Created
September 6, 2024 21:16
-
-
Save tswast/99b017b20386e324f5c7d2bd49f21b5f to your computer and use it in GitHub Desktop.
notebooks demonstrating bigquery and polars integration without pyarrow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Copyright 2024 Google LLC\n", | |
"#\n", | |
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n", | |
"# you may not use this file except in compliance with the License.\n", | |
"# You may obtain a copy of the License at\n", | |
"#\n", | |
"# https://www.apache.org/licenses/LICENSE-2.0\n", | |
"#\n", | |
"# Unless required by applicable law or agreed to in writing, software\n", | |
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n", | |
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", | |
"# See the License for the specific language governing permissions and\n", | |
"# limitations under the License." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\u001b[33mWARNING: Skipping pyarrow as it is not installed.\u001b[0m\u001b[33m\n", | |
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n" | |
] | |
} | |
], | |
"source": [ | |
"%pip uninstall pyarrow -y" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import google.cloud.bigquery_storage_v1\n", | |
"import polars" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"bqread = google.cloud.bigquery_storage_v1.BigQueryReadClient()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"read_request = google.cloud.bigquery_storage_v1.types.CreateReadSessionRequest()\n", | |
"read_session = google.cloud.bigquery_storage_v1.types.ReadSession()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"read_session.table = \"projects/swast-scratch/datasets/my_dataset/tables/my_table\" # table to read\n", | |
"read_session.data_format = google.cloud.bigquery_storage_v1.types.DataFormat.ARROW\n", | |
"read_request.parent = \"projects/swast-scratch\" # billing project\n", | |
"read_request.read_session = read_session\n", | |
"read_request.max_stream_count = 1 # single-threaded for proof-of-concept" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"session = bqread.create_read_session(read_request)\n", | |
"reader = bqread.read_rows(session.streams[0].name) # Note: streams could be empty if the table is empty.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import io\n", | |
"\n", | |
"fake_stream = io.BytesIO()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# IPC format is schema followed by record batches\n", | |
"# https://arrow.apache.org/docs/format/Columnar.html#ipc-streaming-format\n", | |
"fake_stream.write(session.arrow_schema.serialized_schema)\n", | |
"for message in reader:\n", | |
" fake_stream.write(message.arrow_record_batch.serialized_record_batch)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"fake_stream.seek(0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = polars.read_ipc_stream(fake_stream)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div><style>\n", | |
".dataframe > thead > tr,\n", | |
".dataframe > tbody > tr {\n", | |
" text-align: right;\n", | |
" white-space: pre-wrap;\n", | |
"}\n", | |
"</style>\n", | |
"<small>shape: (3, 5)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>letter</th><th>ts</th><th>my_string_col</th><th>bool_col</th><th>int64_col</th></tr><tr><td>str</td><td>datetime[μs, UTC]</td><td>str</td><td>bool</td><td>i64</td></tr></thead><tbody><tr><td>"a"</td><td>null</td><td>null</td><td>null</td><td>null</td></tr><tr><td>"c"</td><td>null</td><td>null</td><td>null</td><td>null</td></tr><tr><td>null</td><td>2020-11-19 11:01:17.123 UTC</td><td>null</td><td>null</td><td>null</td></tr></tbody></table></div>" | |
], | |
"text/plain": [ | |
"shape: (3, 5)\n", | |
"┌────────┬─────────────────────────────┬───────────────┬──────────┬───────────┐\n", | |
"│ letter ┆ ts ┆ my_string_col ┆ bool_col ┆ int64_col │\n", | |
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n", | |
"│ str ┆ datetime[μs, UTC] ┆ str ┆ bool ┆ i64 │\n", | |
"╞════════╪═════════════════════════════╪═══════════════╪══════════╪═══════════╡\n", | |
"│ a ┆ null ┆ null ┆ null ┆ null │\n", | |
"│ c ┆ null ┆ null ┆ null ┆ null │\n", | |
"│ null ┆ 2020-11-19 11:01:17.123 UTC ┆ null ┆ null ┆ null │\n", | |
"└────────┴─────────────────────────────┴───────────────┴──────────┴───────────┘" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "ModuleNotFoundError", | |
"evalue": "No module named 'pyarrow'", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | |
"Cell \u001b[0;32mIn[13], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpyarrow\u001b[39;00m\n", | |
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'pyarrow'" | |
] | |
} | |
], | |
"source": [ | |
"import pyarrow" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "venv", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.9" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment