae6qJCoIEraaPIp4c/HTVF4z/zxLu\nfKz6AxBf5BeRX7iHN2eurnX8/+ZvaPIHBMZNWsJvn5+X0HNOnl27trBRyzo1vw5YEZEWIVbPWT6Q\nFfE+090rK3fzarRlAdWziuoiK36zgB117djatG1bu6dqU8TwWpfO4SfmunbtQHZ2+Mse+ToRlq7P\n26tzZmdn8eunZzH7s838+5GvkZm5d9nOGx+uqbWtQ4e2/P3dZbW2b8srIqt7JzZtK2TqJ0Gitm3H\nbsoyM+m1bxcAfvzQ/+q9XteuHfcq3nTw8v+WV72u/F6+M2ddrW11ve/YMXhWsE2bzIT/fLUmqjmL\nj2rORMJiJWczgGHABDM7HVgU0fY50MfMegKFBEOaj9RzrgVmNsTdpwAXA+81PuyWZVeUZZWWrAr3\nDBVGDHsWFBSRkxMUpvfo2Zm5izdx1EHdEhZLaWl51fnjlZ2dRU5OAbNDDzls2py310OkHy+r/RBD\nUZSvV6WZH69n9MsLq20b9cJcfv79kxt0vZ07G9frmK6ifS8jt1V+zyIVFQdf37Kyxv8sSFBz1qVn\nqqNoPpSUiYTFSs4mAuebWWXRz9VmdjnQ1d3HmtntwGSC4dGn3X1TjeMjB0buAMaaWXvgM4LaNIG4\nitArCCbx7NKxHX/771I+mLee4Zcdn7zg9kK0UbGKigqe+c/n9D9qXwYes3/Cr1kzMQMoLmn4NA2R\nvU4iIiKpUG9yFprq4sYam5dGtE8CJtVx7GpgUMT7ZcDQRsYplSqCSTwjTWlGi5Zvyyti+iebmP7J\npkZPRLogzjUu124poLy8Yq+HWFual95bRr/e+3HikdG7dyqoILegmN+9MI/vn9+XAUfv18QRioi0\nTprvsBmY+nF4yZ1oU2l8muL1MTdsK2zwnFiR03ys3VLA1CZILMvKK3h9xqqkX6e5eWfOOv708gIg\nmPetcng9MoWdunAj2/KKeOyVRVHOIPUZcviWVIfQrGhtTZEwrRDQDORHrL84cVr6JRn3jZsFwBuj\n4pu6rmYPYDK9PmM1l53du8mu19yMfGYu63N28tc7hzb4mIbMudeaqeYsPqo5EwlTz5lUUzljfkKk\n2VQM8UxS29qszwmmLIlnYttbHpuerHBERFo1JWfSpNIsX2u1GrKKRM6OIiW0IiIpoOQsTW2vY8b8\nVIt3aajSsnIWLt9GSWnqlxpatl5T61Vq6Hcxcn60xSu3c9/Ts8gv1HBmQ6jmLD6qORMJU82ZNMjO\n3SW8N289/56+ikvOOJxvDjmq1j41VwWooILJs9fx6pSVfPnkg/nhBZaUxcMb6tEJKmqvNH1ReNab\noj0N6x0b/c9gmpIpCzeS3aP5T9abbKo5i49qzkTClJxJgzz39ufM82BC2DdnromanK3ZnE/XdtU7\nY1duDFb/WroujyVrcnny358mP1ipsquohHZta3eQP/vW51Wvh4+ue/msaCY2YpF2ERFpuLROzoad\n3Zs3pukPQSrtKiphxiebqxKzSMUlZRRFrAsabcSzcltZeTmP/GNBssKUOjw+cXGttVo3bS9MUTQi\nItIQaZ2cHXlg4pYlkobztbnYYcF4zPPvLGXWZ7VrZ9Zt3cnv/z6fwqLwkNh838qQE3pVvY/skdm0\nfVcSI5a61EzMAP5v7Kw69y8pLWfmp6qVSgStrRkfra0pEpbWDwQMPeWQVIfQKj389wVVtWEbcqL3\nsqzelF8tMQN47s3Pkh6bJFfkcKfsnSlrDkh1CM3K8OG3KzETCUnr5Kxd271bNFsab+Sz9U8Qqykx\nWqZPVm5PdQgiIq1evcOaZpYJjAH6A8XAte6+IqJ9GHAfUAqMd/dxdR1jZicBbwDLQoc/4e7/TPQN\nJUpGRvQaqtYkZ8dutudHX5apvI4vjpZJEhER2Tuxas4uA9q7+yAzOw0YFdqGmbUDRgMDgV3ADDN7\nHTgL6BDlmFOA0e4e10Q2wwYdwRsfruaiUw/j7dlr4zl0r/zsGyfw51c/abLrpaO7n5xZZ1tdietr\nabi8lLROod8/D7n7OVE+HI5x9wlmdh1wPcEHzAfd/U0z6wS8AGQDBcCV7r7NzE4HHg3t+467/6q+\n66vmLD6qORMJi5WcnQm8DeDus8xsYERbP2C5u+cBmNl0YDBwBvBWlGNOAfqa2aUEvyBvdfedsQL8\n+uDeXHb2keQWFDdpctalY7smu1Zz9E4Tfi9E4mVmPwd+CFT+jqn14dDMegE3hdo6AdPN7L/AjcBC\nd/+VmX0XuBe4FXgS+Lq7rzKzN81sgLt/XFcMmucsPkrKRMJi1Zx1A/Ij3peFhi0r2/Ii2gqA7nUc\n0waYBdzp7kOAlcD9DQ0yIyODfbp15Om7z2noIZJkW3KjD3eKpInlwDeAjND7U4BLzGyKmY0zs67A\nqcAMdy9x9/zQMf2J+FAa+vc8M8siGEWo7BqeDJzXRPciIq1MrOQsH8iK3N/dy0Ov82q0ZQE76jim\nDHjN3SsnunoNOKkhAWZnZ1X9b//9u9Hn0B4NOWyv9ejRuUmuIyKJ5+7/Ihh+rBTtw2EWsT9g1vWh\ns3K7iEjCxRrWnAEMAyaE6i0i17/5HOhjZj2BQoIhzUcIHuSLdsxbZnazu88BzgXmNiTAnJzqy/30\nPaQ7y9btoE1mBmXlyavY37dLWk8BJyLxmVhZggFMBP4MTCX2B8y6PnR2C22vU1PXnO3I38n4f7wa\n93Gle3bzf3femPB4srOzYu8UYeTIkQDcf3+DB1USev1ES+X1W/O9p8P1EyFWBjIRON/MZoTeX21m\nlwNd3X2smd1O0L2fCTzt7pvMrNYxoX9vAB43sxJgE0ERbtyOPWIf3py5hnNOPph3565vzCkapE1m\nJt8eehQTPlgRe2cRSXdvR3w4PI/gw+Fs4Ddm1gHoSFBHu5jgQ+lXgDnAxcBUdy8wsz1m1htYBVwA\nPFDfBZu65mx31xOYvib+40py1tX6ELy3srOz4j5nZc1ZImJpzPUTKZXXb833ni7XT4R6kzN3ryAo\njo20NKJ9EjCpAcfg7gsJnuTcK/0O78mon55Jj67tk5qcgebyEmkBKv8zrvXh0N13mtljwDSCD5gj\n3L3YzJ4AnjOzaQTTAX0/4hwvAm2AyaFET0Qk4Zrl2F3PrA4AdGjXhuKSshh7N15GRux9RCQ9uftq\nYFDoddQPh+4+DhhXY9tu4DtR9p1F8DS6iEhSpfUKAbF07pic3PLc0LJRQ048mBN678tlZx1Z1fbt\noUcx+mdn8qMLLSnXFpGWYcjhWqM0HmPGjK6a60yktWvWydmB+wZPVH7tzCN49Ka9HjGt8u2hRwFB\n8nfbd07kq2ceUdV28emH06NrB4aedHDCriciLY/W1oyP1tYUCWvWydl1w47jm0N6c/Hph9OtS3su\nOvWwRp/rgi8dWvW6fbvqa3pmanxTREREmkizTs66d2nPJWccQYdQMvWdLx/d6HOd0HvfuI+54oK+\nnHhU/MeJiIiI1KVZPhBQn1E/PZMVG/IY89riuI7rEXrIoEfX9lHb7/7+SWRldaq27ZyTD+Gckw9h\n6sKN/Hv6KnILihsXtIi0OFpbMz5aW1MkrFn3nEXTM6sDA4/Zn++d2yeu4w7erwt3fm8AD1x9atR2\nO6wnJ/bNjto2+MSDGPXTMznzhF5xxyvS0j18Q+t8wFE1Z/FRzZlIWIvrOat0wZcO5aX3ltXZfv9V\nX6JThzZ8sGAjB2d3AYIJbvfG1V/px4xPNu/VOURaiiMP7MZt3zmRrp3a8c0hvXl1yspUhyQi0iy0\n2OSsLlmd2/GrH59K967BMObe1KnVVPPBgcduOZub/zQtYeeXpnX0Id1Zvj4v9o7Avt06sD0/GNY+\n95RDOKBnJ/7+7jIuPv0w+h3Wk89W5/L27LXJDDet/Oa60zhw3y5V7zMz9VCNiEhDtbhhzUg/OL9v\ntff3/OBk/nTz2VWJWTLc9I0Tql537dSOe380MOp+T94xhGsu6Ze0OGTvRX4vY7n3yi/x46/049Zv\n9+cH5/flvIGH8tRdQ/n20KM5vve+fOfLRzNkwEEJjzG7R0fatkm/xCcyMQM4rV/rG+LTPGfx0Txn\nImEtOjk75+SDq/4gDjq+F30P7ZH0a/Y+uDtA1XV7H9Stqu2g/cJ/sNq3a8OZJ6hYOJ1ldY7+cAjA\ncUdUXzQxMwPO6n8g/Y/ar2pb2zbV//M6vFew5tqg4xNXm/jwDYM4+8TEJ32Jtk+3joy/58upDqNJ\nqeYsPqo5Ewmrd1jTzDKBMUB/gjXmrnX3FRHtw4D7gFJgvLuPq+sYMzsaeBYoJ1hc+KehdTiTJjMj\ngysvOoYfXWhkNNFcZd27tOevdw6lXdvwH+bvnHM07dpm0vfQHtw/fjbnnnxIk8QijdcmNAx3Up/9\nWLBsGxBMnfL8O0sZetLBfP+8Prz436VM+XgjQNV0LvUZ3P8gjjpsHw7Ias/5Aw8lZ8du1ufs5PUZ\nqznz+F7MWBxfvaKFPmyccVwv3p+/Ia5jU+WaS/rx9JtLUh2GiEhai1VzdhnQ3t0HmdlpwKjQNsys\nHTAaGAjsAmaY2esE69d1iHLMaIKFhaeGFha+FHgtGTdVU1MlZpUiEzOAi04LT47b1L0H551yCO/O\nq71A/Li7z+Hah98HYPTPzuT2v8xo0rjS2SVnHM6XQwn0Qft1YcGybZxx3AFVU6dUuvKiY/jW0KPI\nL9xTa+LiaDIzMzjZ9icnp4DDe2VxeK8sBh6zP5ed3RuAa756LKVl5Vz/yAcA/OKHJ/O7F+ZzyRmH\nc+SB3di3W0eK9pTy8N8XAHDM4UHv3dGh3tpUuuriY3j2rc+B8Aob0Zx5woGccVwvZi3Zwtg3Pmuq\n8EREmpVYydmZwNsQLPprZpEFVP2A5e6eB2Bm04HBBAsDvxXlmJPdfWro9VvABTRRctacfPuco1i2\nLo9OHdpy3bBjuefJmWzdsbtR57r4tMO49KwjWbYhjwsGHsrYScEfww7t2pCZkcHjtw2mTWYGu/ck\nb/H4eIy/58uUl1cwefZaTjx6P1ZvziczM4PdxWUcc1gPeu3TmWtCCWUitcnMoKw86MR99Kaz6NYl\nPJw5bNAR7Ne9I6fWUTPVpWM7unRsl7BY2rbJ5Inbh5CREQx9R0vmhww4iCkfb6TvIeGk7K7vDeCR\nlz5OWBzxaJOZweATD+Ls/gc26INQZmYGZxzXi9OPPYCdu0u45bHpTRBl09M8Z/HRPGciYbGSs25A\nfsT7MjPLdPfyUFvko2wFQPc6jmkDRP7W3hnat9XrmdWB3IJixt19DuXlFbRtk8nFp4XbH7rhDH78\n0P+q3h9zWA8+X7uj2tOBdmgPLj3rSMa8tpi7Lj+JVZvy2SerA8eHVj24/6ovAcFEu4/8YwEP3xjM\nO9WpQ/Dtr3yS7oB9OjPo+F4MOq4Xdz3xYdLvvdLwy46v6m3MzMzg4tMPB6rX6FUacPR+fLw8GGb8\n2TdO4C//+gSAET88haMP6c7k2WvZuK2QaYs2AUGt0x+GD+LRCQtZtGI7xx3Rk++e24dfPj2bC750\nKBUVcO7AQ9i/R6da14IgQRoyoGnXUe3Qvv5euCsuNC45/XD2i4i53xH7MOb2wYx66WO+f35fysor\n+O3z85IdKj2zOnDdV48F4u+hzsjIIKtze0b88BQ+/HQzP6zxAE9zN2XNAXTpGXs/CSgpEwmLlZzl\nA1kR7ysTMwgSs8i2LGBHHceUmVl5lH1jycjOzoq9VxNKdDx/e+CimPu8MerSBp3r7IHB8OnJx0X/\ntJ6dncXggdHXH615jYZes6n9+sYzq72/8Mze1d7/8JLjAPh5jeN+M/ysau9TeX+J+Bk6YP9uUbc/\nesc5Va/fGNA8ahuzs7M446T6YzWzzu6+q4lCEhFJqVhPa84AvgJgZqcDiyLaPgf6mFlPM2tPMKT5\nYT3HLDCzIaHXFwNTERFpmN+Y2R/NbFCqAxERSbZYydlEoMjMZhAU9t9mZpeb2XXuXgLcDkwmSMqe\ndvdN0Y4JnesOYKSZfUjQY/dK4m9HRFoid78NeBz4vZm9aWY/SHVMsWies/honjORsHqHNUNTXdxY\nY/PSiPZJwKQGHIO7LwOGNjZQEWm9zOw5YDNwnbsvMbM/AC+mOKx6qeYsPqo5Ewlrdcs3iUiz9AKw\nBjjUzPZx9ztTHZCISLK06BUCRKTFuBJYCbwPXJ/iWEREkkrJmYg0B8XAScApQFJXFkkU1ZzFRzVn\nImFpN6wZa8moBF/rNOAhdz+nruWlzOw6gk/qpcCD7v6mmXUiGGbJJpjf7Up33xZ6OvXR0L7vuPuv\nGhhHO2A8cDjQAXgQWJKqeEIxtQHGAn0J/hjeQPD9SFlMobj2B+YB54biSOXXaD7huf5WAr9LcTy/\nAIYB7YC/EDw5ncp4rgSuCr3tBJxIsILInxoRUxHBE+HFwMtm9lFjYmpKqjmLj2rORMLSseesasko\n4B6CJz4Tzsx+TpB8dAhtqlxeajDBhLmXmlkv4CZgEHAh8LvQtCE3AgtD+/4NuDd0jieBy939LOA0\nMxvQwHB+AOSEzncRwVNpo1IYD8BXgfLQsfcCv011TKEk9q9AYej6KfuemVlHAHc/J/S/a1Icz1Dg\njNB/N0OB3qT4++Xuz1V+fYC5oev+spExrQeuIeg5e6GxMYmINAfpmJxVWzKKYO3OZFgOfIPwygU1\nl5c6D/gSMMPdS9w9P3RM/8gYQ/+eZ2ZZBEnlqtD2yaFzNMQEgj9aEHxPSlIcD+7+b+AnobdHALnA\nKamMCXgEeALYFHqfyq/RiUBnM5tsZu+FephSGc8FwCdm9hrwBvA6qf9+ARBawu1Ydx+3FzF9QdDb\ndjOwZW9jEhFJZ+mYnEVdMirRF3H3fxEMi1SKXHsmcimqWEtU1bVsVeX2hsRS6O47Q38MJxD0WkTe\nc5PGExFXmZk9SzAM9SIp/BqZ2VUEvYvvhDZlpDIegt67R9z9QoIh35rTOjR1PNkEvUrfCsXzd1L7\n9Yk0AhgZet3YmI4ADiYY+uwQZd+0o5qz+KjmTCQsHZOz+paMSqbIa3Qj+lJU0ZaoqmvZqspzNIiZ\nHQr8D/ibu/8j1fFUcverAAPGAR1TGNPVwPlm9j4wAHiOICFJVTxLCSVkoTn8tgORq6M3dTzbCOqv\nSt19KUGNVmTSkpKfITPrAfR19ymhTY39uR5P0Hv7KdV/bzXq57opTFlzQOydpMrw4ber7kwkJB2T\ns/qWjEqmaMtLzQbONrMOZtYd6EdQxFwVY+W+7l4A7DGz3maWQTDM1KAlqszsAOAd4Ofu/myq4wnF\ndEWowBxgN1AGzE1VTO4+xN2HhuqXPgZ+BLydwq/R1YTqIc3sIIIk4p0UxjOdoF6xMp7OwHup/BkK\nGQy8F/G+sT/XlxP8DPYA2u1lTCIiaS3tntYkWP7pfAuWf4Lgj2AyVT6WfwcwNlSI/BnwSugpsseA\naQSJ7Ah3LzazJ4DnzGwawdNj3w+do3J4qw0w2d3nNDCGEQS9HL80s8ras1uAx1IUDwTLaz1rZlMI\nnv67hWA91VR9jWqqILXfs6eBZ8ysMjG4mqD3LCXxhJ5uHGxms0PXGQ6sTuHXp1JfIPJp68Z+z44A\nXnX3l8zsm3sZk4hIWsuoqGgWUwaJSCtmZn8iqDl7Fxjs7t+PcUjKjRw5smJufvIfJJ00+jIAvnr7\na406viRnEc+PujWRIZGdnUVOTkFcx1TWmyViaLMx10+kVF6/Nd97mlw/I/ZesaVjz5mISE13AucT\n9JZdldpQGkbznMVH9WYiYUrORKQ5eCr0bw+CKV6+msJYRESSSsmZiKQ9d6+qPTWzR1MZi4hIsik5\nE5G0Z2a/Dr1sCxyWylgaasjhW5ibf2Cqw2g2EllzJtLcKTkTkeZgXOjfUmBjKgNpKNWcxUdJmUiY\nkjMRaQ7+AqwjSM6ON7OP3V1/zUWkRVJyJiLNwWfufjeAmf3B3e9MdUAiIsmi5ExEmoP2ZnYXwVQa\nzeL3lmrO4qOaM5GwZvFLTkRavbuAPkBPd/8w1cE0hGrO4qOkTCQsHdfWFBGp6THgF0AXM/trqoMR\nEUkmJWci0hyUAuvd/b9ASaqDERFJJiVnItIcrAa+bGb/AHakOJYGGXL4llSH0KyMGTO6qu5MpLVT\nzZmINAf5wHlAprvnpzqYhlDNWXxUcyYSpuRMRJqD7wKdgUIzq3D38akOSEQkWZSciUhaM7OngQeB\nI4FVKQ5HRCTpVHMmIumuvbtPAYa4+5TQ67SnmrP4qOZMJCyte85KS8sqcnN3pTqMvdazZ2dawn2A\n7iVdtZR7yc7OyoiyuZeZnQscaGZfBjLc/b0mDi1uqjmLj2rORMLSOjlr27ZNqkNIiJZyH6B7SVct\n6V6ieBE4BPgHcGiKYxERSbq0Ts5ERNz92VTHICLSlFRzJiKSBKo5i49qzkTC1HMmIpIEqjmLj2rO\nRMLUcyYiIiKSRpSciYiIiKQRJWciIkmgmrP4qOZMJCzhNWdmdhrwkLufU2P7MOA+oBQY7+7jEn1t\nEZF0oZqz+KjmTCQsoT1nZvZzYCzQocb2dsBo4HxgCHC9me2fyGsD3HTTT6Junz9/LuPHP5Xoy4mI\niIgkXKJ7zpYD3wCer7G9H7Dc3fMAzGw6MBh4pbEXWrduLc8//wxZWVls3LiRX//6oaq2G2+8htNP\nH0Ru7hecffZQMjMzmTVrJrm5uWzevJGRI3/LvHlzmDVrJgCdO3dh+PCbq46fNu2DWm0TJrzExo0b\n2LJlMz/60Y/ZsGE9M2dOp1279hx11FGcddYQ7rrrFo4/vj+HHXYEs2fPpG/fY7jxxpsae4siIiLS\nCiW058zd/0UwbFlTNyAv4n0B0H1vrtWpU2cuueRr9O8/gC1bNrNt27aqtqysLK688hpuueVOXn75\n7wD063ccd9xxN336GMuWLePAAw/mwgu/wgknnMjs2R9VO3fNtuLiYubNm80tt9zBL37xS7p27crE\niRO4996R3H33/zFz5ofs2rWLQw45lLvvvpcePXpwxhlnKTETacVUcxYf1ZyJhDXVPGd5QFbE+ywg\nN9ZBRxxxBKtXr47aNmnSK+zcuZNzzz2XQw45iH326Uy7dm3Izs6iTZsMsrOzKC4upn37NvTo0ZkD\nD8wmOzuL7t270K1bB1544VkuuugizjhjIBMn/pPs7HB4v/rVM1x88cVVbT17dqo6d7t2ZWzZsoa2\nbTOrjgmu0Yns7H3Jzs4iK6sjWVkdq50z8nVzp3tJTy3pXloC1ZzFRzVnImFNlZx9DvQxs55AIcGQ\n5iMNOTAnpyDq9k6duvHRR7PJz99FXl4BK1duoLS0nJycArZu3ca99z5Abu4XfO97V7Jjxy527dpD\nTk4BhYXF7Nixix499mXq1A+ZM2cBZWUVbNmSR2Zm0JHYs+d+1dp27iylb9/j+MUv7iU3N5crrriK\nr37169x++1107tyFU089kz17MigqKiEnp4CCgqJqsWdnZ9V5H82N7iU9tZR7UYIpIpK85KwCwMwu\nB7q6+1gzux2YTDCU+rS7b9qbC5x77gWce+4F1bY99tiTAOy3337ccssd1dpOOukUAH784+urvY/m\npptqf4K74oqrqr3v2/cYzjvvwmrbRoy4H4CLL/5qA+5ARJIp8slxMzsaeBYoBxYDP3X3CjO7Drie\noLurBq0AABeISURBVBzjQXd/08w6AS8A2QQlGFe6+zYzOx14NLTvO+7+q6a/KxFpDRI+z5m7r3b3\nQaHX/3D3saHXk9z9VHcf6O5PJPq6kR5++I/JPL2IpLkoT46PBka4+2AgA7jUzHoBNwGDgAuB35lZ\ne+BGYGFo378B94bO8SRwubufBZxmZgPqi0E1Z/FRzZlImNbWFJGWqOaT4ye7+9TQ67eAC4AyYIa7\nlwAlZrYc6A+cCTwc2vdt4D4zywLau/uq0PbJwHnAx3UFoJqz+KjmTCRMKwSISIsT5cnxjIjXlU+L\n1/UUeTcgv55tkdtFRBJOPWci0hqUR7zuBuwgSLZqPkVec3u0bZHnaPYqn25PtFQ/3NGar9+a7z0d\nrp8ISs5EpDVYYGZD3H0KcDHwHjAb+I2ZdQA6EkyWvRiYAXwFmBPad6q7F5jZHjPrDawiGBZ9oL4L\nDjl8C3PzD0zW/SRMWVlFwp/0bczTw5X1ZokY3kz108upvH5rvvd0uX4iKDkTkZasIvTvHcDYUMH/\nZ8Aroac1HwOmEZR4jHD3YjN7AnjOzKYBxcD3Q+e4AXgRaANMdvc59V1YNWfxUc2ZSJiSMxFpkdx9\nNcGTmLj7MmBolH3GAeNqbNsNfCfKvrOAM5IQqohINXogQERERCSNKDkTEUkCzXMWH81zJhKmYU0R\nkSRQzVl8VHMmEpb2PWennHI8p5xyfKrDEBEREWkSaZ+ciYiIiLQmSs5ERJJANWfxUc2ZSJhqzkRE\nkkA1Z/FRzZlImHrORERERNKIkjMRERGRNKLkTEQkCVRzFh/VnImEqeZMRCQJVHMWH9WciYQlLDkz\ns0xgDNCfYLHga919RUT714ERBAsRj3f3JxN1bREREZGWIpHDmpcB7d19EHAPMKpG+2jgfOBM4A4z\n6x7vBTQhrYiIiLR0iUzOzgTeBnD3WcDAGu0lQA+gE5BB0IMmItIiqeYsPqo5EwlLZM1ZNyA/4n2Z\nmWW6e3no/ShgHlAIvOru+TVPICLSUjSXmrOKdt24f9T4uI8rLyvj6xecxskD+ickDtWciYQlMjnL\nB7Ii3lclZmZ2GPAz4HBgF/CCmX3L3V9J4PVFRCRO7XscwbqS+I8rKylm8xb1DookQyKTsxnAMGCC\nmZ0OLIpo6wiUAcXuXm5mWwmGOGPKzMwAIDs7q9rr5qY5xlwX3Ut6akn3IiLSmiUyOZsInG9mM0Lv\nrzazy4Gu7j7WzJ4DPjSzov9v7+6D7SjrA45/70lIeMkNpeVaiGXAVvzpqPgCigYlUMRXMuJLbRnH\nFxRQio4dxnF8t1itWgd8LaiARWytU6wwKCXSKhWJLQhqgSo/BERacWKkQhJeQpJ7+8eem3Nyc+/N\n3ZPdc/ec+/3MZHL22bP7PM/dc3Z/59nf7gK3AxfNZaXj40Vq2vr1G3d4PUjGxkYHrs0zsS/NNCx9\nGaYAc9XB67hhw4Hz3YyBMZlv5ulNqcLgLDMngNOnFN/WNf8TwCeqqGvyis0bb7ylitVJUuUGJees\nKQzKpA6fECBJktQgBmeSJEkNYnAmSTXwPmfleJ8zqcNna0pSDcw5K8ecM6lj4EfOfKSTJEkaJgMf\nnEmSJA0TgzNJqoE5Z+WYcyZ1DE3Omfc+k9Qk5pyVY86Z1OHImSRJUoMYnEmSJDXIUAZnXsEpab6Z\nc1aOOWdSx9DknElSk5hzVo45Z1LHUI6cTXIETZIkDZqhDs66GahJkqRBsGCCs0kGaZL6wZyzcsw5\nkzoWdM6Z90aTVBdzzsox50zqWHAjZzNxRE2SJDXBgh45m073aNrUYM0RNkmSVLfKgrOIaAHnAocB\nm4FTMvOOrvnPAM4GRoBfAq/NzEeqqr9fpgvYdlXWao3wgx/c3Pdgb66nbWdrf5m+lC3rpV3SoFh1\n8Dpu2HDgfDdjYEzmm3l6U6p25OxEYElmroyIIykCsRMBImIE+ALwisy8MyJOBR4DZIX1D6QygVHZ\nsql1NG00sJd2VfW3OfzwJ9FqjTA+PtHz+nY3+BwkVQfeM6377rt/sRutbBZzzsoxKJM6qgzOjgLW\nAGTmdRFxRNe8xwH3AmdGxJOAKzJzwQdmGm5VBpIzlVUVaO6qrBd1rluShlmVFwQsBzZ0TW9rn+oE\n2B9YCXwGeB5wXEQcW2HdkiRJQ6HKkbMNwGjXdCszx9uv7wVunxwti4g1wBHA1btaaas1AsDY2Oj2\n15OqKqtz3YPeria0oc527c76mvZ3aGq7yq5nWJhzVo45Z1JHlcHZWmA1cElEPAu4qWvencCyiPij\n9kUCzwUumMtKJ0/VrF+/cfvrSVWV1bluKA6aTWxXL23otS91t6uXsu5TgYO+fXa3L3W1q5f1DAtz\nzsoxKJM6qgzOLgWOj4i17emTI+IkYFlmnh8RbwS+0r44YG1mXllh3ZIkSUOhsuAsMyeA06cU39Y1\n/2rgyKrqkyRJGkY+IUCSauCzNcvx2ZpSh08IkKQamHNWjjlnUocjZ5IkSQ1icCZJktQgBmeSVANz\nzsox50zqMOdMkmpgzlk55pxJHY6cSZIkNYjBmSRJUoMYnElSDcw5K8ecM6nDnDNJqoE5Z+WYcyZ1\nOHImSZLUIAZnkiRJDWJwJkk1MOesHHPOpA5zziSpBuaclWPOmdRhcCZpwYiIHwL3tyfvBD4CXASM\nA7cAZ2TmREScCpwGbAU+lJlXRMRewN8DY8BG4HWZ+Zs+d0HSAuBpTUkLQkTsCZCZx7b/vRE4B3h3\nZh4NjAAvjYgDgLcCK4EXAB+JiCXA6cB/td97MfDe+eiHpOHnyJmkheIpwN4R8S2Kfd97gKdn5jXt\n+VcCzwe2AWszcwuwJSJuBw4DjgI+1n7vGuB9s1W26uB13LDhwOp7MaQm8808vSlVGJxFRAs4l2In\nthk4JTPvmOZ9XwDuzcx3VVW3JM3BA8DHM/PCiDiUIsDqthHYF1hO59Tn1PINU8pmZM5ZOQZlUkeV\nI2cnAksyc2VEHAmc3S7bLiLeBDwJ+PcK65WkubgNuB0gM38WEfcCT+uavxy4jyIAG+0qH52mfLJs\nQVu+fC/GxkannTdTeb8s5PoXct+bUH8VqgzOjqL9SzQzr4uII7pnRsRK4JnA54HHV1ivJM3FyRQj\n+2dExAqKAOuqiFiVmd8FXgR8G7ge+HBELAX2BJ5AcbHAWuDFwA/a771m5yoWlg0bHmL9+o07lY+N\njU5b3i8Luf6F3Pem1F+FKi8I6B7yB9jWPtVJRBwIvB94C0XSrST124XA8oi4BvgqRbD2F8BZEfF9\nih+rX8vMdcCnge9RBGvvzszNwHnAEyPie8ApwFmzVeZ9zsrxPmdSR5UjZ1NPBbQyc7z9+pXA/sC/\nAAdQJOX+NDMv3tVKW60ilhsbG93+elJVZXWue9Db1YQ21Nmu3Vlf0/4OTW1X2fXUJTO3Aq+ZZtYx\n07z3AuCCKWUPAa+aa31Dn3M20mLNNT/mhp/8cqdZS5cuZvPmrTMuGofsz5++7IQdysw5kzqqDM7W\nAquBSyLiWcBNkzMy8zPAZwAi4nXA4+cSmAGMj08AsH79xu2vJ1VVVue6oThoNrFdvbSh177U3a5e\nylqtkd1aX5P+Drvbl7ra1ct6NBgWLd6DTaOHs2nzNDOnK+uybN09tbRJGhZVBmeXAsdHxNr29MkR\ncRKwLDPPn/Je98aSJEnTqCw4y8wJips0drttmvd9qao6JampvM9ZOd7nTOrwJrSSVIOhzzmrmEGZ\n1OHjmyRJkhrE4EySJKlBDM4kqQbe56wc73MmdZhzJkk1MOesHHPOpA5HziRJkhrE4EySJKlBDM4k\nqQbmnJVjzpnUYc6ZJNXAnLNyzDmTOhw5kyRJahCDM0mSpAYxOJOkGphzVo45Z1KHOWeSVANzzsox\n50zqcORMkiSpQQzOJEmSGsTgTJJqYM5ZOeacSR3mnElSDcw5K8ecM6mj0uAsIlrAucBhwGbglMy8\no2v+ScDbgK3AzcCfZ+ZElW2QJEkaZFWf1jwRWJKZK4F3AmdPzoiIvYC/Ao7JzOcA+wInVFy/JEnS\nQKs6ODsKWAOQmdcBR3TNexh4dmY+3J5eDDxUcf2S1AjmnJVjzpnUUXXO2XJgQ9f0tohoZeZ4+/Tl\neoCIeCuwT2b+W8X1S1IjmHNWjjlnUkfVwdkGYLRrupWZ45MT7Zy0vwEeC7yi4rolSZIGXtXB2Vpg\nNXBJRDwLuGnK/M9TnN582VwvBGi1RgAYGxvd/npSVWV1rnvQ29WENtTZrt1ZX9P+Dk1tV9n1SNJC\nV3VwdilwfESsbU+f3L5CcxlwA/AG4BrgOxEB8KnMvGy2FY6PFzHc+vUbt7+eVFVZneuG4qDZxHb1\n0oZe+1J3u3opa7VGdmt9Tfo77G5f6mpXL+sZFqsOXscNGw6c72YMjMl8M09vShUHZ+3RsNOnFN/W\n9XpRlfVJUlOZc1aOQZnU4RMCJEmSGsTgTJIkqUEMziSpBt7nrBzvcyZ1+GxNSaqBOWflmHMmdRic\nSZL66hd338XXL7+i9HL7Lh/luGOOrqFFUrMYnEmS+ur+ZUdy+c3lb6Ey+sjNBmdaEAzOJKkG3uds\nZq3WzndVOmL5jwG4YcNTZ15uxDRpLQwGZ5JUA3POypktKJMWGn+GSJIkNYjBmSRJUoMYnElSDbzP\nWTlHLP/x9rwzaaEz50ySamDOWTnmnEkdjpxJkiQ1iMGZJElSgxicSVINzDkrx5wzqcOcM0mqgTln\n5ZhzJnU4ciZJktQgjpxJkgbC+MQ4mzZt3OX79tyTnd6399770Go5HqHBUGlwFhEt4FzgMGAzcEpm\n3tE1fzXwPmAr8MXMvKDK+iWpKXy2Zjlzebbmb7eNcdpffnmX62qNjDA+0Xmw+oP33cPnPnQGBxzg\n9tBgqHrk7ERgSWaujIgjgbPbZUTEHsA5wBHAg8DaiLg8M39dcRskad6Zc1bOXHLOlizbH5btX3rd\n462lvTRJmjdVj/EeBawByMzrKAKxSU8Abs/M+zNzC3AtcHTF9UuSJA20kYmuod/dFRHnA/+cmWva\n078AHpOZ4xHxHOAtmfln7XlnAXdn5oUzrW/x4v+dgKJ9K1Y8mnvu+eUO86sqq3PdhRFWrFjRwHb1\n0obe+lJ/u3opG2F3Pl/N2j6715f62lVuPVu3HjTCkPjjN3xuYp/96j+N9s1zTgTghDMvq72uQfXg\n//2cT5754r6d1hwbG2X9+l3nxg1b3dYPY2OjlezDqg7Ozgb+MzMvaU//T2Ye1H79ZOCjmfmS9vQ5\nwLWZ+fWZ1nfIIVTXOEmNd9ddDE1wdtZZZ0304/YQwxKczSXnrFcGZ9bfx/or2YdVnXO2FlgNXBIR\nzwJu6pp3K3BoROwHPEBxSvPjs63srruY1z9yVeb7w1Il+9JMw9OX0fluQGXMOSvH+5xJHVUHZ5cC\nx0fE2vb0yRFxErAsM8+PiDOBb1Hkul2Ymb+quH5JkqSBVmlwlpkTwOlTim/rmv9N4JtV1ilJkjRM\nvAmtJNXA+5yVU2fO2cTEBFdfcy377fd7pZd98hMfz6NXrKi8TdJsDM4kqQbmnJVTZ87Z3vsdzJW3\nPgI8VHrZY359LW949auqb5Q0C4MzSdJQG2ktYvGSvXpblgcrbo20az5oTJIkqUEcOZOkOdjVs4On\nMuesnDpzzqRBY3AmSXMz47ODp2POWTlNDcr+9cZ7+M4PP1lqmUWLRjhg2RY++v6319QqDTuDM0ma\nmx2eHRwRR+zi/RoCez7qyT0tt0frDjZt6u3G0MuWDc/NmNUbgzNJmpvlwIau6W0R0crM8flqkJrr\nzt/uxWkf+HLp5bbcdycfe8/U24XOzYoVj2aYnrKxkBmcSdLcbGDHI9+sgdmqg9dx/c9/U3+r2sbv\nvXmH6UWLW2zbOj9xYy91P/Mx2wC4/ueL5qX+Ki1a3GKPreO9XXK39+9y5gfPLb3Y1i2bWbR5HfuP\n7c+WR7aWWnbzA/exYkX5/MhHNj/MkqVLdyjba889eOjhLbto6xYWL15Mq1X+D/TwwzvXWbb+Mg76\ng4M488x3VLa+uar0weeSNKwi4uXA6sw8uf3s4Pdl5kvmu12Sho8jZ5I0Nzs9O3g+GyNpeDlyJkmS\n1CDehFaSJKlBDM4kSZIaxOBMkiSpQQzOJEmSGqRxV2uWfX5d00TEHsAXgYOBpcCHgJ8CFwHjwC3A\nGZk5MFdiRMSjgBuB4yj6cBED2JeIeBewGtgD+CywlgHrS/v7cQHwOIp2nwpsY/D6cSTw0cw8NiIe\nyzTtj4hTgdOArcCHMvOKeWswu943RcRq4H0U7f1iZl4w0zIz9blPdT8N+Abws/bi52XmP1Xd9655\n27d1e7pU32uovy/9n+5YkJnf6NO2n6nufvV9EXA+xX5qAnhzZv53v7b9LPWX6v9ufu62Hzcz87ay\nfW/iyNn259cB76R4ft0geTWwPjOPBl4I/C1FH97dLhsBXjqP7Sul/SX/PPAARdvPYQD7EhHHAM9u\nf66OAf6Qwdwuzwf2ycznAB8E/poB60dEvINixzl5J8mdPlMRcQDwVmAl8ALgIxGxZD7a22XGfVP7\ne3IOcDywCjitvXM+EVg6zTJlv0dV1n04cE5mHtv+N+vBeTfqn25b99L3quvvV/+nHgs+22P/q6y7\nX31fDYy391PvBT7cY9+rrr9s/3v93HUfNyeV6nsTg7Mdnl8HDNrz6y4B3t9+3QK2AE/PzGvaZVcC\nz5uPhvXo48B5wK/a04Pal+cDN0fEZRS/nC4HDh/AvjwE7BsRI8C+wCMMXj9uB15OsYOC6T9TzwDW\nZuaWzNzQXuawvrd0R7Ptm54A3J6Z92fmFuBa4Oj2MldOs0zZ71GVdR8OvCQivhsRF0TEspr6Djtv\n6176Xnn99Kf/0x0LoD/bfqa6+7LtM/My4E3t9xwC/LbHvlddf9n+9/q5m3rchJJ9b2JwNu3z6+ar\nMWVl5gOZuSkiRim+IO9lx7/zJoqDauNFxOspfn1d1S4aYced3MD0BRij+GK+Engz8BUGsy9rgT2B\nWyl+mX2aAetHZn6d4jTApO72b6Ro/3Lg/mnK59Ns+6aZ2jvdMosov82qrPs64O2ZuQq4E/jALuru\ntf7ptjX09nmtsv7r6UP/pxwLvkZxLIA+bPtZ6u7ntt8WERdR7KP+oT2/n9t+uvrL9r903TMcN7v/\nhzn0vYlBT6nn1zVRRBwEfAe4ODP/keIc86RR4L55aVh5J1PcEf1q4KnAlyiCnEmD1JffAFdl5tbM\nvA14mB2/HIPSl3dQjCgFxTa5mCKHbtKg9KNb9/djOUX7p+4HRun8+p0vs+2b7mfn9k7Xj1ZmbqP8\nPqHKui/LzB+1yy4DnraLunupf7Zt1cv+sMr6L+1X/7uOBV/KzK+259e97Weru299B8jM11PkfV0Q\nEXvT520/pf69KN//Xr53Ox03I+L3Kdn3JgZna4EXA7SfX3fT/DannPZGuAp4R2Ze1C7+UUSsar9+\nEXDNdMs2TWauysxjskik/THwWmDNIPaFYsj5hQARsQLYG/j2APZlHzq/5H5LcVHPQH6+ukzX/uuB\n50bE0ojYl+IUwi3z1cC22fZNtwKHRsR+7dy4o4Hvz7JM2W1WZd1XRsQz2q+PA26ooe//Mcu6evm8\nVln/mn70f4ZjAdS/7Weru199f00UF2BBkYox+YOkL9t+hvoneuh/6e/ddMfNzFxXtu+Ne3xTO5dm\n8uoIgJPbIx0DISI+BfwJkF3Fb6MYWl0C/AQ4NRt+Nd1U7V8Bb6L4gJ/PAPYlIj4GHEvxo+RdwF0M\nWF8i4neAvwP2pxgx+yTFFUGD1o9DgK9k5sqIOJRp2h8Rp1BcrdkCPpyZl85bg5l+30RxqnxZZp4f\nESdQ5Pm0gAsz87yZ9mcz9blPdT+F4kKlLRQ5Madl5qaq+9617CG0t3V7ulTfa6i/L/2f4VjwIuCg\nMv2vuO7oU9/3orgy8QCK/dRHsrhatC/bfpb6S2373fnctZe/GnhTL9/5xgVnkiRJC1kTT2tKkiQt\nWAZnkiRJDWJwJkmS1CAGZ5IkSQ1icCZJktQgBmeSJEkNYnAmSZLUIAZnkiRJDfL/fjKNS/krToIA\nAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x19d545c0>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAFyCAYAAAA+mzTYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX6wPHvppJeIKEFCIIcQbwUUQSl27v+9GK5XiuK\n2EEE9XqVawMFRFGUau9dsRdsCCgqIiAHAektCQkJSUi2/f6Y3SVlk+xudrOz4f08j4+7M2dm3plk\nw7sz57zH4nQ6EUIIIYQQ/osKdwBCCCGEEJFKEikhhBBCiABJIiWEEEIIESBJpIQQQgghAiSJlBBC\nCCFEgCSREkIIIYQIkCRSQgghhBABkkRKCCGEECJAMeEOQAghGksp1RV4Q2vd1/W+NzBXa32MUqo9\nMBXYC6zWWs9SSo0HOgFpwG1AfM024TgPIUTkkTtSQoiIppRqDVwN7K/y/iog39XkOuBxrfUNwBlK\nqWRgkNb6RmA+MAq4tkYb+ZIphPCJJFJCiIimtd6ttb4TKFVKxQL3A3dVadIa2Op6XQhkAHtc77cB\n7YA2NdqkhTpuIUTzEJZvXTab3VlYWBaOQ3uVkZGImeIB88Uk8dTPbPGA+WLKykqxNMFhhgOZwKNA\nD6XUv4EtQAdgu2vdDqClq30H1/uoGm0K6zuIzWZ3xsREhyL+iGSxGD9ambtVNGN1/v0KSyIV7j9A\n2/NLKS6tpHunDFPE443ZYpJ46me2eMCcMYWa1voz4DMApdTHWusXXI/6piulrgDe1lrblVKLlFJP\nAenAaCCxRhtHfcdpbIKalZVCXl5Jo/YRTMGKJ5jn1FyvUTCZLSazxQPBiykrK6XOdYdEP4C3v93A\nR0s28+Stg7lxxnee5fMnDPN8kxJCRDat9Wk13p/u+v9u4NIa656osXlJzTZCCOGLehMpb6NdqqxL\nA34Ehmmt9yillgBrXatv0VoXhyhmvxSWVPDRks0AzP9oTbV1ByrtJMQfErmkEMJEJk2aBMCYMWPD\nHIkQkWXWrOmAuT47DWUR7pEsS5VSHyml5mitbUqpKOBBYD2AUioHSAIqgE1mSaIAxj212PP6t7/y\nq62TREoIEQ733nuv6R6BCBEJzJRAuTWURdQcyZKKcXfqXmA2MBajA1YZcInWepVS6lGl1ACt9ZL6\ndlzf80ZfHaiwcd3kr3jw+oHkZPu/v5j4WE8cwYgn2MwWk8RTP7PFA+aMSQghmpOGEqmao132KaWy\ngP5ANjAAuAN4CWMUzCqgwIf9BvRtzOFwsvDHTfTtlkVOdjI3PvYdZRU2rp/yNQsmDq/VvqERJFu2\nF5ESF+VzZ7S3v93A0tW7eeja/sSGuCOv2TrtSTz1M1s8YL6YJKkTQjRHDSU88zg4kuUd4DFgnNb6\nVACl1LPAFIxHehOVUqcCFq3198EOtLi0kltn/gDAez/87fM23pwxoBMfLdnMlj0lHNk506d9XTX5\na8/rJ95aybiL+vi0nRBC1CR9pIQITMT1kfI22qXG+iurvB3pz4GdTqdfI+bcSVRdPl66mdOP61Rt\n2Wtfr/fatmVqCwDeXLSBklIrN4ysPyly1LiztXpTvSVmhBCiXtJHSojAmCmBcgtLZfPvf9vO1VMW\nVbvLUx+bvd6SLgB8vnhVrWXL1uz22rZz21TP609/2tLgvv/cbCROTqcTa3kRAI+++luD2wkhhBCi\neQtLIvXIS8vrXDfuqcVcNflrrpr8NV8sN/q5v7HI+52lqlZ/9wJTXv7V895qO5h8dc1J4/aLepMY\nH8PjN59Aekp8tW2X/3kw4frh9y2c9s9rmHDP/5g69WEAfllrzCZRvncjxVt/Bozkakd+aYNxCSGE\nEKL5MtXY/7yicgoK97Fn9UKiYuKY/lspr/S6kPy1n+F02LBby5lyz238Z9rz2CtKiI5P4bDsaPJj\n/4G1bC8//fgFv/Vw8tVXX7Dir3yKK2NopU7mt/cnEbXtGMaNvJRpj0wiNTWdvDU7yepxJgCT5i0l\nOSGWf53cjcfmvEZiq67kJR1L0c4fWLHiV37fUA5AYuUWyvdvxlq2l+0/P8uolblMvWcM7777Fikp\nKezYsYP775/MqlUr+eSThdhsNvr06UuPHkfx9tuvExMTg8USxc03jyUqSqY5FOJQ5W8fqf37S7Db\n7QEdKy0tPaDthDCjiOsj1RSumvw1T48dQnxcNF/9so2SHb+TlHU4Ke16UVGyi9K8v6go3kGL9Bx6\nHpbJ2jUrOH1ALiu2xTLq0rOZ+9hE4nJHEJuYQVqHY3jkscfp26cP+w5YqNy/E4ftAElJyUyceA9/\n/rmakpISjjtuIL/kt6sWx/5yK8+8vxp7RQnxaTkA5JXFsmfPHgpL4oxYLzqTdX/+zqJNFmITW9H6\nH//HE+//zegzzqaoqJDffvuV/Px8Xn75eSZPnk50dDRr167h+efn0apVNrGxsWzfvo3t27fRoUPH\nJr/WQghz8LeP1PhJT1Dk9G1gTFW2fX/z5txH/N5OCLMyUwLlFpTK5kA+MAcoBuK11jf4E8T1079l\nwcThfP7zVpwOO+65Ae2VpTisZcSntqXVEacx+uLO7C0oYMWKX7nuvN70UVk8FxvDyFMUDy0xtskr\nLGVVyeFkde9F0ealXHduH16Z/T4AGRktuemm29i6dTNxO1+lW/ebWbd9f/ULkpCO7YDRD8p2oIis\nrGzAeJ+cEAtAalIsBbEJAOzauJyfft7GkMFDyc7OBpxUVlo9+9u+fTtOJ5xxxlkcdlhXvvzyMzIy\n/P+DKIQ4dCWltaIi5nC/t3NEeR+5LIQInoaeL7krm98AnKGUigGoUdncAgwF1mutxwJ5SqkB/gbi\n7nie0r4P+3evZs+q9yne9hsp7Xpht5aRa1/CvLlP07atcSfJPeLPYrEwrE974pJbk68/p5U6hd0r\n32L3yrexV5YxoGdbzzEqKyt4+uknWLnyd3r2PIoJ/zqmVhwpbY/Cvm8Te1Z/gMN6gDxblmddVlY2\nP/+8jJvPU55lMS1S+X3VWr755mvKy8spKiri4ov/xeTJ9/PQQ5OorKzg8suvZu7cZ5gx41FWrfqD\n5ORkfy+PEEIIIUwoGJXNAVoD21yvtwHVn5vVkJ2RwNiRvZn4TO3i59GxCfznP/8jM7UF367Yzk9/\n7uGyq8dx8YkHv41dddW1ntdPPPEMAM8/NYU7XPtLbNW12j5nzpwNQMeOnZgy5THP8sWLv2dg1gY+\n/HGTZ1lqTl/eePZJRk/7FoDXvvrLs659+xyefnq+cWF6/xOAlHa9KaM3115bvSDocccNrPb+4Yen\n1ndJhBCHEKkjJURgIrGPlK+Vzd8BBrm2ycGocF6n+f85GYApN57AhCdr14c6d3g3AAb3870fUV1V\nk+urpnzuuadzLqdzJzD/g1W89+0GANq3q905s/+Rbart64hOGazdfLCeVMuWyURF+V4XyxdmqwQt\n8dTPbPGAOWMSvvWR+vbbRRx55FG0atUqqMeuqDjA//53D0VFRSQmJnL33ZOq/Z7s3LmD++67m9mz\nn6223UsvPcfRRx9D9+5Het1verp0ahehZ6YEyi0olc211nuUUpcppWYATq310oYOnJdXQlZyXK3l\nCyYOD7hQ3bQbjqeg+ADL1+7h85+38t8r+vm0r6ysFM4e0In3vt1AUosY8vJKmDN+KNc++o2nzfmD\nOlfb1x0X92HJql3MXbgGgDnv/M7/DenChz9uom1mIv2OyA7oHKrGZKaCfRJP/cwWD5gvJknq/PPW\nW6/RuXNnILiJ1LvvvkXXrt248spRfPXV5zz//HweeOC+Brf717+uqHd9Zqb0/RSHpqBVNtdajw4k\ngCdvHcynP23h1GM7ktiicYMIM1LiyUiJp2v7NC4a4X/HzAUTh3vm54uJrt59LCs9oVb7445s7Umk\nPlqymbMG5vLudxs9+xJCHLqee24eP/zwHXa7jXPPvYBzzjmft956jS+//JzY2GiGDBnBBRdcxIMP\n3kdcXBw7d+6koCCfu+++l/z8fP76ax0PPHAfs2bNY9fmVeza9TlgdCfI6Hw8u1a8jt1ahr2ynPbH\nXM6OX14CnDjtNlr/43ziU733sPjjj9+59NLLAejffyDPPTevVpuiokLuvPN2Cgry6dLlcCZMuJsH\nH7yPE088hbZt2/Hww5OIjo7B6XRy770PkJmZSVRUFNOnT2Hs2AkhuqJCmFPYyx8ktojh/MGHhTsM\nj6rT1iyYOJwtu0s8o/W8tb3zX315+CWjEKi7XxUY08pE+TEFjhAicEqprsAbWuu+SqmZQCVGN4OJ\nrtfVRh8rpcYDnYA04DYgvmabxsSzbt1ali1bwty5z2O323nmmSf5+++NfP31lzz99Hyeemoar776\nIsceOwCLxUKbNu0YP/4uPvzwPT744F1uv/1ODj+8G+PH38XWrVso2LWRDgPHAk62LZ1HUlY3wEJi\ny8PJOOwE9u/+k+i4JNr0Hknl/t04bHWP1istLfUMeElMTKS0tHZh4dLSUu6++z6SkpIYOfJcCgsL\nPX8bly//iR49juL6629i5coV7N+/n71795Keni5JlAg5M/aRkqqQDejYOoVM19x83rRtmeR1eWFx\nBQBlB2zVqqwLIYJLKdUauBrYr5RKAj7VWo8DXgdOovbo42RgkNb6RmA+MMpLm0Z9ydy6dQs9ehyJ\nxWIhJiaGG2+8lY0bN7Br105uvnk0GzduJDU1jW3bjLE83boZI4GzsrKprKyaBDnZuHEDFeX72bZ0\nNtuWzsFhLaOyNB+AuGTjsV9S9hEkZOSyY/nzFOjPoZ4vcUlJSZ7kqayszOso4nbt2pOcnIzFYiEj\nI5OKigOA8eXxzDPPITk5mXHjbnYVGo5uzKUSwi9jxow1VRIFkkg1Wl13q8Y//SM3zfiOG2d8x3VT\nv2naoIQ4hGitd2ut7wRKtdalWuuPXHeoRgKvUHv0cQawx/XePcq4Zpu0xsTUsWMuWq/F6XRis9kY\nO/YmOnXKpXPnLsycOZsXX3yRU045nS5duta5j6ioKBwOJ5065ZKQnEGHAaPpMGA0qTl9iU91l3Ux\nEqbygg3EtEghp/81ZB4+gvy1n9a536OO6sWSJYsBWLp0Mb169a3Vpq4J5Z1OJ99//y29evXh8cdn\nMXToCF566Xkfr4oQzVPYH+01Bw9c05//zFtWa3npAZvn9VWTv+b8wYdx5sDcJoxMiEOPUupcYDhw\nhda6XClVc/TxDqClq3kH1/uoGm0Ka+63qoyMxHrvxGRlHc2qVcO4+eZrcTgcXHLJJQwY0Jc1a07g\n5puvpaKigt69e9OjRxdatIglPT2RrKwU0tMTadEilqysFI49th9TpvyP+fPnk5ndgS2LZ+F0WGmR\n3omYFq6J110JT3xqO3b++jJFm5eA00Hm4ScBRl/Pmp38R426kgkTJnDLLdcRFxfHtGnTXDEb7Soq\nkoiLi/G8j4uLITMzyRNnr17dmTBhAq+88hwOh4O77rqLGTOmUVlZyaOP3s8jjwSvkrrZBiiYLR4w\nX0xmiwdCH5PF3bnam7oqmyulzgPOBKKBGVrrFUqpJcBa16a3aK2L6zmu02yjiYIVj7uwqC9mjR1M\ni7jquezKDQV0apNC19yWphtxJfHUzWzxgPliyspKCWmnQaXUx8BNwBLgU4zbNW8Cy4DpQAnws9Z6\nvlLqZkAB6cBoILFmm/qOlZdXUvcfTh/428/j9gdmszeQyuZ7/+C5R25psF1jf1eys43Ebs+e+v7s\n+8eEv7+migfMF1NTxOPvZydYMdX396uhO1LufgNLlVIfKaVma63tgAO4DugDnKeUygOSgApgUwNJ\nVLM25tyezHqv3jJaB9tO/67a+95dW7FivdH34cNp5wQ9NiGaM6316a6X3mqPXFqj7RM11pfUbBNK\n/s61F4gdy1/AXpbHTTet8SxLTk6R4sAiopmtfxT4X9k8DdirtX5fKTUEmAHcCpQDl2itVymlHlVK\nDdBa1y5bfgjod0Q2//l3P5at2c0Xy7c2vEEV7iRKCCEaq12/f+PY+wczfbgjJYQInN+VzQGUUiO0\n1l8ppfoBnwATMPocrAIKfNiv6Z6jBjOerKwU+vdqz00X9fF02jxr3Pue9U+NH8YNjy6qdx9r/i6g\nR+eWnve7CkpJiI8hLTk+aHH6qzn/zILBbPGAOWMSQojmxO/K5kqpcUBnpdTzGHeiXgQ2AhOVUqcC\nFq319w0d+FB7rnvZKYoXP9OcMaATCdEHH7UenpOGw+Fkw47qT0MnPPmDp6jnvv0V3PakMcrm5gv+\nQe+uwa107ItD8Vm8P8wWD5gvJknqDpK59oQIjBnrSAVa2Xye67+qRgYrqOZoWJ/2DOvT3vN+9u1D\nsdrsJLYwyies376Ph178pdZ2Vpvdk0QBPPHWSqmaLkSEa4o+UkI0R2ZKoNykjlSYxMZEeZIogK7t\n01gwcXi1u01L1+zihz921drWn5GBQgghhAgdSaRMZsx5PT2v53ywhhc/017bff3rtqYKSQghhBB1\nkETKZGKio2gR1/CUCy99vo6dBbXnyBJCmN+kSZM8fT2EEL6bNWu66T47UtnchCZe2pf7nv252rL5\nE4ZhtTmqTYx899xl0l9KiAgkfaSECIz0kRI+ycmuPYmoxWIhLjaaJ24ZVG15zeKf/52/jP/O/wlH\nPRXrhRBCCBEc9d6R8nWKGOB3YC5QDMS7ZlAXAYqqZ+b2mpMkL1+7x/N6d2EZ2/KMx30z31rJLRf2\nCk2AQgghhACCNEUMxmzqG7TWDyul7juUK5sHy4fTziEvr4Rf1+XRrUN6tXUPXXscd81Z6nnvbRTf\n7xsKQh6jECIwUkdKiMBEXB0pfJ8ipl2Vdttc70UQ9O2WVWtZm8xE5t0xjGseqb86+uq/93Jk58xQ\nhSaECJD0kRIiMGZKoNyCNUXMJMDdeScHY6qYepmtyrHZ4oHGxzTt9RVBnfzYbNdI4mmYGWMSQojm\nJChTxGitFyulLlNKzQCcWuulde/SYKZvY2abSgOCF9Ou3fuIjmr8mAKzXSOJp2Fmi0mSOiFEcxS0\nKWK01qODGJfwwbwJw9hVUMZ/5i2rtnzuHUMZ9cg3ANw9ZxmTrj6WPYXldPAyGlAI0fSkj5QQgYnE\nPlLCxKIsFtq1SmLBxOFMeOZH8ooOYIFqd6D2FJVzvav21Ii+OVx6crcwRSuEcJM+UkIExkwJlJsk\nUs3E4F7tePvbjYw4OqfONl/9uo2TjskhOyOxCSMTIvSUUl2BN7TWfZVS44FOGINjbgPiqVHGxZc2\nYTgNIUQEkoKczcQpx3bkxvOP4oKhXQC45szuXttNnN1g9zUhIopSqjVwNbBfKRUPDNJa3wjMB0Zx\nsIzLDcAZSqlkH9rIl0whhE/kj0UzERMdVa1UwsCebZm38E+vbddv28dDL/3CZSd3Y1jfuu9gCREJ\nXH0571RKfYIxuthdpdZdiiWO6mVcMnxokwbUWYwtIyORmJiG58Ssi7uP1L333utT+9jYGAhgsoKY\n6CifO/kHYzBAsAcUmG2AgtniAfPFFOp4/P3sQOhjCrSy+fVATyAZeFNrvVAptQRY69r0Fq11cejC