Skip to content

Instantly share code, notes, and snippets.

@truncs
truncs / gist:3777093
Created September 24, 2012 17:15
coin change
#! /usr/bin/python
import sys
denominations = [1, 2,3]
def find_all_denom(value, denom, current_denom):
if value < 0:
return
@truncs
truncs / multiplot.R
Created July 25, 2012 21:15
R multiplot
multiplot <- function(..., plotlist=NULL, cols) {
require(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# Make the panel
plotCols = cols # Number of columns of plots
@truncs
truncs / ex1.py
Created July 17, 2012 07:40
Project Euler
f = lambda x : x * (x + 1) / 2
f(999/3)*3 + f(999/5)*5 - f(999/15)*15
@truncs
truncs / pcm.py
Created May 10, 2012 19:16
Final PCM
#! /usr/bin/python
import argparse
import os
import pwd
import subprocess
import string
import random
import signal
import sys
@truncs
truncs / gist:2650766
Created May 10, 2012 03:05
python-ptrace traceexit example
#! /usr/bin/python
import argparse
import os
import pwd
import subprocess
import string
import random
import signal
import sys
#! /usr/bin/python
import argparse
import os
import pwd
import subprocess
import string
import random
import signal
import sys
@truncs
truncs / regress_with_uniform.R
Created April 6, 2012 06:24
Uniform sampling
# Get a subset of values from the training set where days spent is zero
temp <- subset(train, DaysInHospital_Y2 == log1p(0))
# Get 100 samples from it with replacement and add it to a new dataframe
uniform_set <- temp[sample(nrow(temp), 100, replace=TRUE),]
# Keep on doing this for other values as well
uniform_set <- merge(uniform_set, temp[sample(nrow(temp), 100, replace=TRUE),], all=T)
# Train a tree on it
@truncs
truncs / regress_with_random.R
Created April 6, 2012 05:24
Regression Tree using random samples
# Transform days spent to log(1 + x)
y1_data$DaysInHospital_Y2 <- log1p(y1_data$DaysInHospital_Y2)
# Divide the set, 80% for train and 20% for test
indexes <- sample(1:nrow(y1_data), size=0.2*nrow(y1_data))
test <- y1_data[indexes,]
train <- y1_data[-indexes,]
# Remove unwanted features from both the sets
train <- subset(train, select=-c(MemberID_t, YEAR_t, DaysInHospital, trainset, DaysInHospital_Y3, age_05, PayDelay_max, PayDelay_min, PayDelay_stdev, LOS_max, LOS_min,
@truncs
truncs / gist:2143525
Created March 21, 2012 01:42
parallel2
#include <iostream>
#include <algorithm>
#include <string>
#include <cstdlib>
using namespace std;
int main(){
int n;
@truncs
truncs / gist:2143339
Created March 21, 2012 01:12
Parallel Prog
#include <iostream>
#include <algorithm>
#include <string>
#include <cstdlib>
using namespace std;
int main(){
int n;