\nFv6afftQrpv6DQAPvfQLAC9+vk4SKdHc7AFaul53AHZg3HmvWsZlhw9tCus7SGFhWaOCdPeR8rWf\nlNVqC+hrr83u8OkYwRrhGcx+X2YcdWqmeMB8MTVFPO4+Ur4eJ1gx1ZeMNfRor+btbvdXsELXsrHA\nJa6EKwmoALQkUebQv0drAC4Y2oXYGO8/6qsmf819C36iuLSyKUMTzYjd4eCaKYuYt3BNuENxumZe\nWKSUegq4BngSY4TxTUqpZ4C3fWzjCM8pCCEiTaCVzV9z9TOYCjyEUU/qEq31KqXUozJFjDlcd/aR\nXDi0C5mpLQB4etwQzwi+qrbs2c+tM39gwcThTR2iiHB2h8NTauPHVbs49diOXifdbgpa69Nd/3+i\nxqoSapRx8aWNEEL4ItDK5kcAdwP3aK03KaX6YNwqX4XRr6DBm9CH2nPdQDR1n4XU9ETiY+vu91Hf\nvqw2O1t2ldAlJ73ONsFmtp+Z2eKB0Ma05u8CJjz5Q7Vl/13wk9dq+vv2V4QsjkgkdaSECEwk1pHy\nVtn8duBDYAVwv1JqFfAMMFEpdSpg0Vp/39CBD7Xnuv4KVUwXDO3CW99s8L5u4sI670o1FI974uQL\nh3Zha95+LhpxOKmJcY0PuA5m+5mZLR4Ibkw7C0r5cdUuzht0GFFRFv7eWcz9zy/32nbPnmI+XrqZ\no1U2bTIT2V9u5ebHvw/qdEWRTupICREYMyVQboFWNj/cy7KRQYlIhNTpx3Xi9OM6AbC/3MqT7/zB\nuq1FnvV/7yymc9vUgPf/pitJW7p6tzwqbAYcDid/bi5k2usrAEhsYYwee7NGMn728bl8sHgTAFdP\nMSbTfvvbjcy+fQg3P97g9yohhIhYUkfqEJacEMvES/ty0/lHeZbVdZfBbdfeMh599Tf+2HhwZLjT\n6X1c9l/bithbfCA4wYqweOe7jZ4kCuDNRRtqJVEAJx/Twev2102t3SdPCCGaE6kjJehTpf4UwMy3\nV/LbX/mkJsVRXFpJ325Z/PMkxcSnDvaH+XNzIeMu6s3zn6zl9AGdvO734Zd+BeDfpyiOP6qtZ+Rg\nflE50dFRZKTEh+iMRDDkFZXz8dLNPrVNbBEb4miaF+kjJURgIrGPlDhEjBzelde/Xg/Ab3/lA3hK\nIvy6Lo9f1+XV2mbaa8adihc+1fXu+4XPNC98plkwcThzPljN0jW7AWPS5SiLJWjnIBrP7nBQWFxB\nq/QEJjzj38DbKIsFRx13J0V10kdKiMCYKYFyk0RKAMYUM+5EKlBtMhN56NrjPB3PayosqfAkUQDX\nTFnEgonDsdkd7C+3kpoUJ4lVGLk7hQNkZyTU2/aEo9py1Rnd0VsKcbhyp7l3DGXqaytwOJzoKv3u\nAOkvJ4RotiSREkFzywX/AKBrThrrt+2rtX7cU4trLdu6Zz/3LvgJgBF9c7j05G6hDVLUqWqn8D2F\n5Z7Xx3bP5syBufx3vvFzOvv4XM4ddBgAqmOGp53FYmH8xX087+tKqIUQojkJyhQxwEfAXKAYiHdV\nPRcRZuzIXkx//XfP+9sv6s3U11ZUa3PvFccw6bmfvW6fnmz0ebrz0r6ekVsNcSdRAF/9us2nROqV\nL9exZPVupo0ZSFw9da+CpdJqZ+ma3ZxwVFuiog69O2ajz+kJwIybTqBofwUdW/tWm+rs43PZtKuE\nm/7vqIYbH2Kkj5QQgYnEPlLuKWKWKqU+UkrNdk2vUKi1vkEp1RKYCZQCG7TWDyul7pPK5pGpZ+eW\nPHL9APaVVrJh2z565GYy5tye/PZXHktWG4/kOrZOZuqYgcx85w+OPSKbIb3bs3DJJkb0zSE+zkhq\nLBZLtUc5ekshU175zfM+JyuJbXmlPsW0e68xp1nrzEQANu8q4cvl2wBjeP3FJ3qrxAGlB6zEx0YT\nEx3YwFSn00lJmRW7w+m5k7bir3xudt11i1RTXv6V/ke2Zmjv9oBxnZxOYwSnN8P7tve8Tk2KIzXJ\n99pg7rtWojbpIyVEYMyUQLkFa4qYo6q0c8+mLiJQq7QEWqUl0KVdGgD9jsimr8ryJFIWi4XM1Bbc\ne8Uxnm3+Oaxrvfus+vgHYNRZR1a7E1VV2QGbUasIsNoc3DlnKQCzxg6mRVwMazbt9bT9YvlWRo7o\nWqtfVXmFjZtmGI+pAu2bM/31FazeVH3e2hXr8/n8py2cfGzHWu13FZTy/W/bGdqnfa11ZuB0Onn2\nk7XorUXorUWeRMp9nepSV6Iqmr/Zz76Mw8/eH08/+zppyS245EIpvioOHcGaIiYNGOTaJgdjqph6\nmW06DbPFA+aK6T9XHktcbHRQYurTow29D8+iuLSSjTuq96W6ccZ3ngrYs946+JhxzPTveO+Rs/jq\n123V2l/jeoT4yI2D6N45E4DFK3d41lftp5OTnczTE0bUGZfd4eSq+z9n5EndaiVRbq99vZ64FrFc\nOKL6I8izxr0PQEZ6Aice670cRCi99+0GBvVuR8u0hCrL1rPwh7+5+8pjWfLHTn5YudOzLj0jkZ+r\ndPz3plV6Am1ap4UsZmFuy9YWQEZPv7b5eXcW6dvWcUmIYhLCjIIyRYzWeopS6jKl1AyMGdiXNnRg\nM93Wbu7TewRD/55tycsrCTimB0f1Z9rrK5hwSV/y8/dzs6vfjM3u4Pf1+Tz17sHc+7bHvvHaWf3c\nOz6sc/93PPk9U8cM5PuVO3n/h7+9ttm2Z3+98Y+e9g2VVgdPv72y3nP54688hv6jrdd1j7++gl6u\nhC5UnE4nYx77jpHDuhIfF83cD9cAMP+DVZ47cDa7g/kfrAbg5mnf1NrH+RMWet13WnIcd192NO99\n/zcXDO0S1N9BM30xCDfpIyVEYCKuj5Q/U8RorUcHKyjR/LRtmcTUMcfXWh4THcXRKptRZ/Zg7kIj\nIfCWRPni9lk/NtimsKSizkKglVaHT8dpn5WM3lJIh+xkElvE1qrsnldUTlZ6Aja7g7FPLub2i3r7\n3EHbF+6O/C98Vnf9rmsf/SagfU8bczxRURauObNHQNsL30gfKSECY6YEyk3KHwhT2F1Y5lf71x88\nnZF3f1xvm2vO7M68hX9WWzbuqcXMnzAMS41+VfUVkkyIj6a8wu55v/DHTSz8cVOd7e+Zv4y4mGj2\nl1sBuO/Zn4NSR2n+R2tY/MeuettcNflrLhzaJaD9zxo72DSjEpVSiVpr/34phBAiDCSREqZwYr8O\nnklvq3pwVH/unrus1vKGpiQ5d1BnBvZsS6u0BCa//Gu1de47OvMnDAOMO0iPv1X7cd6wPu1Z9Nt2\nnrx1MPMWrvF0uG9IpdXh892tqv7eWcyG7fs4sV/1eet27S3jsTdWkFfk27yFv6/Pr7XMncht2LGP\nB1/4pdq6U/t3pJ/KpkWcqf4cPKiUAnhTa93wrcYqlFK9MPpwbgWcwC4gF2OwzG1APDXKuiilxgOd\n3G201rUvohBCeGGqv5zi0FVz+P09l/ejotJO25ZJniTgibdWsmJ9Ph2zkwEYf3EfVv+9l3MHda72\nKGvUmT3X+LOiAAAgAElEQVQY0LMNAN06pLNg4nCKSyu5deYP1Y7x6ld/eUopVDX+4j4c1jaV+Lho\nLjtFAXDhsK5UWB1ep8rxxVWTv6ZvtyxuPL/umkruCaO7tE+jTWYiCfHGx/OuOQ12OeS2f/bisTeM\nzvnrXI9Gex3eCqfDyfmDD5Yh6NIujeOPauO5s/WPLi0bHHUZDlrr25RSXYHnlFL7gFe01i/7uHke\n0B5wACuBwVrrs5VSQ4FRQAuql3V5ARhUo83DQT6lapqqj5TNEc2sBa812C4xMY6ysspqy6x2CzKD\nojCbiOsjJURTOveEzrz3w988PW4I8V4Kbdas4dS9UwbdOxmlFRZMHI7T6az1yM7NXVKhKm9J1L9O\n7ubZZ1XpyfGMOa+nZ5Sgt/VTRh/HdVO/9boejDkL12/fR3pSHK3S656CxZ1QAfzvqmPrbFfVUYe1\nrLXs7MFd6JyVVGv51Wf04MrTulNWYauzflS4KaWex7iTNEpr/adSairgayI1GmNE8ddKqS8wRh/D\nwdIscVQv65IB7HG9304TlG9pqj5Sca16sHxPw+28iW2VHdxghAgCMyVQbgFVNnetOxW4Wmt9oev9\nEmCta/UtWuvi0IQsmquzT+jM2Sd0Dnj7upIowOfCnLltUutcV7NeVeuMBE7s14Fla3bz31HHYTtg\n5bzBh/Hudxvr3MdDLxqP1SZc0qdafa1Z73mvGPLfOuptgTGlzle/bmP0OUcC0LV9Guu3H+yof0Sn\nTCrKKryfS5TFtEmUy0vAZqCDUipTa327H9u2wPibBVCE8cgOjFIuO4Aoqpd12QG4M9Ec1/J6ZWQk\nEhPTuKr6/oxijI2NMR5SRoDY2JigjdA020hPs8UD5ovJbPFA6GPyt7L5HK21zXX7+zCMKWJQSuUA\nSUAFsEmSKBGJ0pLiOKxd3YkUwLwJw/huxQ76dsvyVPkecXQOGSktyDtg5ayBuZw1MJcKq52KSjsT\nnllChdVeaz/PfLCax248ATDKGSxf2/Btg+SEWO6/pj9PvLWSy07pRm6b1GpT6lx6Urdq0/ekJMbW\nmUhFgMuBK4D1wLNA7Yka6zYTeEQplQ8sBaxKqaeAdIy7VYkcLOvyttbarpRaVKNNvQr9HBxRk7/l\nTaxWW8Q8P7BabUG522a2EjBmiwfMF5PZ4oHgxVRfMuZvZfNUjMrm3wDfKKXOcq0rAy7RWq9SSj0q\nU8SISDF2ZC+WrNrNBUO71FkWoaooi8Wn6uXxsdHEx0bz9LghzPlwNUtrdFTft7+S6W+soJ/KplfX\nVg3ub94dwzwj6u65vJ/XNp3aVP+g13eHLgJUAO4ZkP26F6O13gpcXE+TEmqUddFaP+FXdI0kdaSE\nCEwk9pHyWtnci04Yt8ZXAQU+7Nd0t//MFg+YL6ZIj+ex24bw4sd/ct+o4wBjCpq42GiGHZsb0nju\nvso43lc/b2HGawfnHFy1cS+rNu71us1Jx3bki5+Mrj2TbziB1q3rv1PmNu2WwYx7/DvG/N8/6o0p\nAowH/onxt+SOMMcSdFJHSojAmCmBcguksvk4rbW1RruNwERXvymL1rr+CbyQyuYNMVtMzSGetPho\nbjyvJ/n5+8MST05m3R3M3Yb1aY/d4eDi4V25ePjB0XS+nmtGQky1mlVm+5n54RLgWMAOHA1cGYqY\nhBCisQKtbO5ef5rr//uAkcENTYjmJTO1BU+PHcKHP27i46WbvbZxl1sQtNVa/zvcQQghREMipPui\nEM1DfFw0Fwzt4jWRenBU/zBEZFpKKXUjUI4xf+eCcAcUTNJHSojARGIfKSFECNx+UW+mvrbC8z4Y\nU8g0MzPDHUAoSR8pIQJjpgTKLVyJlMVsnWDNFg+YLyaJp37+xDMkK4Uhx3RquGEjme0a+aEfRh+p\ndzEKZNZd6VQIIcLItyqFQgjRtHKBDVrr1zBq1gkhhClJIiWEMCMH0E0pNRqj9EqzMmnSJE9fDyGE\n72bNmm66z470kRJCmNHtwElANEaF82ZF+kgJERjpIyWEEL6Z4/p/OnAdcGYYYxFCiDpJIiWEMB2t\ntacAp1JqRjhjEUKI+kgiJYQwHaXU/a6XMUDHcMYSClJHSojAHPJ1pJRS7YGpwF5gtdZ6VhMcsyvw\nhta6r1JqPMa8gGnAbUB8zXh8adOIWAZiPKYoAXZjFBvMDWM8hwP/A/KB5UB2Q8cKZTxV4noZ+ADj\nH9Bw/rw6Ae8DvwE7XfvMDVc8rphygXsw5r0sJPy/Q2OAY4A44HjgySDFM891CBuwI9D4zEr6SAkR\nGDMlUG4Wp9OvidUbRSk1CfhEa71UKfURcI7W2hbC47UGbsX4A38S8KbW+myl1FBgANCiRjwjgVca\naBNwzEqp04FvtdalSqnPgANa63PCGM/RGEnUDuAjoDyc8bhiGgscDnwDXBrmn9e/MKZI2okx1+S1\n4YzHFdNMVzxdgTeAMeGOyRXXZIyk885gxINRP2orRiLVE1ihtTbNX9C8vJJG/eH0d67I2x+Yzd6Y\nwxtzyJBaOP1cAM4c+x7p1nVMv2d0o/fZHOb3DDWzxVQ1nk+/WMSuvAK/9+G027j80n8SFRWcogLB\nukZZWSmWutY19aO9Nhh/HMH4Np0G+H+lfeSaK/BOpdQnGEOo97hWbcMo8hdXI54MH9oEHLPW+mOl\nlEUpdRfwMjA4zPH8opRqBywEFgFdwhmPUups1z6WYozWCuvPC/gJ+MJ1jK+ADWGOB4yf0TxgtSu2\n9eGOSSl1BMbfkk0+HMvXeNZorSe49j9Va317oPEJIZre979uZKezs9/bHdizkn9f0nQ3eIKhqetI\nbQE6uF5nYvzRbCp7gJau1x0w7sLUjGeHD20CjlkplYLxj+BS4BUTxNMH467YKRiVpMMaD3AJRjXr\ny4FrgKwwx9MHiNdaO4EyjH/0wxkPwC6gxHUHqcyH4zVFTDcATxDcz1icUmq8UmoizbAvp9SREiIw\nZqwj1dSP9loD0zH6CP2stZ7fRMf9WGt9ulLqZkBhDKkeDSTWjMeXNo2IYz7GI5ktgB34NczxHANM\nwLgzUAFsD2c8VeK6HKPvT5twxqOU6otxffYAK4CkcMbjiukIYBJQDHyNkWyGO6YvtdYnul4H5TOm\nlIrBeMSbobX+0c94cmlkPzKtdX59x5BHe9XJo73wMFtMVeO5e8r8gO9IvfjoTURHRwc9pkbup85H\ne02aSAkhhC+UUrOAZOBF4AKt9XV+bNvofmRa64frO0YgidSmzZt56Z0viI2Lo0WLWA4csPq87bpt\nxTjTevh7yCYjiVR4mC2mQzWRana3zIUQzYIN2Ka1/kIpdY6f2zamH9l2Dj7CDaq8/HxW56eRkNLS\nuPfmj7RQRCSECIawJFI2m91ZWFgWjkMHXUZGInIu5tJczgOa17nU943Oi03AP5VSr3Kwk7+vPP3I\nlFLe+pFFuV5vp3a/rRzX8nplZCQSE+PfN+b09ETP636pKwBYXtzbr31EgtjYGLKyUoKyr2DtJ1jM\nFg+YLyZ3PHHx0XDA/+2jo6LIykqp846Uuwbbvffe63dMoRKWRMrfP0BmJudiPs3lPKB5nYufioET\ngSitdbGf2z4CPKyUKgZeArKUUk9Ro0+WUuoK4G2ttV0ptahGm3oFktwWFR3cpjkmUG5Wqy1Yj1JM\n+9jKLMwWU9V4KivsAe3D7nCQl1dSZyLlriPl63kH8dFenev8SqSUUv2ByVrrYTWWn4XRudMGLNBa\nz/O2vRBC+GgkRsJTqpRyaq0X+Lqh1nqta/u6lGDUB6u6zRMBRSmEOOT5XP5AKXUHMBdjxEvV5bEY\nI25OAoYA1yqlsoMZpBDi0OEa3foAxl2p9fj/aE8IIZqMP3Wk1gPnAzX7OXQH1mut92mtrcAPHCw0\nKYQQ/orTWn8LDNFaf+t63az0S13h6SclhPCdGetI+fxoT2v9jqs+S02pGPVa3EqQMSZCiMC1UUqN\nANoqpYYDFq31V+EOKpiacx8pIULJjHPtBaOz+T6gai+sFBqolJybm8umTZvIzc2ttjxYy0K570iK\nobFxRTKzjWRpjOZ0Lj56GWP03KscrHguhBCmFIxEai1wuFIqAyjFeKz3aEMb5eWV4HA4Q7IslPuu\nuSwqyuL1uE0Zgz/L/DmXo4/uWa3dL7+sCsqyYO2nrmVRURZ+/vkP08UVSAyBnkswYwjWsi1bNuML\nrfVzPjUUQggTCCSRcgIopS4GkrXWc5VSY4HPMPpczdda7wxijEII0aw05zpSQoSSu3+UmR7x+ZVI\naa03AQNdr1+tsnwhsDCokflp165d4Ty8EEL4TBIoIQJjpgTKrdlMEfPQQ/cFZT/l5eXExsbiuvGG\n1WoLyn6FEEII0fyYMpGKjXWHZcFqtRITE4PFYry32WzMnz+b2NgYnE6wWMBms7Njx3aio6NxOh1M\nnTrZs95msxEfH8fkyfdjsViIiYkBnNQ1V/OiRV/icDiw2+3ExMQQFXWw2oOxvVFt9c47b/csi42N\nBiwsXPie5xgzZjxKbGwMVqtxfIfDwe+/r/C8lgRNCCGEiHz+1JFqEtHR0Z5Ew2azsXz5MqKiLK7E\nx0lUVBQWiwW73YHNZsNiicLpdNK2bTtX8hNLSkoKTifVkqCJE+8BjMTLnSh5U1BQgNOVZTmdTiyW\ng/twOp3Y7Xbsdge7d+/CYjHitVptWK1WunbtRkxMDFarlVtvHY/TacQLxp2t7OxsnE6nJFFCHOKk\njpQQgYnoOlJNyX23yGKBoqIiHA6nK2myVElsnNX+XzXhufjiy5gz52nPXD1O58G2Vquxn7i4WCoq\nKmodu02bNp59WSwWHA6HZ51xN8qC3W4nOzu71nG3b/c+16mzyu0vZ123woQQhwzpIyVEYCK2j5RS\nKgqYBfwDqACu0VpvqLL+POAujKxmgdb6mUADstvtxMbGEh1t3Mk58cRTmDTpP8TGxmCxWOq8m5Ob\n25lly5Zis9mYMuV+16O9mkmLhdjYGBwOJw6Hg/j4+Fr7GTp0BFFRUZ67WVVLBTidTldc0ZSXl+N+\n1OjuU1VZWeF5P2vW44AFh8MOHLITzwohDjH7Sh1MnvmC39vZrJVcfO5wuhx2WAiiEiJ0fH20dy7G\ntA0DgYnAtBrr3XPtHQ+MU0o1qrK51Wp1PS4zkhL368pKK06nk6uuutaT4FRWWgEYO3YCNpsNh8PB\ngw8+6no0aK/Wxul0UllpxWYz9rd48ffExERX+6+goKDa8auy2x2e7R9//GmcTqfrUZ3R/rTTzvS8\nHzPmFmw2W7Xjt23bTh7rCSGaNWf6EawrzfH7vz+LMtm5e3e4wxfCb74mUscDnwJorZcB/WqstwLp\nQALGXHwR8fzq+OMHYbPZq/3Xpk2bcIclhGjmpI+UEIGJ5D5SqRgzsbvZlVJRWmt3B6JpwC8Ylc3f\n1loX19yBEEIIg/SREiIwZuwj5esdqWKqz6fnSaKUUh2BG4FOQC7QWil1QTCDFEIIIYQwI1/vSC0G\nzgLeVEodB6yssq4FYAcqtNYOpdQejMd89crKSqlWniCYy0K5b2/LvB23qWPwdVkg59LUMYRrmcTQ\ndDE0BaXUy8AHQEeML3ppwG1APDAV2Aus1lrPUkqNr9pGa53f5AELISKSr4nUu8BJSqnFrvdX1phr\n73ngR6XUAWA98FxDO5RJi8OzLJBzacoYgrEsKspiyrgCiSHQcwlmDKFYFmqu+T/dXQwGaa3PVkoN\nBUZhfPl7XGu9VCn1kVLqBS9tHg5lfDLXnhCBidi59rTWTuD6GovXVVn/GPBYEOMSQoiAKKXOBgqB\npRi1R/a4Vm0D2gFxwFbXskIgo0qb7a42ISUJlBCBMVMC5WbKgpxCCNEIl2AkSMr1vsT1/w7ADoy+\noR0wkqZM17KWrjY5ruX1yshI9EwX5av09ES/2h+K0tMSyco62B236mszMFs8YL6Y3PHExUfDAf+3\nj46KIisrxVNQO5gxhYokUkKIZkVrfRGAUupyoBxoo5R6CqPv5mggEZiulLoCY5SxXSm1qEabehUW\nlvkdV1GR/9scaor2lZGXZ+S9WVkpntdmYIZ4pj81j5i4gwl5QmIc5WWVDW6XmZrAv0aeF8rQgOrX\nqLLC+zRsDbE7HOTllQQtkQrWz62+ZEwSKSFEs6S1fr6OVSXApTXaPhH6iA6SPlIiEL/9vZ/YVlUq\nvxf4tl1W/oaGG5mEJTaFyU++6Jmntqa0aGMcyD57q1rr+vXM5aRhg0ManzeSSAkhRBOTBEoI7+Iz\nOrOhvL4WOXWuydy8M+jx+CJYc+0dg1GU04LRv+DfWuuG7zcKIYQQQkSwRs+1p5SyAHOAK7TWg4Cv\ngM7BDlQIIYQQwmyCMddeN4wntWOVUt8A6VprHcwghRCiOZG59oQIjBk/O74mUl7n2nO9bgUMBGYC\nJwIjlFLDgheiEEI0L8uLe0s/KSECYMbPjq+dzeucaw/jbtR6910opdSnGHesFgUtSiGEEEI0qaKi\nQua//B5x8fE+tU9MiKesvAKAvMISHyaLax6CMdfeRiBZKdXF1QF9EDCvoR1G+lxhMtde6GII1zKJ\noXnNtSeEaJyioiJ+2hxFUmYb/zdOD2CbCBWsufauBl5xdTxfrLX+pKEdRvpcYTLXXmhiCMYymWsv\nuDGEYtmhTupICREYM352gjXX3iKgfxDjEkKIZstM/wgIEUnM+NnxtbO5EEIIIYSoQRIpIYQQQogA\nSSIlhBBNzIy1cISIBGb87Mhce0II0cTM2M9DiEhgxs9OUObaq9JuDlCgtb4zqFEKIYQQQphQo+fa\nc1NKXQf0BGScsxBCCCEOCcGYaw+l1EDgWGA2IJX3hBCiHmbs5yFEJDDjZ8fXPlJe59rTWjuUUm2B\n/wLnASODHaAQQvjD9cXuOqAE2A2UA7lAGnAbEA9MBfYCq7XWs5RS44FO7jZa6/xQxmjGfh5m8OOS\nZRQUFAGQktqCkuIDPm3XIacdfXv3CmVowiTM+NkJxlx7F2BMXPwx0AZIVEr9qbV+IXhhCiGEz9KB\nMVrrUqXUZ8ABrfU5SqmhwCigBfC41nqpUuojpdQLwCCt9dlV2jwcruAPVXEJaawu685qz82GSnx9\naHLYuuWSSImwafRce1rrmcBMAKXU5cARviRRkT5XmMy1F7oYwrVMYmgec+1prT9WSlmUUncBLwOD\nXau2Ae2AOGCra1khkAHscb3f7mpTr4yMRGJiov2KKz090a/2hxqLxUJ0TGxA2yYkxJOVldJww0Zq\nimPUJzrAz1FsbHRAsZeUJAd0vHBJTPL+exDqn1tQ5tqr0danzuaRPleYzLUXmhiCsUzm2gtuDKFY\nFkpKqRRgBkYS9R1GtwOADsAOjNscHTCSpkzXspauNjmu5fUqLCzzO66iooPbmHG+sEh2oMJKXl5J\nSI+RlZUS8mM0xO5wBlT80Wq1BxR7QcH+AI4WWvV9dspKK2qdZ7B+bvUlY0GZa69Ku+f9ikwIIYJv\nBtAVuBL4N7BIKfUUxiO/0UAiMF0pdQXwttbarpSq2SakJIESIjBm/OxIQU4hRLOitb66gSYlwKU1\ntnkidBEJs6qoqKCgwLdxBRUVydXu0KSkpJCSkur3MX9c9jNLf9N+bwfgtLQIaDsRWpJICSGEOCR9\nt3gJs99fRUxcQsONLRZwHnxEnercSZfOHf0+5pZtOyhPO9bv7QDiWjbcRjQ9SaSEEKKJSR8p80jI\n7ERsfJLf29nojA6k601aTgAbCTczfnYkkRJCiCZmpn8EhIgkZvzsSCIlhBB+Kioq9Hub/SXhHfHV\nnG3ZXcrdU+b7vd2+fYVEJRwZgojMZV9RIR99+rnf2+3Zvavq00xRh6BMWuwqhXALYAP+wCiGJ5df\nCNEsXf/A6wFtF5feOciRCABHWg92BvIvTmpn/KsGFpkOpPbijZ/tAWyZRVJmYLW9DiW+3pHyTFqs\nlOqPMWnxuQBKqQTgfqCn1vqAUuoV4Ezgw1AELIQQ4ZbQqlujtjdjPw/RfEVFx9JcMsb6Pju//LmN\nO6fMq7YsPi6aisr6k8hYZxn/m3hzwDH5mkhVm7RYKVV10uIDwACttXtSpBiMua2EEEJ4IQmUEIGp\n77Njy+jD7pp3Jisa3mdC2dpGxeRrkVSvkxaDUaxTa50HoJS6CUjSWn/ZqKiEEEIIISJAMCYtdveh\negSjmvD/+bLDSJ8rTObaC10M4VomMTSPufaEEKIpNXrSYpfZGI/4zvO1k3mkzxUmc+2FJoZgLJO5\n9oIbQyiWHeqkj5QQgTHjZ6fRkxYDy4GrMCYH/VopBfC41vq9YAcrhBDNgZn+ERAikpjxsxOsSYub\nyXgAIYQQQgjf+drZXAghhBBC1CCJlBBCNLF+qSs8fT2EEL4z42dHpogRQogmZsZ+HkJEAjN+diSR\nEkIIQCnVHpgK7AVWa61nhTkkIUQECNZce2cB92DMtbdAaz3P646EEMK8rsUYcbxUKfWRUmqO1toW\n7qCEEObmax8pz1x7wESMufYAUErFAtOBk4AhwLVKqexgByqEECHWBtjqel0IpIXqQGbs5yFEJDDj\nZycYc+11B9ZrrfcBKKV+AAYDbwUzUCGECLEtQAdgO5CJkUx59eG0cxpZqv2cxm1uNtOk4KpoKqH4\n7DRunxans+EPgFJqLvC21vpT1/vNQGettUMpdQJwo9b6Ite6ScAWrfX8uvYXE7PN2a5dO3bs2F5t\nebt27YOyLFj78W2ZBXCGOQbflwVyLk0bQzCWWQjk98ucP5/AziW4MQRnmc3WwdTzxCilWmPcXS8B\nfq7vb5gQQrj5mkhNA5Zqrd90vd+qte7gen0UMFlrfYbr/XTgB631O3XtLzcX+foixCFm0yZMnUgJ\nIUQggjHX3lrgcKVUBlCK8Vjv0fp2tmmTMf9Wc5CVlSLnYjLN5TygeZ1L9XnPhRCieWj0XHta67lK\nqbHAZxid1+drrXeGIFYhhBBCCFMJylx7WuuFwMIgxiWEEEIIYXoyRYwQQgghRICksrkQQgRZfVXS\nlVKnAldrrS90vV+C0dcU4BatdXFTxqSUuh7oCSQDbwIfAXOBYiBea31DOOPRWi80wTU6DzgTiAZm\nAL8T3mtULR6t9YpwXyPXujTgR2AYkA/MIUzXqGY8Wus9obpG4UqkLFlZzafjqZyL+TSX84DmdS6H\nEK9V0pVSQ4HDMJIElFI5QBLGjBGbQvWPXx0xzdZa24FCrfUNSqmWwEyMQUMbtNYPK6XuU0oN0Fov\nCVc8SqnfCP81cgDXAX2A84AMwnuNqsWjlMojfNfI/bsdBTwIrMeopTMUo8bk5Ca+Rt7iCelnTR7t\nCSFE8NWskp4KoLX+psYcfmXAJVrr0UBLpdSAJowpzRXTa0qpZIxv9Q/VaLcNaBfmeMoJ/zV6H6Mw\n9Rzga8J/jWrGE85rlOp6fS8wG+POEEBrjGsDTXuNvMVjIYSfNUmkhBAi+NxV0sGokr6vjnadMP4h\nACggtE8JvMaklDoCeBqYpLVe5WqX42qXg1HpPZzxmOEajdBafwv0A+4m/NeoZjxhvUZKqSygPzAG\nGADcQRivUR3xhOwa+VSQUwghhO9qVElfjjHh+zittdW1/hOt9WmuPhxzML5RW7TW45o4ptuB1cAK\n4ACwSms9RSn1jOu9U2t9WzjjAZ4hvNdoHHA5MAjjzs9irfWLYbxGteIBPiDM16jK7/azwARXn6Sw\nXaOa8WA80gvJNZJESgghhBAiQPJoTwghhBAiQJJICSGEEEIEqEnLH7iGI87CeIZZAVyjtd7QlDE0\nhlIqFliA0WktHngA+BN4DmM46irgBlcleNNTSmUDvwAjMOJ/jsg8jzsx5oKMBZ7E6DPwHBF2Lq7P\nxzygG0bsowA7EXQuSqn+GJOYD1NKdcVL7EqpURhDlm3AA1rrj8IWsBBCNFJT35E6F4jTWg8EJgLT\nmvj4jXUpkKe1HgycCjyFcQ53uZZZgHPCGJ/PXEnhbIyaMRaMznqReB5DgQGu36mhGDV6IvJnApwM\nJGmtTwD+hzH0O2LORSl1B0aRwnjXolq/U0qpNsBNwEDgFOBhpVRcOOIVQohgaOpE6njgUwCt9TKM\noZuR5E3gv67XUYAV6Ku1/s617BPgxHAEFoBHMYYYuyeYjtTzOBn4Qyn1HvAhxuiVoyP0XMqBNKWU\nBaNeTCWRdS7rgfMxkibw/jt1DMaoJ6urIN56jDvUQggRkZo6kUrFKBfvZnc9zogIWutSrfV+pVQK\nRlL1H6pfw/24CqaZmVLqCow7a5+7Flk4+I8fRMh5uGQBRwMXAKOBV4jcc1kMtMCYwmA28AQRdC5a\n63cwHte5VY29BCP2VKrXVHIvF0KIiNTUSUwxUHW+iyittaOJY2gUpVQHjEqyL2itX8Xo/+GWAhSF\nJTD/XAmcpJRaBPQGnsdISNwi5TzAmM/pc621TWu9DqNmSdV/mCPpXO7AuFujMH4uL2D0+3KLpHOB\n6p+NVIzYa/4NSMGoRiyEEBGpqROpxcDpAEqp44CVTXz8RnEV/vocuENr/Zxr8W9KqSGu16cB33nb\n1ky01kO01kO11sMwCt/9G/g00s7D5QeM/moopdoBicBXEXouSRy8Y1uIMRgk4n6/qvAW+0/AIKVU\nvKsYZXeMjuhCCBGRmnrS4ncx7oQsdr2/somP31h3Ydzt+K9Syt1X6hbgCVeH2TXAW+EKrhGcGNVy\n50baeWitP1JKDVZK/YTxxWAMsIkIPBeMfmvPKqW+x7gTdSfGqMpIOxf3qMJav1OuUXtPAN9j/Lzu\n0lpXhilOIYRoNKlsLoQQQggRoKa+IwVASWmFs6iojBZxMewrrWTOB6v5c3Mh157dg+N6tGHjjmI+\nXPw3V5zeHbvdwetfr+fCYV3ITG1BlMXCvtJK7pm3jDv/1Zc2mYl89tNWuuak0bltCg4HjH3yBwb3\nbseXy7dhtTmYOmYgmaktAHjklV9Zu6WIJ28dRGKLWA5U2vjqtx0M6J7N4lW7ePe7jQBcNOJwhvZu\nR7wm/DwAACAASURBVHFZJa3SEg7GXmbEe97gLnRum8Lzn2py26QwoGcbHA4n8bHRWCxgsVi8nrub\nw+Hk713FpCTEUl5hp03LROJjo9myu4Qvl2/juvOPwlphY19pJbfN/MGz3YKJwykurWTX3jI6tUkh\nPjaa8gobS1bvYtXGvRzWLpWjDmtJpzYpOJ1OivZXMu6pxQzt057LTu7G/nIrKYlxlJRVYrU5qLQ5\n2F9upXPbFAqLK3jly78or7AxpHc7+h2Rjd5SRG7bFHLaplFYWMYXy7eyfts+YqIttM5I5Mzjc9m4\noxiHw8mrX/7FBcO68MeGAv45rCu/rMujtNxKr66tGPeUcRPy9ot6065VEunJ8Z5zWre1iO9X7iA6\nysK/TlbERFd/4lx6wEpifAyVNgcPPL+cbh3SueGfvSko2M8HizdxWv+OJLYwuhItWbWLD37cxDnH\n53JM92w2bC8mOtrCgy/8AsDYkb0oLKlgzaZCjuvRmqVrdnPlaUcw671VrNxQAED3ThmMv7gPNruD\n179az1e/bmP27UN46fN1ZGck8Pa3G7FYYP6E4dgdDh5+6VcuHHE4qr3RNau4rJKEuGhiY6IBqLTa\n+XntHvp2y6K8wsb4WT+iOqZz1sBcuudmUnrAyoeLN5GcEIvqmE5UlIVVG/dSXmFj5PCujHrkG04+\ntgMXDu0CGL9bTqez3t+xov0VtGuTyvadxegthRytsnE4nOQXH+CB55dz2SndyMlKpmPrlGrblR2w\nUVZhxeGE7PSEauvWbTW6Z3XNSSOqyrGdTie/6DwyUuPp0i6NA5U2VqzP5+hu2djsDj77aQvD+ubQ\nNbdl/R8KIYSIQGG5I3XWuPcDPminNils3lXS6BiG921P2QEbS9fs9ql9y9R4Coorqi1r3yqJ7fml\nPm0fFxNFpc1BbEwUVptv/euvOO0InvtkbbVlF594OK9++ZfnfW6bFDYF4Xo0tegoC3ZH3b8G/lxb\nsxretz1f/1r/hOcn9svhy+XbAj7GeYM68+73fwPGELlAPlju38lB/2jL9yt3NrxBFR2yk9m6Z79P\nbT+cdo4kUkKIZqfeREop1R6YCuwFVmutZ1VZlwb8CAxzzfK8BGPYNsAtrhoxXjUmkRJCRCZJpIQQ\nzVFDo/auBR7XWt8AnKGUigHPVBYPYhTTQymVgzHiqALQ9SVRQgghhBDNRUOJVBtgq+t1IUYtGIB7\nMQoG7sV4olAGXKK1Hg20VEoNCEGsQgghhBCm0lBn8y1AB2A7kAnsU0plAf2BbGAARhHBl4CWGPVg\nCnzYrxBCBI1rguQ3tNZ9Xe97A3O11sd466KglBqPMfl4GnAbxvyAXrsxCCFEfRq6IzUPuEkp9Qzw\nDvAYUKS1PlVrfT2wBJgCbARGKaWmAlla6+9DGbQQQri5CuVejTGFjvv9VRhV7wGuo3oXhWRgkNb6\nRmA+MIo6ujEIIcT/t3fn4VGVZx/Hv5OENQSIGDYBUdFbBasUd4va16qtqMVWq9a2Sq2CgBtKFa1a\naq3YKvJiQStIhVbt4l6pvlVrNxQrVVqXclNcKpuSACFhC1nm/eNMQtbJZDLJnAy/z3VxMXPmLL9z\nMpk8c85znrs5cRtS7v6pu1/k7hPcfb67X+Xu5bVeH+fuG9x9i7uf7+7Xu/t1LQ1x5vH7ctzw/g2m\n9+gW3NLeOSeLow/py9QLjqBv724cfUhfAHKym+672q1LdsLbz+1a9zPznBP35ydXHM9Bg3vXmf6N\n0w6q87ygd1eys+pmuGfSCQCcMmoQBb2DIReq57nglAO5f8pJXDF2BEP69gBgytcO55RRgzhgYE8a\n860vWpO5R+y3V53n4844mMvOOrTJ+QEOHtKbi049iDOO3ZeDh/Sucxv71AuO4Ksn7d/ksrOvHt3s\n+us76YiBAHW2k6irzo1fy/YLowY1u44rxo7g1kuO5MqvHsY15x3O5K8cVvPaLRcfyZeOGdJgmdsu\nOYrRnxkAwKCCXADGHLdvzevnnnwAXz1pfzp3ymLvXl05YJ+eHBh7r5x5/L4M6NOdcWcczH4DgqEF\n+vTcPdRD7fdL184N36MnHj6g5vE3T7c6819z3uGMO+PgZvf5xMMH1vk5Vf8eATWZEnHwkN58f9xR\nNY+rXTrmEAAmfHk4ENxhWf371imn8Y+Us08YmvB2Wyr2OTUN2GZmnYDbCQbPrdaPul0U8oENsedr\ngIE07Mag+n8ikpC0DH9QVl4ZfW35Gg7ZN7/BeDRR4IFn3uXM4/ZtMMZNreVZ9IJz2lGD2bd/MM+6\n9evonV/A2qJtlJVXMmK/PhRvLWPpu58yqCCXD9eXcPyIAfTp1ZVoNEplVbRmvKKCgjw++O9GunXJ\noTI2FlS1ouIdZGdnkZ/XhdLtu5h413N06tabS750MCcePpDq49fUmD4binewd6+uCTUk6owNlJPD\nu//ZwPBajaUdZRX8aflaRn9mYM0fx9fe+YT99+lJv/zudda1fFURf3prLd849SD2jo0HtH1nec14\nS82pikbZWVbJOx9upLB4B7m5XTj5MwPqzFN9HF9ctpohffPIyoqwbUc5Rx7cN+4+Pvi799iytYyJ\n5xxG9645RKNRsrOyKN5aRnZWhM452ZRXVtXs4/qN23j3w00cO7w/Pbp1onhrGZFOOfTqkk1lVRXZ\nWcHPsbKqisLinSx6YQUrPi7mwlMO5NSjBjfIsPw/RfTbqxsD+uTW7OvUua+yuTQY3mLBjf8TTK+K\nklWrIbOpZCe7Kqrov1f3BussKMijsDDxYSiqolGyIhEqKquorIyyzDdw2P596JnbucnjVv3e2LB5\nO1lZEV55cy3Pv/4xV4wdQXlFJe9+uJlzTz6A/Lyg4da5W2c2btxKXvfOLP9PETvLKzj20IZfWGrb\nVLKTTzdt55Che8Wdr/b8PXM7Nxj7q2jLDlauLmbE/n3o2imbzp2yKSjIa9O79szseWAWwRmmQoJy\nVLcQdE942d2XmtnvgbMIRlk/x8w+DxxL8KWy9jxnxqsDWlFRGc3JSfzLmoikx4YNG+jXr1/N44KC\ngmaWaFKTn1/pGtk82pI/Oom46qoJzJ79QFLL1v8jWFJSwowZt3PeeRcwcuSomulvvfUP/rzkNS7/\nzviEGyTJaukf5rbW0fJUVFY1+OMeT1VVlPuffoejD+3HUXEagsnmaSvx9jOEP7M2b0i5+5dqPf+9\nu58Ru9Q3EygF3nD3h8zsKsCA3sAEghqNdeaJt63CwtJWfXCG8GcTqjwQvkxhywPhyxS2PAC7dpUw\naFBw9eLtt1fSr1/8L5NNiff5Fbp+ANu3b+O+++6lW7duFBcXM23arcybN5ddu8opLd3CRRddwiuv\nvMTGjUX06bM3GzcWccEF32DdurUsXvwsAwfuw8svv0gkEqF3795ceul4zjvvbEaNOorzz7+IhQsf\nIj9/L7Kzs5k8+ZpGMyxY8CDduzc867B06ausWvE2WzYXMv671zBixOGcffZYnnrqcfLy8li3bh23\n3z6Dd975F88//xwVFRWMHPlZDj30MJ544tfk5OQQiWRx1VVTyMpq73rRe5aWNKIAsrIiTKp12a+j\naOl+ZrLajajY8zNi/38KXFTvtdn1Fi+tP4+ISCJC15B6+eUXOfLIYzjllFP54IP3WbbsdVaudA45\nZDgQZdmyvxOJRBg9+iSOO+5zTJz4HYYM2ZcBAwYyZszZTJ58OYcddjjRaJRVq1ayffs2cnN7cOON\nt/Dvf79LaWkpxx57PMOGHdRkhmuuuZ4FCx5sMP3YY4+nS5cuRCIRBg0azA033ExRURFjxpxNcfFm\n3nrrTYqKinjkkYXMmDGT7OxsVqx4j4UL57P33n3p1KkTa9euYe3aNQwe3LBvjoiIiLTc3LkzAZg4\ncUq7LFdb6BpS5eXlNX1Btmwppri4mGHDDmL8+El8/PFHFBUVsXz5m3TtGvT7yc4O+ilUL1NZWcGF\nF36Tnj178swzT9K1azfy8oJ+VPn5fbjyymtZvfq/zJhxO3PmzKNLly6NpGhc7X5QeXlB5/CXXnqB\nbdu2MXr0SfTt2xeIsmtXTX981q5dSzQKY8acxf77D+Oll/6P/PzE+p+IiIhI85JtCLWmAVUtbkMq\n0RIxBLcZPwiUAF1itxAn5bTTvsTMmXfxr3+9RVlZGVOm3MBbb/2DWbN+QlFRIZMmXcPy5W/WNGqq\n/x86dD8eeuhnXHbZRO6663Z6986nX7/+dS6h7dpVxv33z2bIkKEccsjwZhtR9TuQFxT05Y03Xuek\nk/6nzrR33nmJyspKduzYQXFxMRde+A1mzLidSCTCyJGjuPjiS5k374FYh7cIX/jC6ckeHhEREQmR\n5mrtTQeej93Jshj4srtXxErEzCa4G+ZyYDhwtLvPMLPvA//n7q/F2W7KO5snY8mSv7Jq1Upyc7uw\nbVtwx9bpp4+hf//kOqOlUtg67SlPfGHLA+HL1NadzduTOpu3vbBlClseCF+msOWBcHQ2b6xEzCZ2\nl4ipPifWj2A8Ftg9LktzoZqbpc2NHXsGwR3S4RSGY1Sb8sQXtjwQzkwiIqkW5j5SiZaIeRIYHVtm\nEEGpmLjC1GoNYys6bJmUJ76w5YHwZVKjTkTaSjr7SKWkRIy7LwGGmtksoJe7L211MhEREZGQi3tG\nqrHxV+q9Pq7W4wkpzCUiIiISehrNT0RERDq0uXNn1vR3ao/lagvdOFIiIiIiLRHmPlIiIiIi0gQ1\npERERESSlNTI5mZ2DnAmkA3McvflZvYasCK26NXuXtJ2sUVEREQC6RxHqrkzUpcD/xsr+TLGzLJj\n06uA8cAc4JxYgysXKANcjSgRkdb5859foaioqE3XP3369xpMX79+HePHj2sw/Ze/fJh///vdJtf3\nxBO/Tmk+kZaYOHFKncZQNBqlvLyc8vLyOEs1XC4ZzTWk6o9s3gvA3Z8BTiCor/dHYAfw9dgQCH3M\n7LhWpRIR2cM9/viv2L59a5use9asu3nwwTnEKxFW3ze+cQmHHDK8ydcXLVqQimgiKRGNRjnv0usZ\nf9ujbb6tFo9sDmBmp7j7y2Z2JPA8cAPQh2BE840JrDd0oxyHLQ+EL5PyxBe2PBDOTHuKhx+ez9/+\n9hcqKysYO/Zcvvzlr/D447/ipZf+QKdO2Zx00imce+4F3HHH9+ncuTPr169n48Yibr75NoqKivjP\nf1bywx9+n7lz5/P004/z0kt/IBKBU045rWa5kpItlJSUcOed93DrrTcSjUbZtWsX118/jQMPPKjJ\nbIcddjgnnngyzzzzZKOvFxdvZtq069m4sYgDDjiQG264mTvu+D5f+MLpDBgwkDvvnE52dg7RaJTb\nbvshzz//HCUlJcyceRdTptzQNgdUpIVy++xH572bbvynSnMNnvnATDO7hNjI5mZ2HbCfmS0kOBP1\nC+AD4EYz+yIQcfe/NrfhsJWuCFMeCF8m5YkvbHkgfJnaslFnZsOA37j7Z83sPmAXQbmqG2OP6/T1\nNLOpwL4EZ9mvBbrUn6c1eVauXMHrr7/GvHkLqays5IEHfsqHH37AH//4Evff/xB9+uTyzW9ezNFH\nH0ckEqF//4FMnXoTv/vd0zz77FM1DaGpU29i9eqPa5arqqpiypTJNcuNGnU0X/vahbz22t/o1as3\n3/vedD766EN27twRN98pp5zKm28ua/L1bdu2cfPN3yc3N5fzzx/L5s2biUSCmq3Llv2dQw89jCuu\nuJJ//Ws5W7du5eKLL+XJJ3+jRpSkTWhr7cUZ2Xx+7F9t5yedQkQkSWbWD7gU2GpmucAL7r7YzL4C\nnArsQ9DXc6mZLTazRcBodz/bzE4GLgO61pvnQXevSDbT6tUfc+ihw4lEIuTk5DB58jW8/PKLfPLJ\neq66agKdOmVTUrKFNWuCnhMHHWQAFBT05e23/1lrTVE++OD9muUAtm4trVlu8OAhABx77AmsXr2a\nadOuIycnh29969JkowMwcOA+9OjRA4D8/L0oK9sJQCQS4cwzv8wjjyzkuuuuokePXMaPn9SqbYmk\nQjrHkdKAnCLSocW+8E0zs+fdfRuwOHaG6nyCBtY91O3rmQ9siD1fAwwEOtOwP+jGpraZn9+dnJzs\npl7miCOGs3jx0+y9dw8qKiqYMGECU6dOxewg5s8PvoP+/Oc/5+ijj2Dp0r/Qq1c3Cgry6NWrG127\ndqKgII8uXTrRu3d3jjji0CaXy8/PpaAgj6VLl7LffoOYNGkhb731Fvfeey+LFi2Ke9x69+5esy3Y\nfcawrCyXzp1zap536pTNXnvl0rVrJ3r27Mo///k6J554PN/97hSee+45Hn/8Ue68804ikUjKzzqG\n7dJ02PJA+DKFJU9VVRVZWXW7gffp06NN8qkhJSIZxczGAv8DXOLuO8ysfl/PdQR9OolNX0dw403t\neTbH28bmzdvjZujTZx9Gjjyac8/9GlVVVZxzzrn06bMPhx322di0CswO5YwzurNzZzklJTspLCyl\npGQnO3eWU1hYitlwrrvueu6556c1y+3atYvhw0c0WK6gYBA//elcFi36JZWVlYwbd1mzl3W3bNlB\nWVlFbPndl4E3bdpGRUVVzfOKiio2bdpWs7199tmPO+74Pp06daKyspKrr76OwsJShgwZylVXXcst\nt/wg7nYTFcZL02HKA+HLFKY8VVVVVFVV1Zm2ceNWcnKSyxevARZpyV0bKRQNy8GGcP3wq4Utk/LE\nF7Y8EL5MBQV5kbZcv5n9HrgSeA14AYgAvwVeB2YCpcAb7v6QmV0FGNAbmAB0rz9PvG0VFpa26oMz\nhD+bUOWB8GUKWx4IX6Z05qnf16mqqopvXjebLv0+w3MzxwLw9tsr6devf9zlmhLv80tnpEQkI7j7\nGbGHfRt5+aJ6886u93pp/Xk6uptvnkpJSd0h/Xr0yOPOO+9OUyKRtpNIX6cfP/gkO7duZM5dt7Ro\nueaoISUikoHuuOMn6Y4gEiqbOx1M2a5/Nj9jC6WkRAzwT2AeUAJ0iY2ELiIiIpLRUlIiBjgZeN/d\npwCFGtlcRERE2svcuTNr+ju1x3K1NXdpr7ESMZvc/RkzO4ngbNQ1BLcPV89XfTtxXGG5RbJa2PJA\n+DIpT3xhywPhzCQikmphHkcq0RIx04HRsWUGEZSKiUt3GsQXtkzKE1/Y8kD4MqlRJyKZqLlLe/OB\nK83sAXaXiOnE7hIxc4BfuPsSYKiZzQJ6ufvSNk0tIiIiEgIpKxHj7hNSmEtEREQkIaGttSciIiIS\ndunsI9XcpT0RERERaYIaUiIiIiJJUkNKREREOrTQjiMVZ2TzK4ARQA/gt+7+nJm9BqyILXq1u5c0\ntk4RERGRVApzH6mmRjbfHJs2Bfh6rMGVC5QBrkaUiIiI7Amaa0g1NrI57v4rM+tBcLbqR8AO4Oux\nIRD6qESMiIiI7AmSHdn8YOBm4BZ3/8jMRgJ9CEY035jAekM3ynHY8kD4MilPfGHLA+HMJCKSamEe\nR2o+MNPMLmH3yObXA78DlgO3m9k7wAPAjWb2RSDi7n9tbsNhK10RpjwQvkzKE1/Y8kD4MrVlo87M\nhgG/cffPmtlUYF+CM+jXAl2o19czkXnaLKyIpFxoa+3FGdn8wEamnd/qNCIiLWRm/YBLga1m1gUY\n7e5nm9nJwGVAV4K+nkvNbLGZLUpgngfdvSI9eyQiHYmGPxCRDs3dP3X3acA2gi4IG2IvrQEG0rCv\nZ34C8/Rq++QikglUIkZEMskGgv6aEPTvXEfwhbF2X891CcyzOd5G8vO7k5OTHW+WZoWt/1rY8kD4\nMoUtD4QvU7ryTJ8+HYDbbrsNgKqqKrKyGp4rysqK1MlYf7lkqCElIpki6u6VZvaKmc0BegMTgO7s\n7uv5RILzVMXb0ObN21sVNIz918KUB8KXKWx5IHyZ0pmnuq9T9farqqqoqmr4a1xVFa2Tsf5yTYnX\nQFRDSkQygrufEft/dr2XSqnX1zOReUREEqE+UiIiIiJJSkmJGGAxMA8oAbrERj0XERERaXPpHEcq\nJSVigJOB9919ClCokc1FRESkvUycOCWpxlCyy9XWXB+pxm4J3tRIiZjDas1XfTtxXLrToHlhy6Q8\n8YUtD4Qzk4hIJklViZhewOjYMoMISsXEpTsN4gtbJuWJL2x5IHyZ1KgTkUzU3KW9+cCVZvYAu0vE\ndCYoEdOVoETMDe6+BBhqZrOAXu6+tE1Ti4iIiMTMnTuzpr9TeyxXW8pKxLj7hFYlEREREUlCaGvt\niYiIiHQkC375a8orolRF2qeJo4aUiIiIZIxX391AVa/hdOvbt122pwE5RUREpEMLbR8pERERkbAL\nbR+ppkY2j732ReBSdz8v9vw1YEXs5avdvaTV6URERERCrKUjm+cAmNnJwP4EJWIws0FALlAGuBpR\nIiIisidoriFVf2TzngDu/qfaZ6eA7cDXY0Mg9FGJGBEREWkvYe4j1ejI5o3YF+hDMKL5xgTWG7pR\njsOWB8KXSXniC1seCGemRJhZd3ffnu4cItIxhLaPFMHI5jPN7BJ2j2x+nbuX15vvA+DGWL+piLv/\ntbkNh610RZjyQPgyKU98YcsD4cvUwkbdHWYG8Ft3f7VtEomItF6yI5tXv/6l2P9bgPNTG01E9lTu\nfq2ZDQMeNrMtwKPu/kgiy5rZ4QS1QFcDUeATYChB0fVrgS7Uu4nGzKYSnFnvBVzr7kUp3iURCYHK\nqioe++1TdOvWhbFnnpGSdWocKREJHTNbCFwGXObuY4CRLVi8ENgn9m8TcKK7TwYeiq2z/k00PYDR\n9eYRkQ4k0b5O3QeM5MX3e7F4yQctWi6edI0jFQlb342w5YHwZVKe+MKWB8KZKUG/BP4LDDazvdz9\n+hYsOwG4xd3/aGYvEvT1BFgDDAQ6U/cmmnxgQ+z52tg8ItKBhLmPlIhIOlwMXAKsAn4OLGnBsl0J\nzkQBFBNcsoPgxpl1BGfia99Es47gZhmAQbHpceXndycnJ7sFkRoKWyM3bHkgfJnClgfClykMeXKy\ns9jV3Dw5WSnLqoaUiIRRGbsv50VbuOx9wI/NrAhYCpSb2RygN8HZqu7svonmCXevNLNX6s0T1+bN\nrbuhMIw3AoQpD4QvU9jyQPgyhSVPRWVV8/NUVLUoa7xGlxpSIhJGU4GvEXxGfbclC7r7auDCOLOU\nUu8mGnef3dKAIhIe1f2cWnqpLtnlalNDSkTC6OvA0UAlMAoYl944IhJm6iMlIlLXAHf/VrpDiIg0\nRw0pEQkjM7PJwA4g6u4L0h1IRKQxakiJSBjdl+4AItJx7DF9pMxsH+qNKNwO2xwG/MbdP1t/9GIS\nGOG4sXlakeV4YDxBZ9dPCb5tD01jngOBHwBFwDKgb3Pbass8tXI9AjwLDElnHjPbF3gGeAtYH1vn\n0HTliWUaCtxCUPdyM+l/D00EjiIYm+kE4KcpynMkQR+ppwjGdfpzshlFJPOls49Ue49sXn9E4TZt\nyJlZP+BSYKuZdaHh6MWJjHCcysy9gYmx9X8uBHl6AjcCUwjuYvpcmvNgZlOAktjTdB+f0QQNqCjw\nKsmNkJ3q9/x1wPsE76U30p3J3ee6+ziCAS4vTGGeocD77v4rYP9k84mItLX2bkj1p+6Iwr3acmPu\n/qm7TwO2EQy8Vz16cfUIx/Xz5CcwT9KZ3f33wHYzuwl4hKCURTrz/AMoB54DXkl3HjM7O7aOpUB2\nAttq0zzA3wkGhbyUoLH5aZrzABwALCZofNwQhkxmdjDB2e2PEthWonmqgIPMbALB766ISCi1d0Pq\nY4IRhSH4cNzcjtvewO7Ri6tHOK6fZ10C8ySd2czygPkEDYVHQ5BnJLDT3U8nuJSS1jzsvuX9YuA7\nQEGa84wEurh7FNjO7tIh6coDQQHeUneviGVK988MYBIwm9T+jl0PLCAYZfySVuYTkQyXbM28VNTa\ni0SjLR00OHmxS20zCfoIveHuD7XTdn/v7meY2VWAUW+E49p5EpmnFTkeAoYR/OGoBN5Mc56jCM5q\nrCEYSXptOvPUynUxQd+f/unMY2afJTg+G4DlQG4688QyHQxMJ7j8+UeCxma6M73k7l+IPU7J75iZ\n/Ty2+t5AJ3c/szUZU62wsLRVH5xhGQG6WtjyQPgyhS0PhC9TWPJ8Z9p9VPUaXvP8uZljAThzytM1\n07K3vMe8OycnvM6CgrxIU6+1a0NKRKSlzGyWu1+T7hy1qSHV9sKWKWx5IHyZwpKnvRtSGv5ARELH\nzG6PPcwhuHtTRCSU0tKQqqiojLa26GdY5Od3b3UB07DIlH3JlP2AzNqXeN/oGjE/9n8FQT8qEZEm\n7THjSNVsNCc7HZttE9qX8MmU/YDM2pcW+inBnXwVwAgzW+7urR/wRUQyUoeptWdmxwAz3P3z9aaf\nRTBIYAWwwN3nN7a8iEiC3nP3GwDM7G53vz7dgUREGpNwQ8rMvgt8A9hab3ongjtujiS4HXuJmT3r\n7hsarkVEJCGdYyOgZ6O+nCISYi0ZR2oV8BWgfj+HQ4BV7r7F3cuBvwEnpiifiOyZphIMFPuXsN2x\nJyLhk85xpBL+pufuT8bqfNXXk6DuV7VS2njEchHJeLOBHsAvzOxn7j4+0QVTUY/Q3YtStysi0tY6\nTB+pJmwB8mo9z6OZkZKHDh3KRx99lIJNh0NBQV7zM3UQmbIvmbIfkFn70gIVwBp3f9HMvtzCZavr\nEQ4D/kBQ3/JsMzuZoLZfV4LafkvNbLGZLSKo/1d7njtTtSMiktlS0ZBaARxoZvkENe1OBH7S3EJh\nGLQrFcIyAFkqZMq+ZMp+QObtSwt8BHzNzB4jaBS1xAEEwye8C7xI0C0Bdtf260zT9f/WsrsUkIhI\ns5JpSEUBzOxCoIe7zzOzKcD/EfS5esjd16cwo4jseUqALwBZ7l7SwmVr6hGaWWP1CLNij9fSsP7f\noNj0uPLzu7d6aIqwnWkMWx4IX6aw5YHwZUpXnunTpwNw2223kZOdxa5m5s/JyaKgIK/Ocslqkjy1\nqgAAFCxJREFUUUPK3T8Cjo89fqzW9OcIOoamzSeffEL//v3TGUFEUud8ghp828ws6u4LWrDsj4E7\nzawE+CVQYGZzqFfbz8wuAZ5w90oze6XePHG1dpDUsJ1pDFseCF+msOWB8GVKZ57qvk6FhaVUVFY1\nO39FRRWFhaV1losnXgMxY24r/tGPvs/s2Q+kZF0lJSXMmHE75513ASNHjkrJOkUkMbHi3j8E9gM+\nbOny7r6CoCHWlFLgonrLzG7pdkREIIQNqe3bt3HffffSrVs3iouLmTbtVubNm8uuXeWUlm7hoosu\n4ZVXXmLjxiL69NmbjRuLuOCCb7Bu3VoWL36WgQP34eWXXyQSidC7d28uvXQ85513NqNGHcX551/E\nwoUPkZ+/F9nZ2Uye3Phd1QsWPEj37t0bTF+9+mN+8Yufk5eXx7p167j99hm88cYbPPbYb6ioqGDk\nyM9y6KGHsXDhfPLz96KiooIpU25g/Phx7Lff/owZ82XuvvtHjBhxOBMmTKJXr95tfThFOqLO7v5n\nM7vE3R9OdxgRkXhC15B6+eUXOfLIYzjllFP54IP3WbbsdVaudA45ZDgQZdmyvxOJRBg9+iSOO+5z\nTJz4HYYM2ZcBAwYyZszZTJ58OYcddjjRaJRVq1ayffs2cnN7cOONt/Dvf79LaWkpxx57PMOGHdRk\nhmuuuZ4FCx5sML1bt+6MGXM2xcWbeeutNykqKmLevHn84Ac/Jjs7mxUr3mPRogVceeV17L333ixa\ntIDXX3+ViopybrrpNtavX8egQYO54Yab2/AIinR4/c3sFGCAmf0PEHH3l9MdSkTCa4+rtRdPeXk5\nkUgw5ueWLcUUFxczbNhBjB8/iY8//oiioiKWL3+Trl27AZCdHXT4rF6msrKCCy/8Jj179uSZZ56k\na9du5OUF1zbz8/tw5ZXXsnr1f5kx43bmzJlHly5dEs720ksvsG3bNkaPPom+ffsCUXbt2t2lbe3a\ntUSj0QbL9eix+9pqXl7Plh0QkT3PIwSdvh8j6BQuIhJX6MeRMrMsYC7wGaAM+I67v1/r9XOAmwju\n6Fvg7gl1Vho1agQA//jHOzXTTjvtS8yceRf/+tdblJWVMWXKDbz11j+YNesnFBUVMmnSNSxf/mZN\nw6n6/6FD9+Ohh37GZZdN5K67bqd373z69etPVtbuwdt37Srj/vtnM2TIUA45ZHizjajqdVcrKOjL\nO++8RGVlJTt27KC4uJhvf/vbzJhxO5FIhJEjR/Gtb32bOXNmUVBQQGVlFUcddSyPPvqLRA6HiAC6\nnCciHUmksTMo9ZnZV4Az3f3bscLF09x9bK3XPwRGEowj9R5wpLtvaXxtMHTo0Ogbb7zdaEOqPS1Z\n8ldWrVpZZ9rpp49p0d1/YbtrojUyZV8yZT8g4/alfnmpDquwsLT5D844wvZzDVseCF+msOWB8GUK\nS57vTLuPql7Da54/NzNorpw55emaadlb3mPenZMTXme8z69EL+2dALwA4O6vm9mR9V4vJ7htuIqg\nFl+rPmTaywknjOaEE0anO4aIiIi0QkfoI9WTYIC8apVmluXu1YM13AP8g+CM1BNJDKAnIiIikpTQ\n95EiaETVHo2qphFlZkOAyQQFP7cDvzSzc9398XgrLCjIIysrUvO4I+vo+WvLlH3JlP2AzNoXEZFM\nk2hDaglwFvBbMzsW+Fet17oClUCZu1eZ2QaCy3xxFRaWUlUVrXncUYXlmnAqZMq+ZMp+QObti4hI\nW7n3/p+zvTyLXVVd2nVIgkS39RRwqpktiT0fV6/W3kLgVTPbSVAg9OHURxURERFpaO7cmXQB3t5+\nBDn5LVsO2qGPlLtHgSvqTV5Z6/V7gXuTDZHuu/dERESk45o4cQpXT38AEh8asma51spqfhYRERER\naYwaUiIiIiJJCl2JGBEREZGWmDt3JlYAyxIcfKmsoooHF/6aim1rgdZd4tMZKREREenQJk6cghd2\nT3j+nD4jWLq+gJVF3VvdTypVtfaOIhiUMwKsBb7l7rsaW5eIiIhIpkj00t5YoLO7Hx+rtXdPbBpm\nFgEeBL7q7h+Y2WXAfoAnE0h38IlIKpjZI8CzwBCCAYN7AdcS3NdzN7AJeNfd55rZ1NrzuHtRelKL\nSEeT6KW9OrX2gNq19g4CNgJTzOxPQG93T6oRJSKSCmY2hd1lrUa7+2TgIeAy4HLgf919EjDGzHo0\nMo+IdCBBH6ntLV7uoL2314wllaxU1NrbGzgemAS8DzxnZsvc/ZVWJRMRSYKZnQ1sBpYC2cCG2Etr\ngIFAZ2B1bNpmIL/WPGtj88SVn9+dnJzsVuUM20jvYcsD4csUtjwQvkzpynPbbbdx8bUzW9zz+8Mt\neTw8sx36SBGn1h7B2ahV1WehzOwFgjNWcRtStWvtNTYtbG+OeDpS1uZkyr5kyn5AZu1LO/k6QQPJ\nYs+ra+wMBtYRfNQOJmg07RWb1ic2z6DY9Lg2b275N9/awlb6J2x5IHyZwpYHwpcp3XnKyytbPCBn\neXllQpnjfQ6notbeB0APMzsg1gF9NDC/uRXWrrXX2LQwvTniSfcbJ5UyZV8yZT8g8/alPbj7BQBm\ndjGwA+hvZnMIaoBOALoDM83sEuAJd680s1fqzSMikpBU1dq7FHg01vF8ibs/3xZhRUQS5e4Lm3ip\nFLio3ryz2z6RiLSVlo4jVa26j1QYau29AhyTdIpG6O49ERERSUSytfZWFnVn1q2tOwmtATlFRERE\nkqSGlIiIiEiS1JASERGRDi2d40h1iIbUqFEjavpMiYiIiNTW0lp71UJTa6/WfA8CG919WqtSiYiI\niHQAiZ6Rqqm1B9xIUGuvDjMbD4wAovVfExEREclEqai1h5kdDxwN/AyINFhaREREpI10hD5Sjdba\nAzCzAcCtwGTauBGlvlIiIiJSX+j7SBG/1t65BIWLfw/0B7qb2b/dfVG8FTZXa6+5aWEStjytkSn7\nkin7AZm1LyIimabVtfbc/T7gPqipbXVwc40oaL7WXnPTwiLTaqFlwr5kyn5A5u2LiEimSfTS3lPA\nzlitvXuAa83sQjO7rJF51dlcRERE2k06+0ilpNZerfmaKhKacqrFJyIiIqBaeyIiIiIdkhpSIiIi\nIklKtLN5aOkSn4jUFhvXbjxQCnwK7ACGAr2AawlO/t8NbALedfe5ZjYV2Ld6HncvSkN0EUlS0EcK\nlpU0P29t1X2kWjMEgs5IiUim6Q1MdPfJwOeA0bHHDwGXAZcD/+vuk4AxZtajkXlEpIOIRqNcccW1\nrNjQrcXLhqbWnpldCFwNVABvE3yItfvdezo7JSLu/nszi5jZTcAjwImxl9YAA4HOwOrYtM1APrAh\n9nxtbB4R6SCu/d6dFO7oRqRbPzp3bf/tJ3ppr6bWnpkdQzAEwlgAM+sG3A6McPedZvYocCbwu7YI\nLCISj5nlAbMIGlF/Ac6JvTQYWEdwJn4wQaNpr9i0PrF5BsWmx5Wf352cnOxW5QzbuFphywPhyxS2\nPBC+TOnIk1+wDyU7Bye1bKdO2a3OnGhDqk6tPTOrXWtvJ3Ccu++stc4drUqVAjo7JbLHmgUMA8YB\n3wJeMbM5BJf8JgDdgZlmdgnwhLtXmln9eeLavLnl49XUFraBVsOWB8KXKWx5IHyZ0pVnV1kFR/Zc\nDsCykiNatOx+vUqZPn0655xzAQMGNH0yOl5jK9GGVKO19ty9KnYJrxDAzK4Ect39pQTXKyKSUu5+\naTOzlAIX1VtmdtslEpG21tIGVLVXP92fXTtK+M/9v+beH1yb1DpSUWuvug/Vjwm+BX41qSRtRGem\nREREpDGdu/Wkc7eedI+UJ72OVtfai/kZwSW+cxLtZN7aosXxprV3oeOwXaNujUzZl0zZD8isfRER\nyTSJNqSeAk6N1doDGBe7U68HsAz4NkGnzj+aGQS3Fj8db4WtLVocb1pTr7fF2amwXaNujUzZl0zZ\nD8i8fRERaQvJ9pGqXm5taa+kt52qWnutu31FREREJEnJ9pGqXm5A5MOkt71HDsg5atSImrNTIiIi\nIsnaIxtStalRJSIiIsnq8LX2UkV394mIiHRMoe8jtadRo0pERKTjSGcfqVTV2jsLuIWg1t4Cd5+f\ndKIQUYNKRERE4km0j1RNrT3gRoJaewCYWSdgJnAqcBJwuZn1TXXQdFNfKhEREakv0YZUnVp7QO1a\ne4cAq9x9i7uXA39jd7X1jFO7QTVq1AiGDh2a3kAiIiJ7uCN7Lq/p79Qey9XW6lp7sde21HqtFEi+\n11YHVPsSYGOPq+kSoYiISGp88sl6SkpK2Fm2nWXRkPeRIn6tvS31XssDNsdb2Zo1f2PUqFzWrftb\nnempmtaW6244LQJEW5BhbZ1pAwfu067T4r++pWZfBg7ch8a0fYamt52orCyoqspt1TrCIuz70pKf\n2ccft3UaEdmTzF34NCs25dGpyz506dy6de0q28EHH6yiR4+e9O3bst5JkWi0+dJ4ZvYV4Cx3Hxer\ntXeLu4+JvdYJeBc4BtgGvBqbd31T6xs6lITq8Ymkwpo1awAYNGhQzeNqtac193p7TKv/OJN89BGR\n5ufqGAoLS1v1GRa20j9hywPhyxS2PBC+TO2d547ZC3l/++Bm53tu5lgAzpzSdOW6nds2U1G2jYP7\nbOMHN9Qv5AIFBXlNfn61utaeu88zsynA/xH0uXooXiMK4KOPCNUPvzXC9kZujUzZl4b7UX2lubGr\nzqUteH33tFGjTqgz5Y033ok7bfdl3ZZkKM2Yn0lAtfZEpG20dhypZRwBufl0676mmSUaSkmtPXd/\nDniuxVsX6aAa6++W6DQREUmt1o4j1RoakFNEBDCzfYC7gU3Au+4+N82RRKSdle8qY+PGjXTt2pXc\n3MT6p+7xtfZERGIuB/7X3ScBY8xMXzRFQuhXT/6OW+9ewH/Xp77bw4qibky+83HmLngs4WX0QSEi\nEugPrI493kzQWW1j+uKICMAKX8GcOfdRWFRE19xebNy0hT77Hx+8uPFtAI7erxKAv3+YXWfZ7Jzd\n54uqYvPWVn+5zgAR+NuS5by+dAk7Sz5l2AEH8MgjDzeZL6G79kREMp2Z3Qy87O5Lzez3wJm1hnkR\nEWmUGlIiIoCZ9SMod1UKvOHuD6U5koh0AGpIiYiIiCRJnc1FREREkqSGlIiIiEiS1JASERERSZIa\nUiIiIiJJatdxpMwsC5gLfAYoA77j7u+3Z4bWiBVoXgDsC3QBfgj8G3gYqALeASbFSuqEnpn1Bf4B\nnEKQ/2E65n5MA84COgE/BZbQAfcl9vsxHziIIPtlQCUdaF/M7Bhghrt/3syG0Uh2M7uMYPDLCuCH\n7r44bYHbSLxR0s3si8Cl7n5e7PlrwIrYy1e7e0l7ZjKzK4ARQA/gt8BiYB5QAnSJDVCatjzu/lwI\njtE5wJlANjAL+CfpPUZ18rj78nQfo9hrvYBXgc8DRcCDpOkY1c/j7hva6hi19xmpsUBndz8euBG4\np52331oXAYXufiLwRWAOwT7cFJsWAb6cxnwJizUKfwZsI8g9k465HycDx8XeUycD+9NBfybAaUCu\nu38O+AHwIzrQvpjZdwn+uHSJTWrwnjKz/sCVwPHA6cCdZtY5HXnbWKOjpMfer/sTNBIws0FALsEX\nS2+rP35NZKoeuXBzbNoU4OsEv0fvu/sUoNDMjktnntgfynQfoypgPMFn/jmk/xjVyZPmY1T93s4C\n7gBWEfy+nwysSsMxaixPm/6utXdD6gTgBQB3fx04sp2331q/BW6NPc4CyoHPuvtfYtOeB76QjmBJ\n+AlwP7A+9ryj7sdpwNtm9jTwO+BZYFQH3ZcdQC8zixCMqr2LjrUvq4CvEHyIQuPvqaOAJe5eHvsg\nW0VwhjrT1B8lvSeAu/+pXg2/7cDX3X0C0KcN/9g0lqlXLNOvzKwHwbf6H9Wbbw0wMM15dpD+Y/QM\nwd+vB4E/kv5jVD9POo9Rz9jj2wi+nG+KPe9HcGygfY9RY3kitOHvWns3pHoSnOarVhlrNXYI7r7N\n3beaWR5Bo+p71D2GW4m90cPMzC4hOLP2h9ikCLv/+EEH2Y+YAmAUcC4wAXiUjrsvS4CuBKeefwbM\npgPti7s/SXC5rlrt7KUE2XsCWxqZnmk+BgbHHu9F3X2ubV+CPwQQlKNpy+4WjWYys4MJvlRNd/d3\nYvMNis03CFib5jxhOEanuPufCb7830z6j1H9PGk9RmZWABwDTASOA75LGo9RE3na7Bi1dyOmBMir\nvf2OVoLBzAYTfANY5O6PEZxirZYHFKclWMuMA041s1eAI4CFBA2Sah1lPyC4Dv8Hd69w95XATur+\nYe5I+/JdgrM1RvBzWUTQ76taR9oXqPu70ZMge/3PgDyCb5GZZj5wpZk9ADwJ3Bu7nF7fB8BlZnY3\nUODuf23nTJ0JzuR2BW43sxvcfQkw1MxmAb3cfWk685D+Y9QJ2M/MFhJcSvtFmo9Rgzyk+RgBxe7+\nRXe/AngNuCudx6ixPLThMWrXkc3N7CvAWe4+zsyOBW5x9zHtFqCVYiUk/gRMdPdXYtOeBe5x9z/H\nfpAvu/tv0xizRWKNqQkEl/o63H6Y2RiCToOnmdlA4M/Ae8DMDrgvdwAl7n6XmeUSdNBeCfyoo+yL\nmQ0FHnP34xr73QD+ArxIcImvK7AUONzdd6Urs4hIa7TrXXvAUwRnQpbEno9r5+231k0EZztuNbPq\nvlJXA7Nj36TeAx5PV7hWiALXAfM62n64+2IzO9HM/k5whnUi8BEdcF8IGrM/N7O/EpyJmkZwV2VH\n25fqb2cN3lOxu/ZmA38l+HndpEaUiHRkqrUnIiIikqQO09FbREREJGzUkBIRERFJkhpSIiIiIklS\nQ0pEREQkSWpIiYiIiCRJDSkRERGRJKkhJSIiIpIkNaREREREkvT//t18K8UO7dUAAAAASUVORK5C\nYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x19e0b828>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAFyCAYAAAA+mzTYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VFXawH8z6ZVUQgvSDyIWBFTAgr2j7if2tawiirqu\ndVHXVVfXCuiiYseylrWuDduq2JCmIgrCkd4hhZCEhJQp3x93JpmZTM9MZjJ5f8/Dw8y559773jsn\nc995q8lutyMIgiAIgiCEjjnWAgiCIAiCIHRWRJESBEEQBEEIE1GkBEEQBEEQwkQUKUEQBEEQhDAR\nRUoQBEEQBCFMRJESBEEQBEEIE1GkBEEQBEEQwkQUKUEQBEEQhDBJjrUAgiAI7UUpNQh4Q2t9oFLq\nUaAJ6ANMdbyeBuwElmutZymlbgL2AroB1wFpnnNicBmCIHRCTFLZXBCEzoxSqgT4CzAOOBEYr7We\no5T6A1AE9AY+1lovUErNAc4GXtVaT1BKjQfGAOkec07TWlticT2CIHQuxLUnCEKnRmu9Q2t9C1Cn\nta5zKFGDcChMQA9gk2N6FZAPlDnebwZ6eZnTraPkFwShcxMT157FYrVXVdUHnHfVw1+zp9HKsaNK\nOfeYwVGTJz8/k2Dk6UiiIdPqzdU8+NpP3HjOCIaU5sVcnvYg8gQm3mQqLs4xdcR5lFKnA0cBF2ut\n9yilNgKlwBagANgKFDqmlzremz3mVPk7h8VitScnJ0XnAoS4xWQylrB4crokPr+/YqJIBfsFZHOs\nVVOUv37j8QsxGjK9880aLFY7b3+9hlsuGBlzedqDyBOYeJQpytiVUgOBp4FPgKeVUm8CzwIzlFIX\nA29rra1KqblKqceBPOAKINNjjs3fieJJQY00xcU5lJfXxlqMuMDXveiK96err4vi4hyf2+I62Nyp\n9ZujrUl1Ecxm56+pGAsSJOu21ZBkNtG3xPcCFgQnWuuTHC+7e9l8vsfcmR7baz3nCIIgBENcx0jZ\no2iR2lS2mw3bu5Z23dnM0ne/+AN3Pr841mIIQpdg1qwZzJo1I9ZiCF2ARFtrncIiZYqCJnXH7EUA\nzJ56VMSPHSq/b9rFklXlnHXkoKhcq81u54N569leWdfyvrPz8scr+HHlDm45/8Co3LNEZEdVPZ8u\n3MjEIweRkRbXf/pCDJgy5fpYiyB0ERJtrcW1RcpiNR74S1dXxFiS6HL/Kz/x6aJNrNsWHQvZr2sq\nee+7dVTWNALQ0GRt2Wa12Vi9uRqrzW9ISNzx+ue/O+Tu/EphRzHzrV/46uetfLRgQ6xFEQRBSBji\nWpFysqWiLqrHf+bdX3nls99D2sdmt/Pt0q3MX749YnI0NVsDT/Ihy+49zT63uypOxnlalaY532/g\n3pd/5OMFG8M6d7T4OcGV5/byycKN3PL0AizW4BXgmromoO16EARBEMKnUyhSkWbjDnfLz/vfruWL\nnzaHtP9lD8zl+Y9X8swHv7Gn0cKardVhyeLqZgvX5XbZA3P587++pWzXHq/b9zS51xXMTG916yxb\nvxOAFRv8Znv7pbHJyuKVZTRbImfVmvnWL0HNSwAvZVi8MXc1O3bWs60y+OyxlpjDKMkkdG4SLW5F\niF8Sba3FVaBEdV0Tj73zCxPHDwq5zlEo1De0r2CxZwD0g68uYcOOWu7600GUds8O6Vg2F9dUOA84\nV5fcwuXbOXVc/zZzvl261e29m/IRAUVkzoL1fPj9Bs45ejDHjS71Oe/lzzR7Gq1MOnVY+0/aQtfT\npNZurWl5HUriQKCZFquNtVtrovq3J8QviRa3IsQvibbW4soi9cWPm1izpYaHXlvid54tzLgYp8XH\nde/a+qY28yxWG4+8uZQfVpaxe08zlz80l08XbWT7du9uvA0OC9eOnaHXlnF9EDaE6Nqrqm1k0oNf\ntbzPy0nzOs9fMPbqLYYlrT3WpCWrDDfc75t2+Z335U9bmL98O1vKd4d9Lk/Wbav169bsSOx2O1/+\ntJnK6oaonmfuklbr6ffLwnAt+1gOlz/0Ffe/8hP/+WIVexot1Hj52xAEQRDciSuLVJLZ0OusNjuN\njjgOS2MtNZsWYxQqhmVrK5nxxlKmnD6cUUO9lYvxzdUPf0NWenJL0DXAtTO/c5vzxBOPsr2imkW/\nruen3yZw3gkHYLHaef3L1Xyw+XUee+wpn8cPxzVXU9eqBIQa7/39sm1u701B27Tayulq5QiZEF1G\nu+qa6F0c/ulclb77X/kJaJt9WV3XRFZ6MslJrb8VbHY7S1dXMLRvflSy1pauruTlz37nw+z1zLj6\n0IgfvwWXj299SCU8glufny3exGeLjW4p8ZDVKgiCEM/ElSJlt9vZU7WBXevn84dL3iEls5CcnvvR\ntLuC+vo9TJt2L2vLmtmyaT3P1IzlbfMOepUUYbE0s2fPHvqU7sX3Cxdzy81/ZeOGtSxcOB+AzMws\nJk++inULXyE5LZvmPbvoccDZmJNS3M6/cdMmKirKyBn8B7pVL6Z6w3zemGu46urKNNs3bOSnn35g\n43ePkppdQm7pKGo2/0hSSgZNu8vZMvJaKoqTePrpx8nIyMBut3PllX/miSdmkpSUTE1NNVde+WeK\niopazvl9O4LV3/56rdv7/FzvFimr1f0B6u1x6ksJtNvtVNY0UFTk3WVpt9tbkgH8VSFwc0HZoXzX\nHh58dQkXnqDYd0Ch7x29ECjAur7BwnWPGgqyqyLwoy7niXeXcdDe3bnitOEhndMXO2samPHGUq6e\neAC76gwFfdfu6FpyGsO0HrbGSEmUlNAWZ8zKHXfcEWNJhETHudYSxcUXV669yuoGrI27sduaySwc\nRHbJ3i3b/jZtNuPGHcaII84lq3gQFdUNLF1dSbfS0fzlLzexYcN6UnuNo8zah1fe/ZKePXtz/PEn\nse+++7No0QIsFguWPVUkZ+ST3/9QTOa27TN+W72ZkpKe/La+iuT0blgaWgPIs7orMrILOfDAUdht\nVnoccBbpeX3I7TOKzKJBmJPT2LRe8+RzL3LE0adw3XU3c9JJE/j44w/ZubOS9PR0UlNTWbrU3W35\n329alaH2lkPqlpXqdTwt1f1aq1wscoGYv3w7Nz8xn+9/2eZ1+69rK1vf+LkAV+XCjp25P22hsqaB\nlz7RQcsyd8kWvl+2LWDJg4pq70H3CxxK66IVZV63h8MnCzeytaKOf76wKGLHDERORusPgHCWTLTK\nbtU3NPPN0q00WyQrsDMyZcr1CfNgE+KbRFtrcaVIzVu2ndTsYorUCdjtNrb//EbLtvVbd7Fhx25H\nm5NWsdds34PJZKJmj43PFm/CZDKxo6qOF154hrKyMoYOHUZycjJWq5XifU4lLbcHO9fMpaGqbS2d\noqLulJcbD1lLwy6S092Dbmvqm/h+2TbMKekANNZsZ9f6eZiT00nL7UFdQzMLl2/l8f8uA6CiohyA\nESNGMnnyVZx88mn07buXz+t3tnDxpLHJytc/b6GhKUCQvA/9wvOw9Y3BB9t/8aMRj/O/Rd5rD7mW\npvD1fH5/3jqm/cdFgbTTogzVNwYX32Sz2/n3p5pnP1zh1Q3ZGER8ma+sxohgt7Nmi/fMTacF7ZOF\nG3nmg9+Y/p8lPP/RirBPFa4iFO2w/P9+u44XPl7J3J+2ALB8/c7o3nNBEIQ4IOaK1A8ry3ji3WUt\nriVrUx3lKz6isXozmUWDjEkmyO0zgm+++ZrP3nuB3Tt+w5xkWF+cD5UKjwDfkpIe/PzzT8yZ8z4m\nkwmz2czO1V+xe/tyklKySMkswpOCwmJ69OhJ2bL3qN64iLz+49wn2OHhp1/HqTIkpaRjszRQV7aC\npt3l7Nq1i7x+Y6ha+y3Tpz/A0qVLOOGEk/n55yXMnDmd119/hZ49e/m8F9npKV7H3/56DS9+onlj\n7hq/99KXe65/z1y/+wVDMA9hXw/4d79d55amb8ewSrmyY2c9/3pzKRXVe7zW03INKPe2/a2vWu9N\nrg/LXFRwXLMdmPdrWzft75t2MWXGN/y8uoI35q5m/vLtLF9fxbc+LHxBndLlRjc7lLTGZmvMK9Yv\nc1gn122vZU+jhen/+ZmpT86PqUyCIAjRJuYxUrPeNaw3qSmGTpdR0J/eBe4p/D32P4vm+p3srLWR\nlJJKanYRmcVDyOm1HxnZhtWodMxkALr1PYh+Awq55qz93Y5ht9vpNfKClveNNduo3uTujpm/yMaf\n/nQ588rnepW1dOwVAOT02s+QObs7fQ6+rGX7fiP7UP7jZnoeeB433GDE5lhtNu6++37AyDac9p8l\njFTdKchJaxPT5Kpc1Dc0s+T3cvYfVNRi9dkcZrbbXj28N/31lzpvt9sxmUwt1dZ/WhnYHeb6gLfZ\n7Ex9aj7/d8RAL8duu+/sj1awanM15s9XMXnCPm7bXv9yFapvfst7b7FgKze21sHqyAigQPFG/1u8\nCYvVxnvfrovYOavrWt2kNpsdm83OldO/Zq8eOdxx8WjfO0ZBz9qxs56tlXWMGFzc8vnbbPawi8sK\nsUNipISOItFipPwqUkqp3sA0YCewXGs9y2XbCcClWuuJjvfzgZWOzddqrUNKA/P2a96VlMwCSvY9\nw+s2z5gYt7gdB54P77TcnqTl9nQb+2IlfLHSuxIVDK6xOxarjbKqPfzt2YVMPHIgJx68F09/sJyV\nG3excqP/MgEAD7/2EwuWbeeSE4e6XIT/fUIxSKzdWsMeFxffwcNKWl6//uUqPl20iVnXHx78AXFX\nYOb9uo2K6gaeen+5D2Hd93Jm4lms9jaWrU8XbeLTRZta3qentl22W8pbXYyuIVQfL9xAfYPFUOii\naLAJdO8tYbTgcd6TlGR3w7Fr+Yhmi63Fdbhhey3rttX4tEA63Z91DcGXi3Aq1L645ekFAMy89rAW\n13RnaYodC2677Sb++c+HYnZ+m83G9On3s2bNalJSUpg69XZ69+4DtD7Uxo0bx7vvfuK238cff0hO\nTi6HHur9O+G9997h5JMnkJwc89/mQicgURQoJ4Fce5cD/9JaXwWcrJRKBlBKjQcGANmO932ALKAR\n0IGUqPqG5rArgXuiN+3i5icCuw86oiaO1SWb7Lf1O1myyoiRetPhkgsU5Oz6/FnqqM20ubwu6JgY\nX/Eo3h6E97z0A9td6l4N6t2t5bVTaQmlarZxotaXu3b7C2hvW4Q0pLifEB7Ub85dw5z50est55Tb\nV/yac/v2UO8lMGXG10ye9lWbcbPLzdpSUcfXLgVX737xB9+yOv4PpfRDsPXFmpqtLQraxrLdXbBM\nanDEUokC+Pbbr2hububJJ2dzxRXX8NhjD7eZ4+374sQTT/GpRAG8/PIL2DpZv05BiBSBvlF7AE5T\nQBWQC+zUWn8FfKWUOtWxrR44T2u9TCn1kFJqjNbap3Yz9fHvWLe1xmeWWTSoqYu+IuX6fPf8Tnn1\n88C9/Fx/yTsDxP/3Q6slxjOuyJMvftjEaC+1tXzpKL6C24PBYrVxz4s/UJCb3jK2u77V0uFPUru9\ndbvnNQW6RiBg1p4vi0gkH+7//lSzZFU52Y4MOl+63cYyw3oUTnNln/t4fGyvfb4qqOOlpyUbVkiX\nwzY1W0lJNvu1OgWDyWSi2pGZWVa1p8u27nHS2NjI3/8+lbq6OhobG7j88imMHn0IEyYcz/vvf8pv\nvy3j4YcfJDMzi7y8fNLS0vjTny7n9tunUlLSg+3bt3H00cexbt0afv9dM2bMOCZPvoolS37khRee\nxWazsWfPHu644x66dy/xei5v/PLLUg4+eCwA++wznJUr2yY9NDU1cdddf2PHju1069aNu+9+gBdf\nfI7CwiLGjz+av/99Kna7naamJm688Ra0/o3KykruvPM27r03toqiIMSCQIrURqAU2AIUAL7MSHsB\nhcAyoDLQcdc5sq6qo6jcFBcbcUENTRaSzGbufGFxgD3aT5NLvaaNFXXkZrXG8nz+Q+Beft26ZbbI\n7e3BtmZLDYWF2WzYXkPfHm3dN0nJSS37u5K7zXvRRnNya1mErKw0HvrPzwwf2FrTKS8v022+67H/\n+fxCNpbtblEUAJat29kyJzPTe00rgMfe+ZVjDuoLwJ5GK8XFOS2xWBarnYJC/212unnI5WTpup0c\nc9Be4MW9UFycQ5JLcU5v98mTxmYrO6sb6FmU1Wbb3CVGZtrQfgVsLm/bVLu4OIeJt3zov0FwcjKv\nf6654IS9fVal9yZraUmOmyvT33zX107FOSMzleLiHBqbrZw59UMOVN256/IxXo9VVJyD2WQUy/Wn\neBcWZrHPgEKWO9zqZhf368ufr2LyGfv63DcR2bJlMzU11Uyf/ihVVVVs3GhYRZ1/1tOm3cff/34P\n/fr15+mnZ7Vk+G7btpV//WsWDQ0NTJw4gXff/YS0tDTOPPNUJk++ivXr13H77XdTVFTEv//9PHPn\nfs5hh433ei5v1NfXkZXVup7NZjM2mw2z2dwSt1JfX8/kyVfTo0cPrrlmMqtW6ZbvoxUrltGtWx5/\n+9tdrF+/joaGPZxyyum8+OJs7rrr3mjcSiEB6VIxUsCzwAyl1MXAO8DDSqkbtNaeQRZrgamOuCmT\n1vrbyIsaGuXlxoP5T/d/SUZaEnsaox/8mmRqVaQWLd/OmH1K/MxuS1VVHeXlxgPVV9uT979axXNz\nVnD+sUPabGtqsrRctys1PuoqvTjnt5bXtbUNrFi/kxWOJsaGPO7uqPLy2paYmQU+WpOUl9fy4Ks/\n+Y0Ds9rsVLoc21XmtVurKSvzX627zMs1Avzr9Z8Z0ivXay/Frdt2MVoVs8nRzsfbffLkrucXs2FH\nLdOmjHWzvLni6z58v2STfyUKmP7yYpavr6KmttFv/0FPWdOT/XvknfOLi3Pc9q1zrKn6+ibKy2vZ\nWWNkuv6ky3zej3e//J2XPzOsqbOnHuUzZmrr9hqsLvWjfltd3vL6yx828eUPm/hg+ml+5U4kBgwY\nyIQJf+DOO2/DYrFw5pnnuG2vrKygXz8jqWb//UfwxRefAdCrV28yM7NISkqmoKCQnBznDytjv6Ki\nIh555CEyMzMpLy9jv/0OoH//AX7P5UpmZhb19S4ZtHY7ZkdHCedD7bPPPqNHjx4AFBQU0tDQmhF9\nyCHj2LRpE7fccgPJyclceOGl7blNQhclURQoJ34VKa31DuB8P9tPdPxfDZwdWdEiR0coUQDzl+9o\neb21oi5kd0kw3pDn5him+G9/2dpmm09PUBBiBON6mvfrNp6bs4LTD23bGNmVYILpfbl+mpptAdP4\n73v5J5/btlTUkZ7attjqsx+uYJ/+BQHlcsXZQ7GypsGnIhWOjE5qnYpNCMHf4PtzDhanAuXaPscX\nTiUKDOvulBnfcNzoUs45erDbPGftKCfPfPAbXZm1a1dTX1/Pgw8+QkVFBVdeeSljx7a2DerevYT1\n69fRr19/li37pWU80HfGgw/eyxtvvEdGRgb//Oed2Gy2gOdyZb/99mfevG856qhjWLbsVwYOHNRm\njj8Zliz5kcLCImbMeIxly37h6acfZ+bMJzGZTNhsVsB7CZfOwrz5C3j9kx9IcnS9SElJotlLBup1\n/2jbKqyhZhtPTLsz2iIKcYikWMQRocSVNDbbGD+iN18taX2AtSdb6o25qwPOcSpx737X/lR+f8rS\n9wEyOP1x779/JMmLC2rxyjI2lbUtH/HDyjK652fQt8S3qy9aLVWc1d4bm61YrDbqGy3kZgaOGyzt\n7t/1+fqXqzj7qME+tzubTC8OoqSFK4sdyRKfLd7URpH6fdMurwpsV6VPn77Mnv0Mc+d+js1mY9Kk\nKxxbjLV0ww1Tue++f5CRkUFKSgrFxUZso7sS0/b1ccedyFVXXUZRUTF9+/ajsrLCz7nacvjhR7J4\n8UKuvPJPANxyS/ClDkwmE4MGDeaOO27l3Xffwmq1csklkwDDqnbTTX9h5swngz5ePFJdU0t18kCS\nUlxc7V7+JKtT2/592Yhus3IhfklYRWrX7sagfnFHi56FmQFdO56Eogh5UxY6U4Cv82Hujde+CC54\n2he+rGuuWYpgZKQ565jFojmvMwFi5cZd3PPiD2ws283j1x3eJqvOYrW5rWVnzTVffLpok19FCmBT\n2W5e+V+rtclXWx1X1m7znYx74JAilq+v8rk92iilBgFvaK0PVErdhBG32Q24DkjDo4xLMHPaI09q\nair33PNAm/H33jPKCvz223IeeOBh8vLyeOaZJ0hJSaFHj548+eRsANLS0njzzffa7HfNNdd5PZ+3\nc3nDZDJx4423eN3mjFv57rvvWly9zrinESNGtsx7+OHH2+x72213BnV+QYCuFyPVabnr+cVRDWYP\nRFpKEnN/Chxg7kooLputFXVsrXAPOHa18tz1/GJSUszcesFIz12DZk+gljSdHJvLDa9vaCbTR2X5\naFf4LM5Lbwnar61vaqNI3fbMAu6fPAaTyURjs9VvoLkrW8p3891PmzlyRO827hrPciDTXvs54PH8\nKeppKbGzRimlSoBLgd1KqTTgMK31BEeZlklAOkYZlwVKqTlKqZeCmPO01jpqfwAFBQVcf/1VZGRk\nkp2dzW233RXR40+f/gDr169tMz5t2kzS0rwnNiTKQ02IfxJtrSWsIhVLJQrgoL1LgnKXubJsXSX7\nuWTNhYqr68oZ3wPhW6rKw+iT1pmKMVbUtJriX/nf70w6tbWiumuw/46d9W51tiJNz8Isynf5dguU\n72rg0gfmcvxBpazaXO2116A3rrj/C8CobD+wl7v8Fo/6UMH1xPP92ZpMppiZRB2xnLcopT7GyC52\n+iw3A70wnDOuZVzyg5jTDSMD2Sv5+ZkkJ4evPE6ceDoTJ54e9v6BuP/+e9q1fzBZrfHKz0t/5daH\nXiUjK/S/2aamJkx5w8M6rznJ3KnvWzAk+vWFS8IqUrEmLYx4kVBdgcHidF+FSjixSuE8Sr9Z2jZw\nviNwVSa2VtS7ZaR959IL77k5Kxi3b882+0eKX9a0Pq8/nL+BC44dQqoXC49rdfdAfO5Sf6xuT1vD\nSjhlo/zpScnJ5ngpwlmGUYoFjNItWzEKD7uWcdkaxBy/fkrPjNZEwjPbs7NRUVFDY8YAkrLb1tQL\nhnADQmxWW6e+b4Ho7OuivfhTImPetDhRsdvtHDmid0j77DcgfGtUNFi9JfTq867Ng4PlhY9XBp4U\nYarrmtyqkW/YUcsds41aY9sq60K2JkaK737ZxsNvLG33cV51KdLpLbD/kTd/aTMWCH+NlnsWZMaD\nImXXWluBuUqpx4HLgMcwyrhco5R6Eng7yDldrkz3rFkzWmJXBCGaJNpaE4tUlLDbISezc6cCh8Mn\nCzfGWoSguO7R79qMOZtC6yDKN0QTvWlXyPF1/ugId6vNbmf15si0fQoXrfVJjv9nemyqxaOMSzBz\nuhqJFrcixC+JttbEIhUlAtVCitQ+ngSTfSX4x9en8O0vW9nspYRCNPj3Z4FbCgVLNFqgecbPTftP\n4GB1QRCEREQUqShhD6NqYiQMBzc/MZ+PFkSvSW9XZcP2Wp7/aCV/n70o1qKETDQsUn99cj4/hFiH\nShAEIRER116UyMlMpb4xtOzpYBr2BoNrnJKtvWWwBQCWrCoPPClOsROddbBs3c7Ak4ROgzNm5Y47\ngi/SKbRis9v47bflYe2bkpLK4MH+a78lElJHSgiK1BQz789bH9I+0Qhl+e5X3wHCQlt2VNWzzkvh\nSXM4aW5xQkOThXtf/jHWYghxTqI81GJGtyHc9VJ4iSLpjet58eFbIyxQ/JJoa00UqSjx+H9DLzng\ndMFE0nrgWk9KCMwtTy3wOj5vWatCevuzCztKnIiwcfvuoGtPhYZYOwXBSXJqBsmpGWHtm7o7dl0B\nhPYTtzFSR4/sA8ApY/eKsSQdx7ZKozbNZQ/OjdgxO1F9zLjGtWDmlorgKovHC5FyGXvyzVKxdgqC\nIPi1SCmleuOj/5RS6gTgUq31RKWUGXgaqAHStNZXtVew848dwpnjB9LQaOHD77tG8PSc+Rv4vyMG\nRvSYrk2Nha7Jlz/JGhACIzFSQkeRaDFSgSxSl2P0n7oKOFkplQzg6E81AHC2oR8PrNZaXw+UK6XG\nREK4tJQkUpLj1mgmCIKQMEyZcn3CPNiE+CbR1logLaUH7v2ncgG01l95dEcvwehZBa29q8Lm4avH\ntWd3QRAEQRCEDiGQIrURo/8UGP2nfJUu3gj0cbzug9GvKmwG9S+iuDiH4uIcioq897e59eKD2nMK\nAF69+8R2HyPSZGR578wuCIIgCEL8EUiRcu0/9Q7wsFKqTd8TrfU8oJ9S6hGgm9bae+qTD/Jz3JWH\n8vLaln8VFd4rSQ/qke11PBQa6hrbfYxIs3hZ6A18M9J8N0jep19+e8QRBKGLkGj9z4T4JdHWmt9g\nc631Dvz0n9Jan+jy+opwhbh30iFcOeNrr9sy0pLYe698VmyITnroFaftw5PvuRdRu/WPI7n334Hr\n7jx785ERzbADWPJ7Rcj7HHFAb5897lJTfCtZgiAIThIpZkWIbxJtrcVFHam0VN8Pe5PJxE3njmD7\nznp+XlVBSrIZVZrX7nPeecloAA7au4Qd1Y3896vVLdsG9e7GwN65rNniv/aO2Rz5Io2/bwq9YW5S\nFOQQOh+FuelU1jQEnigIgiBEjJgqUjOuHocpyIrRPQoyOeHgvhE7d9+S1tgrb3rIgUOK2yhSxXnp\nbvWEokE4BbT3HVDInPneS0TU1DW1UyKhs5CUJAq1IAhCRxPT2gJ52Wl0y0oF4NKT9wYMhSlcuueH\nV1XWG8eM7MPlE4a5jV18wtCW1/16eA+Cby8Wa+jFEzPTfevDa6JS0VqIR8qq9sRaBKETk2hxK0L8\nkmhrLS5cewDj9u3JmOE96Ijf1MV56W7vvVnFUpKTOGRYD55+/7eWMYtL65Yx+/SImDzjhvdg3rLt\nAGzfWR/y/sFa9YTEoiQ/gx2iPAkRItHiVoT4JdHWWlxVuzSbTCEpBUP7usdKFXVLb5MB6Mn1Z+/P\nbReOchvzd8oJ4/q1vO5VmNVm+xmH9Q8saABU3/Zl1nWmEKmMtMjr7iXtsGJGkmNG9Qk8KYKkp0b+\nXp5/7JB9EO4GAAAgAElEQVSIH1MQBCGRiStFKlRuOncEd196ENeeuR+nju3HpFOG8cAVY7j/Cu+F\n1S85cSjD+xeSm5nqNn7I8J4+zzFhnKEoFXVLp7CbiyXLobzsO7CwfRcRAXIyU9mnf0FUjt2zMLJK\nyuH7+77XgfClqBw/utTreEfTPS9yruVgiEYfymi5rK86Y3hUjisIghBrYuba613c1roTKiaTid7F\n2fQuzmb/QUUt474eaIft773g+pC++TxxwxFcOb1tCQaz2cQzN4/3aSlrbLKGIXlkyc5IYXtl6C7B\nYIhkZuK+Awo5/qC+fLpoU+DJGNe1e09zy/uDh5Xw+Q+b28wb0Cs3YjK2B5PJxOmH9efdb9d1yPlG\nqu6RP2iUrJvD+kVH0RciRzz12mtubmalXhnWvqvXrA48SYgpidZrLyaK1KM3HkmSLfYKiCtpKUn8\n8bgh5HqpLJ5k9m24c33Qg/GwX/jbjojL50lGWhKTTt2HZosNIGpp75EsrXDdWftjsdqCnn/iwX15\n86s1Aee5ZmA6MZtM2OyhB+63h+QkEwU56YEnutCnOJvN5d6LzsYTl5w0lOc/Cu/BBpCa0nHGb6XU\n/sBtGO2t7MB2oB/QDbgOSMOjGbtS6iZgL+ccrXXoBd06OfH0UNu5s5K/Pf4JGXnhucvTc4oCTxJi\nRjyttUgQE0WqX89cystrO+RcF584lBc+XhnUF/mRBwb+o3WWQMjL9h6L1REWquH9C7j0lGEtGY/R\nZOOO4B7yOZkp1NY3+9zep9ioRB9KXPyAXrkkJ5mDUr48Fafi/Ax2hBG43x7sdrCHoLxFI14sGowY\nXMTw/qG5sE88pC8fLzCKxJ5x+AC/P0aiQDnQG7ABvwCHa60nOJqtTwLSMZqxL1BKzVFKvQQc5jHn\nvo4UWGhLRk4Bmd1KYi2GIASkU8dIBcMhw0qYNmUsD199aESO99fzDuT8Y4cwUhUDxsPTlZTk0G9p\nY3NoypfqmxdRJeq6s/bn1gtGtusYTRZ3ZafEoxTF7RcZAf6mEHxHGWnJPH3T+KDmeipoHRmAn+v4\nLPJz0kKygu1ptHDWkQMBo5p+e+kTAXe5N9JSkkJ28U4cP6jldUpSh3/NXAHcrrU+BzgSQ7GC1obq\nns3Y84Eyx/sttLPpuiAIXYvO8ZO4HZhMUJAbmrvFHwW56Rw90rflKpxKBOl+Krt7P0d4WsK+Awr5\ndW2l1/H2csCgIjeXpqc60aJgtkPB6du91YXXt0cOG7f7tmo2W4J3IfqjT3EWm8vr/M656ZwD2NVg\nZVifXL762b1X4vEHlbrFhD1z83imPrmgxRU7fEAhs6ceFbZ81521Pw+/sRSA3sXZAWUNheEDCshM\nS+asowaFtK7PPXpwxGQIk3QMtx3ALgyXHRgN2Ldi/IAsxVCaChxjzj+CoJqu5+dnkpycWO2X7rrr\nLsCIkSoujk7SQbBYLLsT/1e+CynJSTG/58EQKRld11oikLCK1AXHDWHV5mqSo/xr+IDBRRwyrIQF\nDiWiuAMyt8ItG3X1H/Zl8rSvQtpneP8Clq3bGXBeTqZ7L2tXEZ1uPc9xV44bXcpni70HoR89sg+N\nTVY3a98xo/sy+4PWHome9yQ7I4WK6vbHjVltgS1MBbnpHDAsn/LyWoq6uSvtZx812E2RSjKb6Z6f\nQWVNA4P6dAtbrixHEdZ9BxRy9IF9+OKnzQzomdv++DyXy83LSuNPjkK5nrGAvrjkpKEctl/MDTqP\nAg8qpSqABUCzUupxIA/DWpUJzFBKXQy8rbW2KqXmeszxS1VVx7qNOwLXuJWOCr3wRWXlbiLzU6hz\nULO7nukzXwhr3/xuOZx60nGRFcgLxcU5EVsXzrUW63UWCv6UyIRVpI46sA9HBRHz1F6Sk8xcPmEf\nLjxBUV3XRF5WGtW7m/ju121B7T+wd3AZZyce3JePHY2JPcs3QHB91gK5HbPSk6lrsLiNBeuosnt8\n65lMppZ4stLuWW7jfUuy28Re7TuwsI0ileRQgr3VNvJ0NXl61KIVZu6ZSXjTOQe4xToN71/A0L55\nrNzou2eiU+kLJZ7KE9cYvbOOGsSBQ4pQffN57YtVYR/TswWTaw/MYD174/ZtLW9x6L49+e7Xbe1S\nGMNBa70JONfPlFo8mrFrrWdGVShB8ENS0QF85b3LV0C6Nf3OqSdFVh4hNPw+WZVSvZVSrymlHldK\nTXEZP0Yp9aJS6iWl1BjH2Hyl1POOf/GRj96BpKcmU5KfSVpqEheeoFrGzwng5sgIsqjimeMHtrwe\nPbRt2nuo5STOOnJQm7FpU8a1nRjkw97mobqYTK3ZjmYPc9GAXm0frH2KWuXPz0njlLF70ctPDSvP\nbEJPMdOCiFW77/JDONxHSQwnrgap5CQzM689jP49W3+Z7O2R1m8ymRgxpNht7O8XuxeAHeUoWzA6\njPIFvR33yTUWKyXZzN79CtpdqsLi6Q51ufZg3cmun/XFJw1l2pSxDOrdsYqUIAhCRxLoaXM5RnbL\nVcDJSinnT9TrgEsd26cqpXoDWUAjoLXW0uDNwSH7tGadjB/RGwi9cOM9lx3s9iCLRG2nZC8NbtNS\nk5g99aigY3Z6uyg/dg8XWEZaMlNOH84+/Qs44/ABAc+d4xI8P7hPN/5w+EC/D+99POK6PIO8S72U\nRHDloSvHUlKQycUnDuWZm8f7nNfQ1Gqhe/BKo9DrIcOM9kCuCrMrnlmGrrFdAEcc0IsHrhjDsSEW\nEk1PTWqpl1aS713JPGy/8AuebtxR66YOnzSmteBnOO5ks8kU0fhEIbokWv8zIX5JtLUWSJHyzG5x\n/rQ0aa0tWusGjJose4DztNZXAIVOK5Xg/gv9wuMVs6ceRVZGqxXKjn+jz+ypR9GryN3a5E2RCmQ4\n8gxoD9plR2s8jieurh/XHoF52alMOnUYfbpnc8PZB7R9mHo5uesVBVO7qk/3HI4Z1YejDjSUU08Z\nnRa8UUO7c8Fx7q7BCeP6uVWpTzKbfVbeTk9pvUanO+2YUX146MqxHOGrwGup0brIKZvn52W4PTNC\nThooyE3n1LH9mDh+IBefNNTrHH/u7L95tEYCozyIU4zSkhy3DDvXdkuusv7ppL1DklvoHEyZcn3C\n1fcR4pNEW2uB/Eobcc9uqXaMNyilUhz7N2BkxRQCy4DKII4bdxkKkZTH1SJRVNQaaO08R2pK6+1J\nTUkix09/QG9ydS/OafMQTg2Q+XfRycPcjpXlUnjU37Wn+El9n3jMEB546QcASnvkct/Vh7Gtoi6g\nNeiCk4exsXw35xyr+MdzC41r6t7qDR6zf++gPo9rz20tGZCSnAQY1qNpfz6MPr3y+GD6aS3bjx87\ngOse/oqK6gYOHVHa5vgnFOfQr08+P68q55VPWgtPDhtQyI4fjWrqrvt09+KVc24vLs7hpTuKyMtJ\na/mcXvj7cVisdor99AW88KS9eemjFS3vjz2oLxedPIwL7vgEMNZKn955XNg7z9ch2Oinwv3B+/cG\nfnAb+8PRQ3hz7mrqGixkZaYycnhP/u/IQRy0Tw+363Ut0XHG0UOY7SLnpNOHY7cbbs54+7sWBEGI\nNoEUnmdpzW55B3hYKXUD8IhjWwrwD2AthovvBAxr1beBThxP0fqRzEYAd0XK9bjO11Zb6/amZivV\nfoLEvclVUdG2SOauAIHm6zbvcjvW6g2tmXj+rr2pyepm7RrYO5c1WwzPbZ6LFahf92yqdtaRbg7u\ns5163oHUuwS2l5fXMm3KWH78vZzhffMCHsNut7vNsbnc06qqeso9sggBbvvjSFZtrqYoO8Xr8Quz\nUrBZ3Gt6jRpSzFyHIuVPJm9rqKLRPdPNHOAY4/frSdWuPXzw/XoAJh4xgKY9Tew/sJClayqx2WwB\n70tehu8/ac99H7/ucCoqdrdkJu7Z00xFxW5OdgSdu873tabPPXowY1xi9gLdI0EQhETDryKltd6B\nR3aLg28c/1w5O1JCJRKpXmrNuAVf2+1BZ28999cjfbrw1mz1H5b22eJNnHP0YO7600H8vKqcIaV5\nbWoeecNut7dkqR1xQC9+39SajeZ6GT2LQm9ubPfw8RXkpnPsKP9xQ+cePZjfN+1qk4F4xWnDefC1\nJQD08BGk3i07jVFeAvVd2XuvfLf3zmKb4RRaDYczDh/Qokg5sTo+9GCqg7u6Ir1xwkF9+WSRkf3p\nWVndn6cxOcnscNO6W0+TO+i+CNEnnnrtCYmN9NoTQiItNYmp5x/oVl/I1VMWKEbKFZPJFHYNKSel\n3bMp7Z7NzhB686Ukm2m22BwtUNzlcRJMvSVPbGHsc+zoUo4dXdrGtTnURQHKSm9rjQqWPsXZPPaX\nw1i9pZqK6gZ6F2Vx1RnD6dej4xNRnZfovE/BxI4leQnkB7j/CiNsceKRA1sUKSd52Wls31kfsGXN\nPv1bMxRPOLgvnyzcyDAPxVPovCTKQ02IfxJtrcnPySjgqRgNKc1zC7g+7dD+btsLu0U+s8kzQD1c\nXJWn7IwUN8uMmy4TRkmkNIf1JN9PjFgsyExPYb+BRS2B2yNV96h8Rr4468hBjBhc1GKBOuvIQXTP\ny+C8YwNXDPcsNeHEmSnqLcD92on7cdSBvTn+oOCzCM86chBP3nAEJX5ivtqDUio6BxYEQYgwokhF\ngZRkMyX5GQzxUYhQ9c2np8P9ZLcbRRwj3Vbj0pP9Z1YF2xPODtx4zgHs3a+A40aXuj2oXV+HU1oy\nNSWJaVPGcu/lh4Sxd1uOGdWH0z2U1M7ICQf35Zr/26/lfd+SHO6/YkxQVjFXRelCH9l15xw1iD8e\n31q6oSQ/kwuOU6QHWdPMSWoAN2I7+adS6mGl1NhonkQQBKG9iGsvStw32X8FiKyMVveTyWRi1NDu\n7apK7UpBbhqpAWJXAulRrtW5h5Tm8eA1h1FeXotrmI7FxTXX00/xTP+yRs7Sc94xbSugd2XSfCg6\nxx3U1+t4PKG1vk4pNQh4QSlVDbyqtX4l1nIlMhIjJXQUEiMlxD0moLbef2+0oNuTeMxzi4tyyeRq\nT1ySEB0KuxnuvG7ZbVsKxTtKqReB7cAkrfUKpdQ0QBSpKJIoDzUh/km0tSaKVIw4Yv9erN5czaGO\n3mQRKFbuhqvFyxtB61Ee713F9BWPI8QHB+3Tg9svGtUhjbSjwMvABqBUKVWgtb4x1gIJgiB4QxSp\nGDFu356MGFxMprMWUzuVkr1Kctiwo7WGT26WfytEoBgpp+XJc5brcU2R1v6EiJKSbKZ/z07b9vIi\n4GJgNfA8MC+m0giCIPhAgs1jSKZLQcv2qiSeae+epQXCza6yWt2PU+gS0ySLR4gijcAIYCTh5TII\nIZJo/c+E+CXR1ppYpBIEV8Vp770K2jQGLvIopBjItbdiQxUA67a5F/p0s0iJay8umTxhHypDqBMW\np9wEnIXxHXVzjGXpEiRa3IoQvyTaWhNFKk7wFvztqQz539/432wyccFxQ0hNSeKyU/Zm9eZq1m6t\n4fzjlNv8HoWZjB7anZGqOCQ5jx1dyjvfrAUgx0sbFiH2HDysJNYiRILzgIMAK4ZV6pLYiiMIguAd\nUaTihDCKfHvsbxxgv4GFLfV9xg7vydjhPb3ON5tMXHn68JDP45pSH+U6QkLXpqfW+sJYCyEIghAI\nUaTihNSU9kUcOb1svlqEhMqQPt34fXN1RI4lCGGglFJXA3sAu9Z6dqwFSnSkjpTQUUgdKSEqZKWn\n0Ld7NhvLdreMjVT+G+y6ctkpw3j1f79z9pGDIiLPzecfyILl2xnlRYaLTlAtfdkuP3VYh7ZPEboM\nj8ZagK5GojzUhPgn0dZarBQpU3FxToxO7Z14kOfxvx4d9r7FxTmMGObdjRcup3V3T5133qMzjx3a\nMnbq+Njdt3j4zFyJN3kgPmUKklEYMVL/BXoBXwe7o1KqH3A7UA1UYVi1+gHdgOuANGAasBNYrrWe\npZS6CdjLOUdrXRGpCxEEIbGRDHZBEOKRfsAarfV/gAEh7nsDsAbIAxYDh2utrwaeAyYBlwP/0lpf\nBZyslMoGDvOYIwiCEBTi2hMEIR6xAUOUUlcABSHuOxB4FlgO/A+jqCfAZgzrViqwyTFWBeQDZY73\nWxxzuhwSIyV0FBIjJQiCEH1uBI4FkjAqnIfCdqBWa21RStUDhY7xUmArhiW+FENpKnCMOef0cYz7\nJT8/k+TkxMpadVWgYu0Stlh2i7skSFJSkjrs84rUeRJNWRdFShCEeORpx/95wGTglBD2fRC4TylV\ng9Gzr1gp9bjjWFcAmcAMpdTFwNtaa6tSaq7HHL9UVdWHIE7norg4h/Ly2sATo0hl5W5sgacJQHOz\ntUM+r3hYF7HEnxIpipQgCHGH1rqlAKdS6pEQ910JnO1nSi1wvsc+M0MSUBAEwYEoUoIgxB1Kqbsd\nL5OBvrGUpasgMVKdk5p6C9Nm/TusfQu7ZXDJ+WdGWKLASIxUO1BK9cYj7bgDzjkIeENrfaBnijNB\npEF7m9MOWcZiuClqgR2EkZYdYXkGA/8AKoAfgO6BzhVNeVzkegV4H+MBGsvPay/gPWAJsM1xzH6x\nkschUz/amdofSZmUUlOA0RgB3OOAxyIkz7OOU1gwYpiEKJMoD7Wuhj1vGL/VBJ7njZLatZEVJkgS\nba2ZvPV4ixZKqbuAj7XWC5RSc4DTtNaWKJ6vBPgLxhf8scCbWusJSqnxwBgg3UOes4FXA8wJW2al\n1EnA11rrOqXUp0CD1vq0GMozEkOJ2grMAfbEUh6HTNcDg4GvgPNj/HldgOEC2ga8A1weS3kcMj3q\nkGcQ8AYwJdYyOeS6H0PpvCUS8mDUj9qEoUgNB37WWsfNt295eW3HfXF2MJGKhbHZbPz3/TnYCP1W\nVe/axf+WN5FVGGrli+jy4YzTATjl+ndjLElkKDGt5b6/XhbUXImRyvHZNqSjXXs9cE877gZURutk\nWusdwC1KqY8xsnOcKc7BpEH7mhO2zFrrj5RSJqXUrcArwOExludHpVQv4ENgLkbaeMzkUUpNcBxj\nAUa2Vkw/L2ARRvp8GfAFRm2iWMoD7Uvtj4pMSqmhGN8l64M4V7Dy/Ka1/qvj+NO01jeGK58QG6xW\nK299vZr04tB7ekIGmQWStyd0Djp6pW7ESDsGQ7Gp6sBzl9E2DdpTnq1BzAlbZqVUDsZDcAHwahzI\nMwLDKnY8RiXpmMoDnIdRzfoi4DKgOMbyjADStNZ2oJ7W+kKxkgdcUvsdMsX6MwO4CphJZP/GUpVS\nNymlpiKxnB3CrFkzWmJXIoXJlITJHOY/U2T6hgrxRzTWWizpaNdeCTADI0Zosdb6uQ4670da65OU\nUn8GFB5p0K7yBDOnHXI8h+GS2QhYgZ9iLM9o4K8YloFGjPo5MZPHRa6LMGJ/esRSHqXUgRj3pwz4\nGciKpTwOmYYCdwE1wJcYymasZfpca32M43VE/saUUskYLt58rfX37ZEvGohrLzDNzc1c9NcnSO8e\njkUqPhHXnrj2vNGhipQgCEIwKKVmAdnAv4EztdaTYyySG6JIBUYUqfhHFKng8adIiRNaEIR4xAJs\n1lr/D2iOtTCCIAi+iEnsgcVitSdKZeD8/MyEqXKcKNeSKNcBiXUt/n7ReWE9cJZS6jVag/yFKCJ1\npISOQupIReKkCdSjSq4l/kiU64DEupYQqQGOAcxa6zCr5AihkCgPNSH+SbS1FpIipZQ6GLhfa32k\nx/ipGEUCLcBsrfWz3vYXBEEIkrMxgtDrlFJ2rfXsWAskCILgjaBjpJRSNwPPYFQhdh1Pwci4ORY4\nArhcKdU9kkIKgtB1cGS33oNhlVqNuPYEQYhjQgk2Xw38AfCMc9gbWK21rtZaNwPf0VpoUhAEIVRS\ntdZfA0dorb92vBaiTKLV9hHil0Rba0G79rTW7zj6fHmSi9H3y0ktRmViQRCEcOihlDoa6KmUOgow\naa2/iLVQiU6ixa0I8UuirbVIBJtXAzku73MIUCm5X79+rF+/PgKnjg+Ki3MCT+okJMq1JMp1QGJd\nS5C8AvQBXqO14rkgCEJcEglFaiUwWCmVD9RhuPUeCrRTeXktI0cahdp+/HFZBMSIDYlUpCxRriVR\nrgMS71qCQWv9QnQlEQRBiBzhFOS0AyilzlVKTXLERV0PfAp8Dzyntd4WygFHjhzeolS5vhYEQRA6\nhkSLWxHil0RbayFZpLTW64GxjtevuYx/CHwYScFcrVWJYLkSBEGIZxItbkWIXxJtrcV9V/WdOytJ\nTk7CYrF2iHL1xBOP0tjYQHV1NX/+8/Xk5xdE9PiCIAiCICQOcadImUwmkpOTATt2u52mpiZMJqPi\nQkpKCmDn2muvJCnJjNmcxMEHH4DJBBMmnMF7772D2Wzmrbc+YO3a1SxcOB+AzMwsJk++invvvYuC\ngkJ27NjObbfdSVqaW0kstm3bSkVFGbfffjc//riYd999m0sumQQYDTinTbuP3NxubNiwnmuuuY6M\njExmzLgXkykZu93OlCnX8tBD/yQ3N4+qqp1cffVfeOqpxwHYb78DeP/9/9K//wBOPvk09t//gA67\np4IgCIIgRIe4VKRMJrBYbNjtrQ3Wk5KSsNmsWK02Ro06iPnz5wF2rFYrdrudDRvWY7FYSUqCZct+\n4bbb/orJ1KqYXXrpZHbs2M7eew/jsMOOcChr7lRWVlJS0hOA4uLulJWVtWyzWq2cdNKp1NfXU1FR\nzrJlv7B58ybOPfdcevbsz8qVK/j004845JBxHHvsCfz661LeeONVTCYTEyeey+DBQ3jnnTe49Vbp\nYyUIHYFS6hXgfaAvsBdGWZbrMIoKTwN2Asu11rOUUje5ztFaV8RG6tghvfaEjkJ67UUZu91Oc7MF\ns9nksEC5bjP+N5tdY+SNwdTU1JYRm81GSkoyVqsVm83YbrVaWbBgPgsXzic5ORmLxcLixb+6Hb9H\njx6UlxvKU1nZDkpKSlq2rV27mrfeep2JE89hwICBADQ3N7Vsr6gox263uV2Hk5ycXACys7tcGrsg\nxASl1PUYldEBDtNaT1BKjQcmAenAv7TWC5RSc5RSL3mZc18s5I4lifJQE+KfRFtrQSlSSikzMAvY\nD2gELtNar3HZfgZwK4ZWM1tr/WS4AplMkJycjM1mx2ptVUysVispKSmYzWa+++4bXPQUx37uBdft\ndjtmsxnnsNlsdnMZOhUszwzBKVOu4ZFHHqKqqoqbbrq1ZTw7O5u6ujrmz59HRUU5KSkpnHHGRF58\n8WlSUjJIT0/nkksmMX36/axapampqWHSpCtbXHuCIHQMSqkJGLXsFgBJgNO0vBnoBaQCmxxjVUC+\ny5wtjjl+yc/PTOiG0pGoXdbc3EyS2bMRhhBPpKUmhfRZd8GadkERrEXqdIy2DWMdjYunO8aczABG\nYNSR+k0p9ZrWutrLcQJis9lpampued+jR0+amy0ORclQfkpL+7Jo0UJstlZFa+bMJxk5cjhWq5UT\nTzyFv/1tass2iwXS09Npbm49rslk4sUXn3P7MrTZbFx66eQW5erDD98HjID2vn37MWPGo23knT59\nuludn9tv/4fbdldX3qOPPhXSvRAEISzOw1CQlOO98w+0FNiKUfalFENpKnCMFTrm9HGM+6Wqqj6C\n4sYXkapd1tzcjNVmJyXwVCFGNDZZg/6sE6mmXTj4UyKDrSM1DvgEQGu9EBjlsb0ZyAMyMHrxediL\n2o/T5WexWCISZ2S327nookuxWKwt/5xWKm8461t51rzq169fu2URBCFyaK3P0VpfCbwIPAl8oZR6\nHLgMeAx4FrhGKfUk8LbW2grMdZnTJc3IiVbbR4hfEm2tBWuRyqU13gDAqpQya62dJqHpwI8YFqm3\ntdY1ngdIZKTmlSDEH1rrF31sqgXO95g7M/oSxTeJFrcixC+JttaCVaRqcO+n16JEKaX6AldjZLzU\nAy8rpc7UWr8VUUk7IZ7xV6JcCYIgCPFCZVUtjz77alBzMzPTqK9vbHnft1cxp510bLRE61QEq0jN\nA04F3lRKHQL84rItHbACjVprm1KqDMPN55fi4hzMHoGIkRqL5rG9jXk7r699PF2B8da8OVGCCRPl\nOiCxrkUQhPjBkrc/S8Is9FG1ewOnnRRZeTorwSpS/wWOVUrNc7y/RCl1LpCttX5GKfUi8L1SqgFY\nDbwQ6IDl5bVtYpIiNRbNY3uOmc0mr+cN5TjeLFexcBEmSjBholwHJN61CPGL1JESOoouWUdKa20H\nrvQY/t1l+8PAwxGUS3Ag8VeCIHQEifJQE+KfRFtrcVeQUwiMN+XKiShZgiAIgtBxiCKVgMSLq1AQ\nBEEQEh1RpLogYsUSBMETiZESOoouGSMlJD4jRw53C5wXK5YgdC0S5aEmxD+JttYi1WtvNEZRThNG\ne4ULtdZN3o4ldD4kJksQui5X/fVuUrOKQ97PDpgziyIvkCDEGe3utaeUMgFPA/+ntV6rlJoE9Ad0\nNAQW4g+JyRKExGUPuexJHRLWvqmpERZGEOKQSPTaGwJUAtcrpb4C8rTWokQJAG16E3p7LQhC7Em0\n/mdC/JJoay0SvfaKgLHAVcAa4EOl1A9a67mRFVVIRMRtKAjxQaLFrQjxS6KttXb32sOwRq12WqGU\nUp9gWKxEkRLajT+3oeuYIAiCIMSCSPTaWwtkK6UGOgLQDwOeDXTArtprL9Zj4VxLR8sQzpi3HobO\nsXjrZxgq0lpFEAQhfolUr71LgVcdgefztNYfBzqg9NqLzVg419KRMkRizGw2uY317bsX0DmtWdJr\nT+gopI6U0FF0yTpSQfTamwscHEG5BKHDCBSnJRmIQlcgUR5qQvyTaGtNCnIKQpCIwiUIgiB4IoqU\nIESYYBUu1zFBEAShcyKKlCDEAb6UL7PZxOLFv4ryJUQdiZESOoouGSMlCEL8Eay1q6u5HJVSY4HJ\nQC2wA9gD9AO6AdcBacA0YCewXGs9Syl1E7CXc47WuiIGoseURHmoCfFPoq21iPTac5n3NFCptb4l\norfhan4AACAASURBVFIKgtBuQonx6uTKVx4wRWtdp5T6FGjQWp+mlBoPTALSgX9prRcopeYopV4C\nDtNaT3CZc1+shBcEoXPR7l57TpRSk4HhwFcRlVAQhJgRTrxXrN2QWuuPlFImpdStwCvA4Y5Nm4Fe\nQCqwyTFWBeQDZY73WxxzBEEQgiJYRcqt155SyrXXntOUfhDwFDA0ohIKgtDpGTlyOBs3buiQcyml\ncoBHMJSob4AzHJtKga0YPUZLMZSmAsdYoWNOH8e4X/LzM0lOToqs4DHmrrvuAowYKdeaX2ZzEjZf\nOwldlrLKap5++c2w9rXUGL9jEiUer9299pRSPYG/Y3xZnR1pAQVBEELkEWAQcAlwITBXKfU4hsvv\nCiATmKGUuhh4W2ttVUp5zvFLVVV9tGSPGa5xK65FYG02ayzEEeKc+qz9WLA5vH2H5TZw45Q/dqpi\nw/4KCkei196ZGI2LPwJ6AJlKqRVa65fCkFUQBKFdaK0vDTClFjjfY5+Z0ZNIEIREpt299rTWjwKP\nAiilLgKGBqNEdbZebtJrr/N+Pp1Jrq4igyAIQqIQkV57HnPtBEFn7uXmOia99uLv8/HstRcvcoUj\nQ7jXEkkZojEmxB9SR0roKDIpZ9asGQlTBiEivfZc5r0YCaEEQRCEjiVRHmpC/FNPMTdO+WOsxYgY\nUpBTEAQhwSkrKws6aLy5uZbKyt0t7+02O+KYFQTfiCIlCIKQ4Nz8zydpSO0d1FyTCewuntiUzH6k\nREkuQUgERJESBEFIcLK6FWHO7O93zqjcnwH4oeaAjhBJ6MJ0yRgpQRAEIbERBUroKBItRsocawEE\nQRAEQRA6KxFpWuwohXAtYAF+xWgYKvnOgiAIgiAkNO1uWqyUygDuBoZrrRuUUq8CpwAfRENgQRAE\nIfJIjJTQUThjpFZXZoa874jBJfzxnDMCT+xAItG0uAEYo7VucDnmnsiJKAiCIEQbUaCEjqJlrYWR\nDlpTtyOywkSAYGOkvDYtBqNYp9a6HEApdQ2QpbX+PLJiCoIgCIIgxB+RaFrsjKF6EKPj+v8Fc8DO\n3itMeu1FT4ZYjYkM0msvnpn++GxqG8O7j3XNKZJZJAhRot1Nix08heHiOyPYIPPO3itMeu1FR4ZI\njEmvvcjKEI0xIXS2VjVTlTw4rH3N3QLPkRgpoaNItLXW7qbFwA/An4BvgC+VUgD/0lq/G2lhBUEQ\nhOiQKA81If5JtLUWqabFSRGTSBAEQRAEoZMglc0FQRA6iJdff5cdVbsDT/RC9e5myIuwQIIgtBtR\npARBEDqIlRsr2Wr13/POJ3m9IiuMB4kWtyLEL4m21kSREgRBCJEHH/93WPuV7ayDIAK/Y0GiPNSE\n+CfR1pooUoIgCIBSqjcwDdgJLNdaz/I1d2Vt7/BO0i3M/QRBAOD7FTtZcOMjYe07fv8SLv3juRGW\nKHK99k4FbsfotTdba/1sxCUVBEGILpdjZBwvUErNUUo9rbW2xFooQRBaSSvaux17V0ZMDlci0Wsv\nBZgBjALqgXlKqfe11mXREFgQBCFK9AA2OV5XYTjhovPNG4ckWtyKEL/Eaq0t/U3z+HOvhbXvnVMv\n97ktEr329gZWa62rAZRS3wGHA2+FJa0gCEJs2AiUAluAAgxlyisfTD8tAUu1nxZrAeKf6VJYNjLE\naq1F57wmuz3wwlBKPQO8rbX+xPF+A9Bfa21TSh0KXK21Psex7S5go9b6OV/HS07ebO/Vqxdbt25x\nG+/Vq3dExiJ1nODGTIA9xjIEPxbOtXSsDJEYMxHO+orPzye8a4msDJEZs1hK41r5UEqVYFjXa4HF\n/r7DBEEQnASrSE0HFmit33S836S1LnW83he4X2t9suP9DOA7rfU7vo7Xrx+i1gtCF2P9euJakRIE\nQQiHSPTaWwkMVkrlA3UYbr2H/B1s/Xqj/1YiUFycI9cSZyTKdUBiXYt733NBEITEoN299rTWzyil\nrgc+BczAc1rrbVGQVRAEQRAEIa6ISK89rfWHwIcRlEsQBEEQBCHuMcdaAEEQBEEQhM6KVDYXBEHo\nQviq4K6UOgb4I0b67hNa6/lKqfkYcbAA12qta2Ihc7TwV81eKXUCcKnWeqKjKPXTQA2QprW+KiYC\nR5Fg74XjfUKvi1CJlSJlKi5OnMBTuZb4I1GuAxLrWoS4wLOC+1NaaytwHUahnWTgdaXUFCALo5vF\n+gR9WHqtZq+UGg8MALId88Zj1Eu8Xyl1p1JqjNZ6foxkjhZB3QulVB8Sf12EhLj2BEEQuhbeKrgD\nmLTWFq11A5AG7AHO01pfARQqpcZ0vKhRx/Ne5AJorb/y6LVYAmx2vN4M9OowCTuOYO9FPYm/LkJC\nFClBEISuhbOCOxgV3KsdrxuUUilKqQygAdgL4+EKRqucRAwF8XUvvM3r43jdB6P6faIR7L3oCusi\nJIIqyCkIgiAkBh4V3H/AaEZ/AzAGuBRIwYiVWYMRF7QJw1p1Q0wEjiK+7oXWutmx/WOt9YmO109i\nKJh2rfV1MRI5agR7L5RS3UjwdREqokgJgiAIgiCEibj2BEEQBEEQwkQUKUEQBEEQhDDp0CAxRy2O\nWRi+10bgMq31mo6UoT0opVKA2RjBdmnAPcAK4AXABiwDrnJUgo97lFLdgR+BozHkf4HOeR23YPSC\nTAEew+gN+QKd7Focfx/PAkMwZJ8EWOlE16KUOhijifmRSqlBeJFdKTUJI9XaAtyjtZ4TM4EFQRDa\nSUdbpE4HUrXWY4GpwPQOPn97OR8o11ofDpwAPI5xDbc6xkwYdVjiHodS+BRGo2kTRpBhZ7yO8cAY\nx5oaj1HvpFN+JsBxQJbW+lDgH8C9dKJrUUrdDDyD8SMDvKwppVQP4BpgLHA8cJ9SKjUW8gqCIESC\njlakxgGfAGitFwKjOvj87eVN4O+O12agGThQa/2NY+xj4JhYCBYGDwFPAM4G0531Oo4DflVKvQt8\nALwPjOyk17IH6KaUMmHU9mmic13LauAPGEoTeF9To4F5WutmRyG/1RgWakEQhE5JRytSuRgl9p1Y\nHe6MToHWuk5rvVsplYOhVP0N93u4m9bidnGLUupiDMvaZ44hE60PP+gk1+GgGBgJnAlcAbxK572W\neUA6RuuFp4CZdKJr0Vq/g+Guc+Iqey2G7Lm416dxjguCIHRKOlqJqQFc+12Ytda2DpahXSilSoEv\ngZe01q9hxH84yQF2xUSw0LgEOFYpNRc4AHgRQyFx0lmuA6AC+MxRkfl3jDovrg/mznQtN2NYaxTG\n5/ISRtyXk850LeD+t5GLIbvnd0AORhVlQRCETklHK1LzgJMAlFKHAL908PnbhaNg2WfAzVrrFxzD\nS5RSRzhenwh8423feEJrfYTWerzW+kjgZ+BC4JPOdh0OvsOIV0Mp1QvIBL7opNeSRavFtgojGaTT\nrS8XvMm+CDhMKZXmKOy3N0YguiAIQqeko0u7/xfDEjLP8f6SDj5/e7kVw9rxd6WUM1bqWmCmI2D2\nN+CtWAnXDuwYlY2f6WzXobWeo5Q6XCm1COOHwRRgPZ3wWjDi1p5XSn2LYYm6BSOrsrNdizOrsM2a\ncmTtzQS+xfi8btVaN8VITkEQhHYjlc0FQRAEQRDCJCbNBi0Wq72qqj4Wp/ZKfn4m8SQPxJ9MIo9/\n4k0eiD+ZiotzTIFnCYIgdC5ikjGXnJwUi9P6JN7kgfiTSeTxT7zJA/EpkyAIQqLRaUoPCIIgCIIg\nxBuiSAmCIAiCIISJKFKCIAiCIAhhEpNgc0EQhEjiaJD8htb6QMf7A4BntNaj1f+3d+fxUZVXA8d/\nM9l3srEmEBY9ahVkccUFtSoqbq3WWqsVFeF1qS9YW5e68FqXVsSd1gUVFdtqBYu47wiiIoIKyoMs\nYQuQhIQkZE9m3j/uzUoymUwmmSXn+/n4cebeO/ee52aYnNz7zDkig4BZQBGw1hgzR0Ruwmo+ngJM\nx+oP2GKbQIxDKRV6An5Faueect74PBdXN5Vh0PIO/ldZXceCJZsoLqsOdCjdZkfBPjbuKOl4ww64\n3W52FVXo+7Ab2YVyr8RqodPw/AqsqvcAU4FHjDHXAmeJSCJwvDHmOmAuMAW4utU2+kemUsorAUmk\nfti8h32VtQDMfH4FC5ds4tsNhW1uW1ld1+EvtMrqujYTsRffNVzz0BLqXU2dKtrarq1fcrV1Liqq\nrLZhW3aVUVVTR2l5U93AuvqOO9u43G6Wfb+zxes647VPN7JgySZ27in3+RdxcVk19764ko151jls\naz/t7XtHYTkvv7+e2rqWY138eS6LP8/l6TfWtljucrspLqvm9c82UVfvanO/ldV1+y3rrJJ91Y37\n9nReqmvrAdiwvYQ9JVVtbrO7uIJnFv/Q+H5scPvcr7jnxZUAfPZdHruLrDIC+ypr9zsfnny8age3\nPvUF7361rd1tamrreXN5LiX7PCemDe/z6tp6XC7/JWYrTT7vf91+fG63u/H9XrC3kh0F+3x+T3cH\nY8xuY8wtQLmIRAF3YxXPbdAPaBhgMZAK5NvPtwMDgf6tttH+f0oprwTkr64/Pb6U9OQYZl5xFDW1\n1gf0f5duJi0pluVrd3HucUOJi7FCm/3KajbuKOXwERn8bGgaJ40ZhNNhlaNZaQpYuT6fL9buZsSg\nFG757ZjGYyz5No+PV+0ArF+kf315FYMyEthRWM4BWSn88sThHJCVwjfrC3ni/o+IinRSW+ciJTGa\n6ReO4q7nVgBwy2/HcN9L3wBQW1nMtAuOJbtvYuP6h64bT0piDADvrdjGvz78iSmTDqGkvIbaehcL\nl2xicL9E/njxGOJjI3G73fy0vYR576zjpotHk5IQjcPRdnmdN5dvAazEZeyBmRSWVjEwPZ5jDxvA\nm5/nctqRgzlkSCqRkU7M1r3sKqrgxy3F/Pa0A0mOj2bV+gIeW/A9APe8sJLzjh/K659t5pif9WfK\n2YcAUFFVx3UPL+GQnFSmTDqEmOgItuwq46NvdrBinfW7ZkBGAlWrdrBx217cbjdRkVb+XdgsOVmw\nZCOLP99ChNNBvcvNomW5AMRGRzBnhtUlZPmaXTy9+AcAnrppAsvX7OLA7D7sKqpgUGYCGSlx/Lil\nmOVrd3HKmCy+3VDIG5/nMv6w/lx+xsEALP1uJ8++9SNHH9qfwr2VbNhuJYiXnnYgE0YPorK6nqhI\nB29/uZXXP9vc4uf37M0n73eO5yxcw7b8fXy+Zleb67fl7+O5t9YB8MyfTuL3j3xGenIsD1xzLGAl\nGT/kFnNkUiwfrtzO0u92cvMlY4iJjqC4rJqX3ltvvVfX5zPxqMFt/pzf/3obr326iW837uHW345t\nc5uKqlque/gzfjY0jbWbixiUmcDdVx7FprxS0lNiSUmIbrF9UWkVCUmxjc835ZXy+ILvuOTUA0mK\nj+b++d9w26VjGT4ohScWWh1ayitr2VVUwQFZfYiPjeSYn/UH4IF/rmLd1r3cNfmIxvc9wCWnHsgp\nY7NwudwUlFSycUcJ46Qvn6zOY+l3eQwbmMLlZxzU5ni60clAGlaV+ENE5DJgK5AN7LDX5QHp9vbZ\n9nNnq2089v+rq6t3a3kJpbzX8HsuhK/Ot1sHLyCVzc++8b9eHXTKpEP4+2tfUrptBWkjWv6S+9Nv\nRvPXl1d1KY7LThdeeNe0WOZ21VO08RNwu0g/8NQW67Ytf5LsY6a2ua/svolsy9/ncyxDBySxeWdZ\n4/Pxoway7Ns8n/fnLcnug9nmex/c1KSYDm/x9U2N49Rx2cx/f73Pxzlp9KDGxLg9E48czDtfbfW4\nzfW/PIyKqjrmvvkjGSmxLZLBjjz+v8dz3cOfATD5jIPYU1pFWnIsz7+9jsgIZ4dXKU8eM4gjDurL\nntIqKqvrOWn0IO587it2FJQ3bpMQG8n9047hoVe+ZVNeKWcdM4Q3l29h0rE5LP48t8X+Rg5P57uN\ne1q89spJh/Dof1q2sLxr8hHMe2ddi/dXgyMP7stXP+bvt7zB8EHJbNxR2u76CycM59VPNra7/r6p\nR/PUorXEREXwwA0ndmtBThF52xhzRrPnbxljzrRv9c0GyoAVxpi5IvJ7QIA+wDSsHo0ttvF0rIKC\nspD9bdCRzMwkCgr2f6/0Rnoumvh6Lp576RW+/DGfBU9bF4nz89v/PAlmngoKB10iVVm8hb25y3FG\nRhMVn07SgJHsWf8+fQ87j93fvUZEdALVpbtIzhpD5Z6NREQn4HbV4aqvITqhL5XFm8k85BxqynZR\nXmAlSc7IWDIOmsiu1a8QGZNIbeVe+h9+Ec6IqP2OX7xpCfW1VTgcjhaJVHm+Yff3C+g/6kIK171N\ndGI/krPHUbp9JRFRcdTsKyDzkEk4I2MoXPcOzsho3G7IPPhMCn58C4fTSX1NBZkHn0lkbHI3nFWl\ngtsbD54bNpXNNZHqHfRcNPH1XPz9+X+zYlcmi2efB4RnIhV0Eyrrq/fhdtUSn34IMcn9G5eX7fiW\nxH6HkDRwFEUbPrKXOkjOPoLoxL5sW/YE/Uf9ir1b4qgq3kJM8gCSB42htqKI4k2f4j7wVOoqi4nt\nk01i/0NxONu+LJ867AQq9mykcs+mFssT+gpR8anEZ4zA7aqn/+G/wlVfAzhw11dTV1VK1d6t1JQX\nkjLkaOJSB1O1dzul27+mvrqM6MQMXM5IKos2kzRwVDedPaWUUqpnzZkzG4BrrpkRVPvqKUGXSEUn\nZpIhE6kq2cGu1a8wYMwlALhddVjfUIbmc+SdkdYcI0eENRSHw4Hb7WLP+g9IGjiS2D5Z4IgAt4vM\nn52Nq66aoo0fkzZ8AnFpQ32K0RllzT2pLt3F3txlpA49jpjk/rjdbtz1dY33guuqrcw7Ln0YqUPH\nU1m8pc2rYEoppVSo8mfSE0oJVIOgS6Tqa8op2riE6IR04jNGWAsdkJw1mt3fL6Rq71Yqi7eSOvS4\nVq9sedUtMq4PFXs2UVWyw0psHA6KNnxCZGwyEVEJRMVndD44N5Tlfdd4rIioWFx1VZTn/0hdVSkx\nzkj65Bxj3dqLisMZEUX6gaey69tXqa3YQ11VKf1G/rLzx1VKKaVUUAq6RCoubSiDWl0p6j/qV9RW\nFOGMjMXhjCA6MYP4zANJGjiycZuGSeApg49sd98Dx/628XF16U5Ktn3V6tjDiE8fSnz6cOLTh+/3\n+uxjpwE0Hjc6sS9ZR12133YDxvym3eMqpZRSKnx4TKTaqgjcbN1E4EpjzIX28+XAOnv1DcYYv84o\ni4pPo99h5/ttfzHJA4hJHuC3/SmllFK9UW+fI9VRQc42q/2KyARgGJBoP88CEoBqwHQ1iYqLiSS5\nVV2crjr72By/7i8QIpyev/R03EjvEsO05Jg2lw/KSOCEUQNIig+eeVzRUQEvvq+UUsqDa66Z4bfE\nx5/76ikd3dprXe03GSgyxnwCfCIiZ9vrKoDfGGPWiMgDInKMMWZ5ezt9aeZEvvxuBwdm9+F6uy4P\nWDVtpp17KADlVbXc/I/llFfVcf/Uo/l8za7GIo8/H5fFL08czkffbCc2OpIDs/uwaOlmVqzL5/AR\nGfz+gpHUu1xs3b2PDTtKGDEohaEDkjn/hGHWQMqqWfVTARFOB/PeMUQ4HZwzPoc3l29BBqdyQFYK\np4zNIi4mkuKyaiqqavn02zw++Ho7f/j14RySkwbAFfdb3x5Mio/itCOyGTogmUEZCTidDjbvLCNn\nQBJlFbUsX7OL808YSoTTSgqeemMtX6zdDcBD1x9HdKST2f9ezaWnC2nJsfz+Eeuc/M95h/L3161i\nieceN5SJRw3mwX+tprKmjktPExwOGotNTjp2COcdPwzckF9cwVVnH0J6ciwut5tNeaWN2wFcdvpB\njByeTn5xBdvy97G7uJLjRg4gOd5KXi8/A97+cguvfmzVB7pnylEcJv0oLLTqZJWU1/Dapxs57rAB\njMhK4csfdpOVmUhdvYuUhGieXLSWfmnxHDo0jcKSKtKSYxgxKIXHF3zP2ccORQb3ITY6gging015\npRSVVTNyWDo/bCni/RXbSE6I5qTRg4iPjSK7byIut7uxCOvqDYW8+K7hpkvHsT2vhHEH9W38ObTl\n9t+No7CkivnvGQ4bls6yNbsa1824aBS7iyo5ecwg3ly+hQVLNtnjP4iCvZX84oRhPPjv1fyQW8w5\n43MYNSKDp9/4gV1FFY0FXMGq55SRGs8lp4zgm/WFHJCdQlJcFIs/z2XhZ5tbxNMvLZ5fnDCs8ed6\n+IgMVjer6n/wkFR+d8ZBxERFMP2xpQA8/r8nUFFdS3J8NNMfX0ZldR3Tzv0ZRx7cj+raegqKK3nj\n81wumyhsz9/Hw69+hxt3Y7HbxLioFpXb75lyFD/kFtMvNY7Zr3wLwN1XHsmuogreXbGNc47NYdWG\nQpZ9v5NJx+RQVVPPW19saXz9uIP68vW6fO64fBzJ8dF8sjqPiUdmEx9rJeAfrtxOenIs//roJ6Ij\nnfRPT+C0I7Lb/RkppVQo81hHSkRuAz40xnwhIm8BZxtj6putf9sYc4aIjAbSjTEfiMjNwDJjzGft\n7RdoPGhxaRWJ8VFEeVElOL+4glc+WM9vJx5Mn6SWV1Vq6+r5cMU2xo8aSFK891ez3G53u5XFO/Lt\nTwWU7qvh+NGDOv3azXklDMxMJCZq/3HX1tUTGeH0Kq7aOhcRTgfODq5WNah3uTu8stVcV85PTzn7\nxv8C8Mq9Z+F2u1n2bR7/WPg9z/751Maq8w32Vdby7U8FHHPoAK/PWVvnwOVy8/qnG9m8s4QZF49p\n8xy53W7mv7uO0n01fL+xkMmTfsaRdrXwLTtLSe8TR1Skk5+2FnPI0HRKyqtJtauRu91unlz4PYeN\nyGD8yIGN+6yrd7Ftdxk5A5K9+rm43W5cbpi7aA0njh6EDEnzasyt5RdX4HZbSVlCnM9XLIP7jdQJ\nWkeqd9Bz0UTrSPlYkLNVReCvgZHAjcaYWnt9QyKVAjyFdfXKYYy5sYOY3MH05gzGfyzBFlMwx5NX\nWI7DAQPSE4IinmARbDF5+iAKNZpI9Q56Lpp4Ohee5jV1NpEK1jlSPhfkNMbsBi7xsP4M+/8lwEW+\nBqhUVwzMCFwCpZRSvV1vryOlM3mVUkoppXykiZRSSimllI80kVJKKaWUz+bMmd04tymY9tVTNJFS\nSqkectttNwU6BADWrl3D9ddPbXPd+PHj91v29tuLWbp0Sbv7++9/F1BXV+e3+FRo0TpSSimlesQ9\n9zwQ6BCYP38e7733NnFx8W2ub6usxhlnTPK4z5deer7DbZQKV5pIKaWUn1VXV3PHHTdTXl5OdXUV\nV199DUcccTTnnHM6ixa9yw8/rOGhh/5GfHwCffqkEhMTwxVXXM3tt99Mv3792bVrJ6ecchqbN29k\n/XrDMceMZ+rUa1m1aiXPP/8MLpeLyspK7rzzL/Tt26/NY7UnKyube+55gLvvvqPN9TU1Ncyc+Wd2\n795FSkoKd9/9V+bNm0t6egYTJpzCHXfcjNvtpqamhj/84RaM+YE9e/Zw1123ce+9gU8Uleppmkgp\npUKeiIwAXjHGjBGRx4AaIAu42X7comeoiNwEDAFSgOlATOttuhLPjh3bKS0t4cEHH6O4uJitW63K\n8A0Xe2bNuo877vgLOTlDeeqpORQWFgCwc2cejzwyh6qqKi688Bxef/0dYmJiuOCCs5k69Vpyczdz\n++13k5GRwYsvPsfHH3/A8cdPaPNY7TnxxJPZuTOv3fUVFRVMnXod/fv35/rrp/LTT6bxKtWPP64h\nJaUPf/7zTHJzN1NVVcmkSecxb96zzJx5b1dOmQphnan9dMv9TzNaBvKr88/q8r6ChSZSSqmQZhcO\nvhLYJyIJwDvGmDdF5BfAqcAgrJ6hX4jImyLyAnC8MeYcu2/oFCC21TZPGWN8nvQzbNhwzjnnF9x1\n123U1dVxwQW/brF+z55CcnKGAjBq1Gg+/PA9AAYOHER8fAIREZGkpaWTlJQENCVgGRkZPPzwA8TH\nx1NQkM/IkYczdOgwj8fqrJSUFPr3tyrwp6WlU1VV1bju6KPHs23bNm655UYiIyO57LIru3QsFR46\nk/TsZjiFxfl+2Vew0ERKKRXS7MLBt9idFsqBN+0rVBdhJVgP0rJnaCrQ8Em+HRgIRLfaJgXY094x\nU1PjifTQ1mr9+vVERLh47rm55Ofnc/HFF3PuuWfgdDrJzExi4MCBlJbmM3z4cDZvNsTGRpGWlkB0\ndCSZmUlUV0fjdDrIzLQSqYbXzZp1Hx988AHx8fHcfPPNxMVFUVy8s81jeVJdnUBUVETj/ptzOJqO\nGxsbRZ8+8SQkxJCUFMumTT8wdGgW1147j1WrVvHQQw/xwgsvEBkZQVpaPLGxsR6PG4raOke9lS/n\nIqGNlm3x8dFhdV41kVJKhRUROQ84GbjcGFMpIluBbGAHkAbkAen25tn2c2erbYo9HaO4uMJjDAkJ\n6SxZsoxFixbjcrm44oqpFBSU4XK5KSgo44YbbuKmm/5EXFwcUVFRZGb2paionLo6FwUFZVRXV+Ny\n0diSo+F1P//5RC666NdkZGQyeHAOW7fuaPdYnjQ/VlsalldV1bJ3bwXl5dXExlaTmZnF44/P4YUX\nXqK+vp7Jk6dQUFDGoYeOYvLkK3n00X94PG6o0RYxTXw9F+UVNfstq6ioCbnz6inx89hrrxtpr70O\nBFtMGo9nwRYPBF9M3d1rz26sfj2wHHgHq0nyq8CXNPUMXWGMmSsivwcE6ANMA+Jbb+PpWF3ttbdg\nwaucfPKp9OnTh6ef/jtRUVFcfvlVXdml3wTb+yaQ9Fw08VevvUkzXmdc33yuuaLtW9DBOkfK5157\nSikVKowxZ9oP+7ax+pJW2z7aan1Z6226U1paGjNmXEtcXDyJiYncdttMv+7/wQf/Sm7upv2Wz5r1\nKDExMX49llK9vdeeJlJKKdXDJkw4hQkTTum2/d9445+6bd9KqZa0srlSSimllI88XpESkUG0/bEJ\nTwAAHi9JREFUU1tFRCYCVxpjLhQRJ/AUUArEGGOu7caYlVJKKRUk/DmvKVjnSHnS0RWpq7Fqq1wL\nnCUikQB27ZVhQKK93QRggzFmBlAgIsd0T7hKKaWUCibaa8+z/rSsrZIMFBljPgE+EZGz7XX9sOqx\nQFNdFo+CrYZEsMUDwReTxuNZsMUDwRmTUkqFk44Sqdb1V0o8bHe8/TgLWNPRgYPpK6XB+BXXYItJ\n4/Es2OKB4ItJkzqlVDjq6NbeM8D1IvIPYAHwkIhEtd7IGLMMyBGRh4EUY8wX/g9VKaWUUsFmzpzZ\njXObgmlfPcXjFSm79UK7tVWMMWc0ezzNj3EppZRSKgRoHSmllFJKKT969fU3KSrZx49mA6RkBjqc\nbqWJlFJKKaX8asUPeRQ6h4d9EgVakFMppZRSXaBzpJRSSimlfNTb50jpFSmllFJKKR9pIqWUUkop\n5SNNpJRSSinlM50jpZRSIU5ERgCvGGPGiMhNwBAgBZgOxNCq+bo32wRgGEqFJJ0jpZRSIUxE+gFX\nAvtEJAY43hhzHTAXmML+zdcTvdhG/8hUSnlFEymlVEgzxuw2xtwClGP1BM23VzU0UG/dfD3Vi21S\nuj9ypVQ40L+6lFLhJB9Itx9nA3lYfzA2b76e58U2xZ4OkpoaT2RkhL9jDxraYLqJnosm7Z2LmTNn\nAnDnnXc2LouOjoC6tvcTHx/dqX0FO02klFLhwm2MqReRj0XkCaAPMA2IB2aLyOXAa15u4/J0oOLi\niu4cR0BlZiZRUFAW6DCCgp6LJp7ORcO8pubra2rq273nVVFR06l9BQNPCbUmUkqpsGCMOdP+/6Ot\nVpXRqvm6N9sopZQ3PCZSIjKINr7JIiI/By4FHMDfjTHLRWQ5sM5+6Q3GmNLuC1sppZRSKvA6mmze\n+pssDZMCpmN9S+Zq4GY74UoAqgGjSZRSSinVO2gdKc/a+iZLEeAwxtQBdfbXjSuB3xhj1ojIAyJy\njDFmebdFrZRSSqmg0NnaTzXVVZSU7CUiIoLExJZzj0KxjlRHidRWWn6TpcReXiUiUfbrq7AK26UD\na4A9Xuw36L4JEWzxQPDFpPF4FmzxQHDGpJTq3b7aXM9Xd/+TPhHFzPnrrYEOp8s6SnieoembLAuA\nh0TkRuBhe10U8H/AJqxbfBOxrlZ91tGBg2lGfjB+MyPYYtJ4PAu2eCD4YtKkTikFEJs2FICE+o0B\njsQ/PCZSxpjdtP1NliX2f81d5K+glFJKKRUaGuY0+eO2nD/31VO0/IFSSimlfKa99pRSSimllE80\nkVJKKaWU8pEmUkoppZTymdaRUkoppZTykc6RUkoppZRSPtFESimllFLKR5pIKaWUUspnOkdKKaWC\njIjEG2MqAh2HUqpjvX2OlCZSSqlgdI+IALxqjPk80MEopVR7NJFSSgUdY8x0ERkBPC8iJcDLxpj5\n3rxWREYBtwHbADewC8gBUoDpQAwwCygC1hpj5ojITVjN11OA6caYQj8PSSkVpnSOlFIq6IjIPGAK\nMMUYcxYwuhMvLwAG2f8VAScYY64D5tr7vBp4xBhzLXCWiCQCx7faRinlJZ0jFRiOYOsEH2zxQPDF\npPF4FmzxQHDG5KWXgC1AtoikGWP+0InXTgNuN8Z8JCLvA1vt5duBgUA01tUqgGIgFci3n++wt1FK\neUnnSCmlVPD5HXA5sAF4DljWidfGYl2JAtiLdcsOIBvIw7oSn42VNKXZy9LtbbLs5R6lpsYTGRnR\niZBCSwgn4H6n56JJZ85FdHQE1HW8TTicX02klFLBqJqm23nuTr72MeBvIlIIfAHUisgTQB+sq1Xx\nwGwRuRx4zRhTLyIft9rGo+Li8P1CYWZmEgUFZYEOIyjouWjS2XNRU1Pf4eShmpr6kDm/nhI+TaSU\nUsHoJuBXWJ9Rf+zMC40x24CLPWxSBlzS6jWPdjZApZSlYU6TP27L+XNfPUUTKaVUMPoNcCRQD4wF\nJgc2HKVUe3SOlFJKBZ8BxpjLAh2EUkp1RBMppVQwEhG5DqgE3MaYZwMdkFJKtUUTKaVUMHos0AEo\npbyjc6R6kIgMolVF4R445gjgFWPMmNbVi/GiwnFb23QhlmOBqViTXXdj/bWdE8B4DgD+DygEvgb6\ndnSs7oynWVzzgUXA4EDGIyJDgP8Cq4Cd9j5zAhWPHVMOcDtQglUDKdDvoWuAI7BqM40HHvdTPOOw\n5kgtxKrr9KmvMSqluldvnyPV05XNW1cU7tZETkT6AVcC+0Qkhv2rF3tT4difMfcBrrH3f1wQxJMM\n3AzMwPoW03EBjgcRmQGU2k8DfX6Ox0qg3MDn+FYh29/v+RuBjVjvpRWBjskYM8cYMxmrwOXFfown\nB9hojPkXMMzX+JRSPaeyspI77n+U+x57gT1lNYEOp8f09K29/rSsKJwC7OmugxljdgO3iMjbWIX3\nGqoXe1PhuL1tfI7ZGPOWiDhE5FZgPnBCgONZKSIDgcXAx8DwQMYjIufY+/gCiPDiWN0aD/AV8L59\njA+xEphAxgPWz+gZYK0d24ZAxyQiB2F9luR6cSxv43EBB4rINKx/u0qpIFdXV8uGwihiybL+FfcS\nPX1FaitWRWGwPhyLe/DY+TRVL26ocNw6njwvtvE5ZhFJwvol+AXwchDEMxqoMsacjnUrJaDx0PSV\n998BVwGZAY5nNBBjjHEDFTS1DglUPGA14C0zxtTZMQX6ZwZwLfAo/v039gfgWawq45d3MT6lVDfq\n7b32HG53Z4sG+86+1TYba47QCmPM3B467lvGmDNF5PeA0KrCcfN4vNmmC3HMBUZg/eKoB74JcDxH\nAH/CujJQjfVLK2DxNIvrd1hzf/oHMh4RGYN1fvKB1UBCIOOxYzoImIl1+/MjrGQz0DF9YIz5uf3Y\nL//GROQ5e/d9gChjzKSuxOhvBQVlPffB2cO0mncTPRdNvDkXZWWlTJ05n9gM2W/d4tnnATBpxuuN\ny9LrN/LAbaHRIzwzM8nR3roeTaSUUqqzRORhY8z/BjqO5jSR6h30XDTRRKr9RErLHyilgo6I3G0/\njMT69qZSSgWlgCRSdXX17nBp+pmaGh82DUzDZSzhMg4Ir7F4+ouuDc/Y/6/DmkellApSDXOaLr30\nKr/tK5TKIAQkkYqMjAjEYbuFjiX4hMs4ILzG0kmPY32Trw44VERWG2NC55NVqV6kIekpKyvtYEvv\n9xVKOpVIichRwP3GmJNaLT8bq0hgHfCsMeaZtl6vlFJe+sEY8ycAEZlljPlDoANSSqm2eJ1Iicgf\ngd8C+1otj8L6xs04rK9jLxORRcaY/P33opRSXom2K6BHoHM5lVJBrDMfUBuAXwAvtlp+MLDBGFMC\nICJLsQpN/scvESqleqObgAOAVGPM54EORinVPp0j5SVjzAK7z1dryVh9vxqU0atqmiqlusGjQCLw\noog8aYyZ6u0L/dGP0BhT6L+hKBXedI5U15UASc2eJ9FBpeScnBxyc3P9cOjgkJmZ1PFGISJcxhIu\n44DwGksn1AHbjTHvi8i5nXxtQz/CEcB7WP0tzxGRCVi9/WKxevt9ISJvisgLWP3/mm9zn78GopQK\nb/5IpNYBB4hIKlCOdVvvgY5eFC5FzsKpYFu4jCVcxgHhN5ZOyAV+JSL/pKnHobe60o9wB02tgJRS\nqkO+JFJuABG5GEg0xjwtIjOAd7F69801xuz0Y4xKqd6nFPg54DTGdPZ+QWM/QhFpqx+h0368g/37\n/2XZyz1KTY0P69IUvfQqaJv0XDRp71zMnDkTgOnTp+PsRLW48op9LFz8Ji5XPZN/ewExMTGN+7rz\nzju7HG9PCUiLmJycHPeKFd97tW1R0R7efHMRl146uZujstTV1TF//jxcLheTJ3dcuj7crhiEw1jC\nZRwQdmPx+iNWRN4H3sC6yu02xjzbidd2uR+hMcbjSdcWMb2Dnosm3dEipkHVnp944tYLSU1N80+w\n3SCkWsSsWfM9Cxe+SlxcHIMGZXPSSaewbdtWqqqq+Nvf7iElpQ+bNm1g4sSz+Oabr0lJ6UNtbQ2V\nlZUMGZLDd9+t5ve/v5FNmzbw5ZfLAYiPT2Dq1Gu5996ZpKWls3v3Lm677S5iYmL2O/5rr/2buro6\nHI6W56y2tpZZs+4jOTmFLVtyuf766cTFxTN79r04HJG43W6uueYGHnjgHpKT+1BcXMR11/0vTz75\nBAAjRx7OokULGTp0GGeddS6jRh3e/SdTqRBkN/f+CzAU2NzZ1xtj1gEXedikDLik1Wse7exxlFIK\ngjCR2ru3iOrqasaPP4ERI0Y0Lv/gg3cZP/4ETjnlVF580WoM73A4OOusc8jJGcq0aVdw6613kpSU\nzJo13zF8+AGcfvqZ5OXt4J//fIkrr5zK7t27OPjgQzj++BOJjGx76BdddAmrVq1k1aqVLZbX19dz\n5plnU1FRQWFhAWvWfMf27du4+OKLGTBgKOvW/ci7777F0UeP59RTJ/L999/yyisv43A4uPDCizng\ngANZsOAVbr01dC5XKhUg0caYT0XkcmPM84EORimlPHEGOoDWsrOHcPXV1+By1XPPPTMbl9fW1jZe\nJXI6m8KOi4vH4XAQHR1tr3Pgcrl4/vmnyc/P56CDDiEyMpL6+nquv34Gw4cfwPz581izxrtbiw02\nbdrAf/7zbxISEhg2bLgdU03j+sLCAtxuV+Pz5rdMk5KSAUhM1HvtSnmhv4icAgwQkZPtx0qpIDVn\nzuzG+k/BtK+eEoRXpPbyr3+9RFZWNmPHHtG4/PTTz2DWrPv58ce1rFnzHb/61cUtXtf6Vly/fv1Z\nvfobjPkRh8OB0+lk/vx5pKdnkJLSh6ysLI9xtN5fYmIi5eXlLF++jMLCAqKiojj//AuZN+8poqLi\niI2NZfLkKTz44P389JOhtLSUKVP+p/HWnlLKa/OxJn3/E2tSuFIqiPX2OlJeTTYXEScwBxgJVANX\nGWM2Nlt/PnAr1jf6njXG/MPT/joz2bzBzp15zJ//AklJSezZU8gNN9xIQkJip/bR3MaNG1i69NMW\nyw4/fAyjRo3u1H7CaTJiuIwlXMYBYTeWTnyfJ7jpZPPeQc9FE51s3vXJ5udhzVs41m5c/KC9rMFs\nYDTWN2x+EJF/NrSM8WTs2EMBWLlyTYcBDBgwkD/84WYvw+3Y8OEjGD58RMcbKqWUUkq1w9s5UuOB\ndwCMMV9iNShurhbra8NxgAO71pRSSimlwpvOkfJOMlZNlgb1IuI0xjTMrn4QWIl1Reo1HwroKaWU\nUioE9fY5Ut4mUqW07KfXmESJyGDgOqyGnxXASyJygTHmP552mJmZhNMugRrqlWNDPf7mwmUs4TIO\nCK+xKKVUuPE2kVoGnA28KiJHA981WxcL1APVxhiXiORj3ebzqKCgDJfL3fg4VIXTZMRwGUu4jAPC\nbyxKKRVuvE2kFgKnisgy+/nkVr325gGfi0gVVoPQ5/0fqlJKKaWCTcOcpksvvcpv+wqlW3xeJVLG\nGDfwP60Wr2+2/iHgIT/GpZRSSqkQ0NvnSAVdZXOllFJKqVARFInU2LGHNtaUUkoppZQKFUHXIkYp\npZRSoUPnSCmllFJK+ai3z5HyKpHyotfeEVhFOR3ADuAyY0yN/8NVSimllAoeXe61JyIO4Cngl8aY\nTSIyBRgKmO4IWCmlvCEi84FFwGCsgsEpwHQgBpgFFAFrjTFzROSm5tsYYwoDE7VSKtT4o9fegcAe\nYIaIfAL0McZoEqWUChgRmUFTW6vjjTHXAXOBKcDVwCPGmGuBs0QksY1tlFJe0l573vHUay8DOBa4\nFtgILBaRr40xH/sSUMO391auXOPLy5VSvZyInAMUA18AEUC+vWo7MBCIBrbZy4qB1Gbb7LC38Sg1\nNZ7IyAg/Rh1ctAp9Ez0XTdo7F3feeScApaWl2J3fOslBRkYSaWlJjfsKJV3utYd1NWpDw1UoEXkH\n64qVx0Sqea+9tpaF0ps3lGLtSLiMJVzGAeE1lh7yG6wESeznDT12soE8rCvx2VhJU5q9LN3eJste\n7lFxcYUfww0u4dSWqKv0XDTx5lyUlZVhd37rJDeFhWXU10f5FFtP8PQ57I9ee5uARBEZbk9APx54\npqMdNu+119ayUHnzhtM/tHAZS7iMA8JvLD3BGPNrABH5HVAJ9BeRJ7B6gE4D4oHZInI58Joxpl5E\nPm61jVJKecVfvfauBF62J54vM8a83R3BKqWUt4wx89pZVQZc0mrbR7s/IqXCk9aR8oIXvfY+Bo7y\nY1xKKaWUCgG9vY5UULSIUUoppZQKRUFb2Vy/vaeUUkoFv8+/+IrPvl5HXV0tRMYHOpweF7SJlFJK\nKaWC3+pvlpLkhK+rDie2T9f2FbZzpJRSSiml2pKYOoRPtqT6ZV+hlEA18EuvvWbbPQXsMcbc4tco\nlVJKKRW2tm/fTllZGWlp6SQmJgY6nE7xdrJ5Y6894GasXnstiMhU4FDAp3Jcnowde2jjnCmllFJK\nhY/I5Gz+8uJKbnr8I/69cHGgw+k0f/TaQ0SOBY4EngR8KhCvlFJKqdCzr3gL45JX+/z6yKhYEtKG\nkJA2hOqyvJDrtedtItVmrz0AERkA3AFchyZRSimlVK+SmDqEr0sP98u+4lMGh9w8KX/02rsAq3Hx\nW0B/IF5EfjTGvOBphx312mtrWbD2HAvWuHwRLmMJl3FAeI1FKaXCTZd77RljHgMeg8beVgd1lERB\nx7322lo2ePAQILhqS4VbL7RwGEu4jAPCbyxKKRVuvL21txCosnvtPQhMF5GLRWRKG9v6fbK5Ukop\npYJTV+dINVdRsjXk5kj5pddes+3aaxKqlFJKqTDkzzpS8SmDufySC/yyr56ivfaUUkoppXwUsomU\n1pZSSimlVKBpixilVFix69pNBcqA3UAlkAOkANOBGGAWUASsNcbMEZGbgCEN2xhjCgMQulIhyZoj\ntcUvJRAa5kiFUgmEkL0i1UCvTCmlWukDXGOMuQ44DjjefjwXmAJcDTxijLkWOEtEEtvYRinlJa0j\n5YWOeu2JyMXADUAd8D3Wh5h+e08p1eOMMW+JiENEbgXmAyfYq7YDA4FoYJu9rBhIBfLt5zvsbZRS\nyive3tpr7LUnIkdhlUA4D0BE4oC7gUONMVUi8jIwCXijOwJWSilPRCQJeBgriVoCnG+vygbysK7E\nZ2MlTWn2snR7myx7uUepqfFERkb4N/AgojW/mui5aNLeuUhIjPHbMRISY0LunHubSLXotScizXvt\nVQHHGGOqmu2z0n8heq/hFl8wFexUSvW4h4ERwGTgMuBjEXkC65bfNCAemC0ilwOvGWPqRaT1Nh4V\nF1d0V+wBF05FYLtKz0UTT+di97b1jEvGL7f3Cnb8xMyZM4Pu9p6n5M7bRKrNXnvGGJd9C68AQESu\nBxKMMR/4GqxSSnWFMebKDjYpAy5p9ZpHuy8ipcJbb68j5Y9eew1zqP6G9VfgL/0Xnu/06pRSSiml\nuluXe+3ZnsS6xXe+t5PMfWla7O2y5o+POOIwAHJzc70Jyyehdj/Xk3AZS7iMA8JrLEopFW68TaQW\nAqfavfYAJtvf1EsEvgauwJrU+ZGIgPXV4tc97dCXpsXeLmtvfXcIp3vo4TKWcBkHhN9YlFLhpzvq\nSGUOFC487yw/RNf9/NVrLyS+vqK3+5RSSin/2Jy7meLiEkoqnPxUN9Iv+2xIxrIqNnOhX/bY/Xpl\nZXNNqJRSSqmueerlt8ktTwcGEteLLzj3ykSqOU2qlFJKqc6LiY0jzpkZ6DACrtcnUg00oVJKKaU6\nb1zyasA/daQa9rWrIqXL++opmki1QZMqpZRSyjv+6rPXfF9ZkZv9ts/u5q9ee2cDt2P12nvWGPNM\nN8Ta4zShUkoppZQn/ui1FwXMBsYBFcAyEVlkjMlvd28hqCGpaqDJlVJKKaX80WvvYGCDMaYEQESW\nYnVb/48/Aw1GY8ceitPpaKxZtXLlGr2KpZRSqlfROVLeabfXnr2upNm6MiB0zkA3ausqll7ZUkop\nFU50jpR3PPXaK2m1Lgko9rSz7duXMnZsAnl5S1ss99ey7tz3/sscgLuLMexosWzgwEHdtszz+pLG\nsQQuBn8sK2HgwIHdGldPcTrB5UroseN1p61bAx2BUkr5n8Pt7rg1noj8AjjbGDPZ7rV3uzHmLHtd\nFLAWOAooBz63t93Z3v5ycvCqH59SKnzk5uLoeKvQUFBQFrafYeHUlqir9Fw0aX4u9u61rpXMeupV\n8lwjvHr94tnnATBphsfucY2ii7/ixHGC0+ngol+e50PE/pWZmdTu51eXe+0ZY54WkRnAu4ATmOsp\niQLIze2+3nc9LZz+oYXLWMJlHBBeY2l54VopFaquuvE+olKH44xOJCa5e+ZIfc2RvL8RavK/5aJf\ndnm33covvfaMMYuBxX6MSymllFJBKD51EJEZBzQ+7445UqFEC3IqpRQgIoOAWUARsNYYMyfAISnV\n69W7XPzrP6/jxs2E445hQP/+gQ5pP85AB6CUUkHiauARY8y1wFkion9oKhVgcf1H896GZN5bn8iy\nL74KdDht0g8KpZSy9Ae22Y+Lscq47AlcOEoF3qI33uC9999h65bN1DhTcEZEkpQ5FKfj+8Ztjhxa\nD8BXmyM63J9rz/ce17e3L7fbzbPPL+XV116nqryYrEEDyMzsy1133NXJEfmfV9/aU0qpcCcitwEf\nGmO+EJG3gEnNyrwopVSbNJFSSilARPphtbsqA1YYY+YGOCSlVAjQREoppZRSykc62VwppZRSykea\nSCmllFJK+UgTKaWUUkopH2kipZRSSinlox6tIyUiTmAOMBKoBq4yxmzsyRi6wm7Q/CwwBIgB/gL8\nCDwPuIA1wLV2S52gJyJ9gZXAKVjxP09ojuMW4GwgCngcWEYIjsX+9/EMcCBW7FOAekJoLCJyFHC/\nMeYkERlBG7GLyBSs4pd1wF+MMW8GLOBeqL0K7iLyc+BSwAH83RizXESWA+vsl95gjCkNRMzdxVM1\nexGZCFxpjLnQ/rf5FFAKxNhFW8OKt+fCfh7W74vO6ukrUucB0caYY4GbgQd7+PhddQlQYIw5AZgI\nPIE1hlvtZQ7g3ADG5zU7KXwSKMeKezahOY4JwDH2e2oCMIwQ/ZkApwEJxpjjgP8D7iWExiIifwSe\nxvojA9p4T4lIf+B64FjgdOA+EYkORLy9WOsK7g2VD6cDV9rrb7Z/sSZg/dFrwvSXZZvV7O3PlWFA\nor3dBGCDMWYGUCAixwQg1u7m1bkQkSzC/33RKT2dSI0H3gEwxnwJjOvh43fVq8Ad9mMnUAuMMcYs\nsZe9Dfw8EIH54AHg78BO+3mojuM04HsReR14A1gEjA3RsVQCKSLiwKqqXUNojWUD8AuspAnafk8d\nASwzxtTaH8AbsK5Qq57TVgV3AIcxps4YU4WVDFcCvzHGTAPSwzR5aH0ukgGMMZ+06rXYD9huP94O\nDOyxCHuOt+eigvB/X3RKTydSyViXRhvU25dMQ4IxptwYs09EkrCSqj/T8hzuo+lDKWiJyOVYV9be\nsxc5aPrlByEyDlsmMBa4AJgGvEzojmUZEIt1yfxJ4FFCaCzGmAVYt+saNI+9DCv2ZKCkjeWq52wF\nsu3HaTT9PKpEJEpE4oAqrCkMDR1i9xCeLcXaOxdtbZdlP84CdnRzXIHg7bnoDe+LTunpJKYUSGp+\n/FBrwSAi2cBHwAvGmH9izf9okATsDUhgnTMZOFVEPgYOB+ZhJSQNQmUcAIXAe/Zf0uuxfgE0/8Uc\nSmP5I9bVGsH6ubyANe+rQSiNBVr+20jGir31Z0AS1l+/quc8A1wvIv8AFgAP2bf6H7bXzcW6tbwJ\nmCIis4BMY8xngQq4G7V3LlowxiwDckTkYSDFGPNFD8fZE7w6F/SO90Wn9HQmuQxrUvCrInI08F0P\nH79L7BYS7wHXGGM+thevEpETjTGfAmcAHwYsQC8ZY05seGwnU9OAB0JtHLalwA3AbBEZCMQDH4bo\nWBJoumJbjPXvM+TeX820FftXwD0iEoN19e1grInoqocYY3ZjzfdsbYn9X3MXdX9EgePhXDSsP6PZ\n42k9ElSAeHsujDElhPn7orN6OpFaiHUlZJn9fHIPH7+rbsW62nGHiDTMlboBeNSeMPsD8J9ABdcF\nbuBG4OlQG4cx5k0ROUFEvsK6wnoNkEsIjgVr3tpzIvIZ1pWoW7C+VRlqY2n4VuF+7yn7W3uPAp9h\n/bxuNcbUBChOpZTqMu21p5RSSinlo5CZ6K2UUkopFWw0kVJKKaWU8pEmUkoppZRSPtJESimllFLK\nR5pIKaWUUkr5SBMppZRSSikfaSKllFJKKeUjTaSUUkoppXz0/6oIZcqrnVUlAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x517cc2e8>" | |
] | |
} | |
], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
View the notebook here